
A Supplemental Information

A.1 Pretraining Implementation Notes

For all models, the preprocessing of the input frames involved resizing the images with the short side
as 224, followed by cropping the central patch of 224x224. Each color channel was then normalized
to roughly follow a distribution with a zero mean and unit standard deviation.

The VideoMAE models were built using the off-the-shelf implementation from HuggingFace [Wolf
et al., 2020] with the ViT Base backbone and a 90% mask ratio. To save computational resources, the
number of ViT layers were reduced from 12 to 6, but all other hyperparameters were kept as default.

The JEPA-TT models were implemented by adapting I-JEPA [Assran et al., 2023] to use time as a
source of augmentation. Therefore, the target patches and the context patch came from two separate
frames with a 10-30s lag in between them. This choice of the time interval is informed by the
temporal redundancy in the videos. Vit-Base was again used as the backbone architecture.

Similar to JEPA-TT, the SimCLR-TT models used time as a source of augmentation with the positive
sample having a 10-30 second lag from the anchor sample. We found SimCLR-TT to be prone
to overfitting on our infant dataset therefore we applied additional data augmentations and used
fewer training iterations (1500 iterations per stage). The backbone for the SimCLR-TT models was
ResNet-18.

All models were trained using the vanilla SGD optimizer (except for the ablation experiment on the
optimizer) on 4 NVIDIA A100 GPUs. Each experimental run finished within 24 hours or less. The
code is available at https://github.com/ssheybani/baby-vision-curriculum.

A.2 Probing the Input Layer

Aiming to understand the properties of the dataset that lead to the advantage of the developmental
curriculum, we performed PCA on the spatiotemporal patches from the videos in different age groups.
This is similar to the procedure in Benjamin et al. [2022], but instead of forming the data matrix using
the flattened version of a single frame (spatial patch), we used the flattened version of 2 consecutive
frame patches, the same size as the spatiotemporal patches in our VideoMAE models. The resulting
PCA bases provide a basis set for reconstructing all spatiotemporal patches in the dataset. In the case
of single frames, the bases are static edge detectors at various angles and frequencies [Benjamin et al.,
2022]. In our case, the resulting bases are detectors of moving edges since the inputs are patches from
consecutive frames.

Figure S1A shows PCA bases of the spatiotemporal patches compared between g0 and g2. Compared
to the bases from g0, those in g2 are distorted or do not appear as sharp. This is confirmed by
analyzing the cumulative explained variance ratio (CEVR) (Figure S1B). The bases learned from
g0 reconstruct its input with fewer components, indicating a sparser, more efficient coding scheme.
The first 12 components of g0 explained 95% of the variance (5% error). It takes many more – 33
components– from g2 to reach 5% error rate.

We also repeated the analysis with a control condition by computing the PCA from individual frames
from each group. The resulting PCA bases were indistinguishable in terms of their qualitative
appearance and CEVR (Figure S2).

A.3 Evaluation results using nearest neighbor search

There are a variety of methods to evaluate how useful the representations of a model are. By training
a linear classifier on the features, one can assess how separable the benchmark samples are according
to various target definitions, e.g. object category, object motion, etc.

Another common method for representation evaluation is retrieval performance or nearest neighbor
evaluation. This method evaluates to what extent the target label of a sample can be inferred correctly
using the label of closest samples in the embedding space. Tables S1, S2 show the comparison
of various curricula using this method on the SSv2 and UCF101 benchmarks. The results remain
consistent with those from linear evaluation.
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Figure S1: A. Samples from the dynamic PCA basis set of the data streams of the youngest and
oldest infant groups. B. Cumulative explained variance ratio as a function of the number of PCA
components.
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Figure S2: Control: Samples from the Static PCA Basis set of the Data Streams

A.4 Details of the ablation analysis

We performed ablation studies on three key hyperparameters of the learning method: choice of
optimizer (Figure S3), frame rate (Figure S4), and the number of training iterations at each stage of
curriculum pretraining (Figure S5).

Our results, i.e., the advantage of the developmentally-ordered curriculum over the opposite order,
remain qualitatively the same in all conditions, both in terms of convergence rate and downstream
performance on Toybox object categorization.

The choice of the optimizer made the largest impact on the convergence rate (Figure S3A). Note that
the pretraining loss is computed over the images from the same stage (i.e., at the last stage, g2g1g0

loss is on g0, but g0g1g2 loss is on g2). Therefore even though the final pretraining loss of g2g1g0

in the adamw condition is lower than that of g0g1g2, this cannot be interpreted as an advantage for
g2g1g0. Aligned with this, we see comparable downstream performance for the two curricula in the
adamw condition. Nevertheless, we conjecture that, in general, the difference in the convergence
rate between curricula is due to the different extent of ruggedness in the loss landscapes shaped
by the data streams of the different age groups. ADAM and ADAMW are engineered to navigate
such landscapes better than vanilla SGD. However, the extra bells and whistles in the ADAM and
ADAMW may or may not make them closer to human visual learning compared to vanilla SGD.

We also examined the effects of having different numbers of training iterations per pretraining
stage. We saw that by allowing many iterations on g0 at the final stage, the anti-developmental

S2



Table S1: Performance comparison of the curricula on SSv2 video retrieval (nearest neighbor search)

Stage Curriculum SSv2 Top1 SSv2 Top5 SSv2 Top10
0 Untrained 10.10 42.00 64.40

1 Dev. 14.90 48.20 68.47
Adev. 10.07 42.67 64.27

Random 11.67 44.50 65.50
Adult 10.47 42.90 64.33

2 Dev. 21.33 58.10 75.10
Adev. 10.70 42.10 63.90

Random 16.53 49.23 70.13
Adult 14.30 46.03 68.67

3 Dev. 21.80 59.60 77.17
Adev. 17.70 51.80 70.57

Random 20.70 55.97 73.97
Adult 19.10 54.50 74.00

Table S2: Performance comparison of the curricula on UCF101 video retrieval (nearest neighbor
search)

Stage Curriculum UCF101 Top1 UCF101 Top5 UCF101 Top10
0 Untrained 10.67 20.02 26.86

1 Dev. 19.29 31.35 38.91
Adev. 10.70 20.18 27.04

Random 12.53 22.39 29.63
Adult 12.31 21.86 29.11

2 Dev. 22.27 36.36 45.00
Adev. 10.64 20.43 27.57

Random 17.33 28.68 36.86
Adult 15.75 26.67 33.96

3 Dev. 24.19 39.17 48.53
Adev. 20.83 33.11 40.83

Random 22.81 36.06 44.37
Adult 21.71 34.30 42.67

curriculum approaches the downstream performance of the developmentally-order curriculum.
However, as in S4 the amount of reduction in loss is larger when the model begins the training with g0.
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Figure S3: Pretraining with different optimizers A. Pretraining loss B. Toybox categorization accuracy
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Figure S4: Pretraining with different frame rates A. Pretraining loss B. Toybox categorization
accuracy

S5



A

B

Figure S5: Pretraining with different numbers of epochs per stage A. Pretraining loss B. Toybox
categorization accuracy
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Par�cipant ID Age (weeks) Recording Dura�on (h)

MS 8 4.45
SS 9 3.77
BF 10 3.22
EA 11 5.52
TT 12 5.12
LS 13 5.21
SN 14 6.32
JM 15 2.45
TF 16 5.44
EW 17 10.38

AR 26 5.39
SS 27 5.47
CK 28 4.01
MR 28 4.62
TT 29 5.36
FD 30 4.51

HW 31 6.06
SR 32 4.97
SE 33 6.28
JC 34 4.04

MP 43 2.2
ET 44 5.59
TE 46 7.05
MS 47 1.27
KG 48 4.53
JC 49 5.74
AB 50 5.85
AK 50 5.36
DW 51 4.14

BR Adult 2.62
CW Adult 5.76
EA Adult 1.06
ED Adult 1.31
JB Adult 1.41
KI Adult 3.35
LS Adult 4.46
SB Adult 3.51
TR Adult 3.64

Table S3: Participant info.

Curriculum 5000 10000 15000

Dev. (g0-g1-g2) 4.15 4.18 3.17
Anti-Dev. (g2-g1-g0) 0.21 0.019 2.32
Random (rand-rand-rand) 0.62 2.82 3.42
Adult (adult-g1-g2) 0.22 1.59 2.86

Table S4: Amount of reduction in the numerical values of self-supervised loss (100x) as a result of
each stage of pretraining.
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