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Abstract

Most existing works on federated bandits take it for granted that all clients are
altruistic about sharing their data with the server for the collective good whenever
needed. Despite their compelling theoretical guarantee on performance and com-
munication efficiency, this assumption is overly idealistic and oftentimes violated
in practice, especially when the algorithm is operated over self-interested clients,
who are reluctant to share data without explicit benefits. Negligence of such self-
interested behaviors can significantly affect the learning efficiency and even the
practical operability of federated bandit learning. In light of this, we aim to spark
new insights into this under-explored research area by formally introducing an
incentivized communication problem for federated bandits, where the server shall
motivate clients to share data by providing incentives. Without loss of generality,
we instantiate this bandit problem with the contextual linear setting and propose the
first incentivized communication protocol, namely, INC-FEDUCB, that achieves
near-optimal regret with provable communication and incentive cost guarantees.
Extensive empirical experiments on both synthetic and real-world datasets further
validate the effectiveness of the proposed method across various environments.

1 Introduction

Federated bandit learning has recently emerged as a promising new direction to promote the applica-
tion of bandit models while preserving privacy by enabling collaboration among multiple distributed
clients [10, 40, 22, 13, 23, 24, 25, 15, 37, 9]. The main focus in this line of research is on devising
communication-efficient protocols to achieve near-optimal regret in various settings. Most notably,
the direction on federated contextual bandits has been actively gaining momentum, since the debut
of several benchmark communication protocols for contextual linear bandits in the P2P [18] and
star-shaped [40] networks. Many subsequent studies have explored diverse configurations of the
clients’ and environmental modeling factors and addressed new challenges arising in these contexts.
Notable recent advancements include extensions to asynchronous linear bandits [22, 13], generalized
liner bandits [23], and kernelized contextual bandits [24, 25].

Despite the extensive exploration of various settings, almost all existing federated bandit algorithms
rely on the assumption that every client in the system is willing to share their local data/model with the
server, regardless of the communication protocol design. For instance, synchronous protocols [40, 23]
require all clients to simultaneously engage in data exchange with the server in every communication
round. Similarly, asynchronous protocols [22, 25, 13] also assume clients must participate in
communication as long as the individualized upload or download event is triggered, albeit allowing
interruptions by external factors (e.g., network failure).

In contrast, our work is motivated by the practical observation that many clients in a federated system
are inherently self-interested and thus reluctant to share data without receiving explicit benefits
from the server [16]. For instance, consider the following scenario: a recommendation platform
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(server) wants its mobile app users (clients) to opt in its new recommendation service, which switches
previous on-device local bandit algorithm to a federated bandit algorithm. Although the new service
is expected to improve the overall recommendation quality for all clients, particular clients may
not be willing to participate in this collaborative learning, as the expected gain for them might not
compensate their locally increased cost (e.g., communication bandwidth, added computation, lost
control of their data, and etc). In this case, additional actions have to be taken by the server to
encourage participation, as it has no power to force clients. This exemplifies the most critical concern
in the real-world application of federated learning [16]. And a typical solution is known as incentive
mechanism, which motivates individuals to contribute to the social welfare goal by offering incentives
such as monetary compensation.

While recent studies have explored incentivized data sharing in federated learning [30, 38], most of
which only focused on the supervised offline learning setting [16]. To our best knowledge, ours is
the first work that studies incentive design for federated bandit learning, which inherently imposes
new challenges. First, there is a lack of well-defined metric to measure the utility of data sharing,
which rationalizes a client’s participation. Under the context of bandit learning, we measure data
utility by the expected regret reduction from the exchanged data for each client. As a result, each
client values data (e.g., sufficient statistics) from the server differently, depending on how such data
aligns with their local data (e.g., the more similar the less valuable). Second, the server is set to
minimize regret across all clients through data exchange. But as the server does not generate data, it
can be easily trapped by the situation where its collected data cannot pass the critical mass to ensure
every participating client’s regret is close to optimal (e.g., the data under server’s possession cannot
motivate the clients who have more valuable data to participate). To break the deadlock, we equip the
server to provide monetary incentives. Subsequently, the server needs to minimize its cumulative
monetary payments, in addition to the regret and communication minimization objectives as required
by federated bandit learning. We propose a provably effective incentivized communication protocol,
based on a heuristic search strategy to balance these distinct learning objectives. Our solution obtains
near-optimal regret O(d

√
T log T ) with provable communication and incentive cost guarantees.

Extensive empirical simulations on both synthetic and real-world datasets further demonstrate the
effectiveness of the proposed protocol in various federated bandit learning environments.

2 Related Work

Federated Bandit Learning One important branch in this area is federated multi-armed bandits
(MABs), which has been well-studied in the literature [27, 36, 19, 4, 20, 28, 32, 39, 34, 33, 43]. The
other line of work focuses on the federated contextual bandit setting [18, 40], which has recently
attracted increasing attention. Wang et al. [40] and Korda et al. [18] are among the first to investigate
this problem, where multiple communication protocols for linear bandits [1, 26] in star-shaped and
P2P networks are proposed. Many follow-up works on federated linear bandits [10, 15, 22, 13] have
emerged with different client and environment settings, such as investigating fixed arm set [15],
incorporating differential privacy [10], and introducing asynchronous communication [13, 22].
Li et al. [23] extend the federated linear bandits to generalized linear bandits [11]. And they
further investigated federated learning for kernelized contextual bandits in both synchronous and
asynchronous settings [24, 25].

In this work, we situate the incentivized federated bandit learning problem under linear bandits with
time-varying arm sets, which is a popular setting in many recent works [40, 10, 22, 13]. But we do not
assume the clients will always participate in data sharing: they will choose not to share their data with
the server if the resulting benefit of data sharing is not deemed to outweigh the cost. Here we need
to differentiate our setting from those with asynchronous communication, e.g., Asyn-LinUCB [22].
Such algorithms still assume all clients are willing to share, though sometimes the communication
can be interrupted by some external factors (e.g., network failure). We do not assume communication
failures and leave it as our future work. Instead, we assume the clients need to be motivated to
participate in federated learning, and our focus is to devise the minimum incentives to obtain the
desired regret and communication cost for all participating clients.

Incentivized Federated Learning Data sharing is essential to the success of federated learning [30],
where client participation plays a crucial role. However, participation involves costs, such as the need
for additional computing and communication resources, and the risk of potential privacy breaches,
which can lead to opt-outs [5, 14]. In light of this, recent research has focused on investigating
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incentive mechanisms that motivate clients to contribute, rather than assuming their willingness to
participate. Most of the existing research involves multiple decentralized clients solving the same
task, typically with different copies of IID datasets, where the focus is on designing data valuation
methods that ensure fairness or achieve a specific accuracy objective [35, 41, 8]. On the other hand,
Donahue et al. [7] study voluntary participation in model-sharing games, where clients may opt out
due to biased global models caused by the aggregated non-IID datasets. More recently, Karimireddy
et al. [16] investigated incentive mechanism design for data maximization while avoiding free riders.
For a detailed discussion of this topic, we refer readers to recent surveys on incentive mechanism
design in federated learning [42, 38].

However, most works on incentivized federated learning only focus on better model estimation among
fixed offline datasets, which does not apply to the bandit learning problem, where the exploration
of growing data is also part of the objective. More importantly, in our incentivized federated bandit
problem, the server is obligated to improve the overall performance of the learning system, i.e.,
minimizing regret among all clients, which is essentially different from previous studies where the
server only selectively incentivizes clients to achieve a certain accuracy [35] or to investigate how
much accuracy the system can achieve without payment [16].

3 Preliminaries

In this section, we formally introduce the incentivized communication problem for federated bandits
under the contextual linear bandit setting.

3.1 Federated Bandit Learning

We consider a learning system consisting of (1) N clients that directly interact with the environment
by taking actions and receiving the corresponding rewards, and (2) a central server that coordinates
the communication among the clients to facilitate their learning collectively. The clients can only
communicate with the central server, but not with each other, resulting in a star-shaped communication
network. At each time step t ∈ [T ], an arbitrary client it ∈ [N ] becomes active and chooses an
arm xt from a candidate set At ⊆ Rd, and then receives the corresponding reward feedback
yt = f(xt) + ηt ∈ R. Note that At is time-varying, f denotes the unknown reward function shared
by all clients, and ηt denotes zero mean sub-Gaussian noise with known variance σ2.

The performance of the learning system is measured by the cumulative (pseudo) regret over all N
clients in the finite time horizon T , i.e., RT =

∑T
t=1 rt, where rt = maxx∈At

E[y|x] − E[yt|xt]
is the regret incurred by client it at time step t. Moreover, under the federated learning setting,
the system also needs to keep the communication cost CT low, which is measured by the total
number of scalars [40] being transferred across the system up to time T . With the linear reward
assumption, i.e., f(x) = x⊤θ⋆, where θ⋆ denotes the unknown parameter, a ridge regression estimator
θ̂t = V −1

t bt can be constructed based on sufficient statistics from all N clients at each time step t,
where Vt =

∑t
s=1 xsx

⊤
s and bt =

∑t
s=1 xsys [21]. Using θ̂t under the Optimism in the Face of

Uncertainty (OFUL) principle [1], one can obtain the optimal regret RT = O(d
√
T ). To achieve this

regret bound in the federated setting, a naive method is to immediately share statistics of each newly
collected data sample to all other clients in the system, which essentially recovers its centralized
counterpart. However, this solution incurs a disastrous communication cost CT = O(d2NT ). On the
other extreme, if no communication occurs throughout the entire time horizon (i.e., CT = 0), the
regret upper bound can be up to RT = O(d

√
NT ) when each client interacts with the environment

at the same frequency, indicating the importance of timely data/model aggregation in reducing RT .

To balance this trade-off between regret and communication cost, prior research efforts centered
around designing communication-efficient protocols for federated bandits that feature the “delayed
update” of sufficient statistics [40, 22, 13]. Specifically, each client i only has a delayed copy of
Vt and bt, denoted as Vi,t = Vtlast + ∆Vi,t, bi,t = btlast + ∆bi,t, where Vtlast , btlast is the aggregated
sufficient statistics shared by the server in the last communication, and ∆Vi,t,∆bi,t is the accumulated
local updates that client i obtain from its interactions with the environment since tlast. In essence,
the success of these algorithms lies in the fact that Vt, bt typically changes slowly and thus has little
instant impact on the regret for most time steps. Therefore, existing protocols that only require
occasional communications can still achieve nearly optimal regret, despite the limitation on assuming
clients’ willingness on participation as we discussed before.
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3.2 Incentivized Federated Bandits

Different from the prior works in this line of research, where all clients altruistically share their data
with the server whenever a communication round is triggered, we are intrigued in a more realistic
setting where clients are self-interested and thus reluctant to share data with the server if not well
motivated. Formally, each client in the federated system inherently experiences a cost2 of data sharing,
denoted by D̃p

i ∈ R, due to their individual consumption of computing resources in local updates or
concerns about potential privacy breaches caused by communication with the server. Moreover, as the
client has nothing to lose when there is no local update to share in a communication round at time step
t, in this case we assume the cost is 0, i.e., Dp

i = D̃p
i · I(∆Vi,t ̸= 0). As a result, the server needs to

motivate clients to participate in data sharing via the incentive mechanism M : RN × Rd×d → RN ,
which takes as inputs a collection of client local updates ∆Vi,t ∈ Rd×d and a vector of cost values
Dp = {Dp

1 , · · · , D
p
N} ∈ RN , and outputs the incentive I = {I1,t, · · · , IN,t} ∈ RN to be distributed

among the clients. Specifically, to make it possible to measure gains and losses of utility in terms of
real-valued incentives (e.g., monetary payment), we adopt the standard quasi-linear utility function
assumption, as is standard in economic analysis [2, 31].

At each communication round, a client decides whether to share its local update with the server based
on the potential utility gained from participation, i.e., the difference between the incentive and the
cost of data sharing. This requires the incentive mechanism to be individually rational:

Definition 1 (Individual Rationality [29]) An incentive mechanism M : RN × Rd×d → RN is
individually rational if for any i in the participant set St at time step t, we have

Ii,t ≥ Dp
i (1)

In other words, each participant must be guaranteed non-negative utility by participating in data
sharing under M.

The server coordinates with all clients and incentivizes them to participate in the communication to
realize its own objective (e.g., collective regret minimization). This requires M to be sufficient:

Definition 2 (Sufficiency) An incentive mechanism M : RN × Rd×d → RN is sufficient if the
resulting outcome satisfies the server’s objective.

Typically, under different application scenarios, the server may have different objectives, such as
regret minimization or best arm identification. In this work, we set the objective of the server to
minimize the regret across all clients; and ideally the server aims to attain the optimal Õ(d

√
T ) regret

in the centralized setting via the incentivized communication. Therefore, we consider an incentive
mechanism is sufficient if it ensures that the resulting accumulated regret is bounded by Õ(d

√
T ).

4 Methodology

The communication backbone of our solution derives from DisLinUCB [40], which is a widely
adopted paradigm for federated linear bandits. We adopt their strategy for arm selection and commu-
nication trigger, so as to focus on the incentive mechanism design. We name the resulting algorithm
INC-FEDUCB, and present it in Algorithm 1. Note that the two incentive mechanisms to be presented
in Section 4.2 and 4.3 are not specific to any federated bandit learning algorithms, and each of them
can be easily extended to alternative workarounds as a plug-in to accommodate the incentivized
federated learning setting. For clarity, a summary of technical notations can be found in Table 7.

4.1 A General Framework: INC-FEDUCB Algorithm

Our framework comprises three main steps: 1) client’s local update; 2) communication trigger; and
3) incentivized data exchange among the server and clients. Specifically, after initialization, an
active client performs a local update in each time step and checks the communication trigger. If a
communication round is triggered, the system performs incentivized data exchange between clients
and the server. Otherwise, no communication is needed.

2Note that if the costs are trivially set to zero, then clients have no reason to opt-out of data sharing and our
problem essentially reduces to the standard federated bandits problem [40].
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Algorithm 1 INC-FEDUCB Algorithm
Require: Dc ≥ 0, Dp = {Dp

1 , · · · , D
p
N}, σ, λ > 0, δ ∈ (0, 1)

1: Initialize: [Server] Vg,0 = 0d×d ∈ Rd×d, bg,0 = 0d ∈ Rd

2: ∆V−j,0 = 0d×d,∆b−j,0 = 0d, ∀j ∈ [N ]
3: [All clients] Vi,0 = 0d×d, bi,0 = 0d, ∆Vi,0 = 0d×d, ∆bi,0 = 0d, ∆ti,0 = 0,∀i ∈ [N ]
4: for t = 1, 2, . . . , T do
5: [Client it] Observe arm set At

6: [Client it] Select arm xt ∈ At by Eq. (2) and observe reward yt
7: [Client it] Update: Vit,t += xtx

⊤
t , bit,t += xtyt

8: ∆Vit,t += xtx
⊤
t , ∆bit,t += xtyt, ∆tit,t += 1

9: if ∆tit,t log
det(Vit,t+λI)

det(Vit,t−∆Vit,t+λI) > Dc then

10: [All clients → Server] Upload ∆Vi,t such that S̃t = {∆Vi,t|∀i ∈ [N ]}
11: [Server] Select incentivized participants St = M(S̃t) ▷ Incentive Mechanism
12: for i : ∆Vi,t ∈ St do
13: [Participant i → Server] Upload ∆bi,t
14: [Server] Update: Vg,t += ∆Vi,t, bg,t += ∆bi,t
15: ∆V−j,t += ∆Vi,t, ∆b−j,t += ∆bi,t,∀j ̸= i
16: [Participant i] Update: ∆Vi,t = 0, ∆bi,t = 0, ∆ti,t = 0

17: for ∀i ∈ [N ] do
18: [Server → All Clients] Download ∆V−i,t, ∆b−i,t

19: [Client i] Update: Vi,t += ∆V−i,t, bi,t += ∆b−i,t

20: [Server] Update: ∆V−i,t = 0, ∆b−i,t = 0

Formally, at each time step t = 1, . . . , T , an arbitrary client it becomes active and interacts with
its environment using observed arm set At (Line 5). Specifically, it selects an arm xt ∈ At that
maximizes the UCB score as follows (Line 6):

xt = argmax
x∈At

x⊤θ̂it,t−1(λ) + αit,t−1||x||V −1
it,t−1(λ)

(2)

where θ̂it,t−1(λ) = V −1
it,t−1(λ)bit,t−1 is the ridge regression estimator of θ⋆ with regularization

parameter λ > 0, Vit,t−1(λ) = Vit,t−1+λI , and αit,t−1 = σ
√

log
det(Vit,t−1(λ))

det (λI) + 2 log 1/δ+
√
λ.

Vit,t(λ) denotes the covariance matrix constructed using data available to client it up to time t. After
obtaining a new data point (xt, yt) from the environment, client it checks the communication event
trigger ∆tit,t · log

det(Vit,t(λ))

det(Vit,tlast (λ))
> Dc (Line 9), where ∆tit,t denotes the time elapsed since the last

time tlast it communicated with the server and Dc ≥ 0 denotes the specified threshold.

Incentivized Data Exchange With the above event trigger, communication rounds only occur if
(1) a substantial amount of new data has been accumulated locally at client it, and/or (2) significant
time has elapsed since the last communication. However, in our incentivized setting, triggering a
communication round does not necessarily lead to data exchange at time step t, as the participant set
St may be empty (Line 11). This characterizes the fundamental difference between INC-FEDUCB
and DisLinUCB [40]: we no longer assume all N clients will share their data with the server in an
altruistic manner; instead, a rational client only shares its local update with the server if the condition
in Eq. (1) is met. In light of this, to evaluate the potential benefit of data sharing, all clients must first
reveal the value of their data to the server before the server determines the incentive. Hence, after a
communication round is triggered, all clients upload their latest sufficient statistics update ∆Vi,t to
the server (Line 10) to facilitate data valuation and participant selection in the incentive mechanism
(Line 11). Note that this disclosure does not compromise clients’ privacy, as the clients’ secret lies
in ∆bi,t that is constructed by the rewards. Only participating clients will upload their ∆bi,t to the
server (Line 13). After collecting data from all participants, the server downloads the aggregated
updates ∆V−i,t and ∆b−i,t to every client i (Line 17-20). Following the convention in federated
bandit learning [40], the communication cost is defined as the total number of scalars transferred
during this data exchange process.
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Algorithm 2 Payment-free Incentive Mechanism

Require: Dp = {Dp
i |i ∈ [N ]}, S̃t = {∆Vi,t|i ∈ [N ]}

1: Initialize participant set St = S̃t

2: while St ̸= ∅ do ▷ iteratively update St until it becomes stable
3: StableFlag = True
4: for i : ∆Vi,t ∈ St do
5: if Ii,t < Dp

i then ▷ Eq. 4
6: Update participant set St = St \ {∆Vi,t} ▷ remove client j from St

7: StableFlag = False
8: break
9: if StableFlag = True then

10: break
11: return St ⊆ S̃t

4.2 Payment-free Incentive Mechanism

As mentioned in Section 1, in federated bandit learning, clients can reduce their regret by using
models constructed via shared data. Denote Ṽt as the covariance matrix constructed by all available
data in the system at time step t. Based on Lemma 5 and 7, the instantaneous regret of client it is
upper bounded by:

rt ≤ 2αit,t−1

√
x⊤
t Ṽ

−1
t−1xt ·

√
det(Ṽt−1)

det(Vit,t−1)
= O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
det(Ṽt−1)

det(Vit,t−1)
(3)

where the determinant ratio reflects the additional regret due to the delayed synchronization between
client it’s local sufficient statistics and the global optimal oracle. Therefore, minimizing this ratio
directly corresponds to reducing client it’s regret. For example, full communication keeps the
ratio at 1, which recovers the regret of the centralized setting discussed in Section 3.1.

Therefore, given the client’s desire for regret minimization, the data itself can be used as a form
of incentive by the server. And the star-shaped communication network also gives the server an
information advantage over any single client in the system: a client can only communicate with the
server, while the server can communicate with every client. Therefore, the server should utilize this
advantage to create incentives (i.e., the LHS of Eq. (1)), and a natural design to evaluate this data
incentive is:

Ii,t := Id
i,t =

det (Di,t(St) + Vi,t)

det(Vi,t)
− 1. (4)

where Di,t(St) =
∑

j:{∆Vj,t∈St}∧{j ̸=i} ∆Vj,t +∆V−i,t denotes the data that the server can offer to
client i during the communication at time t (i.e., current local updates from other participants that
have not been shared with the server) and ∆V−i,t is the historically aggregated updates stored in the
server that has not been shared with client i. Eq. (4) suggests a substantial increase in the determinant
of the client’s local data is desired by the client, which ultimately results in regret reduction.

With the above data valuation in Eq. (4), we propose the payment-free incentive mechanism that
motivates clients to share data by redistributing data collected from participating clients. We present
this mechanism in Algorithm 2, and briefly sketch it below. First, we initiate the participant set
St = S̃t, assuming all clients agree to participate. Then, we iteratively update St by checking
the willingness of each client i in St according to Eq. (1). If St is empty or all clients in it are
participating, then terminate; otherwise, remove client i from St and repeat the process.

While this payment-free incentive mechanism is neat and intuitive, it has no guarantee on the amount
of data that can be collected. To see this, we provide a theoretical negative result with rigorous regret
analysis in Theorem 3 (see proof in Appendix C).

Theorem 3 (Sub-optimal Regret) When there are at most c
2C

N
log(T/N) number of clients (for some

constant C, c > 0), whose cost value Dp
i ≤ min{(1+ L2

λ )T , (1+ TL2

λd )d}, there exists a linear bandit
instance with σ = L = S = 1 such that for T ≥ Nd, the expected regret for INC-FEDUCB algorithm
with payment-free incentive mechanism is at least Ω(d

√
NT ).
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Algorithm 3 Payment-efficient Incentive Mechanism

Require: S̃t = {∆Vi,t|i ∈ [N ]}, data-incentivized participant set Ŝt ⊆ S̃t, threshold β

1: for client i : ∆Vi,t ∈ S̃t \ Ŝt do:
2: Compute client’s potential contribution to the server (i.e., marginal gain in determinant):

ci,t(Ŝt) = det(∆Vi,t + Vg,t(Ŝt))/det(Vg,t(Ŝt)), Vg,t(St) = Vg,t−1 +Σ(St) (6)

3: Rank clients {i1, . . . , im} by their potential contribution, where m = |S̃t \ Ŝt|
4: Segment the list by finding α = min{j | det(Vg,t(Ŝt)+∆Vij ,t

)

det(Vg,t(S̃t))
≥ β, ∀j ∈ [m]}

5: k = α− 1, Im
last = Dp

iα
− Id

iα,t

6: return participant set St = Heuristic Search(k, Im
last) ▷ Algorithm 4

Recall the discussion in Section 3.1, when there is no communication RT is upper bounded by
O(d

√
NT ). Hence, in the worst-case scenario, the payment-free incentive mechanism might not

motivate any client to participate. It is thus not a sufficient mechanism.

4.3 Payment-efficient Incentive Mechanism

To address the insufficiency issue, we further devise a payment-efficient incentive mechanism that
introduces additional monetary incentives to motivate clients’ participation:

Ii,t := Id
i,t + Im

i,t (5)

where Id
i,t is the data incentive defined in Eq. (4), and Im

i,t is the real-valued monetary incentive, i.e.,
the payment assigned to the client for its participation. Specifically, we are intrigued by the question:
rather than trivially paying unlimited amounts to ensure everyone’s participation, can we devise an
incentive mechanism that guarantees a certain level of client participation such that the overall regret
is still nearly optimal but under acceptable monetary incentive cost?

Inspired by the determinant ratio principle discussed in Eq. (3), we propose to control the overall
regret by ensuring that every client closely approximates the oracle after each communication round,
which can be formalized as det(Vg,t)/ det(Ṽt) ≥ β, where Vg,t = Vg,t−1 + Σ(St) is to be shared
with all clients and Σ(St) =

∑
j:{∆Vj,t∈St} ∆Vj,t. The parameter β ∈ [0, 1] characterizes the chosen

gap between the practical and optimal regrets that the server commits to. Denote the set of clients
motivated by Id

i,t at time t as Sd
t and those motivated by Im

i,t as Sm
t , and thus St = Sm

t ∪ Sd
t . At

each communication round, the server needs to find the minimum Im
i,t such that pooling local updates

from St satisfies the required regret reduction for the entire system.

Note that Algorithm 2 maximizes Id
i,t, and thus the servers should compute Im

i,t on top of optimal Id
i,t

and resulting Sd
t , which however is still combinatorially hard. First, a brute-force search can yield a

time complexity up to O(2N ). Second, different from typical optimal subset selection problems [17],
the dynamic interplay among clients in our specific context brings a unique challenge: once a client
is incentivized to share data, the other uninvolved clients may change their willingness due to the
increased data incentive, making the problem even more intricate.

To solve the above problem, we propose a heuristic ranking-based method, as outlined in Algorithm 3.
The heuristic is to rank clients by the marginal gain they bring to the server’s determinant, as formally
defined in Eq. (6), which helps minimize the number of clients requiring monetary incentives, while
empowering the participation of other clients motivated by the aggregated data. This forms an
iterative search process: First, we rank all m non-participating clients (Line 2-3) by their potential
contribution to the server (with participant set St committed); Then, we segment the list by β, anyone
whose participation satisfies the overall β gap constraint is an immediately valid choice (Line 4). The
first client iα in the valid list and its payment Im

last (∞ if not available) will be our last resort (Line
5); Lastly, we check if there exist potentially more favorable solutions from the invalid list (Line 6).
Specifically, we try to elicit up to k = α− 1 (k = m if iα is not available) clients from the invalid
list in n ≤ k rounds, where only one client will be chosen using the same heuristic in each round. If
having n clients from the invalid list also satisfies the β constraint and results in a reduced monetary
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incentive cost compared to Im
last, then we opt for this alternative solution. Otherwise, we will adhere

to the last resort.

This Heuristic Search is detailed in Appendix A, and it demonstrates a time complexity of only
O(N) in the worst-case scenarios, i.e., n = m = N . Theorem 4 guarantees the sufficiency of this
mechanism w.r.t communication and payment bounds.

Theorem 4 Under threshold β and clients’ committed data sharing cost Dp = {Dp
1 , · · · , D

p
N}, with

high probability the monetary incentive cost of INC-FEDUCB satisfies

MT = O

(
maxDp · P ·N −

N∑
i=1

Pi ·
(
det(λI)

det(VT )

) 1
Pi

)
.

where Pi is the number of epochs client i gets paid throughout time horizon T , P is the total
number of epochs, which is bounded P = O(Nd log T ) by setting communication threshold Dc =

T
N2d log T −

√
T 2

N2dR log T log β, where R =
⌈
d log(1 + T

λd )
⌉
.

Henceforth, the communication cost satisfies

CT = O(Nd2) · P = O(N2d3 log T )

Furthermore, by setting β ≥ e−
1
N , the cumulative regret is

RT = O
(
d
√
T log T

)
The proof of theorem 4 can be found in Appendix D.

5 Experiments

We simulate the incentivized federated bandit problem under various environment settings. Specifi-
cally, we create an environment of N = 50 clients with cost of data sharing Dp = {Dp

1 , · · · , D
p
N},

total number of iterations T = 5, 000, feature dimension d = 25, and time-varing arm pool size
K = 25. By default, we set Dp

i = Dp
⋆ ∈ R,∀i ∈ [N ]. Due to the space limit, more detailed results

and discussions on real-world dataset can be found in Appendix E.

(a) Dp
⋆ = 1 (b) Dp

⋆ = 10 (c) Dp
⋆ = 100

Figure 1: Comparison between payment-free vs. payment-efficient incentive designs. The results are
averaged over 10 runs with standard deviation as the error bars.

5.1 Payment-free vs. Payment-efficient

We first empirically compared the performance of the payment-free mechanism (named as INC-
FEDUCB-PF) and the payment-efficient mechanism INC-FEDUCB in Figure 1. It is clear that
the added monetary incentives lead to lower regret and communication costs, particularly with
increased Dp

⋆ . Lower regret is expected as more data can be collected and shared; while the reduced
communication cost is contributed by reduced communication frequency. When less clients can be
motivated in one communication round, more communication rounds will be triggered as the clients
tend to have outdated local statistics.
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(a) Accumulative Regret (b) Communication Cost (c) Payment Cost

Figure 2: Ablation study on heuristic search (w.r.t Dp
⋆ ∈ [1, 10, 100]). The results are averaged over

10 runs with standard deviation as the error bars.

5.2 Ablation Study on Heuristic Search

To investigate the impact of different components in our heuristic search, we compare the full-fledged
model INC-FEDUCB with following variants on various environments: (1) INC-FEDUCB (w/o PF):
without payment-free incentive mechanism, where the server only use money to incentivize clients;
(2) INC-FEDUCB (w/o IS): without iterative search, where the server only rank the clients once. (3)
INC-FEDUCB (w/o PF + IS): without both above strategies.

In Figure 2, we present the averaged learning trajectories of regret and communication cost, along
with the final payment costs (normalized) under different Dp

⋆ . The results indicate that the full-fledged
INC-FEDUCB consistently outperforms all other variants in various environments. Additionally,
there is a substantial gap between the variants with and without the PF strategy, emphasizing the
significance of leveraging the server’s information advantage to motivate participation.

5.3 Environment & Hyper-Parameter Study

We further explored diverse β hyper-parameter settings for INC-FEDUCB in various environments
with varying Dp

⋆ , along with the comparison with DisLinUCB [40] (only comparable when Dp
⋆ = 0).

Specifically, we explored different hyper-parameter settings for INC-FEDUCB with determinant
ratio threshold β ∈ [0.3, 0.7, 1], and various environmental configurations with data sharing cost
Dp

∗ ∈ [1, 10, 100].

d = 25,K = 25 DisLinUCB INC-FEDUCB (β = 1) INC-FEDUCB (β = 0.7) INC-FEDUCB (β = 0.3)

T = 5, 000, N = 50, Dp
⋆ = 0

Regret (Acc.) 48.46 48.46 48.46 (∆ = 0%) 48.46 (∆ = 0%)

Commu. Cost 7,605,000 7,605,000 7,605,000 (∆ = 0%) 7,605,000 (∆ = 0%)

Pay. Cost \ 0 0 (∆ = 0%) 0 (∆ = 0%)

T = 5, 000, N = 50, Dp
⋆ = 1

Regret (Acc.) \ 48.46 47.70 (∆− 1.6%) 48.38 (∆− 0.2%)

Commu. Cost \ 7,605,000 7,668,825 (∆+ 0.8%) 7,733,575 (∆+ 1.7%)

Pay. Cost \ 75.12 60.94 (∆− 18.9%) 22.34 (∆− 70.3%)

T = 5, 000, N = 50, Dp
⋆ = 10

Regret (Acc.) \ 48.46 48.21 (∆− 0.5%) 47.55 (∆− 1.9%)

Commu. Cost \ 7,605,000 7,779,425 (∆+ 2.3%) 8,599,950 (∆+ 13%)

Pay. Cost \ 12,819.61 9,050.61 (∆− 29.4%) 4,859.17 (∆− 62.1%)

T = 5, 000, N = 50, Dp
⋆ = 100

Regret (Acc.) \ 48.46 48.22 (∆− 0.5%) 48.44 (∆− 0.1%)

Commu. Cost \ 7,605,000 7,842,775 (∆+ 3.1%) 8,718,425 (∆+ 14.6%)

Pay. Cost \ 190,882.45 133,426.01 (∆− 30.1%) 88,893.78 (∆− 53.4%)

Table 1: Study on hyper-parameter of INC-FEDUCB and environment.

As shown in Table 1, when all clients are incentivized to share data, our INC-FEDUCB essentially
recover the performance of DisLinUCB, while overcoming its limitation in incentivized settings when
clients are not willing to share by default. Moreover, by reducing the threshold β, we can substantially
save payment costs while still maintaining highly competitive regret, albeit at the expense of increased
communication costs. And the reason for this increased communication cost has been explained
before: more communication rounds will be triggered, as clients become more outdated.
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6 Conclusion

In this work, we introduce a novel incentivized communication problem for federated bandits, where
the server must incentivize clients for data sharing. We propose a general solution framework
INC-FEDUCB, and initiate two specific implementations introducing data and monetary incentives,
under the linear contextual bandit setting. We prove that INC-FEDUCB flexibly achieves customized
levels of near-optimal regret with theoretical guarantees on communication and payment costs.
Extensive empirical studies further confirmed our versatile designs in incentive search across diverse
environments. Currently, we assume all clients truthfully reveal their costs of data sharing to the
server. We are intrigued in extending our solution to settings where clients can exhibit strategic
behaviors, such as misreporting their intrinsic costs of data sharing to increase their own utility. It is
then necessary to study a truthful incentive mechanism design.
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A Heuristic Search Algorithm

Algorithm 4 Heuristic Search

Require: invalid client list {i1, i2, · · · , ik}, data-incentivized participant set Ŝt, and the last resort
cost Im

last

1: Initialization: St = Ŝt

2: for n ∈ [k] do
3: Rank clients {i1, . . . , ik−n+1} (in new order) by Eq (6)
4: St = St ∪ {ik−n+1} ▷ add the client with the largest contribution
5: for client j ∈ {i1, . . . , ik−n} do ▷ find extra data-incentivized participants
6: Compute data incentive Id

j,t for client j by Eq (4)
7: if Id

j,t > Dp
j then

8: St = St ∪ {∆Vj,t}
9: Compute total payment Im

n,t =
∑

i∈S̃t\St
Im
i,t by Eq (5)

10: if Im
n,t ≤ Im

last then
11: return St = Ŝt ∪ {∆Viα,t} ▷ return last resort
12: else
13: if det(Σ(St) + Vg,t−1)/ det(Σ(S̃t) + Vg,t−1) > β then
14: return St ▷ return search result

As sketched in Section 4.3, we devised an iterative search method based on the following ranking
heuristic (formally defined in Eq. (6)): the more one client assists in increasing the server’s determi-
nant, the more valuable its contribution is, and thus we should motivate the most valuable clients to
participate. Denote n ≤ k (initialized as 1) as the number of clients to be selected from the invalid
list {i1, . . . , ik}, and initialize the participant set St = Ŝt. In each round n, we rank the remaining
k − n + 1 clients based on their potential contribution to the server by Eq. (6), and add the most
valuable one to St (Line 3-4). With the latest St committed, we then proceed to determine additional
data-incentivized participants by Eq. (4) (Line 5-8), and compute the total payment by Eq. (5) (Line
9). If having n clients results in the total cost Im

n,t > Im
last, then we terminate the search and resort

to our last resort (Line 10-11). Otherwise, if the resulting St enables the server to satisfy the β gap
requirement, then we successfully find a better solution than last resort and can terminate the search.
However, if having n client is insufficient for the server to pass the β gap requirement, we increase
n = n + 1 and repeat the search process (Line 12-14). In particular, if the above process fails to
terminate (i.e., having all m clients still not suffices, we will still use the last resort. Note that, by
utilizing matrix computation to calculate the contribution list in each round, this method only incurs
a linear time complexity of O(N), when n = m = N .

B Technical Lemmas

Lemma 5 (Lemma H.3 of [40]) With probability 1−δ, single step pseudo-regret rt = ⟨θ∗,x∗−xt⟩
is bounded by

rt ≤ 2

(√
2 log

(
det(Vit,t)

1/2 det(λI)−1/2

δ

)
+ λ1/2

)
∥xt∥V −1

it,t
= O

(√
d log

T

δ

)
∥xt∥V −1

it,t
.

Lemma 6 (Lemma 11 of [1]) Let {Xt}∞t=1 be a sequence in Rd, V is a d×d positive definite matrix
and define Vt = V +

∑t
s=1 XsX

⊤
s . Then we have that

log

(
det (Vn)

det(V )

)
≤

n∑
t=1

∥Xt∥2V −1
t−1

.

Further, if ∥Xt∥2 ≤ L for all t, then
n∑

t=1

min
{
1, ∥Xt∥2V −1

t−1

}
≤ 2 (log det (Vn)− log detV ) ≤ 2

(
d log

((
trace(V ) + nL2

)
/d
)
− log detV

)
.
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Lemma 7 (Lemma 12 of [1]) Let A, B and C be positive semi-definite matrices such that A =
B + C. Then, we have that

sup
x̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

C Proof of Theorem 3

Our proof relies on the following lower bound result for federated linear bandits established in [13].

Lemma 8 (Theorem 5.3 of [13]) Let pi denote the probability that an agent i ∈ [N ] will communi-
cate with the server at least once over time horizon T . Then for any algorithm with

N∑
i=1

pi ≤
c

2C
· N

log(T/N)
(7)

there always exists a linear bandit instance with σ = L = S = 1, such that for T ≥ Nd, the expected
regret of this algorithm is at least Ω(d

√
NT ).

In the following, we will create a situation, where Eq. (7) always holds true for the payment-free
incentive mechanism. Specifically, recall that the payment-free incentive mechanism (Section 4.2)
motivates clients to participate using only data, i.e., the determinant ratio defined in Eq. (4) that
indicates how much client i’s confidence ellipsoid can shrink using the data offered by the server.
Based on matrix determinant lemma [6], we know that Ii,t ≤ (1 + L2

λ )T . Additionally, by applying
the determinant-trace inequality (Lemma 10 of [1]), we have Ii,t ≤ (1 + TL2

λd )d. Therefore, as long
as Dp

i > min{(1 + L2

λ )T , (1 + TL2

λd )d}, where the tighter choice between the two upper bounds
depends on the specific problem instance (i.e., either d or T being larger), it becomes impossible for
the server to incentivize client i to participate in the communication. Now based on Lemma 8, if
the number of clients that satisfy Dp

i ≤ min{(1 + L2

λ )T , (1 + TL2

λd )d} is smaller than c
2C · N

log(T/N) ,

a sub-optimal regret of the order Ω(d
√
NT ) is inevitable for payment-free incentive mechanism,

which finishes the proof.

D Proof of Theorem 4

To prove this theorem, we first need the following lemma.

Lemma 9 (Communication Frequency Bound) By setting the communication threshold Dc =
T

N2d log T −
√

T 2

N2dR log T log β, the total number of epochs defined by the communication rounds
satisfies,

P = O(Nd log T )

where R =
⌈
d log(1 + T

λd )
⌉
= O(d log T ).

Proof of Lemma 9. Denote P as the total number of epochs divided by communication rounds
throughout the time horizon T , and Vg,tp as the aggregated covariance matrix at the p-th epoch.
Specifically, Vg,t0 = λI , ṼT is the covariance matrix constructed by all data points available in the
system at time step T .

Note that according to the incentivized communication scheme in INC-FEDUCB, not all clients will
necessarily share their data in the last epoch, hence det(Vg,tP ) ≤ det(ṼT ) ≤

(
tr(ṼT )

d

)
≤ (λ+T/d)d.

Therefore,

log
det(Vg,tP )

det(Vg,tP−1
)
+ log

det(Vg,tP−1
)

det(Vg,tP−2
)
+ · · ·+ log

det(Vg,t1)

det(Vg,t0)
= log

det(Vg,tP )

det(Vg,t0)
≤
⌈
d log(1 +

T

λd
)

⌉
Let α ∈ R+ be an arbitrary positive value, for epochs with length greater than α, there are at most
⌈T
α ⌉ of them. For epochs with length less than α, say the p-th epoch triggered by client i, we have

∆ti,tp · log
det(Vi,tp)

det(Vi,tlast)
> Dc
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Combining the β gap constraint defined in Section 4.3 and the fact that the server always downloads
to all clients at every communication round, we have ∆ti,tp ≤ α and hence

log
det(g, Vtp)

det(Vg,tp−1
)
≥ log

β · det(Ṽtp)

det(Vg,tp−1
)
≥ log

β · det(Vi,tp)

det(Vg,tp−1
)
≥ log

β · det(Vi,tp)

det(Vi,tlast)
≥ Dc

α
+ log β

Let R =
⌈
d log(1 + T

λd )
⌉
= O(d log T ), therefore, there are at most ⌈ R

Dc
α +log β

⌉ epochs with length

less than α time steps. As a result, the total number of epochs P ≤ ⌈T
α ⌉ + ⌈ R

Dc
α +log β

⌉. Note that

⌈T
α ⌉+ ⌈ R

Dc
α +log β

⌉ ≥ 2
√

TR
Dc+α log β , where the equality holds when α =

√
T (Dc+α log β)

R .

Furthermore, let Dc =
T

N2d log T − α log β, then α =
√

T 2

N2dR log T , we have

P = O

(√
TR

Dc + α log β

)
= O(N

√
dR log T ) = O(Nd log T ) (8)

This concludes the proof of Lemma 9.

Communication Cost: The proof of communication cost upper bound directly follows Lemma 9.
In each epoch, all clients first upload O(d2) scalars to the server and then download O(d2) scalars.
Therefore, the total communication cost is CT = P ·O(Nd2) = O(N2d3 log T )

Monetary Incentive Cost: Under the clients’ committed data sharing cost Dp = {Dp
1 , · · · , D

p
N},

during each communication round at time step tp, we only pay clients in the participant set Stp .
Specifically, the payment (i.e., monetary incentive cost) Im

i,tp
= 0 if the data incentive is already

sufficient to motivate the client to participate, i.e., when Id
i,tp

≥ Dp
i . Otherwise, we only need to pay

the minimum amount of monetary incentive such that Eq. (1) is satisfied, i.e., Im
i,tp

= Dp
i − Id

i,tp
.

Therefore, the accumulative monetary incentive cost is

MT =

P∑
p=1

N∑
i=1

Im
i,tp =

P∑
p=1

N∑
i=1

max
{
0, Dp

i − Id
i,tp

}
· I(∆Vi,tp ∈ Stp)

≤
P∑

p=1

N∑
i=1

max

{
0,max

i∈[N ]
{Dp

i } − Id
i,tp

}
· I(∆Vi,tp ∈ Stp)

≤
P∑

p=1

∑
i∈N̄p

(max
i∈[N ]

{Dp
i } − Id

i,tp) · I(∆Vi,tp ∈ Stp)

≤ max
i∈[N ]

{Dp
i }

P∑
p=1

N∑
i=1

I(∆Vi,tp ∈ Stp)−
P∑

p=1

∑
i∈N̄p

Id
i,tp · I(∆Vi,tp ∈ Stp)

= max
i∈[N ]

{Dp
i }

P∑
p=1

Np −
N∑
i=1

∑
p∈P̄i

Id
i,tp

where P and N represent the number of epochs and clients, Np is the number of participants in p-th
epoch, N̄p is the set of money-incentivized participants in the p-th epoch, P̄i is the set of epochs where
client i gets monetary incentive, whose size is denoted as Pi = |P̄i|. Denote Dp

max = maxi∈[N ]{Dp
i }

to simplify our later discussion.

Recall the definition of data incentive and Di,tp(Stp) =
∑

j:{∆Vj,tp∈Stp}∧{j ̸=i} ∆Vj,tp +∆V−i,tp

introduced in Eq. (4), we can show that

Id
i,tp =

det
(
Di,tp(Stp) + Vi,tp

)
det(Vi,tp)

− 1

≥
det(Vg,tp)

det(Vi,tp)
− 1
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Therefore, we have

MT ≤ Dp
max ·

P∑
p=1

Np +

N∑
i=1

∑
p∈P̄i

1−
N∑
i=1

∑
p∈P̄i

det(Vg,tp)

det(Vi,tp)

≤ Dp
max ·

P∑
p=1

Np +

N∑
i=1

Pi −
N∑
i=1

Pi ·

(
det(Vg,t1)

det(Vi,t1)
· det(Vg,t2)

det(Vi,t2)
· · ·

det(Vg,tPi
)

det(Vi,tPi
)

) 1
Pi

≤ Dp
max ·

P∑
p=1

Np +

N∑
i=1

Pi −
N∑
i=1

Pi ·

(
det(Vg,t1)

det(Vi,t1)
· det(Vi,t1)

det(Vi,t2)
· · ·

det(Vi,tPi−1
)

det(Vi,tPi
)

) 1
Pi

= Dp
max ·

P∑
p=1

Np +

N∑
i=1

Pi −
N∑
i=1

Pi ·

(
det(Vg,t1)

det(Vi,tPi
)

) 1
Pi

≤ (1 +Dp
max) · P ·N −

N∑
i=1

Pi ·
(
det(λI)

det(VT )

) 1
Pi

where the second step holds by Cauchy-Schwarz inequality and the last step follows the facts that
Pi ≤ P , Np ≤ N , det(Vg,t1) ≥ det(λI), and det(Vi,tPi

) ≤ det(VT ).

Specifically, by setting the communication threshold Dc = T
N2d log T −

√
T 2

N2dR log T log β, where

R =
⌈
d log(1 + T

λd )
⌉
, we have the total number of epochs P = O(Nd log T ) (Lemma 9). Therefore,

MT ≤ (1 +Dp
max) ·O(N2d log T )−

N∑
i=1

Pi ·
(
det(λI)

det(VT )

) 1
Pi

= O(N2d log T )

which finishes the proof.

Regret: To prove the regret upper bound, we first need the following lemma.

Lemma 10 (Instantaneous Regret Bound) Under threshold β, with probability 1− δ, the instan-
taneous pseudo-regret rt = ⟨θ∗,x∗ − xt⟩ in j-th epoch is bounded by

rt = O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
1

β
·

det(Vg,tj )

det(Vg,tj−1
)

Proof of Lemma 10. Denote Ṽt as the covariance matrix constructed by all available data in the system
at time step t. As introduced in Eq. (3), the instantaneous regret of client i is upper bounded by

rt ≤ 2αit,t−1

√
x⊤
t Ṽ

−1
t−1xt ·

√
det(Ṽt−1)

det(Vit,t−1)
= O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
det(Ṽt−1)

det(Vit,t−1)

Suppose the client it appears at the j-th epoch, i.e., tj−1 ≤ t ≤ tj . As the server always downloads
the aggregated data to every client in each communication round, we have

det(Ṽt)

det(Vit,t)
≤ det(Ṽt)

det(Vit,tj−1)
≤ det(Ṽt)

det(Vg,tj−1)

Combining the β gap constraint defined in Section 4.3, we can show that

det(Ṽt)

det(Vit,t)
≤ det(Ṽt)

det(Vg,tj−1
)
≤

det(Vg,tj )/β

det(Vg,tj−1
)
=

1

β
·

det(Vg,tj )

det(Vg,tj−1
)

Lastly, plugging the above inequality into Eq. (3), we have

rt = O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·

√
1

β
·

det(Vg,tj )

det(Vg,tj−1)
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which finishes the proof of Lemma 10.

Now, we are ready to prove the accumulative regret upper bound. Similar to DisLinUCB [40], we
group the communication epochs into good epochs and bad epochs.

Good Epochs: Note that for good epochs, we have 1 ≤ det(Vg,tj
)

det(Vg,tj−1
) ≤ 2. Therefore, based on

Lemma 10, the instantaneous regret in good epochs is

rt = O

(√
d log

T

δ

)
· ∥xt∥Ṽ −1

t−1
·
√

2

β

Denote the accumulative regret among all good epochs as REGgood, then using the Cauchy–Schwarz
inequality we can see that

REGgood =
∑

p∈Pgood

∑
t∈Bp

rt

≤
√
T ·

∑
p∈Pgood

∑
t∈Bp

r2t

≤ O


√√√√T · d log T

δ
· 2
β

∑
p∈Pgood

∑
t∈Bp

∥xt∥2Ṽ −1
t−1


Combining the fact x ≤ 2 log(1 + x),∀x ∈ [0, 1] and Lemma 6, we have

REGgood ≤ O

√√√√T · d
β
log

T

δ

∑
p∈Pgood

∑
t∈Bp

2 log

(
1 + ∥xt∥2Ṽ −1

t−1

)
≤ O

√√√√T · d
β
log

T

δ
·
∑

p∈Pgood

log
det(Ṽtp)

det(Ṽtp−1
)


≤ O

√√√√T · d
β
log

T

δ

∑
p∈PAll

log
det(Ṽtp)

det(Ṽtp−1
)


= O

(√
T · d

β
log

T

δ
· log det(ṼtP )

det(Ṽt0)

)

≤ O

(√
T · d

β
log

T

δ
· d log

(
1 +

T

λd

))

= O

(
d√
β
·
√
T ·
√

log
T

δ
· logT

)

Bad Epochs: Now moving on to the bad epoch. For any bad epoch starting from time step ts to time
step te, the regret in this epoch is

REG =

te∑
t=ts

rt =

N∑
i=1

∑
τ∈Ni(te)\Ni(ts)

rτ

where Ni(t) = {1 ≤ τ ≤ t : iτ = i} denotes the set of time steps when client i interacts with the
environment up to t. Combining the fact rτ ≤ 2 and Lemma 5, we have

rτ ≤ min{2, 2αiτ ,τ−1

√
x⊤
τ V

−1
iτ ,τ−1xτ} = O

(√
d log

T

δ

)
min{1, ∥xτ∥V −1

iτ ,τ−1
}
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Therefore,

REG ≤ O

(√
d log

T

δ

)
N∑
i=1

∑
τ∈Ni(te)\Ni(ts)

min{1, ∥xτ∥V −1
i,τ−1

}

≤ O

(√
d log

T

δ

)
N∑
i=1

√
∆ti,te

∑
τ∈Ni(te)\Ni(ts)

min{1, ∥xτ∥2V −1
i,τ−1

}

≤ O

(√
d log

T

δ

)
N∑
i=1

√√√√∆ti,te
∑

τ∈Ni(te)\Ni(ts)

log

(
1 + ∥xτ∥2V −1

i,τ−1

)

= O

(√
d log

T

δ

)
N∑
i=1

√√√√∆ti,te
∑

τ∈Ni(te)\Ni(ts)

log

(
det(Vi,τ )

det(Vi,τ−1)

)

≤ O

(√
d log

T

δ

)
N∑
i=1

√
∆ti,te · log

det(Vi,te)

det(Vi,tlast)

≤ O

(√
d log

T

δ

)
N ·

√
Dc.

where the second step holds by the Cauchy-Schwarz inequality, the third step follows from x ≤
2 log(1 + x),∀x ∈ [0, 1], the fourth step utilizes the elementary algebra, and the last two steps follow
the fact that no client triggers the communication before te.

Recall that, as introduced in Lemma 9, the number of bad epochs is less than R = ⌈d log(1 + T
δ )⌉ =

O(d log T ), therefore the regret across all bad epochs is

REGbad = O

(√
d log

T

δ

)
N ·

√
Dc ·O(d log T )

= O

(
Nd1.5

√
Dc · log

T

δ
log T

)
Combining the regret for all good and bad epochs, we have accumulative regret

RT = REGgood +REGbad

= O

(
d√
β
·
√
T ·
√
log

T

δ
· log T

)
+O

(
Nd1.5

√
Dc · log

T

δ
log T

)

According to Lemma 10, the above regret bound holds with high probability 1− δ. For completeness,
we also present the regret when it fails to hold, which is bounded by δ ·

∑
rt ≤ 2T · δ in expectation.

And this can be trivially set to O(1) by selecting δ = 1/T . In this way, we can primarily focus on
analyzing the following regret when the bound holds.

RT = O

(
d√
β

√
T log T

)
+O

(
Nd1.5 log1.5 T ·

√
Dc

)
With our choice of Dc =

T
N2d log T −

√
T 2

N2dR log T log β in Lemma 9, we have

RT = O

(
d√
β

√
T log T

)
+O

Nd1.5 log1.5 T ·

√√√√ T

N2d log T
−

√
T 2

N2dR log T
log β


Plugging in R =

⌈
d log(1 + T

λd )
⌉
= O(d log T ), we get

RT = O

(
d√
β

√
T log T

)
+O

(
Nd1.5 log1.5 T ·

√
T

N2d log T
+

T

Nd log T
log

1

β

)
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Furthermore, by setting β > e−
1
N , we can show that T

N2d log T > T
Nd log T log 1

β , and therefore

RT = O

(
d√
β

√
T log T

)
+O

(
d
√
T log T

)
= O

(
d
√
T log T

)
This concludes the proof.

E Detailed Experimental Results

In addition to the empirical studies on the synthetic datasets reported in Section 5, we also conduct
comprehensive experiments on the real-world recommendation dataset MovieLens [12]. Following [3,
22], we pre-processed the dataset to align it with the linear bandit problem setting, with feature
dimension d = 25 and arm set size K = 25. Specifically, it contains N = 54 users and 26567 items
(movies), where items receiving non-zero ratings are considered as having positive feedback, i.e.,
denoted by a reward of 1; otherwise, the reward is 0. In total, there are T = 214729 interactions,
with each user having at least 3000 observations. By default, we set all clients’ costs of data sharing
as Dp

i = Dp
⋆ ∈ R,∀i ∈ [N ].

E.1 Payment-free vs. Payment-efficient incentive mechanism (Supplement to Section 5.1)

(a) Dp
⋆ = 1 (b) Dp

⋆ = 10 (c) Dp
⋆ = 100

Figure 3: Comparison between payment-free vs. payment-efficient incentive designs.

Aligned with the findings presented in Section 5.1, the results on real-world dataset also confirm the
advantage of the payment-efficient mechanism over the payment-free incentive mechanism in terms
of both accumulative (normalized) reward and communication cost. As illustrated in Figure 3, this
performance advantage is particularly notable in a more conservative environment, where clients
have higher Dp

⋆ . And when the cost of data sharing for clients is relatively low, the performance
gap between the two mechanisms becomes less significant. We attribute this to the fact that clients
with low Dp

i values are more readily motivated by the data alone, thus alleviating the need for
additional monetary incentive. On the other hand, higher values of Dp

i indicate that clients are more
reluctant to share their data. As a result, the payment-free incentive mechanism fails to motivate a
sufficient number of clients to participate in data sharing, leading to a noticeable performance gap, as
evidenced in Figure 3(c). Note that the communication cost exhibits a sharp increase towards the end
of the interactions. This is because the presence of highly skewed user distribution in the real-world
dataset. For instance, in the last 2,032 rounds, only one client remains actively engaged with the
environment, rapidly accumulating sufficient amounts of local updates, thus resulting in an increase
in both communication frequency and cost.

E.2 Ablation Study on Heuristic Search (Supplement to Section 5.2)

We further study the effectiveness of each component in the heuristic search of INC-FEDUCB on the
real-world dataset and compare the performance among different variants across different data sharing
costs. As presented in Figure 4(a) and 4(b), the variants without payment-free (PF) component, which
only rely on monetary incentive to motivate clients to participate, generally exhibit lower rewards
and higher communication costs. The reason is a bit subtle: as the payment efficient mechanism
is subject to both β gap constraint and minimum payment cost requirement, it tends to satisfy the
β gap constraint with minimum amount of data collected. But the payment free mechanism will
always collect the maximum amount data possible. As a result, without the PF component, the server
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(a) Normalized Reward (b) Communication Cost (c) Payment Cost

Figure 4: Ablation study on heuristic search (w.r.t Dp
⋆ ∈ [1, 10, 100]).

tends to collect less (but enough) data, which in turn leads to more communication rounds and worse
regret. The side-effect of the increased communication frequency is the higher payment costs, with
respect to the β gap requirement in each communication round. This is particularly notable in a
more collaborative environment, where clients have lower data sharing costs. As exemplified in
Figure 4(c), when the clients are more willing to share data (e.g., Dp

⋆ = 1), the variants without PF
incur significantly higher payment costs compared to the those with PF, as the server misses the
opportunity to get those easy to motivate clients. Therefore, providing data incentives becomes even
more crucial in such scenarios to ensure effective client participation and minimize payment costs.
On the other hand, the variants without iterative search (IS) tend to maintain competitive performance
compared to the fully-fledged model, despite incurring a higher payment cost, highlighting the
advantage of IS in minimizing payment.

E.3 Environment & Hyper-Parameter Study (Supplement to Section 5.3)

d = 25,K = 25, Dc =
T

N2d log T −
√

T 2

N2dR log T · log β DisLinUCB INC-FEDUCB (β = 1) INC-FEDUCB (β = 0.7) INC-FEDUCB (β = 0.3)

MovieLens
(Dp

⋆ = 0)

Reward (Acc.) 38,353 38,353 37,731 (∆− 1.6%) 36,829 (∆− 2.4%)

Commu. Cost 33,415,200 33,415,200 5,967,000 (∆− 82%) 2,457,000 (∆− 92.6%)

Pay. Cost \ 0 0 (∆ = 0%) 0 (∆ = 0%)

MovieLens
(Dp

⋆ = 1)

Reward (Acc.) \ 38,353 37,717 (∆− 1.7%) 36,833 (∆− 4%)

Commu. Cost \ 33,415,200 13,372,250 (∆− 60%) 5,038,675 (∆− 84.9%)

Pay. Cost \ 7859.67 124.41 (∆− 98.4%) 0 (∆− 100%)

MovieLens
(Dp

⋆ = 10)

Reward (Acc.) \ 38,353 37,648 (∆− 1.8%) 36,675 (∆− 4.4%)

Commu. Cost \ 33,415,200 10,041,250 (∆− 70%) 4,240,625 (∆− 87.3%)

Pay. Cost \ 110,737.62 8,590.43 (∆− 92.2%) 2,076.98 (∆− 98.1%)

MovieLens
(Dp

⋆ = 100)

Regret (Acc.) \ 38,353 37,641 (∆− 1.9%) 36,562 (∆− 4.7%)

Commu. Cost \ 33,415,200 8,496,600 (∆− 74.6%) 5,136,700 (∆− 84.6%)

Pay. Cost \ 1,155,616.99 105,847.84 (∆− 90.8%) 32,618.34 (∆− 97.2%)

Table 2: Study on hyper-parameter of INC-FEDUCB and environment (w/ theoretical Dc).

In contrast to the hyper-parameter study on synthetic dataset with fixed communication threshold
reported in Section 5.3, in this section, we comprehensively investigate the impact of β and Dp

⋆ on
the real-world dataset by varying the communication thresholds Dc. First, we empirically validate the

effectiveness of the theoretical value of Dc =
T

N2d log T −
√

T 2

N2dR log T as introduced in Theoreom 4.
The results presented in Table 2 are generally consistent with the findings in Section 5.3: decreasing
β can substantially lower the payment cost while still maintaining competitive rewards. We can also
find that using the theoretical value of Dc can also save the communication cost. This results from
the fact that setting Dc as a function of β leads to a higher communication threshold for lower β,
and therefore reducing communication frequency. This observation is essentially aligned with the
intuition behind lower β: when the system has a higher tolerance for outdated sufficient statistics, it
should not only pay less in each communication round but also trigger communication less frequently.

On the other hand, we investigate INC-FEDUCB’s performance under two fixed communication
thresholds Dc = T/(N2d log T ) and Dc = T/(Nd log T ), which are presented in Table 3 and 4,
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d = 25,K = 25, Dc =
T

N2d log T DisLinUCB INC-FEDUCB (β = 1) INC-FEDUCB (β = 0.7) INC-FEDUCB (β = 0.3)

MovieLens
(Dp

⋆ = 0)

Reward (Acc.) 38,353 38,353 38,353 (∆ = 0%) 38,353 (∆ = 0%)

Commu. Cost 33,415,200 33,415,200 33,415,200 (∆ = 0%) 33,415,200 (∆ = 0%)

Pay. Cost \ 0 0 (∆ = 0%) 0 (∆ = 0%)

MovieLens
(Dp

⋆ = 1)

Reward (Acc.) \ 38,353 38,207 (∆− 0.4%) 38,208 (∆− 0.4%)

Commu. Cost \ 33,415,200 171,046,600 (∆+ 412%) 191,280,875 (∆+ 472%)

Pay. Cost \ 7859.67 2095.73 (∆− 73.3%) 36.32 (∆− 99.5%)

MovieLens
(Dp

⋆ = 10)

Reward (Acc.) \ 38,353 38,251 (∆− 0.3%) 37,609 (∆− 1.9%)

Commu. Cost \ 33,415,200 135,521,025 (∆+ 306%) 424,465,650 (∆+ 1170%)

Pay. Cost \ 110,737.62 33,271.39 (∆− 70%) 33,872.78 (∆− 69.4%)

MovieLens
(Dp

⋆ = 100)

Reward (Acc.) \ 38,353 38,251 (∆− 0.3%) 37,970 (∆− 1%)

Commu. Cost \ 33,415,200 135,521,025 (∆+ 306%) 522,196,225 (∆+ 1463%)

Pay. Cost \ 1,155,616.99 352,231.39 (∆− 69.5%) 346,619.77 (∆− 70%)

Table 3: Study on hyper-parameter of INC-FEDUCB and environment (w/ lower fixed Dc).

d = 25,K = 25, Dc =
T

Nd log T DisLinUCB INC-FEDUCB (β = 1) INC-FEDUCB (β = 0.7) INC-FEDUCB (β = 0.3)

MovieLens
(Dp

⋆ = 0)

Reward (Acc.) 37,308 37,308 37,308 (∆ = 0%) 37,308 (∆ = 0%)

Commu. Cost 2,737,800 2,737,800 2,737,800 (∆ = 0%) 2,737,800 (∆ = 0%)

Pay. Cost \ 0 0 (∆ = 0%) 0 (∆ = 0%)

MovieLens
(Dp

⋆ = 1)

Reward (Acc.) \ 37,308 37,296 (∆− 0.1%) 37,306 (∆− 0.1%)

Commu. Cost \ 2,737,800 4,197,525 (∆+ 53.3%) 5,948,950 (∆+ 117.3%)

Pay. Cost \ 55.31 44.76 (∆− 19.1%) 0 (∆− 100%)

MovieLens
(Dp

⋆ = 10)

Reward (Acc.) \ 37,308 37,297 (∆− 0.1%) 37,167 (∆− 0.1%)

Commu. Cost \ 2,737,800 3,696,350 (∆+ 35%) 5,765,075 (∆+ 110.6%)

Pay. Cost \ 4048.69 3779.77 (∆− 6.6%) 2242.22 (∆− 44.6%)

MovieLens
(Dp

⋆ = 100)

Reward (Acc.) \ 37,308 37,273 (∆− 0.1%) 36,946 (∆− 0.1%)

Commu. Cost \ 2,737,800 3,484,850 (∆+ 27.3%) 5,690,250 (∆+ 107.8%)

Pay. Cost \ 77,041.04 65,286.90 (∆− 15.3%) 40,010.59 (∆− 48.1%)

Table 4: Study on hyper-parameter of INC-FEDUCB and environment (w/ higher fixed Dc).

respectively. These two values are created by increasing the theoretical value of Dc. Overall, the main
findings align with those reported in Section 5.3, confirming our previous statements. While reducing
β can achieve competitive rewards with lower payment costs, it comes at the expense of increased
communication costs, suggesting the trade-off between payment costs and communication costs.
Interestingly, the setting under a higher Dp

⋆ and Dc can help mitigate the impact of β. Specifically,
while increasing the client’s cost of data sharing inherently brings additional incentive costs, raising
the communication threshold results in fewer communication rounds, leading to reduced overall
communication costs. This finding highlights the importance of thoughtful design in choosing Dc and
β to balance the trade-off between payment costs and communication costs in real-world scenarios
with diverse data sharing costs.

E.4 Extreme Case Study

To further investigate the utility of INC-FEDUCB in extreme cases, we conduct a set of case studies
on both synthetic and real-world datasets with fixed data sharing costs. As shown in Table 5 and 6,
when β is extremely small, we can achieve almost 100% savings in incentive cost compared to the
case where every client has to be incentivized to participate in data sharing (i.e., β = 1). However,
this extreme setting inevitably results in a considerable drop in regret/reward performance and
potentially tremendous extra communication cost due to the extremely outdated local statistics in
clients. Nevertheless, by strategically choosing the communication threshold, we can mitigate the
additional communication costs associated with the low β values. For instance, in the synthetic
dataset, the difference in performance drop between the theoretical Dc setting and heuristic Dc value
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d = 25,K = 25, Dp
⋆ = 100 INC-FEDUCB (β = 1) INC-FEDUCB (β = 0.7) INC-FEDUCB (β = 0.3) INC-FEDUCB (β = 0.01)

T = 5000, N = 50
(Dc = T/N2d log T )

Regret (Acc.) 45.37 46.33 (∆+ 2.1%) 48.49 (∆+ 6.9%) 51.22 (∆+ 12.9%)

Commu. Cost 174,720,000 264,193,275 (∆+ 51.2%) 299,134,900 (∆+ 71.2%) 314,667,500 (∆+ 80.1%)

Pay. Cost 479,397.18 229,999.66 (∆− 52%) 115,600 (∆− 75.9%) 42,800 (∆− 91.1%)

T = 5000, N = 50

(Dc = T/N2d log T −
√

T 2/N2dR log T · log β)

Regret (Acc.) 45.37 46.72 (∆+ 3%) 49.13 (∆+ 8.3%) 53.72 (∆+ 18.4%)

Commu. Cost 174,720,000 17,808,725 (∆− 89.8%) 7,237,600 (∆− 95.9%) 2,981,175 (∆− 98.3%)

Pay. Cost 479,397.18 178,895.78 (∆− 62.7%) 84,989.39 (∆− 82.3%) 1,200 (∆− 99.7%)

Table 5: Case study on synthetic dataset.

d = 25,K = 25, Dp
⋆ = 100 INC-FEDUCB (β = 1) INC-FEDUCB (β = 0.7) INC-FEDUCB (β = 0.3) INC-FEDUCB (β = 0.01)

MovieLens
(Dc = T/N2d log T )

Reward (Acc.) 38,353 38,251 (∆− 0.3%) 37,970 (∆− 1%) 37,039 (∆− 3.4%)

Commu. Cost 33,415,200 135,521,025 (∆+ 306%) 522,196,225 (∆+ 1463%) 1,226,741,425 (∆+ 3571.2%)

Pay. Cost 1,155,616.99 352,231.39 (∆− 69.5%) 346,619.77 (∆− 70%) 75,799.39 (∆− 93.4%)

MovieLens
(Dc = T/N2d log T −

√
T 2/N2dR log T · log β)

Reward (Acc.) 38,353 37,641 (∆− 1.9%) 36,562 (∆− 4.7%) 31,873 (∆− 16.9%)

Commu. Cost 33,415,200 8,496,600 (∆− 74.6%) 5,136,700 (∆− 84.6%) 1,880,450 (∆− 94.4%)

Pay. Cost 1,155,616.99 105,847.84 (∆− 90.8%) 32,618.34 (∆− 97.2%) 200 (∆− 99.9%)

Table 6: Case study on real-world dataset.

is relatively small (∆+ 18.4% vs. ∆+ 12.9%). However, these two different choices of Dc exhibit
opposite effects on communication costs, with the theoretical one achieving a significant reduction
(∆ − 98.3%) while the heuristic one incurred a significant increase (∆ + 80.1%). On the other
hand, in the real-world dataset, the heuristic choice of Dc may lead to a smaller performance drop
compared to the theoretical setting of Dc (e.g., ∆ − 3.4% vs. ∆ − 16.9%), reflecting the specific
characteristics of the environment (e.g., a high demand of up-to-date sufficient statistics). Similar
to the findings in Section E.3, this case study also emphasizes the significance of properly setting
the system hyper-parameter β and Dc. By doing so, we can effectively accommodate the trade-off
between performance, incentive costs, and communication costs, even in extreme cases.

F Notation Table

Notation Meaning
d context dimension
N total number of clients
T total number of time steps
β hyperparameter that controls the regret level
Dc communication threshold
Dp

i data sharing cost of client i
St participant set at time step t

Di,t(St) data offered by the sever to client i at time step t
Id
i,t/Im

i,t data/monetary incentive for client i at time step t

Ṽt covariance matrix constructed by all available data in the system
Vi,t, bi,t local data of client i at time step t
Vg,t, bg,t global data stored at the server at time step t

∆Vi,t,∆bi,t data stored at client i that has not been shared with the server
∆V−i,t,∆b−i,t data stored at the server that has not been shared with the client i

Table 7: Main technical notations used in this paper.

22


	Introduction
	Related Work
	Preliminaries
	Federated Bandit Learning
	Incentivized Federated Bandits 

	Methodology
	A General Framework: Inc-FedUCB Algorithm
	Payment-free Incentive Mechanism
	Payment-efficient Incentive Mechanism

	Experiments
	Payment-free vs. Payment-efficient
	Ablation Study on Heuristic Search
	Environment & Hyper-Parameter Study

	Conclusion
	Heuristic Search Algorithm
	 Technical Lemmas
	Proof of Theorem 3
	Proof of Theorem 4
	Detailed Experimental Results
	Payment-free vs. Payment-efficient incentive mechanism (Supplement to Section 5.1)
	Ablation Study on Heuristic Search (Supplement to Section 5.2)
	Environment & Hyper-Parameter Study (Supplement to Section 5.3)
	Extreme Case Study

	Notation Table

