
A Properties and separations for generalized equilibria

A.1 Proof of Proposition 1

Proof. The set of (ΦA,ΦB)-equilibria includes all strategy profile distributions in which both con-
straints are satisfied. If a player receives substantially more or less than the corresponding value,
this would imply a violation of the regret constraints for at least one of the players’ learning algo-
rithms.

A.2 Proof of Proposition 2

Proof. The statement follows by observing that

E
(a,b)∼φ

[
u{A,B} (a, b)

]
=

1

T

T∑
t=1

E
(a,b)∼φt

[
u{A,B} (a, b)

]
E

(a,b)∼φ
[uA (fA(a), b)] =

1

T

T∑
t=1

E
(a,b)∼φt

[uA (fA(a), b)]

E
(a,b)∼φ

[uB (a, fB(b))] =
1

T

T∑
t=1

E
(a,b)∼φt

[uB (a, fB(b))]

which in turn are equivalent to the time-averaged utility of the play of players A and B, the time-
averaged utility for player A under a deviation fA, and the time-averaged utility for player B under
a deviation fB . Applying the definition of average Φ-regret and applying the given bounds on the
Φ-regret yields the conclusion of the first direction. The reverse direction follows by reversing the
steps.

A.3 Proof of Proposition 4

Proof. Observe that under any strategy (α, b) where b ∈ BR(α), player B cannot have any swap-
regret, and so any Stackelberg equilibrium is also a (∅, I)-equilibrium. Further, the marginal
distributions over the optimal (∅, I)-equilibrium for player A over each bi cannot have distinct
expected value for player A, as otherwise this would contradict optimality, and so an optimal (∅, I)-
equilibrium is either a single Stackelberg equilibrium or a mixture of Stackelberg equilibria with
equal value.

A.4 Proof of Proposition 3

Proof. By definition, the set of (ΦA,ΦB)-equilibria φ is a sub-polytope of ∆(A× B) defined via
the following linear constraints:

• For each fA ∈ ΦA, we have that

∑
i∈[M]

∑
j∈[N]

φij uA(ai, bj) ≥
∑
i∈[M]

∑
j∈[N]

φij uA(af(i), bj).

• For each fB ∈ ΦB , we have that

∑
i∈[M]

∑
j∈[N]

φij uB(ai, bj) ≥
∑
i∈[M]

∑
j∈[N]

φij uB(af(i), bj).

The value ValA(ΦA,ΦB) corresponds to the element φ of this polytope that maximizes∑
i∈[M]

∑
j∈[N] φij uA(ai, bj). Optimizing this linear function over the above polytope can be

done in time poly(M,N, |ΦA |, |ΦB |) via any linear program solver. Computing ValB(ΦA,ΦB)
can be likewise done efficiently.

12

For player A, the regret comparator function sets ∅, E , and I contain 0, M , and M2 elements
respectively. In all three of these cases |ΦA | = poly(M); likewise, in all three of these cases
|ΦB | = poly(N) (and thus we can efficiently compute these values when ΦA,ΦB ∈ {∅, E , I}).

A.5 Reward separations

We show that with respect to optimal values, these equilibrium classes are often distinct, and there
exist games where values do not collapse. The separations we show here consider the equilibrium
cases either where both players have identical regret constraints, or where player A is unconstrained.
We note that while inspecting other cases, we identified similar examples for several other generalized
equilibrium pairs, and we expect that strict separations exist between any distinct pair of generalized
equilibria for the three regret notions we consider, in any direction not immediately precluded by
the regret constraints. We are mostly interested in cases where B is constrained, and A may be
constrained or unconstrained.

Theorem 8. For each of the following, there exists a 4× 4 game G with rewards in {0, 1, 2} where:

1. ValA (∅, E) > ValA (∅, I) > ValA (E , E) > ValA (I, I)

2. ValA (∅, E) > ValA (E , E) > ValA (∅, I) > ValA (I, I)

Proof. We prove both results by exhibiting a game with the desired chain of inequalities, which
we found by searching random examples of 4 × 4 games with values constrained in {0, 1, 2} and
computing the various values of the games with a linear programming library. The numerical values
are easy to check with computation. The game G1 := (MA1 ,MB1) satisfies the conditions for the
first chain of inequalities, and the game G2 := (MA2 ,MB2) satisfies the conditions for the second
chain of inequalities. First we instantiate the game G1:

MA1
:=

1 0 0 0
1 0 0 1
2 2 0 2
0 2 0 0

 MB1
:=

0 2 0 0
1 1 1 0
1 0 2 0
1 0 0 1

The corresponding values for game G1 are simple to check:

1. ValA (∅, E) = 8/5.

2. ValA (∅, I) = 4/3.

3. ValA (E , E) = 1.

4. ValA (I, I) = 0.

Then we instantiate the game G2:

MA2
:=

2 0 1 0
2 1 1 0
0 2 1 2
2 0 2 1

 MB2
:=

1 0 1 2
0 1 2 0
1 0 2 0
0 2 1 1

The corresponding values for game G2 are simple to check:

1. ValA (∅, E) = 13/7.

2. ValA (E , E) = 12/7.

3. ValA (∅, I) = 5/3.

4. ValA (I, I) = 4/3.

13

B Deviation to weaker regret classes

In Section 3, we show that if two players are playing no-swap-regret strategies against one another, it
is often in the interest of each player to switch to playing their Stackelberg strategy (in particular,
this is true whenever the game does not have a pure Nash equilibrium). However, as we later argue,
learning ones Stackelberg strategy in such a game can be difficult. It is therefore natural to ask
whether there are beneficial deviations to computationally efficient strategies. In particular, is it ever
in a player’s interest to weaken their regret benchmark, and e.g. switch from playing a no-swap-regret
strategy to a no-external-regret strategy?

We give an example showing this is true in a fairly strong sense: we exhibit a game G where if
player A switches from playing a no-swap-regret algorithm to any no-external-regret algorithm, their
asymptotic utility never decreases and sometimes strictly increases – i.e., there is no downside to
switching to an external regret algorithm (and potentially a high upside). We have the following
theorem.

Theorem 9. There exists a game G where MinValA(E , I) ≥ ValA(I, I) and ValA(E , I) ≥
ValA(I, I).

Proof. Consider the game G specified by the two payoff matrices

MA :=

[
0 0 2
0 0 1
0 1 1

]
MB :=

[
2 1 1
0 2 1
0 0 2

]
.

The corresponding values for this game are simple to compute:

1. ValA(I, I) = MinValA(I, I) = 0.

2. MinValA(E , I) = 0.

3. ValA(E , I) = 1.

C Proof of Theorem 1

Proof. Let φ be the joint distribution over action pairs corresponding to Ψ. Let T denote the total
number of steps we run the algorithm for; we will use t ≤ T as a changing step size. Suppose
both player A and player B know φ2. We will define L∗

A(Ψ) and L∗
B(Ψ) in two phases: in the first

phase, A and B trust their opponent and play according to deterministic sequences corresponding to
approximations of φ. If either player violates the other’s trust o(T) times, then the player defects to
playing LA or LB respectively forever after.

First we elaborate upon the trusting phase. Both players consider windows of length Length(t)
which is monotonically increasing in t and also which grows sub-linearly in t. For concreteness,
we pick a sub-linear monotonic increasing growth rate of O(

√
t) and describe how to implement

the schedule of window lengths. We can keep track of a real-valued variable Zt with Z1 = M ·N ,
and after each window completes, update it by Ztnext = Zt +

1
2
√
t

where t is the step at the end of
the window. To get an integral window length, we define Length(t) := ⌊Zt⌋. Thus in this case,
the Length(t) grows as O(

√
t), satisfying both conditions. Both players then compute a weighting

instantiated with pairs of pure strategies by assigning ci := ⌊Length(t) · φi⌋ example pairs (each
of weight 1/Length(t)) to pure strategy pair i ∈ [M ·N]. This weighted distribution approximates
φ given Length(t) samples. Note that the rounding approximation is feasible given only Length(t)
samples since

∑M ·N
i=1 ci ≤ Length(t). These pure strategy pair samples are then lexicographically

2φ can be communicated from Player A to Player B during a burn-in phase of length > M ·N , the dimension
of the discrete joint distribution over pure player strategy pairs.

14

ordered. Then, both players act according to the pure strategies in order, thereby (over the window)
achieving an (M ·N)/Length(t) ℓ1 approximation to φ:

M ·N∑
i=1

∣∣∣∣φi −
ci

Length(t)

∣∣∣∣ = M ·N∑
i=1

∣∣∣∣φi −
⌊Length(t) · φi⌋

Length(t)

∣∣∣∣ ≤ M ·N
Length(t)

.

This process repeats for every window.

The distrustful phase occurs if one of the players does not follow the agreed-upon instructions Tdistrust
times, where Tdistrust is taken to be o(T). After this many violations, Player A defaults to playing LA

and likewise Player B defaults to playing LB ever after.

We now show that this algorithm satisfies both conditions in the theorem statement. First, if both
players use L∗

A(Ψ) and L∗
B(Ψ), the play converges to φ, the joint distribution of play corresponding

to Ψ. This point is immediate to observe since (M ·N)/Length(t) → 0 as t → ∞ as Length(t) is
monotone increasing in t.

Now we prove that both players are no-Φ-regret with respect to any adversary. First we show no-Φ-
regret for both players in the case where Player A plays L∗

A(Ψ) and Player B plays L∗
B(Ψ). Let φ̂t

be the approximation to φ implemented over the window corresponding to final step t, and suppose
that ∥φ−φ̂t∥1 < εt. Recalling the proof of Theorem 1, for Player A (and analogously for Player B)
we can bound∣∣∣∣ E

(a,b)∼φ
[uA (a, b)]− E

(a,b)∼φ̂t

[uA (a, b)]

∣∣∣∣ = ∣∣∣(φ−φ̂t)
⊤
uA

∣∣∣
≤ ∥φ−φ̂t∥1 · ∥uA∥2 ≤ εt · C ·

√
M ·N,

where here we interpret φ, φ̂t, uA, uB ∈ RM×N as vectors over the space of all action pairs. Thus
for this particular window, the overall gap from the expected reward for φ is εt · C ·

√
M ·N .

Then we can similarly upper bound E(a,b)∼φ̂t
[uA (fA(a), b)] ≤ E(a,b)∼φ [uA (fA(a), b)] + εt · C ·

M
√
N for any choice of fA ∈ ΦA:

(∗) =
∣∣∣∣ E
(a,b)∼φ

[uA (fA(a), b)]− E
(a,b)∼φ̂t

[uA (fA(a), b)]

∣∣∣∣
=

∣∣∣∣∣∣
M∑
k=1

N∑
j=1

(φ̂t(k, j)− φ(k, j)) ·
M∑
i=1

fA(ak)i · u(·, bj)

∣∣∣∣∣∣
≤ ∥φ−φ̂t∥1 · ∥

[
fA(a1)

⊤uA(·, b1), · · · , fA(aM)⊤uA(·, bN)
]
∥2

≤ εt ·
√
M ·N ·max

k,j
∥fA(ak)∥2 · ∥uA(·, bj)∥2

≤ εt ·
√
M ·N · 1 ·

√
M · C2

= εt ·M ·
√
N · C.

Then recall that εt ≤ M ·N
Length(t) . Thus, overall, the average regret using due to the window is bounded

by

1

Length(t)
RegΦ(φ̂t, t) ≤

1

Length(t)
RegΦ(φ, t) + C2 ·

1

Length(t)
,

where C2 is another constant depending on C,M,N and where we use the shorthand RegΦ(·, t)
to denote the Φ-regret over the window ending in step t. Now call φ̂ the strategy where the joint
distribution φ̂t as previously defined gets played in each window t. Now we can bound the total
Φ-regret for φ̂ by the sum of the Φ-regrets for each window (maximizing fA ∈ ΦA over the steps
in each window makes it more competitive than optimizing only one fA over the whole length T
sequence). Thus for total Φ-regret, we have:

RegΦ(φ̂, T) ≤ RegΦ(φ, T) + NumWindows(T) · C2 ≤ RegΦ(φ, T) + o (T) ,

15

where

NumWindows(T) := min∑k
t=1 Length(t)≥T

k.

The last step follows since NumWindows(T) ≤ o(T), because Length(T) ≤ o(T).

Since we already know that the strategy φ is no-Φ-regret and Length(T) is o(T), we have proven
that playing φ̂ is no-Φ-regret in the case where Player A plays L∗

A(Ψ) and Player B plays L∗
B(Ψ).

The second case where the opposing player does not cooperate is easier: after at most o(T) steps, the
player switches to an algorithm LA or LB respectively which is no-Φ-regret and incurrs only o(T)
additional regret. Thus the theorem statement holds.

D Proof of Theorem 2

Proof. We begin with the first claim. To prove the forward direction, if there exists such a φ, then
choose a pair of low-swap-regret algorithms (LA,LB) such that the time-averaged trajectory over T
rounds is guaranteed to asymptotically converge to φ (this is possible by either the results of (11),
or our Theorem 1). That is, if the two players play strategy φt at round t ∈ [T], then φ̂ = 1

T

∑
t φt

satisfies ||φ̂− φ ||∞ = o(1). It follows that
∑

t uA(φt) ≥ T · uA(φ)− o(T) = T · StackA −o(T)
and therefore player A has at most an o(T) incentive to deviate (by (10), they can obtain at most
StackA T + o(T) against LB). Symmetric logic holds for player B.

To prove the reverse direction, assume LA and LB are no-swap-regret algorithms such that (LA,LB)
is an o(T)-approximate Nash equilibrium in the metagame. Since they are no-swap-regret, the
time-averaged play of these two algorithms for T rounds must converge to an o(1)-approximate
correlated equilibrium φ̂T ; moreover, since (LA,LB) is an o(T)-approximate Nash equilibrium, φ̂T
must have the property that uA(φ̂T) ≥ StackA −o(1) and uB(φ̂T) ≥ StackB −o(1). Taking the
limit as T → ∞ and selecting a convergent subsequence of the φ̂T , this shows there must exist a
correlated equilibrium φ with the desired properties.

Likewise, similar logic proves the second claim with the following modifications. In the forward direc-
tion, we can now choose any pair of low-swap-regret algorithms (LA,LB), and any correlated equi-
librium φ they asymptotically converge to is guaranteed to have the property that uA(φ) = StackA
and uB(φ) = StackB . In the reverse direction, since any correlated equilibrium is implementable by
some pair of low-regret algorithms (again, by Theorem 1), the same logic shows that all correlated
equilibria φ must satisfy uA(φ) = StackA and uB(φ) = StackB .

Finally, to see that these two conditions are efficiently checkable, note that: i. the two values StackA
and StackB are efficiently computable given the game G, and ii. the set of correlated equilibria φ
form a convex polytope defined by a small (poly(N,M)) number of linear constraints (see Proposition
3). In particular, since uA(φ) and uB(φ) are simply linear functions of φ for a given game G, we
can efficiently check whether there exists any point in this polytope where uA(φ) = StackA and
uB(φ) = StackB .

E Proof of Theorem 3

Proof. We will show that (for almost all games G) if there is a correlated equilibrium φ such that
uA(φ) = StackA and uB(φ) = StackB , then there exists a simultaneous unique Stackelberg
equilibrium for both players in G, which must be a pure Nash equilibrium. Combined with Theorem
2, this implies the theorem statement.

We will rely on the following fact: in almost all games G, both players have a unique Stackelberg
strategy. To see this, consider the following method for computing A’s Stackelberg strategy. For each
pure strategy bj for player B, consider the convex set Aj ⊆ ∆(A) containing the mixed strategies for
player A which induce bj as a best response (i.e., Aj = {α ∈ ∆(A) | bj ∈ BR(α)}). Then, for each
j ∈ [N], compute the strategy αj ∈ Aj which maximizes uA(αj , bj). The Stackelberg value StackA
is then given by maxj uA(αj , bj). In order for this to stem from a unique Stackelberg equilibrium,
it is enough that: 1. the maximum utility is not attained by more than one j, and 2. for each j, the
optimizer αj ∈ Aj is unique.

16

These two properties are guaranteed to hold in almost all games. To see this, first note that the
convex sets Aj are determined entirely by the utilities uB , so we will treat these as fixed. Now,
given any convex set Aj , the extremal point in a randomly perturbed direction will be unique with
probability 1 – but since αj is simply the extremal point of Aj in the direction specified by uA(·, bj)
(which is a randomly perturbed direction), so αj is unique in almost all games. Finally, if we perturb
the magnitude of each of the utilities uA(·, bj) (keeping the direction the same), the maximizer
maxj uA(αj , bj) will also be unique almost surely.

Let (αA, bA) be the Stackelberg equilibrium for player A and let (aB , βB) be the Stackelberg
equilibrium for player B. Now, consider the aforementioned correlated equilibrium φ ∈ ∆(A×B).
We will begin by decomposing it into its marginals based on its first coordinate; that is, we will
write φ =

∑M
i=1 λi(ai, βi) for some mixed strategies βi ∈ ∆(B) and weights λi (with

∑
i λi = 1).

By the definition of correlated equilibria, note that each ai belongs to BR(βi). But this means
that uB(ai, βi) ≤ StackB , with equality holding iff (ai, βi) = (aB , βB) (due to uniqueness of
Stackelberg). Therefore, in order for uB(φ) = StackB , we must have that φ = (aB , βB). By
symmetry, we must also have that φ = (αA, bA). If both these are true, then φ is a pure strategy
correlated equilibrium of the game, and is hence a pure strategy Nash equilibrium (and moreover, is
also the Stackelberg equilibrium for both A and B).

F Proof of Theorem 4

Proof. By Theorem 1, there is a pair of ∅-regret and E-regret algorithms L∗
A and L∗

B which converge
to a (∅, E)-equilibrium for which player A obtains ValA(∅, E). By Proposition 1, this is optimal over
all no-external-regret algorithms, as any adaptive strategy constitutes a no-∅-regret algorithm. By
Proposition 3 we can identify the optimal (∅, E)-equilibrium in poly(M,N) time, which is sufficient
to implement the algorithms L∗

A and L∗
B efficiently for any desired T .

G Dominated-swapping external regret bounds for mean-based algorithms

For the following proof (of Theorem 10), we introduce the following notion of dominated-swapping
external regret, a tighter upper bound on the behavior of mean-based algorithms than the standard
no-external-regret guarantee.
Definition 8 (Dominated-swapping external regret). For a game G, let D(G) be the set of dominated
strategies for player B, i.e. bi ∈ D(G) if bi /∈ BR(α) for all α ∈ ∆(M). For j, k ∈ [N] define
gjk(bi) as:

gjk(bi) =

{
bj bi /∈ D(G)

bk bi ∈ D(G)

i.e. gjk(bi) swaps bi to bk if bi is dominated and plays bj otherwise. Let ED(G) = {gjk : j, k ∈ [N]}
be the set of dominated-swapping external regret comparators.

This definition leads to the following tighter upper bound on what is achievable against a mean-based
no-regret algorithm.
Theorem 10. For any game G and any mean-based no-regret algorithm used by player B, there
is no strategy for which the average reward of player A converges to ValA (∅, ED(G)) + ε, for any
ε > 0.

Proof. First, we observe that mean-based algorithms will never play a dominated strategy bi ∈ D(G)
in more than o(T) rounds. As bi is dominated, there is some δ > 0 such that for every α ∈ ∆(M),
there is some bj where uB(α, bj) ≥ uB(α, bi) + δ. Let αt denote the empirical distribution of player
A’s actions up to time t. After some window of O(γT) = o(T) rounds we will have the cumulative
rewards σi,t and σj,t satisfy σi,t < σj,t−δt < σj,t−γT under any αt for some bj in each subsequent
round, and so bi will never be played in more than o(T) rounds.

We can also see that any such no-E-regret algorithm is a no-ED(G)-regret algorithm. Suppose such
an algorithm had ED(G)-regret ϵT , for ϵ > 0; then, there is some gjk for which UB(αT , gjk(βT)) ≥
UB(αT , βT) + ϵ. By the E-regret guarantee this cannot occur if j = k, as any such function gjj is

17

equivalent to the fixed deviation rule for bj . However, if this occurs for j ̸= k, such an algorithm must
have played dominated strategies in a total Ω(ϵT). This contradicts our assumption that no dominated
strategy bi is played in more than o(T) rounds, and so any mean-based no-E-regret algorithm is also
a no-ED(G)-regret algorithm, against which player A cannot obtain average reward which converges
to any amount higher than ValA (∅, ED(G)) + o(1).

H Proof of Theorem 5

b1 b2 b3
a1 1, 1 0, 0 3, 0
a2 0, 0 1, 1 0, 0

Figure 1: Game where ValA (∅, E) > ValA (∅, I) = MBRewA

Proof. Let MBRewA denote the maximal reward obtainable by player A when player B uses a
mean-based algorithm. Observe that b3 is dominated for player B, and thus cannot be included in
any (∅, I)-equilibrium (by Theorem 10). Further, it will never be played by a mean-based learner
for more than o(T) rounds, as for any distribution over a1 and a2 the best response is either b1 or b2.
As such, both ValA (∅, I) and MBRewA are at most 1 + o(1); a reward of 1− o(1) is obtainable by
committing to either a1 or a2 for each round. However, we can see that the optimal (∅, E)-equilibrium
p for player A includes positive mass on (a1, b3), and yields an average reward of ValA (∅, E) = 2
for player A. Let p1 be the probability on (a1, b1), let p2 be the probability on (a2, b2), let p3 be the
probability on (a1, b3), and let p0 be the remaining probability. The reward for player A is given by:

RewA(p) = p1 + p2 + 3p3

and p defines a (∅, E)-equilibrium if

RewB(p) ≥ RewB(p → bi)

for each bi, which holds if:

p1 + p2 ≥ p1 + p3;

p1 + p2 ≥ p2;

p1 + p2 ≥ 0.

Only the first constraint is non-trivial, and so the optimal (∅, E)-equilibrium for player A occurs by
maximizing p1 + p2 + 3p3 subject to p2 ≥ p3, which yields a probability of 0.5 for both p2 and p3
(and 0 for p1 and p0), as well as an average reward of 2. As such, player A cannot obtain a reward
approaching ValA(∅, E), as their per-round reward is at most 1 + o(1).

I Proof of Theorem 6

Proof. We recall that the SU algorithm from (19) finds initial points α∗(bi) in each best response
region via random sampling, which takes takes 1/ poly(ε−1) queries in expectation. Then, upon
calibrating for O(log(1/ε)) bits of precision SU makes poly(M,N, log(1/ε)) queries, each of which
can be taken to be a point on some grid of spacing 1/ poly(ε−1) within the simplex by the precision
condition. The computed approximate Stackelberg strategy is then the optimal such point on the grid.

We first describe our strategy for simulating each query against an arbitrary anytime-no-regret learner;
as E ⊆ Φ, we can restrict to considering only no-external-regret learners, as these regret constraints
will always be satisfied. To implement a query q, greedily play the action whose historical frequency
of play is the furthest below its target frequency in q. After O(poly(1/ε)) rounds, the historical
distribution will be within 1/ poly(ε−1) of q, and continuing the greedy selection strategy indefinitely
will ensure that the history remains in a 1/ poly(ε−1)-ball around q. Let tq be the time at which this
occurs. After maintaining the greedy strategy for q for an additional ω(tcq) rounds, the anytime regret
bound ensures that most frequently played item must indeed be the best response response to some
point in the ball around q, provided that this ball is contained entirely inside some best response
region Rj . For the sampling step, a taking sufficiently small grid (but still 1/ poly(ε−1)) ensures
that random sampling still suffices to find a point a point in each best response region even if our

18

queries may be adversarially perturbed to neighboring points on the grid, as each region is convex
and has volume at least 1/ poly(ε−1). To address the issue for the line search steps, it suffices to take
an additional step along each search conducted by SU before termination, where we then take each
hyperplane boundary estimate to be one step inward along the grid from where our search terminates,
maintaining a buffer between each hyperplane estimate in which all our points of uncertainty must
lie. This adds at most a constant factor to our query complexity, and impacts our approximation by
1/ poly(ε−1), which then yields us a runtime of poly(1/ε)Q rounds.

For the case of a no-adaptive-regret learner, suppose such an algorithm is calibrated for T =
O(QC1(1/ε)C2); then, over any window of length W its regret is at most O

(
(QC1(1/ε)C2)cW−1

)
.

Taking W = ω((QC1(1/ε)C2)c) yields a per-round regret of at most o(1) over the window, and so
an algorithm must play a best response in W − o(W) of the rounds. For sufficiently large C1 and C2,
each W is large enough to yield the same precision we required for the anytime case, where now
we greedily play the action whose frequency is furthest below its target since our previous query
terminated, which allows us to again simulate the O(Q) queries in poly(Q/ε) rounds (accounting for
the robustness checks) while yielding Θ(WQ) = o(T).

J Proof of Theorem 7

Proof. Our game consists of M actions A for the optimizer, and N = 2M +
(
M
2

)
actions for the

learner, which are divided into M primary actions B, M secondary actions S , and
(
M
2

)
safety actions

Y .

If we restrict the learner to only playing primary actions, the game somewhat resembles a coordination
game, where each pure strategy pair (aj , bj) is a Nash equilibrium. However, the set B is comprised
of both undominated actions BU and dominated actions BD, which are unknown to the optimizer,
and where each bj ∈ Bd is weakly dominated by the secondary action sj . The optimizer receives
reward 0 whenever the learner plays a secondary action, and so the challenge for the optimizer is to
identify the pair (aj , bj) which maximizes uA(aj , bj), for bj ∈ BD, which will be the Stackelberg
equilibrium. Further, the safety actions yij essentially allow the learner to hedge between two actions;
this does not pose substantial difficulty for the optimizer when the learner is no-swap-regret, yet
creates an insurmountable barrier for learning the Stackelberg equilibrium in sub-exponential time
against a mean-based learner.

An instance of a game G ∈ G is specified by the partition of B into BU and BD. There is an action
sj ∈ S for each j, and for each pair (i, j) with i < j there is an action yij ∈ Y . The rewards for a
game G are as follows. For any strategy pair, the optimizer’s utility is given by:

• uA(aj , bj) = j/M for bj ∈ B;

• uA(ai, bj) = 0 for bj ∈ B and with i ̸= j;

• uA(ai, sj) = 0 for any sj ∈ S;

• uA(ai, yjk) = 0 for any yjk ∈ Y;

and the learner’s utility is given by:

• For bj ∈ BU :

– uB(aj , bj) = 1;
– uB(ai, bj) = 0 for i ̸= j;

• For bj ∈ BD:

– uB(ai, bj) = 0 for any i;

• For sj ∈ S:

– uB(aj , sj) = 1 if bj ∈ BD;
– uB(aj , sj) = 0 if bj ∈ BU ;

19

– uB(ai, sj) = 0 for i ̸= j;

• For yij ∈ Y:

– uB(ai, yij) = uB(aj , yij) = 2/3;
– uB(ak, yij) = 0 for i, j ̸= k.

We assume that BU is non-empty, and so there is some optimal pure Nash equilibrium (a∗i , b
∗
i) which

yields a reward of i/M ; it is simple to check that this is also the Stackelberg equilibrium.

Optimizing against no-swap learners. First, we give a method for matching the Stackelberg
value against an arbitrary no-swap-regret learner, which corresponds to the pair (aj , bj) for the
largest value j such that bj ∈ BU . Consider a no-swap-regret learner which obtains a regret bound
of τ = O(T c) over T rounds. Let SRt(b, b

′) for any learner actions b and b′ denote the t-round
cumulative swap regret between b and b′, i.e. the total change in reward which would have occurred if
b′ was played instead for each of the first t rounds in which b was played. To model the behavior of an
arbitrary no-swap-regret learner, we disallow the learner from taking any action which would increase
SRt(b, b

′) above τ , given the loss function for the current round, and otherwise allow the action
to be chosen adversarially. While our model is deterministic for simplicity, it is straightforward to
extend to the analysis to algorithms whose regret bounds hold in only expectation, e.g. by considering
a distribution over values of τ in accordance with Markov’s inequality (as no algorithm can have
negative expected regret against arbitrary adversaries) and considering our expected regret to the
Stackelberg value.

Our strategy for the optimizer is:

• For each i ∈ [M], play ai until either bi or si is observed at least t∗ > τ times;

• Return a∗i for the largest i such that bi is observed t∗ times.

We show that this takes at most O(T c ·M3) rounds. Once a∗i is identified, we can commit to playing
it indefinitely, at which point the learner must play b∗i in all but at most O(T c · poly(M)) rounds, and
so with T = O(poly(M/ε)) rounds we can increase the total fraction of rounds in which (a∗i , b

∗
i) is

played to 1− ε, which yields the desired average reward bound.

The key to analyzing the runtime of our strategy is to consider the “buffer” in regret between any
pair of actions before the threshold of τ is reached, which enables us to the bound the number of
rounds in which instantaneously suboptimal actions are played. Note that prior the start of window i
(where ai is played), both bi and si obtain reward 0 in each round, and as such cannot decrease their
expected regret relative to any other action, as all rewards in the game are non-negative. Further, for
any previous window j, both bi and si incur regret of 1 with respect to either bj or sj , as well as
between the suboptimal and optimal action in window i, and thus cannot be observed more than τ
times in the window. As such, observing bi at least t∗ times in window i indicates that bi ∈ BU (and
likewise observing bi at least t∗ times indicates that bi ∈ BD).

Any action b ̸= BR(ai) will incur positive swap regret with respect to BR(ai), and cannot be played
in window i once SRt(b,BR(ai)) ≥ τ . Each action begins with SR1(b,BR(ai)) = 0 at time t = 1;
for each of the learner’s actions, we consider the rate at which its buffer decays, as well as instances
in which swap regret can decrease:

• Previously optimal b ∈ B∪S \BR(ai): actions in B∪S can only accumulate negative
swap regret with respect to BR(ai) during rounds in which they were previously optimal;
any previous optimum b = BR(aj) for j < i was played at most t∗ times during window j,
and so we have that SRt(b,BR(ai)) ≥ −t∗.

• All b ∈ B∪S \BR(ai): ignoring any previously accumulated regret buffer, each of these
2M − 1 actions can be played at most τ rounds during window i before exhausting their
initial buffer. Accounting for possible previous optima with SRt(b,BR(ai)) < 0, the
number of rounds during window i in which some b ∈ B∪S \BR(ai) is played is at most
Mt∗ + (2M − 1)τ .

20

• Safety actions yjk ∈ Y: Suppose neither aj or ak have been played yet by the optimizer,
including in the current window. As was the case for other actions which have never yielded
positive instantaneous reward, yjk can be played at most τ times before SRt(yjk,BR(ai)) ≥
τ . If j = i, i.e. this is the first window in which yjk obtains positive instantaneous reward,
the per-round regret is 1/3, and so at it can be played for most 3τ rounds. Further, yjk
a obtains a regret of −2/3 with respect to BR(ak). If k = i and the window for aj has
already been completed, yjk can be played for at most 9τ rounds, as initially we have that
SRt(yjk,BR(ai)) ≥ −2τ , which again increases by 1/3 per round. We then have that the
total amount of rounds with safety actions played during window i is at most (12M+M2)τ ,
as there are fewer than M2 total safety actions, and fewer than M in each of the latter cases.

This yields a per-window runtime across all actions of at most Mt∗ + (M2 + 10M − 1)τ , which is
O(T c ·M3) across all windows, and so we obtain the desired result for optimizing against arbitrary
no-swap-regret learners.

Optimizing against mean-based learners. Here, we show that there are mean-based no-regret
algorithms for which exponentially many rounds are required for an optimizer to approximate the
Stackelberg value against a learner. When considering horizons which are superpolynomial in the
parameters of the game, it is most natural to consider algorithms with regret bounds which are
non-trivial for smaller horizons, as well as an anytime variant of the mean-based property. We define
an extension of the classical Multiplicative Weight Updates algorithm (MWU; see (2) for a survey),
called Rounded Mean-Based Doubling, which inherits both properties in the anytime setting.

Algorithm 1 Rounded Mean-Based Doubling (RMBD)

Initialize and run MWU for T1 := 2 rounds and n actions.
Let T2 := 2T1 and i := 2.
while Ti ≤ T do

Initialize MWU for Ti rounds and n actions.
Simulate running MWU for Ti−1 rounds, using the average of the first Ti−1 rewards each round.

For Ti−1 rounds, run MWU with action probabilities rounded to multiples of 4γ = Õ(T
−1/2
i).

Let Ti+1 = 2Ti and i := i+ 1.
end while

Lemma 6. When running RMBD for T rounds, the following hold at any round t ≤ T :

• RMBD has cumulative regret Õ(n
√
t);

• If action j has the highest cumulative reward and σi,t ≤ σj,t − Õ(
√
t), then action i is

played with probability 0 at round t.

Proof. Let C
√
t bound the regret of MWU over t rounds (where C = O(

√
log n)), and let D =√

2C + Õ(n). We can bound the regret of RMBD over Ti rounds by D
√
Ti via induction (which

holds trivially at T1). Suppose it holds for some Ti. Let R(Ti) be the true reward obtained by
RMBD over Ti rounds, which is at least σj∗,Ti −D

√
Ti, where σj∗,Ti is the cumulative reward of

the best action over Ti rounds. Consider our simulation of MWU over Ti rounds using the average
reward function. As the reward function is identical each round, and the cumulative reward for
each action j is equivalent under averaging, the measured reward R̂(Ti) from the simulated run is
at most σj∗,Ti

after Ti rounds. Upon continuing to run this instance of MWU for an additional Ti

rounds, the regret bound ensures that the total measured reward R̂(Ti+1) is at least σj∗,2Ti −C
√
2Ti.

Rounding probabilities contributes at most an additional 2nγTi to the regret; it suffices to implement
rounding by reallocating probability mass from any pi,t < 2γ onto other actions arbitrarily, to avoid
renormalization. The total reward of RMBD over 2Ti = Ti+1 is given by its cumulative reward at Ti,
as well as the additional reward obtained by the MWU instance over the next Ti rounds, and so we

21

have that

R(Ti+1) = R(Ti) + R̂(Ti+1)− R̂(Ti)

≥ σj∗,Ti+1
−D

√
Ti − C

√
2Ti − 2nγTi

≥ σj∗,Ti+1
−D

√
Ti+1,

which yields the bound for every Ti. We can extend this to any t ∈ [Ti, Ti+1] with at most a factor 2
increase to cumulative regret.

To bound the selection frequency of actions with suboptimal cumulative reward, we recall the mean-
based analysis of MWU given in Theorem D.1 from (5), which shows that the selection frequency
pk,t for action k at time t is at most γ = 2 log(

√
T logn)√

T logn
if σk,t ≤ σj,t − γT for the action j with

highest cumulative reward. As such, any action whose cumulative reward σk,t ≤ σj,t − Õ(
√
t) will

be played with probability 0.

Suppose a learner plays the action with highest cumulative reward at each round for tburn = Ω̃(M2)
rounds, then plays RMBD thereafter for a total of T rounds. Note that this maintains the both
properties of RMBD for all t. We show that at least T = exp(Ω(M)) rounds are required to identify
the Stackelberg strategy. The optimizer must check the learner’s pure best response to each aj
for identification with certainty, and it is straightforward to construct a distribution in which any
strategy which does not observe BR(aj) for all j will have linear regret to StackA in expectation
(e.g. where BU contains one action chosen uniformly at random). The difficulty in exploration of
the best responses comes from the safety actions, as aj must have been played more frequently than
any other action in order to not be dominated by some safety action. Let ρj,t denote the number of
rounds in which the optimizer has played aj out of the first t. Observe that by construction of the
game and the properties of RMBD, an primary or secondary action bj or sj in BR(aj) will only be
played with positive probability when:

ρj,t ≥
2

3
(ρj,t + ρk,t)− Õ(

√
t)

= 2ρk,t − Õ(
√
t)

for all k, which necessitates that ρj,t ≥ 2t
M − Õ(

√
t). Taking tburn sufficiently large, we have that

ρj,t ≥ 3
2ρk,t for any t ≥ tburn and all k. For any subsequent observation BR(ak) at t′, we must have

that ρk,t′ ≥ 3
2ρj,t, and so the number of rounds required to play an action before observing its best

response grow at a rate of at least (3/2)M , which completes the proof.

22

