
Sparse Deep Learning for Time Series Data:
Theory and Applications

Mingxuan Zhang
Department of Statistics

Purdue University
zhan3692@purdue.edu

Yan Sun
Department of Biostatistics, Epidemiology, and Informatics

University of Pennsylvania
yan.sun@pennmedicine.upenn.edu

Faming Liang
Department of Statistics

fmliang@purdue.edu

Abstract

Sparse deep learning has become a popular technique for improving the
performance of deep neural networks in areas such as uncertainty quantifi-
cation, variable selection, and large-scale network compression. However,
most existing research has focused on problems where the observations are
independent and identically distributed (i.i.d.), and there has been little
work on the problems where the observations are dependent, such as time
series data and sequential data in natural language processing. This paper
aims to address this gap by studying the theory for sparse deep learning with
dependent data. We show that sparse recurrent neural networks (RNNs)
can be consistently estimated, and their predictions are asymptotically nor-
mally distributed under appropriate assumptions, enabling the prediction
uncertainty to be correctly quantified. Our numerical results show that
sparse deep learning outperforms state-of-the-art methods, such as confor-
mal predictions, in prediction uncertainty quantification for time series data.
Furthermore, our results indicate that the proposed method can consistently
identify the autoregressive order for time series data and outperform ex-
isting methods in large-scale model compression. Our proposed method
has important practical implications in fields such as finance, healthcare,
and energy, where both accurate point estimates and prediction uncertainty
quantification are of concern.

1 Introduction

Over the past decade, deep learning has experienced unparalleled triumphs across a multitude
of domains, such as time series forecasting [1, 2, 3, 4, 5], natural language processing [6, 7],
and computer vision [8, 9]. However, challenges like generalization and miscalibration [10]
persist, posing potential risks in critical applications like medical diagnosis and autonomous
vehicles.
In order to enhance the performance of deep neural networks (DNNs), significant research
efforts have been dedicated to exploring optimization methods and the loss surface of the
DNNs, see, e.g., [11, 12, 13, 14, 15, 16], which have aimed to expedite and direct the con-
vergence of DNNs towards regions that exhibit strong generalization capabilities. While
these investigations are valuable, effectively addressing both the challenges of generalization

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

and miscalibration require additional and perhaps more essential aspects: consistent esti-
mation of the underlying input-output mapping and complete knowledge of the asymptotic
distribution of predictions. As a highly effective method that addresses both challenges,
sparse deep learning has been extensively studied, see, e.g., [17, 18, 19, 20, 21]. Nevertheless,
it is important to note that all the studies have been conducted under the assumption of
independently and identically distributed (i.i.d.) data. However, in practice, we frequently
encounter situations where the data exhibits dependence, such as time series data.
The primary objective of this paper is to address this gap by establishing a theoretical
foundation for sparse deep learning with time series data. Specifically, we lay the foundation
within the Bayesian framework. For RNNs, by letting their parameters be subject to a mixture
Gaussian prior, we establish posterior consistency, structure selection consistency, input-
output mapping estimation consistency, and asymptotic normality of predicted values. We
validate our theory through numerical experiments on both synthetic and real-world datasets.
Our approach outperforms existing state-of-the-art methods in uncertainty quantification and
model compression, highlighting its potential for practical applications where both accurate
point prediction and prediction uncertainty quantification are of concern.
Additionally, we would elaborate the contribution of this paper in a broader context of
statistical modeling. As discussed in [22], two distinct cultures exist for statistical modeling:
the ’data modeling culture’ and the ’algorithmic modeling culture’. The former focuses on
simple generative models that explain the data, potentially lacking a consistent estimate
of the true data-generating mechanism due to the model’s inherent simplicity. The latter,
on the other hand, aims to find models that can predict the data regardless of complexity.
Our proposed method occupies a middle ground between these two cultures. It seeks to
identify a parsimonious model within the realm of complex models, while also ensuring a
consistent estimation of the true data-generating mechanism. From this perspective, this
work and related ones, e.g., [17, 18, 19, 20, 21], represent a hybridization of the ’algorithmic
modeling culture’ and the ’data modeling culture’, which holds the potential to expedite
advancements in modern data science.

2 Related Works

Sparse deep learning. Theoretical investigations have been conducted on the approxi-
mation power of sparse DNNs across different classes of functions [23, 24]. Recently, [20]
has made notable progress by integrating sparse DNNs into the framework of statistical
modeling, which offers a fundamentally distinct neural network approximation theory. Unlike
traditional theories that lack data involvement and allow connection weights to assume values
in an unbounded space to achieve arbitrarily small approximation errors with small networks
[25], their theory [20] links network approximation error, network size, and weight bounds to
the training sample size. They show that a sparse DNN of size O(n/ log(n)) can effectively
approximate various types of functions, such as affine and piecewise smooth functions, as
n → ∞, where n denotes the training sample size. Additionally, sparse DNNs exhibit
several advantageous theoretical guarantees, such as improved interpretability, enabling
the consistent identification of relevant variables for high-dimensional nonlinear systems.
Building upon this foundation, [21] establishes the asymptotic normality of connection
weights and predictions, enabling valid statistical inference for predicting uncertainties. This
work extends the sparse deep learning theory of [20, 21] from the case of i.i.d data to the
case of time series data.
Uncertainty quantification. Conformal Prediction (CP) has emerged as a prominent
technique for generating prediction intervals, particularly for black-box models like neural
networks. A key advantage of CP is its capability to provide valid prediction intervals for
any data distribution, even with finite samples, provided the data meets the condition of
exchangeability [26, 27]. While i.i.d. data easily satisfies this condition, dependent data,
such as time series, often doesn’t. Researchers have extended CP to handle time series
data by relying on properties like strong mixing and ergodicity [28, 29]. In a recent work,
[30] introduced a random swapping mechanism to address potentially non-exchangeable
data, allowing conformal prediction to be applied on top of a model trained with weighted
samples. The main focus of this approach was to provide a theoretical basis for the

2

differences observed in the coverage rate of the proposed method. Another recent study
by [31] took a deep dive into the Adaptive Conformal Inference (ACI) [32], leading to
the development of the Aggregation Adaptive Conformal Inference (AgACI) method. In
situations where a dataset contains a group of similar and independent time series, treating
each time series as a separate observation, applying a CP method becomes straightforward
[33]. For a comprehensive tutorial on CP methods, one can refer to [34]. Beyond CP,
other approaches for addressing uncertainty quantification in time series datasets include
multi-horizon probabilistic forecasting [35], methods based on dropout [36], and recursive
Bayesian approaches [37].

3 Sparse Deep Learning for Time Series Data: Theory

Let Dn = {y1, . . . , yn} denote a time series sequence, where yi ∈ R. Let (Ω,F , P ∗) be the
probability space of Dn, and let αk = sup{|P ∗(yj ∈ A, yk+j ∈ B) − P ∗(yj ∈ A)P ∗(yk+j ∈
B)| : A,B ∈ F , j ∈ N+} be the k-th order α-mixing coefficient.
Assumption 3.1. The time series Dn is (strictly) stationary and α-mixing with an expo-
nentially decaying mixing coefficient and follows an autoregressive model of order l

yi = µ∗(yi−1:i−l,ui) + ηi, (1)
where µ∗ is a non-linear function, yi−1:i−l = (yi−1, . . . , yi−l), ui contains optional exogenous
variables, and ηi

i.i.d.∼ N(0, σ2) with σ2 being assumed to be a constant.
Remark 3.2. Similar assumptions are commonly adopted to establish asymptotic properties
of stochastic processes [38, 39, 40, 41, 42, 29]. For example, the asymptotic normality of the
maximum likelihood estimator (MLE) can be established under the assumption that the time
series is strictly stationary and ergodic, provided that the model size is fixed [38]. A posterior
contraction rate of the autoregressive (AR) model can be obtained by assuming it is α-mixing
with

∑∞
k=0 a

1−2/s
k < ∞ for some s > 2 which is implied by an exponentially decaying mixing

coefficient [42]. For stochastic processes that are strictly stationary and β-mixing, results
such as uniform laws of large numbers and convergence rates of the empirical processes
[39, 40] can also be obtained.
Remark 3.3. Extending the results of [20, 21] to the case that the dataset includes a set of i.i.d.
time series, with each time series regarded as an individual observation, is straightforward,
this is because all observations are independent and have the same distribution.

3.1 Posterior Consistency

Both the MLP and RNN can be used to approximate µ∗ as defined in (1), and for simplicity,
we do not explicitly denote the exogenous variables ui unless it is necessary. For the MLP,
we can formulate it as a regression problem, where the input is xi = yi−1:i−Rl

for some
l ≤ Rl ≪ n, and the corresponding output is yi, then the dataset Dn can be expressed
as {(xi, yi)}n

i=1+Rl
. Detailed settings and results for the MLP are given in Appendix B.3.

In what follows, we will focus on the RNN, which serves as an extension of the previous
studies. For the RNN, we can rewrite the training dataset as Dn = {yi:i−Ml+1}n

i=Ml
for some

l ≤ Rl < Ml ≪ n, i.e., we split the entire sequence into a set of shorter sequences, where
Rl denotes an upper bound for the exact AR order l, and Ml denotes the length of these
shorter sequences (see Figure 1). We assume Rl is known but not l since, in practice, it is
unlikely that we know the exact order l.
For simplicity of notations, we do not distinguish between weights and biases of the RNN.
In this paper, the presence of the subscript n in the notation of a variable indicates its
potential to increase with the sample size n. To define an RNN with Hn −1 hidden layers, for
h ∈ {1, 2, . . . ,Hn}, we let ψh and Lh denote, respectively, the nonlinear activation function
and the number of hidden neurons at layer h. We set LHn = 1 and L0 = pn, where pn

denotes a generic input dimension. Because of the existence of hidden states from the past,
the input xi can contain only yi−1 or yi−1:i−r for some r > 1. Let wh ∈ RLh×Lh−1 and
vh ∈ RLh×Lh denote the weight matrices at layer h. With these notations, the output of the
step i of an RNN model can be expressed as

µ(xi, {zh
i−1}Hn−1

h=1 ,β) = wHnψHn−1[· · ·ψ1[w1xi + v1z1
i−1] · · ·], (2)

3

Figure 1: A multi-layer RNN with an input window size of k. We restrict the use of the RNN’s
outputs until the hidden states have accumulated a sufficient quantity of past information to
ensure accurate predictions.

where zh
i = ψh[whzh−1

i + vhzh
i−1] denotes the hidden state of layer h at step i with zh

0 = 0;
and β is the collection of all weights, consisting of Kn =

∑Hn

h=1(Lh×Lh−1)+
∑Hn−1

h=1 (L2
h)+Lh

elements. To represent the structure for a sparse RNN, we introduce an indicator variable
for each weight in β. Let γ = {γj ∈ {0, 1} : j = 1, . . . ,Kn}, which specifies the structure of
a sparse RNN. To include information on the network structure γ and keep the notation
concise, we redenote µ(xi, {zh

i−1}Hn−1
h=1 ,β) by µ(xi:i−Ml+1,β,γ), as {zh

i−1}Hn−1
h=1 depends

only on (β,γ) and up to xi−1:i−Ml+1.
Posterior consistency is an essential concept in Bayesian statistics, which forms the basis
of Bayesian inference. While posterior consistency generally holds for low-dimensional
problems, establishing it becomes challenging in high-dimensional scenarios. In such cases,
the dimensionality often surpasses the sample size, and if the prior is not appropriately elicited,
prior information can overpower the data information, leading to posterior inconsistency.
Following [20, 21, 17], we let each connection weight be subject to a mixture Gaussian prior,
i.e.,

βj ∼ λnN(0, σ2
1,n) + (1 − λn)N(0, σ2

0,n), j ∈ {1, 2, . . . ,Kn}, (3)
by integrating out the structure information γ, where λn ∈ (0, 1) is the mixture proportion,
σ2

0,n is typically set to a very small number, while σ2
1,n is relatively large. Visualizations of

the mixture Gaussian priors for different λn, σ2
0,n, and σ2

1,n are given in the Appendix E.
We assume µ∗ can be well approximated by a sparse RNN given enough past information,
and refer to this sparse RNN as the true RNN model. To be more specific, we define the
true RNN model as

(β∗,γ∗) = arg min
(β,γ)∈Gn,∥µ(xi:i−Ml+1,β,γ)−µ∗(yi−1:i−l)∥

L2(Ω)
≤ϖn

|γ|, (4)

where Gn := G(C0, C1, ϵ, pn, L1, L2, . . . , LHn) denotes the space of all valid networks that
satisfy the Assumption 3.4 for the given values of Hn, pn, and Lh’s, and ϖn is some sequence
converging to 0 as n → ∞. For any given RNN (β,γ), the error |µ∗(·) − µ(·,β,γ)| can
be decomposed as the approximation error |µ∗(·) − µ(·,β∗,γ∗)| and the estimation error
|µ(·,β∗,γ∗) − µ(·,β,γ)|. The former is bounded by ϖn, and the order of the latter will be
given in Theorem 3.9. For the sparse RNN, we make the following assumptions:
Assumption 3.4. The true sparse RNN model (β∗,γ∗) satisfies the following conditions:

• The network structure satisfies: rnHn logn+ rn log L̄+ sn log pn ≤ C0n
1−ϵ, where

0 < ϵ < 1 is a small constant, rn = |γ∗| denotes the connectivity of γ∗, L̄ =
max1≤j≤Hn−1 Lj denotes the maximum hidden state dimension, and sn denotes the
input dimension of γ∗.

• The network weights are polynomially bounded: ∥β∗∥∞ ≤ En, where En = nC1 for
some constant C1 > 0.

Remark 3.5. Assumption 3.4 is identical to assumption A.2 of [20], which limits the con-
nectivity of the true RNN model to be of o(n1−ϵ) for some 0 < ϵ < 1. Then, as implied by

4

Lemma 3.10, an RNN of size O(n/ log(n)) has been large enough for modeling a time series
sequence of length n. Refer to [20] for discussions on the universal approximation ability
of the neural network under this assumption; the universal approximation ability can still
hold for many classes of functions, such as affine function, piecewise smooth function, and
bounded α-Hölder smooth function.
Remark 3.6. The existence of the sparse RNN model stems from Lemma 4.1 of [39], which,
through the trick of independent block sequence construction, shows that many properties
of the i.i.d processes can be extended to mixing processes. While the lemma was proven for
the case of β-mixing, the author did mention her doubts about its applicability to α-mixing.
Therefore, at least for the sequences of β-mixing, which implies α-mixing, the non-empty of
the sparse RNN set in (4) can be guaranteed for many classes of functions as mentioned in
Remark 3.5.
Assumption 3.7. The activation function ψh is bounded for h = 1 (e.g., sigmoid and tanh),
and is Lipschitz continuous with a Lipschitz constant of 1 for 2 ≤ h ≤ Hn (e.g., ReLU,
sigmoid and tanh).
Remark 3.8. Assumption 3.7 mirrors [20, 21], except that we require the activation function
for the first layer to be bounded. This extra assumption can be viewed as a replacement for
the boundedness assumption for the input variables of a conventional DNN.

Let d(p1, p2) denote the integrated Hellinger distance between two conditional densities
p1(y|x) and p2(y|x). Let π(·|Dn) be the posterior probability of an event. Theorem 3.9
establishes posterior consistency for the RNN model with the mixture Gaussian prior (3).
Theorem 3.9. Suppose Assumptions 3.1, 3.4, and 3.7 hold. If the mixture Gaussian
prior (3) satisfies the conditions : λn = O(1/[MHn

l Kn[n2MlHn(L̄pn)]τ]) for some con-
stant τ > 0, En/[Hn logn + log L̄]1/2 ≤ σ1,n ≤ nα for some constant α, and σ0,n ≤
min{1/[MHn

l

√
nKn(n3/2σ1,n/Hn)2MlHn], 1/[MHn

l

√
nKn(nEn/Hn)2MlHn]}, then there ex-

ists an an error sequence ϵ2n = O(ϖ2
n)+O(ζ2

n) such that limn→∞ ϵn = 0 and limn→∞ nϵ2n = ∞,
and the posterior distribution satisfies

π(d(pβ, pµ∗) ≥ Cϵn|Dn) = OP ∗(e−nϵ2
n), (5)

for sufficiently large n and C > 0, where ζ2
n = [rnHn logn+rn log L̄+sn log pn]/n, pµ∗ denotes

the underlying true data distribution, and pβ denotes the data distribution reconstructed by
the Bayesian RNN based on its posterior samples.

3.2 Uncertainty Quantification with Sparse RNNs

As mentioned previously, posterior consistency forms the basis for Bayesian inference with
the RNN model. Based on Theorem 3.9, we further establish structure selection consistency
and asymptotic normality of connection weights and predictions for the sparse RNN. In
particular, the asymptotic normality of predictions enables the prediction intervals with
correct coverage rates to be constructed.

Structure Selection Consistency It is known that the neural network often suffers
from a non-identifiability issue due to the symmetry of its structure. For instance, one can
permute certain hidden nodes or simultaneously change the signs or scales of certain weights
while keeping the output of the neural network invariant. To address this issue, we follow
[20] to define an equivalent class of RNNs, denoted by Θ, which is a set of RNNs such that
any possible RNN for the problem can be represented by one and only one RNN in Θ via
appropriate weight transformations. Let ν(β,γ) ∈ Θ denote an operator that maps any
RNN to Θ. To serve the purpose of structure selection in the space Θ, we consider the
marginal posterior inclusion probability (MIPP) approach. Formally, for each connection
weight i = 1, . . . ,Kn, we define its MIPP as qi =

∫ ∑
γ ei|ν(β,γ)π(γ|β, Dn)π(β|Dn)dβ, where

ei|ν(β,γ) is the indicator of i in ν(β,γ). The MIPP approach selects the connections whose
MIPPs exceed a threshold q̂. Let γ̂ q̂ = {i : qi > q̂, i = 1, . . . ,Kn} denote an estimator
of γ∗ = {i : ei|ν(β∗,γ∗) = 1, i = 1, . . . ,Kn}. Let A(ϵn) = {β : d(pβ, pµ∗) ≤ ϵn} and
ρ(ϵn) = max1≤i≤Kn

∫
A(ϵn)

∑
γ |ei|ν(β,γ) − ei|ν(β∗,γ∗)|π(γ|β, Dn)π(β|Dn)dβ, which measures

5

the structure difference on A(ϵ) for the true RNN from those sampled from the posterior.
Then we have the following Lemma:
Lemma 3.10. If the conditions of Theorem 3.9 are satisfied and ρ(ϵn) → 0 as n → ∞, then

(i) max1≤i≤Kn
{|qi − ei|ν(β∗,γ∗)|}

p→ 0 as n → ∞;

(ii) (sure screening) P (γ∗ ⊂ γ̂ q̂) p→ 1 as n → ∞, for any prespecified q̂ ∈ (0, 1);

(iii) (consistency) P (γ∗ = γ̂0.5) p→ 1 as n → ∞;

where p→ denotes convergence in probability.
Remark 3.11. This lemma implies that we can filter out irrelevant variables and simplify the
RNN structure when appropriate. Please refer to Section 5.2 for a numerical illustration.

Asymptotic Normality of Connection Weights and Predictions The following
two theorems establish the asymptotic normality of ν̃(β) and predictions, where ν̃(β)
denotes a transformation of β which is invariant with respect to µ(·,β,γ) while minimizing
∥ν̃(β) − β∗∥∞.
We follow the same definition of asymptotic normality as in [21, 43, 19]. The posterior
distribution for the function g(β) is asymptotically normal with center g∗ and variance
G if, for dβ the bounded Lipschitz metric for weak convergence, and ϕn the mapping
ϕn : β →

√
n(g(β) − g∗), it holds, as n → ∞, that

dβ(π(·|Dn) ◦ ϕ−1
n , N(0, G)) → 0, (6)

in P ∗-probability, which we also denote π(·|Dn) ◦ ϕ−1
n ⇝ N(0, G).

The detailed assumptions and setups for the following two theorems are given in Appendix
C. For simplicity, we let Ml = Rl + 1, and let ln(β) = 1

n−Rl

∑n
i=Rl+1 log(pβ(yi|yi−1:i−Rl

))
denote the averaged log-likelihood function. Let Hn(β) denote the Hessian matrix of ln(β),
and let hi,j(β) and hi,j(β) denote the (i, j)-th element of Hn(β) and H−1

n (β), respectively.

Theorem 3.12. Assume the conditions of Lemma 3.10 hold with ρ(ϵn) = o(1
Kn

) and

additional assumptions hold given in Appendix C, then π(
√
n(ν̃(β) − β∗)|Dn) ⇝ N(0,V)

in P ∗-probability as n → ∞, where V = (vi,j), and vi,j = E(hi,j(β∗)) if i, j ∈ γ∗ and 0
otherwise.

Theorem 3.13 establishes asymptotic normality of the sparse RNN prediction, which implies
prediction consistency and forms the theoretical basis for prediction uncertainty quantification
as well.
Theorem 3.13. Assume the conditions of Theorem 3.12 and additional assumptions
hold given in Appendix C. Then π(

√
n(µ(·,β) − µ(·,β∗)|Dn) ⇝ N(0,Σ), where Σ =

∇γ∗µ(·,β∗)′H−1∇γ∗µ(·,β∗) and H = E(−∇2
γ∗ ln(β∗)) is the Fisher information matrix.

4 Computation

In the preceding section, we established a theoretical foundation for sparse deep learning
with time series data under the Bayesian framework. Building on [20], it is straightforward
to show that Bayesian computation can be simplified by invoking the Laplace approximation
theorem at the maximum a posteriori (MAP) estimator. This essentially transforms the
proposed Bayesian method into a regularization method by interpreting the log-prior density
function as a penalty for the log-likelihood function in RNN training. Consequently, we
can train the regularized RNN model using an optimization algorithm, such as SGD or
Adam. To address the local-trap issue potentially suffered by these methods, we train the
regularized RNN using a prior annealing algorithm [21], as described in Algorithm 1. For a
trained RNN, we sparsify its structure by truncating the weights less than a threshold to
zero and further refine the nonzero weights for attaining the MAP estimator. For algorithmic

6

specifics, refer to Appendix D. Below, we outline the steps for constructing prediction
intervals for one-step-ahead forecasts, where µ(yk−1:k−Rl

, β̂) is of one dimension, and β̂ and
γ̂ represent the estimators of the network parameters and structure, respectively, as obtained
by Algorithm 1:

• Estimate σ2 by σ̂2 = 1
n−Rl − 1

∑n
i=Rl+1 ∥yi − µ(yi−1:i−Rl

, β̂)∥2.

• For a test point yk−1:k−Rl
, estimate Σ in Theorem 3.13 by

ς̂2 = ∇γ̂µ(yk−1:k−Rl
, β̂)′(−∇2

γ̂ ln(β̂))−1∇γ̂µ(yk−1:k−Rl
, β̂).

• The corresponding (1 − α)% prediction interval is given by

µ(yk−1:k−Rl
, β̂) ± zα/2

√
ς̂2/(n−Rl) + σ̂2,

where there are n− Rl observations used in training, and zα/2 denotes the upper
α/2-quantile of the standard Gaussian distribution.

For construction of multi-horizon prediction intervals, see Appendix F.

5 Numerical Experiments

5.1 Uncertainty Quantification

As mentioned in Section 3, we will consider two types of time series datasets: the first type
comprises a single time series, and the second type consists of a set of time series. We will
compare the performance of our method against the state-of-the-art Conformal Prediction
(CP) methods for both types of datasets. We set α = 0.1 (the error rate) for all uncertainty
quantification experiments in the paper, and so the nominal coverage level of the prediction
intervals is 90%.

5.1.1 A Single Time Series: French Electricity Spot Prices

We perform one-step-ahead forecasts on the French electricity spot prices data from 2016
to 2020, which consists of 35,064 observations. A detailed description and visualization of
this time series are given in Appendix G.1. Our goal is to predict the 24 hourly prices of
the following day, given the prices up until the end of the current day. As the hourly prices
exhibit distinct patterns, we fit one model per hour as in the CP baseline [31]. We follow
the data splitting strategy used in [31], where the first three years 2016 − 2019 data are used
as the (initial) training set, and the prediction is made for the last year 2019 − 2020.
For all the methods considered, we use the same underlying neural network model: an MLP
with one hidden layer of size 100 and the sigmoid activation function. More details on
the training process are provided in Appendix G.1. For the state-of-the-art CP methods,
EnbPI-V2 [29], NEX-CP [30], ACI [32] and AgACI [31], we conduct experiments in an online
fashion, where the model is trained using a sliding window of the previous three years of
data (refer to Figure 4 in the Appendix). Specifically, after constructing the prediction
interval for each time step in the prediction period, we add the ground truth value to the
training set and then retrain the model with the updated training set. For ACI, we conduct
experiments with various values of γ and present the one that yields the best performance.
In the case of AgACI, we adopt the same aggregation approach as used in [31], namely, the
Bernstein Online Aggregation (BOA) method [44] with a gradient trick. We also report
the performance of ACI with γ = 0 as a reference. For NEX-CP, we use the same weights
as those employed in their time-series experiments. For EnbPI-V2, we tune the number of
bootstrap models and select the one that offers the best performance.
Since this time series exhibits no or minor distribution shift, our method PA is trained in an
offline fashion, where the model is fixed for using only the observations between 2016 and
2019, and the observations in the prediction range are used only for final evaluation. That is,
our method uses less data information in training compared to the baseline methods.

7

Figure 2: Comparisons of our method and baselines on hourly spot electricity prices in
France. Left: Average prediction length with vertical error bars indicating the standard
deviation of the prediction interval lengths. Right: Median prediction length with vertical
error bars indicating the interquartile range of the prediction interval lengths. The precise
values for these metrics are provided in Table 5 of Appendix G.1.

The results are presented in Figure 2, which includes empirical coverage (with methods
that are positioned closer to 90.0 being more effective), median/average prediction interval
length, and corresponding interquartile range/standard deviation. As expected, our method
is able to train and calibrate the model by using only the initial training set, i.e., the data
for 2016-2019, and successfully produces faithful prediction intervals. In contrast, all CP
methods produce wider prediction intervals than ours and higher coverage rates than the
nominal level of 90%. In addition, ACI is sensitive to the choice of γ [31].

5.1.2 A Set of Time Series

We conduct experiments using three publicly available real-world datasets: Medical Informa-
tion Mart for Intensive Care (MIMIC-III), electroencephalography (EEG) data, and daily
COVID-19 case numbers within the United Kingdom’s local authority districts (COVID-19)
[33]. A concise overview of these datasets is presented in Table 1. Our method, denoted as
PA-RNN (since the underlying prediction model is an LSTM [45]), is compared to three
benchmark methods: CF-RNN [33], MQ-RNN [35], and DP-RNN [36], where LSTM is used
for all these methods. To ensure a fair comparison, we adhere to the same model struc-
ture, hyperparameters, and data processing steps as specified in [33]. Detailed information
regarding the three datasets and training procedures can be found in Appendix G.2.
The numerical results are summarized in Tables 2. Note that the baseline results for
EEG and COVID-19 are directly taken from the original paper [33]. We reproduce the
baseline results for MIMIC-III, as the specific subset used by [33] is not publicly available.
Table 2 indicates that our method consistently outperforms the baselines. In particular,
Our method consistently generates shorter prediction intervals compared to the conformal
baseline CF-RNN while maintaining the same or even better coverage rate as CF-RNN. Both
the MQ-RNN and DP-RNN methods fail to generate prediction intervals that accurately
maintain a faithful coverage rate.

Table 1: A brief description of the datasets used in Section 5.1.2, where “Train size” and
“Test size” indicate the numbers of training and testing sequences, respectively, and “Length”
represents the length of the input sequence.

Dataset Train size Test size Length Prediction horizon
MIMIC-III [46] 2692 300 [3, 47] 2

EEG [47] 19200 19200 40 10
COVID-19 [48] 300 80 100 50

8

Table 2: Uncertainty quantification results by different methods for the MIMIC-III, EEG,
and COVID-19 data, where “Coverage” represents the joint coverage rate averaged over five
different random seeds, the prediction interval length is averaged across prediction horizons
and five random seeds, and the numbers in the parentheses indicate the standard deviations
(across five random seeds) of the respective means.

MIMIC-III EEG COVID-19
Model Coverage PI length Coverage PI length Coverage PI length

PA-RNN 90.8%(0.7%) 2.35(0.26) 94.69%(0.4%) 51.02(10.50) 90.5%(1.4%) 444.93(203.28)
CF-RNN 92.0%(0.3%) 3.01(0.17) 96.5%(0.4%) 61.86(18.02) 89.7%(2.4%) 733.95(582.52)
MQ-RNN 85.3%(0.2%) 2.64(0.11) 48.0%(1.8%) 21.39(2.36) 15.0%(2.6%) 136.56(63.32)
DP-RNN 1.2%(0.3%) 0.12(0.01) 3.3%(0.3%) 7.39(0.74) 0.0%(0.0%) 61.18(32.37)

5.2 Autoregressive Order Selection

In this section, we evaluate the performance of our method in selecting the autoregressive
order for two synthetic autoregressive processes. The first is the non-linear autoregressive
(NLAR) process [49, 50, 51]:
yi = −0.17 + 0.85yi−1 + 0.14yi−2 − 0.31yi−3 + 0.08yi−7 + 12.80G1(yi−1:i−7) + 2.44G2(yi−1:i−7) + ηi,

where ηi ∼ N(0, 1) represents i.i.d. Gaussian random noises, and the functions G1 and G2
are defined as:

G1(yi−1:i−7) = (1 + exp{−0.46(0.29yi−1 − 0.87yi−2 + 0.40yi−7 − 6.68)})−1,

G2(yi−1:i−7) = (1 + exp
{

−1.17 × 10−3(0.83yi−1 − 0.53yi−2 − 0.18yi−7 + 0.38)
}

)−1.

The second is the exponential autoregressive process [52]:

yi =
(
0.8 − 1.1 exp

{
−50y2

i−1
})
yi−1 + ηi,

where, again, ηi ∼ N(0, 1) denotes i.i.d. Gaussian random noises.
For both synthetic processes, we generate five datasets. Each dataset consists of training,
validation, and test sequences. The training sequence has 10000 samples, while the validation
and test sequences each contain 1000 samples. For training, we employ a single-layer RNN
with a hidden layer width of 1000. Further details on the experimental setting can be found
in Appendix G.3.
For the NLAR process, we consider two different window sizes for RNN modeling: 15 (with
input as yi−1:i−15) and 1 (with input as yi−1). Notably, the NLAR process has an order of 7.
In the case where the window size is 15, the input information suffices for RNN modeling,
rendering the past information conveyed by the hidden states redundant. However, when
the window size is 1, this past information becomes indispensable for the RNN. In contrast,
the exponential autoregressive process has an order of 1. For all window sizes we explored,
namely 1, 3, 5, 7, 10, 15, the input information is always sufficient for RNN modeling.
We evaluate the predictive performance using mean square prediction error (MSPE) and
mean square fitting error (MSFE). The model selection performance is assessed by two
metrics: the false selection rate (FSR) and the negative selection rate (NSR). We define

FSR =
∑5

j=1
|Ŝj/S|∑5

j=1
|Ŝj |

and NSR =
∑5

j=1
|S/Ŝj |∑5

i=j
|S|

, where S denotes the set of true variables, and

Ŝj represents the set of selected variables for dataset j. Furthermore, we provide the final
number of nonzero connections for hidden states and the estimated autoregressive orders.
The numerical results for the NLAR process are presented in Table 3, while the numerical
results for the exponential autoregressive process are given in Table 4.
Our results are promising. Specifically, when the window size is equal to or exceeds the
true autoregressive order, all connections associated with the hidden states are pruned,
effectively converting the RNN into an MLP. Conversely, if the window size is smaller than
the true autoregressive order, a significant number of connections from the hidden states

9

are retained. Impressively, our method accurately identifies the autoregressive order—a
noteworthy achievement considering the inherent dependencies in time series data. Although
our method produces a nonzero FSR for the NLAR process, it is quite reasonable considering
the relatively short time sequence and the complexity of the functions G1 and G2.

Table 3: Numerical results for the NLAR process: numbers in the parentheses are standard
deviations of the respective means, "-" indicates not applicable, ↓ means lower is better,
and “#hidden link” denotes the number of nonzero connections from the hidden states. All
results are obtained from five independent runs.

Model Window size FSR ↓ NSR ↓ AR order #hidden link MSPE ↓ MSFE ↓
PA-RNN 1 0 0 - 357(21) 1.056(0.001) 1.057(0.006)
PA-RNN 15 0.23 0 7.4(0.25) 0(0) 1.017(0.008) 1.020(0.010)

Table 4: Numerical results for the exponetial autoregressive process.

Model Window size FSR ↓ NSR ↓ AR order #hidden link MSPE ↓ MSFE ↓
PA-RNN 1 0 0 1(0) 0(0) 1.004(0.004) 1.003(0.005)
PA-RNN 3 0 0 1(0) 0(0) 1.006(0.005) 0.999(0.004)
PA-RNN 5 0 0 1(0) 0(0) 1.000(0.004) 1.007(0.005)
PA-RNN 7 0 0 1(0) 0(0) 1.006(0.005) 1.000(0.003)
PA-RNN 10 0 0 1(0) 0(0) 1.002(0.004) 1.002(0.006)
PA-RNN 15 0 0 1(0) 0(0) 1.001(0.004) 1.002(0.007)

5.3 RNN Model Compression

We have also applied our method to RNN model compression, achieving state-of-the-art
results. Please refer to Section G.4 in the Appendix for details.

6 Discussion

This paper has established the theoretical groundwork for sparse deep learning with time
series data, including posterior consistency, structure selection consistency, and asymptotic
normality of predictions. Our empirical studies indicate that sparse deep learning can
outperform current cutting-edge approaches, such as conformal predictions, in prediction
uncertainty quantification. More specifically, compared to conformal methods, our method
maintains the same coverage rate, if not better, while generating significantly shorter
prediction intervals. Furthermore, our method effectively determines the autoregression order
for time series data and surpasses state-of-the-art techniques in large-scale model compression.
The theory developed in this paper has included LSTM [45] as a special case, and some
numerical examples have been conducted with LSTM; see Section G of the Appendix for the
detail. Furthermore, there is room for refining the theoretical study under varying mixing
assumptions for time series data, which could broaden applications of the proposed method.
Also, the efficacy of the proposed method can potentially be further improved with the
elicitation of different prior distributions.
In summary, this paper represents a significant advancement in statistical inference for deep
RNNs, which, through sparsing, has successfully integrated the RNNs into the framework
of statistical modeling. The superiority of our method over the conformal methods shows
further the criticality of consistently approximating the underlying mechanism of the data
generation process in uncertainty quantification.
In terms of limitations of the proposed method, one potential concern pertains to the
calculation of the inverse of the Fisher information matrix. For large-scale problems, the
sparsified model could still retain a large number of non-zero parameters. In such instances,
the computational feasibility of calculating the Hessian matrix might become compromised.
Nonetheless, an alternative avenue exists in the form of the Bayesian approach, which
circumvents the matrix inversion challenge. A concise description of this Bayesian strategy
can be found in [21].

10

References
[1] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and

short-term temporal patterns with deep neural networks. In The 41st international
ACM SIGIR conference on research & development in information retrieval, pages
95–104, 2018.

[2] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar:
Probabilistic forecasting with autoregressive recurrent networks. International Journal
of Forecasting, 36(3):1181–1191, 2020.

[3] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang
Wang, and Tim Januschowski. Deep state space models for time series forecasting.
Advances in neural information processing systems, 31, 2018.

[4] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler,
and Artur Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting.
arXiv preprint arXiv:2201.12886, 2022.

[5] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural
networks for time series forecasting: Current status and future directions. International
Journal of Forecasting, 37(1):388–427, 2021.

[6] Gábor Melis, Tomáš Kočiskỳ, and Phil Blunsom. Mogrifier lstm. arXiv preprint
arXiv:1909.01792, 2019.

[7] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and conse-
quences. Minds and Machines, 30:681–694, 2020.

[8] Yuki Tatsunami and Masato Taki. Sequencer: Deep lstm for image classification. arXiv
preprint arXiv:2205.01972, 2022.

[9] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF international conference on computer vision, pages
10012–10022, 2021.

[10] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International conference on machine learning, pages 1321–1330.
PMLR, 2017.

[11] Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks.
In International conference on machine learning, pages 2603–2612. PMLR, 2017.

[12] Marco Gori and Alberto Tesi. On the problem of local minima in backpropagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):76–86, 1992.

[13] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning, pages
242–252. PMLR, 2019.

[14] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International conference on machine
learning, pages 1675–1685. PMLR, 2019.

[15] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes
over-parameterized deep relu networks. Machine learning, 109(3):467–492, 2020.

[16] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized
deep neural networks. Advances in neural information processing systems, 32, 2019.

[17] Faming Liang, Qizhai Li, and Lei Zhou. Bayesian neural networks for selection of drug
sensitive genes. Journal of the American Statistical Association, 113(523):955–972, 2018.

[18] Nicholas G Polson and Veronika Ročková. Posterior concentration for sparse deep
learning. Advances in Neural Information Processing Systems, 31, 2018.

[19] Yuexi Wang and Veronika Rocková. Uncertainty quantification for sparse deep learning.
In International Conference on Artificial Intelligence and Statistics, pages 298–308.
PMLR, 2020.

11

[20] Yan Sun, Qifan Song, and Faming Liang. Consistent sparse deep learning: Theory and
computation. Journal of the American Statistical Association, pages 1–15, 2021.

[21] Yan Sun, Wenjun Xiong, and Faming Liang. Sparse deep learning: A new framework
immune to local traps and miscalibration. Advances in Neural Information Processing
Systems, 34:22301–22312, 2021.

[22] L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by
the author). Statistical Science, 16:199–231, 2001.

[23] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with
relu activation function. The Annals of Statistics, 48(4):1916–1921, 2020.

[24] Helmut Bolcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal approx-
imation with sparsely connected deep neural networks. SIAM Journal on Mathematics
of Data Science, 1(1):8–45, 2019.

[25] Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by mlp neural
networks. Neurocomputing, 25(1-3):81–91, 1999.

[26] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman.
Distribution-free predictive inference for regression. Journal of the American Statistical
Association, 113(523):1094–1111, 2018.

[27] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive
confidence machines for regression. In Machine Learning: ECML 2002: 13th European
Conference on Machine Learning Helsinki, Finland, August 19–23, 2002 Proceedings 13,
pages 345–356. Springer, 2002.

[28] Victor Chernozhukov, Kaspar Wüthrich, and Zhu Yinchu. Exact and robust conformal
inference methods for predictive machine learning with dependent data. In Conference
On learning theory, pages 732–749. PMLR, 2018.

[29] Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In
International Conference on Machine Learning, pages 11559–11569. PMLR, 2021.

[30] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani.
Conformal prediction beyond exchangeability. The Annals of Statistics, 51(2):816–845,
2023.

[31] Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut.
Adaptive conformal predictions for time series. In International Conference on Machine
Learning, pages 25834–25866. PMLR, 2022.

[32] Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution
shift. Advances in Neural Information Processing Systems, 34:1660–1672, 2021.

[33] Kamile Stankeviciute, Ahmed M Alaa, and Mihaela van der Schaar. Conformal time-
series forecasting. Advances in Neural Information Processing Systems, 34:6216–6228,
2021.

[34] Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal pre-
diction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511,
2021.

[35] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A
multi-horizon quantile recurrent forecaster. arXiv preprint arXiv:1711.11053, 2017.

[36] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059. PMLR, 2016.

[37] Derrick T Mirikitani and Nikolay Nikolaev. Recursive bayesian recurrent neural networks
for time-series modeling. IEEE Transactions on Neural Networks, 21(2):262–274, 2009.

[38] Shiqing Ling and Michael McAleer. A general asymptotic theory for time-series models.
Statistica Neerlandica, 64(1):97–111, 2010.

[39] Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences.
The Annals of Probability, pages 94–116, 1994.

[40] Ron Meir. Performance bounds for nonlinear time series prediction. In Proceedings of
the tenth annual conference on computational learning theory, pages 122–129, 1997.

12

[41] Cosma Shalizi and Aryeh Kontorovich. Predictive pac learning and process decomposi-
tions. Advances in neural information processing systems, 26, 2013.

[42] Subhashis Ghosal and Aad van der Vaart. Convergence rates of posterior distributions
for non-i.i.d. observations. Annals of Statistics, 35:192–223, 2007.

[43] Ismael Castillo and Judith Rousseau. A bernstein–von mises theorem for smooth
functionals in semiparametric models. Annals of Statistics, 43:2353–2383, 2013.

[44] Olivier Wintenberger. Optimal learning with bernstein online aggregation. Machine
Learning, 106:119–141, 2017.

[45] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, nov 1997.

[46] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. Mimic-iii, a freely accessible critical care database. Scientific data,
3(1):1–9, 2016.

[47] Catherine Blake. Uci repository of machine learning databases. http://www. ics. uci.
edu/˜ mlearn/MLRepository. html, 1998.

[48] GOV UK et al. Coronavirus (covid-19) in the uk, 2020.
[49] Souhaib Ben Taieb and Amir F Atiya. A bias and variance analysis for multistep-ahead

time series forecasting. IEEE transactions on neural networks and learning systems,
27(1):62–76, 2015.

[50] Marcelo C Medeiros, Timo Teräsvirta, and Gianluigi Rech. Building neural network
models for time series: a statistical approach. Journal of Forecasting, 25(1):49–75, 2006.

[51] Timo Terasvirta and Anders Kock. Forecasting with nonlinear time series models.
Econometrics: Multiple Equation Models eJournal, 2010.

[52] Bjørn Auestad and Dag Tjøstheim. Identification of nonlinear time series: First order
characterization and order determination. Biometrika, 77(4):669–687, 1990.

[53] Wenxin Jiang. Bayesian variable selection for high dimensional generalized linear models:
convergence rates of the fitted densities. The Annals of Statistics, 35(4):1487–1511,
2007.

[54] Subhashis Ghosal and Aad Van der Vaart. Fundamentals of nonparametric Bayesian
inference, volume 44. Cambridge University Press, 2017.

[55] Andre M Zubkov and Aleksandr A Serov. A complete proof of universal inequalities for
the distribution function of the binomial law. Theory of Probability & Its Applications,
57(3):539–544, 2013.

[56] Pentti Saikkonen. Dependent versions of a central limit theorem for the squared length
of a sample mean. Statistics & probability letters, 22(3):185–194, 1995.

[57] Stephen Portnoy. Asymptotic behavior of likelihood methods for exponential families
when the number of parameters tends to infinity. The Annals of Statistics, pages 356–366,
1988.

[58] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient
mcmc. Advances in neural information processing systems, 28, 2015.

[59] Grigoris A Dourbois and Pandelis N Biskas. European market coupling algorithm
incorporating clearing conditions of block and complex orders. In 2015 IEEE Eindhoven
PowerTech, pages 1–6. IEEE, 2015.

[60] Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Conformal prediction with temporal
quantile adjustments. arXiv preprint arXiv:2205.09940, 2022.

[61] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What
is the state of neural network pruning? Proceedings of machine learning and systems,
2:129–146, 2020.

[62] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
Sparsity in deep learning: Pruning and growth for efficient inference and training in
neural networks. J. Mach. Learn. Res., 22(241):1–124, 2021.

13

[63] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regu-
larization. arXiv preprint arXiv:1409.2329, 2014.

[64] Nadezhda Chirkova, Ekaterina Lobacheva, and Dmitry Vetrov. Bayesian compression
for natural language processing. arXiv preprint arXiv:1810.10927, 2018.

[65] Maxim Kodryan, Artem Grachev, Dmitry Ignatov, and Dmitry Vetrov. Efficient
language modeling with automatic relevance determination in recurrent neural networks.
In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-
2019), pages 40–48, 2019.

[66] Ekaterina Lobacheva, Nadezhda Chirkova, and Dmitry Vetrov. Bayesian sparsification
of gated recurrent neural networks. arXiv preprint arXiv:1812.05692, 2018.

[67] Artem M Grachev, Dmitry I Ignatov, and Andrey V Savchenko. Compression of
recurrent neural networks for efficient language modeling. Applied Soft Computing,
79:354–362, 2019.

[68] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of
pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

14

Appendix for “Sparse Deep Learning for Time Series
Data: Theory and Applications”

A Mathematical Facts of Sparse RNNs

For a sparse RNN model with Hn − 1 recurrent layers and a single output layer, several
mathematical facts can be established. Let’s denote the number of nodes in each layer as
L1, . . . , LHn

. Additionally, let rwi
represent the number of non-zero connection weights for

wi, and let rvi
denote the number of non-zero connection weights for vi, where wi and vi

denote the connection weights at two layers of a sparse RNN.
Furthermore, we define Ot

i,j(β,xt:1) as the output value of the j-th neuron of the i-th
layer at time t. This output depends on the parameter vector β and the input sequence
xt:1 = (xt, . . . ,x1), where xt represents the generic input to the sparse RNN at time step t.
Lemma A.1. Under Assumption 3.7, if a sparse RNN has at most rn non-zero connection
weights (i.e., rn =

∑Hn

i=1 rwi
+
∑Hn−1

i=1 rvi
) and ∥β∥∞ = En, then the summation of the

absolute outputs of the ith layer at time t is bounded by

Li∑
j=1

|Ot
i,j(β,xt:1)| ≤ ti

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En)ti, 1 ≤ i ≤ Hn − 1,

LHn∑
j=1

|Ot
Hn,j(β,xt:1)| ≤ tHn

(
Hn∏
k=1

rwk

)(
Hn−1∏
k=1

rvk

)t−1

(En)t(Hn−1)+1
.

Proof. For simplicity, we rewrite Ot
i,j(β,xt:1) as Ot

i,j when appropriate. The lemma is the
result from the following facts:

• For t = 1 and 1 ≤ i ≤ Hn (Lemma S4 from [20])

Li∑
j=1

|O1
i,j | ≤ Ei

n

i∏
k=1

rwk
.

• For t ≥ 2 and i = 1 (recursive relationship)

L1∑
j=1

|Ot
1,j | ≤ Enrw1 + Enrv1

L1∑
j=1

|Ot−1
1,j |.

• For t ≥ 2 and 2 ≤ i ≤ Hn − 1 (recursive relationship)

Li∑
j=1

|Ot
i,j | ≤ Enrwi

Li−1∑
j=1

|Ot
i−1,j | + Enrvi

Li∑
j=1

|Ot−1
i,j |.

• For t ≥ 2 and i = Hn (recursive relationship)

LHn∑
j=1

|Ot
Hn,j | ≤ EnrwHn

LHn−1∑
j=1

|Ot
Hn−1,j |.

We can verify this lemma by plugging the conclusion into all recursive relationships. We
show the steps to verify the case when t ≥ 2 and 2 ≤ i ≤ Hn − 1, since other cases are trivial

15

to verify.
Li∑

j=1
|Ot

i,j | ≤ Enrwi

Li−1∑
j=1

|Ot
i−1,j | + Enrvi

Li∑
j=1

|Ot−1
i,j |

≤ ti−1

(
i∏

k=1
rwk

)(
i−1∏
k=1

rvk

)t−1

(En)t(i−1)+1

+ (t− 1)i

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−2

rvi
(En)(t−1)i+1

≤ ti−1

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En)ti + (t− 1)i

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En)ti

≤ ti

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En)ti,

where the last inequality is due to the fact that
ti−1 + (t− 1)i

ti
= 1
t

+
(
t− 1
t

)i

≤ 1
t

+ t− 1
t

= 1.

Lemma A.2. Under Assumption 3.7, consider two RNNs, β and β̃, where the former one
is a sparse network satisfying ∥β∥0 = rn and ∥β∥∞ = En, and it’s network structure vector
is denoted by γ. Assume that if |βi − β̃i| < δ1 for all i ∈ γ and |βi − β̃i| < δ2 for all i /∈ γ,
then

max
xt:1

|µ(xt:1,β) − µ(xt:1, β̃)|

≤ tHnδ1Hn

(
Hn∏
k=1

rwk

)
(En + δ1)t(Hn+1)−2

(
Hn−1∏
k=1

rvk

)t−1

+ tHnδ2(pnL1 +
Hn∑
k=1

Lk)
(

Hn∏
k=1

[δ2Lk + rwk
(En + δ1)]

)(
Hn−1∏
k=1

[δ2Lk + rvk
(En + δ1)]

)t−1

.

Proof. Define β̌ such that β̌i = β̃i for all i ∈ γ and β̌i = 0 for all i /∈ γ. Let Ǒt
i,j denote

Ot
i,j(β̌,xt:1). Then, from the following facts that

• For t = 1 and 1 ≤ i ≤ Hn (Lemma S4 from [20])
Li∑

j=1
|Ǒ1

i,j −O1
i,j | ≤ iδ1(En + δ1)i−1

(
i∏

k=1
rwk

)
.

• For t ≥ 2 and i = 1 (recursive relationship)
L1∑

j=1
|Ǒt

1,j −Ot
1,j | ≤ rw1δ1 + rv1δ1

L1∑
k=1

|Ot−1
1,k | + rv1(En + δ1)

L1∑
k=1

|Ǒt−1
1,k −Ot−1

1,k |.

• For t ≥ 2 and 2 ≤ i ≤ Hn − 1 (recursive relationship)
Li∑

j=1
|Ǒt

i,j −Ot
i,j | ≤ rwiδ1

Li−1∑
k=1

|Ot
i−1,k| + rwi(En + δ1)

Li−1∑
k=1

|Ǒt
i−1,k −Ot

i−1,k|

+ rvi
δ1

Li∑
k=1

|Ot−1
i,k | + rvi

(En + δ1)
Li∑

k=1
|Ǒt−1

i,k −Ot−1
i,k |.

16

• For t ≥ 2 and i = Hn (recursive relationship)

LHn∑
j=1

|Ǒt
Hn,j −Ot

Hn,j | ≤ rwHn
δ1

LHn−1∑
k=1

|Ot
Hn−1,k|

+ rwHn
(En + δ1)

LHn−1∑
k=1

|Ǒt
Hn−1,k −Ot

Hn−1,k|.

We have

• For 1 ≤ i ≤ Hn − 1

Li∑
j=1

|Ǒt
i,j −Ot

i,j | ≤ ti+1iδ1

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En + δ1)(i+1)t−2.

• For i = Hn

|µ(xt:1,β) − |µ(xt:1, β̌)| =
LHn∑
j=1

|Ǒt
Hn,j −Ot

Hn,j |

≤ tHnHnδ1

(
Hn∏
k=1

rwk

)(
Hn−1∏
k=1

rvk

)t−1

(En + δ1)(Hn+1)t−2.

We can verify the above conclusion by plugging it into all recursive relationships. We show
the steps to verify the case when t ≥ 2 and 2 ≤ i ≤ Hn − 1, since other cases are trivial to

17

verify.
Li∑

j=1
|Ǒt

i,j −Ot
i,j | ≤ rwi

δ1

Li−1∑
k=1

|Ot
i−1,k| + rwi

(En + δ1)
Li−1∑
k=1

|Ǒt
i−1,k −Ot

i−1,k|

+ rvi
δ1

Li∑
k=1

|Ot−1
i,k | + rvi

(En + δ1)
Li∑

k=1
|Ǒt−1

i,k −Ot−1
i,k |

≤ δ1t
i−1

(
i∏

k=1
rwk

)(
i−1∏
k=1

rvk

)t−1

(En + δ1)ti−t

+ δ1t
i(i− 1)

(
i∏

k=1
rwk

)(
i−1∏
k=1

rvk

)t−1

(En + δ1)ti−1

+ δ1(t− 1)i

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−2

rvi
(En + δ1)ti−i

+ δ1(t− 1)i+1i

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−2

rvi(En + δ1)ti−i+t−2

≤ δ1t
i−1

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En + δ1)(i+1)t−2

+ δ1t
i(i− 1)

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En + δ1)(i+1)t−2

+ δ1(t− 1)i

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En + δ1)(i+1)t−2

+ δ1(t− 1)i+1i

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En + δ1)(i+1)t−2

≤ ti+1iδ1

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En + δ1)(i+1)t−2,

where the last inequality is due to the fact that for t ≥ 2 and i ≥ 2, it is easy to see that

ti−1 + (i− 1)ti + (t− 1)i + i(t− 1)i+1

iti+1 = 1
it2

+ i− 1
i

1
t

+ 1
it

(
t− 1
t

)i

+
(
t− 1
t

)i+1

≤ 1
2t2 + 1

t
+ (t− 1)2

2t3 +
(
t− 1
t

)3
= t+ 2t2 + t2 − 2t+ 1 + 2(t− 1)3

2t3

= 1 + −3t2 + 5t− 1
2t3 ≤ 1.

Now let Õt
i,j denotes Ot

i,j(β̃,x1:t), then from the facts that

• For 1 ≤ t ≤ T and 1 ≤ i ≤ Hn

Li∑
j=1

|Ǒt
i,j | ≤ ti

(
i∏

k=1
rwk

)(
i∏

k=1
rvk

)t−1

(En + δ1)ti, 1 ≤ i ≤ Hn − 1, 1 ≤ t ≤ T,

LHn∑
j=1

|Ǒt
Hn,j | ≤ tHn

(
Hn∏
k=1

rwk

)(
Hn−1∏
k=1

rvk

)t−1

(En + δ1)t(Hn−1)+1
, 1 ≤ t ≤ T.

18

This can be easily derived by Lemma A.1 and the fact that
∥∥∥β̌
∥∥∥

∞
≤ En + δ1.

• For t = 1 and 1 ≤ i ≤ Hn (Lemma S4 from [20])
Li∑

j=1
|Ǒ1

i,j − Õ1
i,j | ≤ δ2(pnL1 +

i∑
k=1

Lk)
(

i∏
k=1

[δ2Lk + rwk
(En + δ1)]

)
.

• For t ≥ 2 and i = 1 (recursive relationship)
L1∑

j=1
|Ǒt

1,j − Õt
1,j | ≤ δ2L1pn + δ2L1

L1∑
k=1

|Ǒt−1
1,k − Õt−1

1,k | + rv1(En + δ1)
L1∑

k=1
|Ǒt−1

1,k − Õt−1
1,k |

+ δ2L1

L1∑
k=1

|Ǒt−1
1,k |.

• For t ≥ 2 and 2 ≤ i ≤ Hn − 1 (recursive relationship)
Li∑

j=1
|Ǒt

i,j − Õt
i,j | ≤ δ2Li

Li−1∑
k=1

|Ǒt
i−1,k − Õt

i−1,k| + rwi
(En + δ1)

Li−1∑
k=1

|Ǒt
i−1,k − Õt

i−1,k|

+ δ2Li

Li−1∑
k=1

|Ǒt
i−1,k| + δ2Li

Li∑
k=1

|Ǒt−1
i,k − Õt−1

i,k |

+ rvi
(En + δ1)

Li∑
k=1

|Ǒt−1
i,k − Õt−1

i,k | + δ2Li

Li∑
k=1

|Ǒt−1
i,k |.

• For t ≥ 2 and i = Hn (recursive relationship)
LHn∑
j=1

|Ǒt
Hn,j − Õt

Hn,j | ≤ δ2LHn

LHn−1∑
k=1

|Ǒt
Hn−1,k − Õt

Hn−1,k|

+ rwHn
(En + δ1)

LHn−1∑
k=1

|Ǒt
Hn−1,k − Õt

Hn−1,k|

+ δ2LHn

LHn−1∑
k=1

|Ǒt
Hn−1,k|.

We have

• For 1 ≤ i ≤ Hn − 1
Li∑

j=1
|Ǒt

i,j − Õt
i,j | ≤ ti+1δ2

(
pnL1 +

i∑
k=1

Lk

)(
i∏

k=1
[δ2Lk + rwk

(En + δ1)]
)

×

(
i∏

k=1
[δ2Lk + rvk

(En + δ1)]
)t−1

.

• For i = Hn

|µ(xt:1, β̌) − µ(xt:1, β̃)| =
LHn∑
j=1

|Ǒt
Hn,j −Ot

Hn,j |

≤ tHnδ2

(
pnL1 +

Hn∑
k=1

Lk

)(
Hn∏
k=1

[δ2Lk + rwk
(En + δ1)]

)(
Hn−1∏
k=1

[δ2Lk + rvk
(En + δ1)]

)t−1

.

We can verify the above conclusion in a similar approach. The proof is completed by
summation of the bound for |µ(xt:1,β) − |µ(xt:1, β̌)| and |µ(xt:1, β̌) − µ(xt:1, β̃)|.

19

B Proofs on Posterior Consistency: A Single Time Series

To establish posterior consistency for DNNs with i.i.d. data, [20] utilized Proposition 1
from [53]. This lemma provides three sufficient conditions for proving posterior consistency
for general statistical models with i.i.d. data, along with a posterior contraction rate. In
this paper, we aim to establish posterior consistency for DNNs with stochastic processes,
specifically time series, that are strictly stationary and α-mixing with an exponentially
decaying mixing coefficient [54, 42].
Consider a time series Dn = (z1, z2, . . . , zn) defined on a probability space (Ω,F , P ∗), which
satisfies the assumptions outlined in Assumption 1. For simplicity, we assume that the initial
values z1−l, . . . , z0 are fixed and given.
Let Pn denote a set of probability densities, let Pc

n denote the complement of Pn, and let ϵn
denote a sequence of positive numbers. Let N(ϵn,Pn) be the minimum number of Hellinger
balls of radius ϵn that are needed to cover Pn, i.e., N(ϵn,Pn) is the minimum of all number
k’s such that there exist sets Sj = {p : d(p, pj) ≤ ϵn}, j = 1, ..., k, with Pn ⊂ ∪k

j=1Sj holding,
where

d(p, q) =

√∫ ∫
(
√
p(z|x) −

√
q(z|x))2v(x)dzdx,

denotes the integrated Hellinger distance [42, 54] between the two conditional densities
p(z|x) and q(z|x), where x ∈ Rl contains the history up to l time steps of z, and v(x) is the
probability density function of the marginal distribution of x. Note that v is invariant with
respect to time index i due to the strictly stationary assumption.
For Dn, denote the corresponding true conditional density by p∗. Define π(·) as the prior
density, and π(·|Dn) as the posterior. Define π̂(ϵ) = π[d(p, p∗) > ϵ|Dn] for each ϵ > 0.
Assume the conditions:

(a) logN(ϵn,Pn) ≤ nϵ2n for all sufficiently large n.
(b) π(Pc

n) ≤ e−bnϵ2
n for some b > 0 and all sufficiently large n.

(c) Let ∥f∥s = (
∫

|f |sdr)1/s, then π(∥p− p∗∥s ≤ b′ϵn) ≥ e−γnϵ2
n for some b′, γ > 0,

s > 2, and all sufficiently large n.
Lemma B.1. Under the conditions (a), (b) and (c), given sufficiently large n, limn→∞ ϵn = 0,
and limn→∞ nϵ2n = ∞, we have for some large C > 0,

π̂(Cϵn) = π(d(p, p∗) ≥ Cϵn|Dn) = OP ∗(e−nϵ2
n). (7)

Proof. This Lemma can be proved with similar arguments used in Section 9.5.3, Theorem
8.19, and Theorem 8.29 of [54].

B.1 Posterior Consistency with a General Shrinkage Prior

Let β denote the vector of all connection weights of a RNN. To prove Theorem 3.9, we
first consider a general shrinkage prior that all entries of β are subject to an independent
continuous prior πb, i.e., π(β) =

∏Kn

j=1 πb(βj), where Kn denotes the total number of elements
of β. Theorem B.2 provides a sufficient condition for posterior consistency.
Theorem B.2. (Posterior consistency) Suppose Assumptions 3.1 - 3.7 hold. If the prior πb

satisfies that

log(1/πb) = O(Hn logn+ log L̄), (8)

πb{[−ηn, ηn]} ≥ 1 − 1
Kn

exp{−τ [Hn logn+ log L̄+ log pn]}, (9)

πb{[−η′
n, η

′
n]} ≥ 1 − 1

Kn
, (10)

− log[Knπb(|βj | > Mn)] ≻ nϵ2n, (11)

20

for some τ > 0, where

ηn < 1/[
√
nMHn

l Kn(n/Hn)2MlHn(c0Mn)2MlHn],
η′

n < 1/[
√
nMHn

l Kn(rn/Hn)2MlHn(c0En)2MlHn],
with some c0 > 1, πb is the minimal density value of πb within the interval [−En − 1, En + 1],
and Mn is some sequence satisfying log(Mn) = O(log(n)). Then, there exists a sequence ϵn,
satisfying nϵ2n ≍ rnHn logn+ rn log L̄+ sn log pn + nϖ2

n and ϵn ≺ 1, such that

π̂(Mϵn) = π(d(p, p∗) ≥ Mϵn|Dn) = OP ∗(e−nϵ2
n)

for some large M > 0.

Proof. To prove this theorem, it suffices to check all three conditions listed in Lemma B.1
Checking condition (c):
Consider the set A = {β : maxj∈γ∗ |βj − β∗

j | ≤ ωn,maxj /∈γ∗ |βj − β∗
j | ≤ ω′

n}, where

ωn ≤ c1ϵn

MHn

l Hn(rn/Hn)2MlHn(c0En)2MlHn
,

ω′
n ≤ c1ϵn

MHn

l Kn(rn/Hn)2MlHn(c0En)2MlHn
,

for some c1 > 0 and c0 > 1. If β ∈ A, by Lemma A.2, we have
|µ(xMl:1,β) − µ(xMl:1,β

∗)| ≤ 3c1ϵn.

By the definition (4), we have
|µ(xMl:1,β) − µ∗(xMl:1)| ≤ 3c1ϵn +ϖn

Finally for some s > 2 (for simplicity, we take s to be an even integer),

∥pβ − pµ∗∥s =
(∫

(|µ(xMl:1,β) − µ∗(xMl:1)|)sv(xMl:1)dxMl:1

)1/s

≤
(∫

(3c1ϵn +ϖn)sv(xMl:1)dxMl:1

)1/s

≤ 3c1ϵn +ϖn.

For any small b′ > 0, condition (c) is satisfied as long as c1 is sufficiently small, ϵn ≥ C0ϖn

for some large C0, and the prior satisfies − log π(A) ≤ γnϵ2n. Since
π(A) ≥ (πb([En − ωn, En + ωn]))rn × π({max

j /∈γ∗
|βj | ≤ ω′

n})

≥ (2πbωn)rn × πb([−ω′
n, ω

′
n])Kn−rn

≥ (2πbωn)rn(1 − 1/Kn)Kn ,

where the last inequality is due to the fact that ω′
n ≫ η′

n. Note that limn→∞(1 − 1/Kn)Kn =
e−1. Since log(1/ωn) ≍ 2MlHn log(En) + 2MlHn log(rn/Hn) + log(1/ϵn) + constant =
O(Hn logn) (note that log(1/ϵn) = O(logn)), then for sufficiently large n,

− log π(A) ≤ rn log
(

1
πb

)
+ rnO(Hn log(n)) + rn log

(
1
2

)
+ 1

= O(rnHn log(n) + rn log L̄).

Thus, the prior satisfies − log π(A) ≤ γnϵ2n for sufficiently large n, when nϵ2n ≥
C0(rnHn logn+ rn log L̄) for some sufficiently large constant C0. Thus condition (c) holds.
Checking condition (a):
Let Pn denote the set of probability densities for the RNNs whose parameter vectors satisfy

β ∈ Bn =
{

|βj | ≤ Mn,Γβ = {i : |βi| ≥ δ′
n} satisfies |Γβ| ≤ knrn, |Γβ|in ≤ k′

nsn}
}
,

21

where |Γβ|in denotes the number of input connections with the absolute weights greater
than δ′

n, kn(≤ n/rn) and k′
n(≤ n/sn) will be specified later, and

δ′
n = c1ϵn

MHn

l Kn(knrn/Hn)2MlHn(c0Mn)2MlHn
,

for some c1 > 0, c0 > 0. Let

δn = c1ϵn

MHn

l Hn(knrn/Hn)2MlHn(c0Mn)2MlHn
.

Consider two parameter vectors βu and βv in set Bn, such that there exists a structure γ
with |γ| ≤ knrn and |γ|in ≤ k′

nsn, and |βu
j − βv

j | ≤ δn for all j ∈ γ, max(|βv
j |, |βu

j |) ≤ δ′
n for

all j /∈ γ. Hence, by Lemma A.2, we have that |µ(x1:Ml
,βu) − µ(x1:Ml

,βv)|2 ≤ 9c2
1ϵ

2
n. For

two normal distributions N(µ1, σ
2) and N(µ2, σ

2), define the corresponding Kullback-Leibler
divergence as

d0(pµ1 , pµ2) = 1
2σ2 |µ2 − µ1|2.

Together with the fact that 2d(pµ1 , pµ2)2 ≤ d0(pµ1 , pµ2), we have

d(pβu , pβv) ≤
√
d0(pβu , pβv) ≤

√
C(9 + o(1))c2

1ϵ
2
n ≤ ϵn

for some C > 0, given a sufficiently small c1.

Given the above results, one can bound the packing number N(Pn, ϵn) by
∑knrn

j=1 χj
Hn

(2Mn

δn
)j

where χj
Hn

denotes the number of all valid networks who has exact j connections and has
no more than k′

nsn inputs. Since logχj
Hn

≤ k′sn log pn + j log
(
k′snL1 + 2HnL̄

2), logMn =
O(logn), knrn ≤ n, and k′

nsn ≤ n, then

logN(Pn, ϵn) ≤ log
(
knrnχ

knrn

Hn
(2Mn

δn
)knrn

)
≤ log knrn + k′sn log pn + knrn log(2Hn) + 2knrn log

(
L̄+ k′

nsn

)
+ knrn log 2MnM

Hn

l Hn(knrn/Hn)2MlHn(c0Mn)2MlHn

c1ϵn

= knrnO(Hn logn+ log L̄) + k′
nsn log pn.

We can choose kn and k′
n such that for sufficiently large n, knrn{Hn logn + log L̄} ≍

k′
nsn log pn ≍ nϵ2n and then logN(Pn, ϵn) ≤ nϵ2n.

Checking condition (b):
Lemma B.3. (Theorem 1 of [55]) Let X ∼ Binomial(n, p) be a Binomial random variable.
For any 1 < k < n− 1

Pr(X ≥ k + 1) ≤ 1 − Φ(sign(k − np)[2nH(p, k/n)]1/2),
where Φ is the cumulative distribution function (CDF) of the standard Gaussian distribution
and H(p, k/n) = (k/n) log(k/np) + (1 − k/n) log[(1 − k/n)/(1 − p)].

Now,
π(Pc

n) ≤ Pr(Binomial(Kn, vn) > knrn) +Knπb(|βj | > Mn) + Pr(|Γβ|in > k′
nsn),

where vn = 1 − πb([−δ′
n, δ

′
n]). By the condition on πb and the fact that δ′

n ≫ η′
n, it is easy to

see that vn ≤ exp{τ [Hn logn+ log L̄+ log pn] − logKn} for some constant τ > 0. Thus, by
Lemma B.3, − logPr(Binomial(Kn, vn) > knrn) ≈ τknrn[Hn logn + log L̄ + log pn] ≳ nϵ2n
due to the choice of kn, and − logPr(|Γβ|in ≥ k′

nsn) ≈ k′
nsn[τ(Hn logn+ log L̄+ log pn) +

log (pnKn/L1)] ≳ nϵ2n due to the choice of k′
n. Thus, condition (b) holds as well. Then by

lemma B.1, the proof is completed.

22

B.2 Proof of Theorem 3.9

Proof. To prove Theorem 3.9 in the main text, it suffices to verify the four conditions
on πb listed in Theorem B.2. Let Mn = max(

√
2nσ1,n, En). Condition 8 can be

verified by choosing σ1.n such that E2
n/2σ2

1.n + log σ2
1,n = O(Hn logn + log L̄). Con-

ditions 9 and 10 can be verified by setting λn = 1/{MHn

l Kn[n2MlHn(L̄pn)]τ } and
σ0,n ≺ 1/{MHn

l

√
nKn(n/Hn)2MlHn(c0Mn)2MlHn}. Finally, condition 11 can be verified

by Mn ≥ 2nσ2
0.n and τ [Hn logn + log L̄ + log pn] + M2

n/2σ2
1,n ≥ n. Finally, based on the

proof above we see that nϵ2n ≍ rnHn logn+ rn log L̄+ sn log pn + nϖ2
n and limn→∞ ϵn = 0.

B.3 Posterior Consistency for Multilayer Perceptrons

As highlighted in Section 3, the MLP can be formulated as a regression problem. Here, the
input is xi = yi−1:i−Rl

for some l ≤ Rl ≪ n, with the corresponding output being yi. Thus,
the dataset Dn can be represented as (xi, yi)n

i=1+Rl
. We apply the same assumptions as for

the MLP, specifically 3.1, 3.4, and 3.7. We also use the same definitions and notations for
the MLP as those in [20, 21].
Leveraging the mathematical properties of sparse MLPs presented in [20] and the proof
of sparse RNNs for a single time series discussed above, one can straightforwardly derive
the following Corollary. Let d(p1, p2) denote the integrated Hellinger distance between two
conditional densities p1(y|x) and p2(y|x). Let π(·|Dn) be the posterior probability of an
event.
Corollary B.4. Suppose Assumptions 3.1, 3.4, and 3.7 hold. If the mixture Gaus-
sian prior (3) satisfies the conditions : λn = O(1/[Kn[nHn(L̄pn)]τ]) for some con-
stant τ > 0, En/[Hn logn + log L̄]1/2 ≤ σ1,n ≤ nα for some constant α, and σ0,n ≤
min{1/[

√
nKn(n3/2σ1,n/Hn)Hn], 1/[

√
nKn(nEn/Hn)Hn]}, then there exists an an error se-

quence ϵ2n = O(ϖ2
n) + O(ζ2

n) such that limn→∞ ϵn = 0 and limn→∞ nϵ2n = ∞, and the
posterior distribution satisfies

π(d(pβ, pµ∗) ≥ Cϵn|Dn) = OP ∗(e−nϵ2
n) (12)

for sufficiently large n and C > 0, where ζ2
n = [rnHn logn+rn log L̄+sn log pn]/n, pµ∗ denotes

the underlying true data distribution, and pβ denotes the data distribution reconstructed by
the Bayesian MLP based on its posterior samples.

C Asymptotic Normality of Connection Weights and Predictions

This section provides detailed assumptions and proofs for Theorem 3.12 and 3.13. For
simplicity, we assume y0:1−Rl

is also given, and we let Ml = Rl + 1. Let ln(β) =
1
n

∑n
i=1 log(pβ(yi|yi−1:i−Rl

)) denote the likelihood function, and let π(β) denote the den-

sity of the mixture Gaussian prior (3). Let hi1,i2,...,id
(β) = ∂dln(β)

∂βi1 · · · ∂βid

which denotes

the d-th order partial derivatives. Let Hn(β) denote the Hessian matrix of ln(β), and
let hi,j(β), hi,j(β) denote the (i, j)-th component of Hn(β) and H−1

n (β), respectively. Let
Bλ,n = λ̄

1/2
n (β∗)/λn(β∗) and bλ,n =

√
rn/nBλ,n. For a RNN with β, we define the weight

truncation at the true model structure γ∗ : (βγ∗)i = βi for i ∈ γ∗ and (βγ∗)i = 0 for i /∈ γ∗.
For the mixture Gaussian prior (3), let Bδn

(β∗) = {β : |βi − β∗
i | ≤ δn,∀i ∈ γ∗, |βi − β∗

i | ≤

2σ0,n log
(

σ1,n

λnσ0,n

)
,∀i /∈ γ∗}.

In addition, we make the following assumptions for Theorem 3.12 and Theorem 3.13.

Assumption C.1. Assume the conditions of Lemma 3.10 hold with ρ(ϵn) = o(1
Kn

) and

the C1 ≥ 2
3 defined in Assumption 3.4. For some δn s.t. rn√

n
≲ δn ≲

1
3√
nrn

, let A(ϵn, δn) =

23

{β : maxi∈γ∗ |βi − β∗
i | > δn, d(pβ, pµ∗) ≤ ϵn}, where ϵn is the posterior contraction rate as

defined in Theorem 3.9. Assume there exists some constants C > 2 and M > 0 such that

C.1 β∗ = (β1, . . . ,βKn
) is generic, mini∈γ∗ |β∗

i | > Cδn and π(A(ϵn, δn)|Dn) → 0 as
n → ∞.

C.2 |hi(β∗)| < M, |hj,k(β∗)| < M, |hj,k(β∗)| < M, |hi,j,k(β)| < M, |hl(β)| < M hold for
any i, j, k ∈ γ∗, l /∈ γ∗, and β ∈ B2δn

(β∗).

C.3 sup{|Eβ(a′U3)| :
∥∥βγ∗ − β∗∥∥ ≤ 1.2bλ,n, ∥a∥ = 1 ≤ 0.1

√
n/rnλ

2
n(β∗)/λ̄1/2

n (β∗)} and
Bλ,n = O(1), where U = Z − Eβγ∗ (Z), Z denotes a random variable drawn from a
neural network model parameterized by βγ∗ , and Eβγ∗ denotes the mean of Z.

C.4 r2
n/n → 0 and the conditions for Theorem 2 of [56] hold.

Conditions C.1 to C.3 align with the assumptions made in [21]. An additional assumption,
C.4, is introduced to account for the dependency inherent in time series data. This assumption
is crucial and employed in conjunction with C.3 to establish the consistency of the maximum
likelihood estimator (MLE) of βγ∗ for a given structure γ∗. While the assumption rn/n → 0
is sufficient for independent data, which is implied by Assumption 3.4, a stronger restriction,
specifically r2

n/n → 0, is necessary for dependent data such as time series. It is worth noting
that the conditions used in Theorem 2 of [56] pertain specifically to the time series data
itself.

Let µi1,i2,...,id
(·,β) = ∂dµ(·,β)

∂βi1 · · · ∂βid

denotes the d-th order partial derivative for some input.

Assumption C.2. |µi(·,β∗)| < M, |µi,j(·,β)| < M, |µk(·,β)| < M for any i, j ∈ γ∗, k /∈ γ∗,
and β ∈ B2δn

(β∗), where M is as defined in Assumption C.1.

Proof of Theorem 3.12 and Theorem 3.13 The proof of these two theorems can be
conducted following the approach in [21]. The main difference is that in [21], they rely on
Theorem 2.1 of [57], which assumes independent data. However, the same conclusions can
be extended to time series data by using Theorem 2 of [56], taking into account assumption
C.4. This allows for the consideration of dependent data in the analysis.

D Computation

Algorithm 1 gives the prior annealing procedure[21]. In practice, the following implementation
can be followed based on Algorithm 1:

• For 0 < t < T1, perform initial training.
• For T1 ≤ t ≤ T2, set σ(t)

0,n = σinit
0,n and gradually increase η(t) = t−T1

T2−T1
.

• For T2 ≤ t ≤ T3, set η(t) = 1 and gradually decrease σ(t)
0,n according to the formula:

σ
(t)
0,n =

(
T3−t

T3−T2

)
(σinit

0,n)2 +
(

t−T2
T3−T2

)
(σend

0,n)2.

• For t > T3, set η(t) = 1, σ(t)
0,n = σend

0,n , and gradually decrease the temperature τ
according to the formula: τ = c

t−T3
, where c is a constant.

Please refer to Appendix E for intuitive explanations of the prior annealing algorithm and
further details on training a model to achieve the desired sparsity.

E Mixture Gaussian Prior

The mixture Gaussian prior imposes a penalty on the model parameters by acting as a
piecewise L2 penalty, applying varying degrees of penalty in different regions of the parameter
space. Given values for σ0,n, σ1,n, and λn, a threshold value can be computed using Algorithm

24

Algorithm 1 Prior Annealing: Frequentist
[1] (Initial Training) Train a neural network satisfying condition (S∗) such that a global
optimal solution β0 = arg maxβ ln(β) is reached, this stage can be accomplished by using
SGD or Adam.
[2] (Prior Annealing) Initialize β at β0, and simulate from a sequence of distributions
π(β|Dn, τ, η

(k), σ
(k)
0,n) ∝ enln(β)/τπ

η(k)/τ
k (β) for k = 1, 2, . . . ,m, where 0 < η(1) ≤ η(2) ≤

· · · ≤ η(m) = 1, πk = λnN(0, σ2
1,n) + (1 − λn)N(0, (σ(k)

0,n)2), and σinit
0,n = σ

(1)
0,n ≥ σ

(2)
0,n ≥

· · · ≥ σ
(m)
0,n = σend

0,n . This can be done by using stochastic gradient MCMC algorithms [58].
After the stage m has been reached, continue to run the simulated annealing algorithm by
gradually decreasing the temperature τ to a very small value. Denote the resulting model
by β̂.
[3] (Structure Sparsification) For each connection weight i ∈ {1, 2, . . . ,Kn}, set γ̃i = 1,

if |βi| >
√

2σ0,nσ1,n√
σ2

1,n − σ2
0,n

√
log
(

1 − λn

λn

σ1,n

σ0,n

)
and 0 otherwise, where the threshold value is

determined by solving π(γi = 1|β) > 0.5, and σ0,n = σend
0,n . Denote the the structure of

the sparse RNN by γ̃.

[4] (Nonzero-weights Refining) Refine the nonzero weights of the sparse model (β̂, γ̃) by
maximizing ln(β). Denote the resulting estimate by (β̃, γ̃).

Figure 3: Changes of the negative log prior density function in prior annealing of σ2
0,n, where

the values of λn and σ2
1,n are fixed.

1. Parameters whose absolute values are below this threshold will receive a large penalty,
hence constituting the "penalty region", while parameters whose absolute values are above
the threshold will receive relatively minimal penalty, forming the "free space". The severity
of the penalty in the free space largely depends on the value of σ1,n.
For instance, as depicted in Figure 3, based on the simple practice implementation detailed in
Appendix D, we fix λn = 1e− 7, σ2

1,n = 0.05, and we set (σinit
0,n)2 = 1e− 5, (σend

0,n)2 = 1e− 7,
and gradually reduce σ2

0,n from the initial value to the end value. Initially, the free space
is relatively small and the penalty region is relatively large. However, the penalty imposed
on the parameters within the initial penalty region is also minor, making it challenging to
shrink these parameters to zero. As we progressively decrease σ2

0,n, the free space enlarges,

25

the penalty region diminishes, and the penalty on the parameters within the penalty region
intensifies simultaneously. Once σ2

0,n equals (σend
0,n)2, the parameters within the penalty

region will be proximate to zero, and the parameters outside the penalty region can vary
freely in almost all areas of the parameter space.
For model compression tasks, achieving the desired sparsity involves several steps post the
initial training phase outlined in Algorithm 1. First, determine the initial threshold value
based on pre-set values for λn, σ2

1,n, and (σinit
0,n)2. Then, compute the proportion of the

parameters in the initial model whose absolute values are lower than this threshold. This
value serves as an estimate for anticipated sparsity. Adjust the (σinit

0,n)2 value until the
predicted sparsity aligns closely with the desired sparsity level.

F Construction of Multi-Horizon Joint Prediction Intervals

To construct valid joint prediction intervals for multi-horizon forecasting, we estimate the
individual variances for each time step in the prediction horizon using procedures similar to
one-step-ahead forecasting. We then adjust the critical value by dividing α by the number of
time steps m in the prediction horizon and use zα/(2m) as the adjusted critical value. This
Bonferroni correction ensures the desired coverage probability across the entire prediction
horizon.
As an example, we refer to the experiments conducted in 5.1.2, where we work
with a set of training sequences denoted by Dn = {y(i)

1 , . . . , y
(i)
T , . . . y

(i)
T +m}n

i=1. Here,
y

(i)
T +1, y

(i)
T +2, . . . , y

(i)
T +m represent the prediction horizon for each sequence, while T repre-

sents the length of the observed sequence.

• Train a model by the proposed algorithm, and denote the trained model by (β̂, γ̂).
• Calculate σ̂2 as an estimator of σ2 ∈ Rm×1:

σ̂2 = 1
n− 1

n∑
i=1

(
µ(β̂, y(i)

1:T) − y
(i)
T +1:T +m

)
⊗
(

µ(β̂, y(i)
1:T) − y

(i)
T +1:T +m

)
,

where µ(β̂, y(i)
1:T) = ŷ

(i)
T +1:T +m, and ⊗ denotes elementwise product.

• For a test sequence y(0)
1:T , calculate

Σ̂ = ∇γ̂µ(β̂, y(0)
1:T)′(−∇2

γ̂ ln(β̂))−1∇γ̂µ(β̂, y(0)
1:T).

Let ς̂ ∈ Rm×1 denote the vector formed by the diagonal elements of Σ̂.
• The Bonferroni simultaneous prediction intervals for all elements of y(0)

T +1:T +m are
given by

µ(β̂, y(0)
1:T) ± zα/(2m)

(
1
n

ς̂ + σ̂2
)◦ 1

2

,

where ◦ 1
2 represents the element-wise square root operation.

The Bayesian method is particularly advantageous when dealing with a large number of
non-zero connection weights in (β̂, γ̂), making the computation of the Hessian matrix of
the log-likelihood function costly or unfeasible. For detailed information on utilizing the
Bayesian method for constructing prediction intervals, please refer to [21].

G Numerical Experiments

G.1 French Electricity Spot Prices

Dataset. The given dataset contains the spot prices of electricity in France that were
established over a period of four years, from 2016 to 2020, using an auction market. In

26

this market, producers and suppliers submit their orders for the next day’s 24-hour period,
specifying the electricity volume in MWh they intend to sell or purchase, along with the
corresponding price in €/MWh. At midnight, the Euphemia algorithm, as described in [59],
calculates the 24 hourly prices for the next day, based on the submitted orders and other
constraints. This hourly dataset consists of 35064 observations, covering (3 × 365 + 366) × 24
periods. Our main objective is to predict the 24 prices for the next day by considering
different explanatory variables such as the day-ahead forecast consumption, day-of-the-week,
as well as the prices of the previous day and the same day in the previous week, as these
variables are crucial in determining the spot prices of electricity. Refer to Figure 4 for a
visual representation of the dataset.
The prediction models and training settings described below are the same for all 24 hours.

(a) (b)

Figure 4: (a): French electricity spot prices (2016 to 2019). (b): Online learning method
used for ACI and AgACI in [31], where the prediction range is assumed to between Tpred start
and Tpred end.

Prediction Model. We use an MLP with one hidden layer of size 100 and the sigmoid
activation function as the underlying prediction model for all methods and all hours.
Training: Baselines. For all CP baselines, we train the MLP for 300 epochs
using SGD with a constant learning rate of 0.001 and momentum of 0.9, the
batch size is set to be 100. For the ACI, we use the same list of γ ∈
{0, 0.000005, 0.00005, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0001, 0.0002, 0.0003, 0.0004,
0.0005, 0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009,
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09} as in [31].
Training: Our Method. For our method PA, we train a total of 300 epochs with the
same learning rate, momentum, and batch size. We use T1 = 150, T2 = 160, T3 = 260. We
run SGD with momentum for t < T1 and SGHMC with temperature= 1 for t >= T1. For
the mixture Gaussian prior, we fix σ2

1,n = 0.01, (σinit
1,n)2 = 1e − 5, (σend

1,n)2 = 1e − 6, and
λn = 1e− 7.

Table 5: Uncertainty quantification results produced by different methods for the French
electricity spot prices dataset. This table corresponds to the Figure 2.

Methods Coverage Average PI Lengths (standard deviation) Median PI Lengths (interquartile range)
PA offline (ours) 90.06 20.19(3.23) 20.59(1.82)
AgACI online 91.05 23.27(14.49) 21.38(2.62)
ACI γ = 0.01 online 90.21 22.13(8.50) 20.68(2.70)
ACI γ = 0.0 online 92.89 24.39(9.17) 22.99(2.91)
EnbPI V2 online 91.23 27.99(10.17) 26.55(5.09)
NexCP online 91.18 24.41(10.40) 22.88(2.86)

G.2 EEG, MIMIC-III, and COVID-19

EEG The EEG dataset, available at here, served as the primary source for the EEG signal
time series. This dataset contains responses from both control and alcoholic subjects who
were presented with visual stimuli of three different types. To maintain consistency with

27

https://archive.ics.uci.edu/ml/datasets/EEG+Database

previous work [33], we utilized the medium-sized version, consisting of 10 control and 10
alcoholic subjects. We focused solely on the control subjects for our experiments, as the
dataset summaries indicated their EEG responses were more difficult to predict. For detailed
information on our processing steps, please refer to [33].
COVID-19 We followed the processing steps of previous research [33] and utilized COVID-
19 data from various regions within the same country to minimize potential distribution
shifts while adhering to the exchangeability assumption. The lower tier local authority
split provided us with 380 sequences, which we randomly allocated between the training,
calibration, and test sets over multiple trials. The dataset can be found at here.
MIMIC-III We collect patient data on the use of antibiotics (specifically Levofloxacin)
from the MIMIC-III dataset [46]. However, the subset of the MIMIC-III dataset used in [33]
is not publicly available to us, and the authors did not provide information on the processing
steps, such as SQL queries and Python code. Therefore, we follow the published processing
steps provided in [60]. We remove sequences with fewer than 5 visits or more than 47 visits,
resulting in a total of 2992 sequences. We randomly split the dataset into train, calibration,
and test sets, with corresponding proportions of 43%, 47%, and 10%. We use the white
blood cell count (high) as the feature for the univariate time series from these sequences.
Access to the MIMIC-III dataset requires PhysioNet credentialing.
Table 6 presents the training hyperparameters and prediction models used for the baselines
in the three datasets, while Table 7 presents the training details used for our method.
We hypothesize that the mediocre performance on the EEG dataset is due to the small size
of the prediction model, which has only 2025 parameters and is substantially smaller than
the number of training sequences. Hence, we conducted experiments on the EEG dataset
using a slightly larger prediction model for different methods. The results are presented in
Table 8, and the corresponding training details are provided in Table 6. Again, our method
outperforms other baselines as well.

Table 6: Training details for the baselines, where LSTM-d refers to a single hidden layer
LSTM network with a size of d.

MIMIC-III EEG COVID-19
model LSTM-500 LSTM-20 LSTM-20

learning rate 2e − 4 0.01 0.01
Epochs 65 100 1000

Optimizer Adam Adam Adam
Batch size 150 150 150

Table 7: Training details for our method, where LSTM-d refers to a single hidden layer
LSTM network with a size of d.

MIMIC-III EEG COVID-19
Model LSTM-500 LSTM-20 LSTM-20

Learning rate 2e − 4 0.01 0.01
Epochs 65 100 1000

Optimizer Adam Adam Adam
Batch size 150 150 150

σ2
1,n 0.05 0.1 0.1

(σinit
0,n)2 1e − 5 1e − 7 1e − 7

(σend
0,n)2 1e − 6 1e − 8 1e − 8
λn 1e − 7 1e − 7 1e − 7

Temperature 1 1 1
T1 40 50 800
T2 40 55 850
T3 55 80 950

28

 https://coronavirus.data.gov.uk/
https://mimic.mit.edu/docs/gettingstarted/

Table 8: Uncertainty quantification results produced by various methods for the EEG data
using a larger prediction model. The “coverage” represents the average joint coverage
rate over different random seeds. The prediction interval (PI) lengths are averaged across
prediction horizons and random seeds. The values in parentheses indicate the standard
deviations of the respective means.

EEG
Model Coverage PI lengths

PA-RNN 91.0%(0.8%) 40.84(5.69)
CF-RNN 90.8%(1.8%) 43.4(6.79)
MQ-RNN 45.2%(2.5%) 20.63(2.07)
DP-RNN 0.6%(0.1%) 5.02(0.53)

Table 9: Training details for the EEG data with a slightly larger prediction model for all
methods, where "-" denotes that the information is not applicable.

PA-RNN CF-RNN MQ-RNN DP-RNN
model LSTM-100 LSTM-100 LSTM-100 LSTM-100

learning rate 1e − 3 1e − 3 1e − 3 1e − 3
Epochs 150 150 150 150

Optimizer Adam Adam Adam Adam
Batch size 150 150 150 150

σ2
1,n 0.01 - - -

(σinit
0,n)2 1e − 5 - - -

(σend
0,n)2 1e − 6 - - -
λn 1e − 7 - - -

temperature 1 - - -
T1 100 - - -
T2 105 - - -
T3 130 - - -

G.3 Autoregressive Order Selection

Model An Elman RNN with one hidden layer of size 1000. Different window sizes (i.e., 1 or
15) will result in a different total number of parameters..
Hyperparameters All training hyperparameters are given in Table 10

Table 10: Training details for the autoregressive order selection experiment.

PA-RNN 1 PA-RNN 15 RNN 1 RNN 15
Learning rate 4e − 3 1e − 4 1e − 4 1e − 4

Iterations 25000 25000 25000 25000
Optimizer SGHMC SGHMC SGHMC SGHMC
Batch size 36 36 36 36

Subsample size per iteration 50 50 50 50
Predicton horizon 1 1 1 1

σ2
1,n 0.05 0.05 - -

(σinit
0,n)2 2e − 6 4e − 6 - -

(σend
0,n)2 1e − 7 1e − 7 - -
λn 1e − 7 1e − 7 - -

Temperature 0.1 0.1 - -
T1 5000 5000 - -
T2 10000 10000 - -
T3 25000 25000 - -

29

G.4 Large-Scale Model Compression

As pointed out by recent summary/survey papers on sparse deep learning [61, 62], the
lack of standardized benchmarks and metrics that provide guidance on model structure,
task, dataset, and sparsity levels has caused difficulties in conducting fair and meaningful
comparisons with previous works. For example, the task of compressing Penn Tree Bank
(PTB) word language model [63] is a popular comparison task. However, many previous works
[64, 65, 66, 67] have avoided comparison with the state-of-the-art method by either not using
the standard baseline model, not reporting, or conducting comparisons at different sparsity
levels. Therefore, we performed an extensive search of papers that reported performance on
this task, and to the best of our knowledge, the state-of-the-art method is the Automated
Gradual Pruning (AGP) by [68].
In our experiments, we train large stacked LSTM language models on the PTB dataset at
different sparsity levels. The model architecture follows the same design as in [63], comprising
an embedding layer, two stacked LSTM layers, and a softmax layer. The vocabulary size for
the model is 10000, the embedding layer size is 1500, and the hidden layer size is 1500 resulting
in a total of 66 million parameters. We compare our method with AGP at different sparsity
levels, including 80%, 85%, 90%, 95%, and 97.5% as in [68]. The results are summarized
in Table 11, and our method achieves better results consistently. For the AGP, numbers
are taken directly from the original paper, and since they only provided one experimental
result for each sparsity level, no standard deviation is reported. For our method, we run
three independent trials and provide both the mean and standard deviation for each sparsity
level. During the initial training stage, we follow the same training procedure as in [63].
The details of the prior annealing and fine-tuning stages of our method for different sparsity
levels are provided below.
During the initial training stage, we follow the same training procedure as in [63] for all
sparsity, and hence T1 = 55.
During the prior annealing stage, we train a total of 60 epochs using SGHMC. For all levels
of sparsity considered, we fix σ2

1,n = 0.5, λn = 1e− 6, momentum 1 − α = 0.9, minibatch
size = 20, and we fix T2 = 5 + T1 = 60, T3 = T2 + 20 = 80. We set the initial temperature
τ = 0.01 for t ≤ T3 and and gradually decrease τ by τ = 0.01

t− T3
for t > T3.

During the fine tune stage, we apply a similar training procedure as the initial training stage,
i.e., we use SGD with gradient clipping and we decrease the learning rate by a constant
factor after certain epochs. The minibatch size is set to be 20, and we apply early stopping
based on the validation perplexity with a maximum of 30 epochs.
Table 12 gives all hyperparameters (not specified above) for different sparsity levels.
Note that, the mixture Gaussian prior by nature is a regularization method, so we lower the
dropout ratio during the prior annealing and fine tune stage for models with relatively high
sparsity.

30

Table 11: Test set perplexity for different methods and sparsity levels.

Method Sparsity Test Perplexity
baseline 0% 78.40

PA 80.87% ± 0.09% 77.122 ± 0.147
PA 85.83% ± 0.05% 77.431 ± 0.109
PA 90.53% ± 0.05% 78.823 ± 0.118
PA 95.40% ± 0.00% 84.525 ± 0.112
PA 97.78% ± 0.05% 93.268 ± 0.136
AGP 80% 77.52
AGP 85% 78.31
AGP 90% 80.24
AGP 95% 87.83
AGP 97.5% 103.20

Table 12: Word Language Model Compression: Hyperparameters for our method during the
prior annealing and fine tune stage. We denote the learning rate by LR, the prior annealing
stage by PA, and the fine tune stage by FT.

Hyperparameters/Sparsity 80% 85% 90% 95% 97.5%
Dropout ratio 0.65 0.65 0.65 0.4 0.4

(σinit
0,n)2 0.0005 0.0007 0.00097 0.00174 0.00248

(σend
0,n)2 1e − 7 1e − 7 1e − 7 1e − 7 1e − 6

LR PA 0.004 0.004 0.008 0.008 0.01
LR FT 0.008 0.008 0.008 0.1 0.2

LR decay factor FT 1/0.95 1/0.95 1/0.95 1/0.95 1/0.95
LR decay epoch FT 5 5 5 5 5

Table 13: Training details for the additional autoregressive order selection experiment.

yi =
(
0.8 − 1.1 exp

{
−50y2

i−1
})

yi−1 + ηi PA-RNN 1, 3, 5, 7, 10, 15

Learning rate 1e − 4
Iterations 2000
Optimizer SGHMC
Batch size 36

Subsample size per iteration 50
Predicton horizon 1

σ2
1,n 0.05

(σinit
0,n)2 1e − 5

(σend
0,n)2 1e − 6
λn 1e − 6

Temperature 0.1
T1 500
T2 1000
T3 1500

31

	Introduction
	Related Works
	Sparse Deep Learning for Time Series Data: Theory
	Posterior Consistency
	Uncertainty Quantification with Sparse RNNs

	Computation
	Numerical Experiments
	Uncertainty Quantification
	A Single Time Series: French Electricity Spot Prices
	A Set of Time Series

	Autoregressive Order Selection
	RNN Model Compression

	Discussion
	Mathematical Facts of Sparse RNNs
	Proofs on Posterior Consistency: A Single Time Series
	Posterior Consistency with a General Shrinkage Prior
	Proof of Theorem 3.9
	Posterior Consistency for Multilayer Perceptrons

	Asymptotic Normality of Connection Weights and Predictions
	Computation
	Mixture Gaussian Prior
	Construction of Multi-Horizon Joint Prediction Intervals
	Numerical Experiments
	French Electricity Spot Prices
	EEG, MIMIC-III, and COVID-19
	Autoregressive Order Selection
	Large-Scale Model Compression

