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Abstract

Infants possess a remarkable ability to rapidly learn and process visual inputs. As an infant’s mobility
increases, so does the variety and dynamics of their visual inputs. Is this change in the properties
of the visual inputs beneficial or even critical for the proper development of the visual system? To
address this question, we used video recordings from infants wearing head-mounted cameras to
train a variety of self-supervised learning models. Critically, we separated the infant data by age
group and evaluated the importance of training with a curriculum aligned with developmental order.
We found that initiating learning with the data from the youngest age group provided the strongest
learning signal and led to the best learning outcomes in terms of downstream task performance. We
then showed that the benefits of the data from the youngest age group are due to the slowness and
simplicity of the visual experience. The results provide strong empirical evidence for the importance
of the properties of the early infant experience and developmental progression in training. More
broadly, our approach and findings take a noteworthy step towards reverse engineering the learning
mechanisms in newborn brains using image-computable models from artificial intelligence.

1 Introduction

A common, implicit assumption in the machine-learning literature is that at the massive scale of
daily life, the world presents the same visual statistics to all perceivers. Many researchers therefore
believe that it will be possible to mimic biological learning through incremental statistical learning
performed over large datasets. However, this assumption may be incorrect because the input received
by the visual system depends on the momentary spatial relation of the eyes to the world and is thus
dependent on the behavior and goals of the perceiver. Over the first year of life, infants’ motor abilities,
behaviors, and interests change substantially [Lee and Galloway, 2012, Largo and Kakebeeke, 1994],
producing gradually changing datasets for learning. A growing literature on infant egocentric vision
also indicates that the semantic content of visual information (faces, hands, objects, scenes) changes
systematically with development over the first year post birth as a product of changing motor skills
and interests [Smith et al., 2018, Jayaraman et al., 2017, Kretch et al., 2014, Jayaraman et al., 2015].
Experimental studies provide converging evidence of systematic changes in the types of semantic
content that infants prefer – and choose – to look at [Spelke, 1985, Frank et al., 2014, 2009, Kwon
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et al., 2016]. In brief, the human visual system develops in context of an ordered set of visual
experiences, a curriculum. Does this curriculum matter? Would a randomly ordered aggregation of all
the data be just as good? From a machine-learning perspective, are there benefits to "developmentally
structured" datasets?

The study reported here is motivated by three goals: (1) to determine if the natural order of the
developmental curriculum has advantages for machine learning; (2) to determine properties of the
ordered data sets that lead to this advantage; and (3) to explore the implications of this self-generated
curriculum for building more robust artificial visual systems that can learn continuously from self-
supervised training signals. We used the Homeview dataset1 of egocentric videos recorded by
head-mounted cameras worn by infants from 2-12 months of age as they went about their daily
lives at home and without experimenters present. This dataset provides unique insight into infant
visual experience at different stages of development. The entire data set contains videos captured
by very young infants with naturally limited postural control (2 month old) to older infants (12
month olds) who crawl or walk and instrumentally use objects. To evaluate the impact of these
changing experiences on visual learning, we performed computational experiments by selecting and
ordering training videos from the corpus collected by infants at various ages. These videos were
then used to train a variety of state-of-the-art self-supervised learning (SSL) models. We found that
one key developing property in the input was the duration of self-similar inputs, with the youngest
infant experiences characterized by very slow change. This finding underscores the integral role of
curriculum learning in infant development and provides insights relevant to the continued evolution
of self-supervised learning systems.

2 Related Work

2.1 Learning from child egocentric videos

There is increased recognition of the importance of the structure of the training data in AI and use
of egocentric infant and child images and videos as inputs to deep neural networks [Bambach et al.,
2017, 2016, 2018, Orhan et al., 2020, Zhuang et al., 2021]. One key finding is that these egocentric
training data are capable of furnishing powerful visual representations [Orhan et al., 2020, Orhan and
Lake, 2023] and can lead to superior learning over adult egocentric videos [Bambach et al., 2018].

In [Bambach et al., 2018], the authors fine-tuned a deep convolutional neural network (CNN) using
egocentric images recorded by toddlers and adults who were in the same environment during data
collection and found that images recorded by toddlers led to better subsequent classification of objects.
Analyses of the differences in the training set suggested two statistical properties in the infant corpus
that may be critical to learning: (1) the distribution of similarities among images of the same object
was extremely skewed such that most images were variations of each other, but the overall range (the
long tail) of variability in the infant images was much greater than that in the adult images; and (2)
individual objects were much larger and foregrounded in the images – and thus easier to segment
from the background than were the same objects in the adult images. This result emerges because
active toddlers visually attend to objects by decreasing the distance between their sensors (eyes) and
the attended object.

In other related work [Orhan et al., 2020, Orhan and Lake, 2023], the authors trained self-supervised
learning models from scratch on the SAYCam dataset [Sullivan et al., 2021], an egocentric video
dataset captured by children between 6-32 months old. They showed that deep SSL models can
achieve powerful visual representations and reasonable performance while solely trained on child-
egocentric videos. [Orhan et al., 2020] used a temporal classification objective, which can be regarded
as an implementation of the principle of temporal slowness [Wiskott and Sejnowski, 2002] by creating
similar embeddings for the frames that were close in time and dissimilar embeddings for the frames
that were far apart in time. To provide a more robust baseline, [Orhan and Lake, 2023] used a
wider variety of SSL algorithms and architectures and found performance rates as high as 70% of a
high-performing ImageNet-trained model. Furthermore, [Zhuang et al., 2021] showed that CNNs
trained using contrastive learning on child egocentric videos can produce brain-like neural responses.

Although the previous work clearly shows that the structure in data sets matters and demonstrates
the potential value of taking inspiration from human development, the data sets do not capture or

1https://cogdev.sitehost.iu.edu/homeview.html
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exploit the ordering of experiences that is the hallmark of human developmental processes. In the
prior cases, the datasets were created by aggregating training videos across large age spans (6 to 32
months), making it unclear what ages or aspects of the training data were responsible for the learning
outcomes. In humans, the first year post-birth is a period of substantial developmental change in the
cortical visual system, in visual sensitivities, and in object recognition [Jayaraman et al., 2015, Fausey
et al., 2016]. Further, the earliest period – the first 3 to 4 months - constitutes a sensitive period in
which disruptions in the expected visual input lead to lifelong disruptions in object recognition and
other visual processes [Maurer, 2017].

Accordingly, we take an explicitly developmental approach [Smith et al., 2018] and show that doing
so has a profound impact on self-supervised learning. Using a corpus of images from infants 2 to 12
months of age, we show that training that places the natural earliest visual input first optimizes learning.
Training with data out of the natural developmental order disrupts learning. To demonstrate the
generality of this ordering effect, we used self-supervised pre-training across a variety of algorithms
and architectures; in all cases, a developmentally ordered visual diet led to the strongest learning
outcomes.

2.2 Curriculum Learning in AI

In curriculum learning, models undergo training by initially being exposed to simpler examples and
progressing to more difficult ones [Elman, 1993, Bengio et al., 2009, Wu et al., 2020]. The approach,
common in education, arranges information in an orderly manner to enhance learning [Smith et al.,
2018, Avrahami et al., 1997].

The curriculum contributes to learning by shaping the loss landscape. A good curriculum will result
in a smoother learning trajectory. A substantial body of literature in AI focuses on designing ways
to order the training samples based on some definition of sample difficulty to allow the models to
converge faster with better downstream performance [Wu et al., 2020, Khan et al., 2023, Wang et al.,
2019, Guo et al., 2018, Liu et al., 2017]. Unlike human and animal learning [Wilson et al., 2019], the
extent of the impact of curricula on standard, offline, supervised learning is debated [Wu et al., 2020,
Saglietti et al., 2022]. However, recent work shows a remarkable impact from curricula in online,
self-supervised learning settings [Saglietti et al., 2022, Joshi and Mirzasoleiman, 2023].

In this work, we show the impact of the infant visual curriculum, even when using common, offline,
self-supervised learning methods. This curriculum is not based on an a priori definition of sample
difficulty, but rather assumes the natural ordering achieved through human development, an ordering
that leads to the full prowess of human object recognition [Smith and Slone, 2017, Zaadnoordijk
et al., 2022].

2.3 Computational neuroscience work on learning visual features from naturalistic stimuli

Early seminal work by [Olshausen and Field, 1996] demonstrated that sparse coding algorithms,
when trained on natural images, produced receptive fields similar to those found in the primary
visual cortex, suggesting a potential computational principle underlying visual learning in the brain.
Similarly, work by [Bell and Sejnowski, 1997] showed how independent component analysis could
be used to derive Gabor-like filters, again resembling the response properties of neurons in the visual
cortex. More recent work [Karklin and Lewicki, 2009] has built on these principles, demonstrating
how more complex visual features, like edge co-occurrence statistics, can also be learned from
naturalistic stimuli. These studies collectively highlight the importance of naturalistic stimuli in
shaping our understanding of the computational principles underlying visual learning in the brain.

In this study, for the first time, we explore the learning of visual features from the embodied data
streams produced by infants at different stages of development, including infants younger than six
months of age.

3 Datasets

3.1 Training Dataset

The datasets were created from a larger corpus of 500 hours of head camera videos collected by
101 infants from 2 to 24 months of age [Fausey et al., 2016]. From this corpus, we selected videos
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Figure 1: Methods overview. A) Sample image sequences from each infant age group in the
training dataset. B) Training procedure: Each model is trained in three stages using a self-supervised
objective function. C) Evaluation: After training, the learned representations are evaluated for their
informativeness in three downstream tasks.

collected by infants at 3 age periods who differ in motor skills, visual preferences, and behaviors and,
as a consequence, in their statistics of experience. The youngest infants were 2-4 months old (n = 10,
total of 41 hours, mean age = 2.9 mo, SD = 0.75), a period characterized by limited postural control;
the middle group of infants were 6-8 months (n = 10, total of 42 hours, mean age = 6.9 mo, SD =
0.62) and were mastering sitting and crawling, and the instrumental use of objects; and the oldest
group of infants, 10-12 months (n = 9, a total of 40 hours, mean age = 11.1 mo, SD = 0.65), were
beginning to walk, could sit stably and with increasing skill in manipulating objects. In the rest of
the manuscript, we refer to these three age groups as g0, g1, and g2, respectively. See Supplemental
Information, Table S3 for recording information per participant.

We used two additional training sets: (1) Egocentric images collected by adults in the home (18 to
71 years of age, 25 hours of recording) using the same camera, here referred to as adult, and (2) a
random age infant dataset, referred to as rand, constructed by combining a random set of 13 hours of
recordings from each infant in the three age groups g0, g1, and g2.

All video files were subsampled to RGB images at 30 frames per second. Pretraining on a given dataset
started by selecting 1.45 million consecutive frames from the given age group (upon concatenating
the frames from all subjects within the group). From the created sets of frames, we collected sample
sequences of size 16 as inputs for the VideoMAE model (81,000 samples for the training set and
9,000 samples for the validation set). For JEPA-TT and SimCLR-TT, we used pairs of consecutive
frames that are 10-30 seconds apart. The number of samples was kept fixed for all age groups and
conditions. To allow the data-related variability to be reflected in the results, each dataset was split
into 3 folds, and each pretraining run was performed using a different fold.

3.2 Benchmark Datasets

UCF101 [Soomro et al., 2012] is a widely used dataset for video-based action recognition research.
The dataset consists of 13,320 videos of realistic actions collected from YouTube. These videos are
divided into 101 action categories, such as playing a flute, biking, and horseback riding. Each category
contains between 100 to 200 video clips, which are approximately 7 seconds long on average. The
wide variety of actions and the realistic setting make the UCF101 dataset a challenging benchmark
for evaluating the performance of video understanding algorithms. This dataset is commonly used for
evaluating the quality of spatiotemporal features in video models [Tran et al., 2015, Xie et al., 2017].
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Something-Something V2 (SSv2) [Goyal et al., 2017] is an egocentric video dataset of short videos
comprising humans performing pre-defined, basic actions with everyday objects. Being an egocentric
dataset, SSv2 is more appropriate than UCF101 for evaluating our infant-egocentric models. In
addition, SSv2 emphasizes the importance of dynamic features more than UCF101, which is known
to be solvable by only attending to static features of individual frames. Here we evaluate our models
on the 10-class subset of the dataset (as suggested in the dataset article).

ToyBox [Wang et al., 2018] is a small but developmentally relevant dataset of 4320 videos, 2-20
seconds each. In each video, an object undergoes a spatial transformation, such as rotation along the
x-axis or translation along the z-axis (12 transformations total). There are 12 toy object categories (4
from animals, 4 from household, 4 from vehicles), each containing 30 distinct objects. The existence
of both object categories and spatial transformations allows us to probe the representations learned
by the models in terms of both shape-relevant and location/pose-relevant information.

4 Models and Objectives

Evaluating the impact of a developmental visual curriculum requires (1) a model with a self-supervised
learning objective [Schiappa et al., 2022] that can scale up to a large corpus of real-world egocentric
videos and (2) an architecture that directly learns regularities in videos across both space and time: a
spatiotemporal learner. Generative and predictive tasks such as masked modeling (e.g. VideoMAE
[Tong et al., 2022] or MaskFeat [Wei et al., 2022]) are particularly suitable for this purpose, although
other methods based on cross-modal agreement or contrastive learning can be used as well.

4.1 Generative Vision Transformer (MAE)

Transformer-based masked autoencoders are effective and highly scalable methods of representation
learning with minimal inductive biases. They are applicable to various sensory modalities, including
both images and videos, and are therefore great candidates for a general spatiotemporal learner
[Feichtenhofer et al., 2022]. Here we chose VideoMAE as a simple adaptation of the masked
modeling method for videos. In this learning method, each sample video is broken down into a
sequence of spatiotemporal tubes. During pretraining, a portion of the tokens are randomly chosen
and masked, and the pretraining objective is to recover the masked tokens. This is achieved using a
series of multi-head attention layers [Dosovitskiy et al., 2020] which need to learn the relationship
between the tokens in order to successfully predict the masked tokens. From an intuitive perspective,
each token can be thought of as a simple dynamic feature (e.g., akin to motion energy features)
corresponding to a small area in the visual field; the entire video is the collection of many such
features. The mask prediction objective promotes the network to learn the spatiotemporal organization
of simple features transforming into complex moving features that occur in the dataset videos.

4.2 Predictive Vision Transformer (JEPA-TT)

I-JEPA [Assran et al., 2023] is a recently proposed image-based SSL algorithm in which the objective
is to predict the embedding of one part of the input image (target) using the embedding of another part
(context). Therefore unlike masked autoencoders, this objective function does not require pixel level
reconstruction. Our JEPA Through Time (JEPA-TT) algorithm is an adaptation of I-JEPA, where the
context and the target are selected from consecutive video frames rather than the same frame.

4.3 Contrastive CNN (SimCLR-TT)

SimCLR [Chen et al., 2020] is a well-known image-based SSL algorithm. It works by bringing the
embeddings of two augmented versions of an image (positive pair) closer in the embedding space
while pushing them away from embeddings of randomly selected images from the dataset. Similar
to Aubret et al. [2022], our SimCLR-TT algorithm treats consecutive frames as augmentations of
each other. To test additional network architectures, we use a convolutional backbone, ResNet-18, for
SimCLR-TT.
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5 Evaluation Criteria

5.1 Downstream Performance

After pretraining each model, the encoder part of the model was evaluated in several downstream
tasks using both linear classification and k nearest-neighbor (kNN) classification. We first collected
the encoder responses to all stimuli in the downstream video dataset as feature vectors. For linear
classification, we evaluated the usefulness of the features by training and validating a linear SGD
classifier. For kNN classification (results shown in the Supplemental Information), for each sample
embedding in the validation set, we first found the k nearest samples in the training set. We then
evaluated whether the class of any of the k nearest neighbors matched the true class of the validation
sample. All results in the pretraining and downstream evaluation were generated with 3 seeds per
curriculum condition.

5.2 Gradient Norm

In order to provide a glimpse into the learning process that gives rise to the downstream performance
results, we report the Stochastic Gradient Descent (SGD) gradient norms across the training stages.
We compute gradient norm of a given model layer as || 1

batchsize

∑
Loss
∂Θ ||2 where Θ contains the

learnable parameters of the layer of interest and the sum goes over all the samples in the batch.
Learning in each parameter is driven by the magnitude and direction of the noisy, empirical gradient
estimate after being averaged across batch samples. This quantity has been used for studying the
learning dynamics of SGD [Hochreiter, 1998, Shwartz-Ziv and Tishby, 2017]. Gradient norms
can vary as a function of the architecture, optimizer, and objective function and hence, should be
interpreted carefully. Here we evaluated the effect of the order of the visual diet on the gradient norm
by matching all other system components. We also reproduced the results in various architectures
and objective functions.

6 Results

6.1 Stage 1: Visual inputs from the youngest infants lead to stronger learning signals and
better downstream classification

To characterize the impact of training with infant data from different stages of development, we first
tracked the gradient norm of the VideoMAE model trained separately with the data from the youngest
age group (g0), the oldest age group (g2), the random group (see Section 3.1), and the adult group.
Training with the data from the youngest age group provided the largest gradient norm in the model
(shown for the last encoder layer in Figure 2 panel A)

Next, we evaluated the performance of the VideoMAE pretrained in stage 1 on a downstream
classification task. As described in Section 3.2, we used the Something-Something v2 (10 classes),
UCF-101, and Toybox datasets. For Toybox, we compared pretrained models on spatial transformation
classification. In all cases, the model pretrained on the data from the youngest age group performed
substantially better than other models (Figure 2 panels B-D). These results confirm that models
that learn from larger learning signals (gradient norms) during the pretraining stage extract more
relevant features from video data. This was true across domains since object classification, spatial
transformation classification, and video classification are substantially different tasks.

6.2 Stage 1-3: Developmental curriculum matters

We examined whether the developmental curriculum contributes to larger gradient norms and better
downstream classification. After pretraining VideoMAE on stage 1 using different age groups, we
continued the pretraining process with two more stages. In one case, we followed the developmental
curriculum by training on data from 2-4 months old infants (g0) in stage 1, data from 6-8 month
old infants (g1) in stage 2, and then data from the oldest, 10-12 month, age group (g2) in stage 3.
Each stage had 5,000 iterations. For comparison, we also pretrained models in an anti-developmental
curriculum order by training on g2 in stage 1, g1 in stage 2, and g0 in stage 3. Similar to pretraining
on just stage 1, we also pretrained the network on the random group, but this time across all three
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Figure 2: The effect of learning curriculum. A) The norm of the gradient at the last layer of the
VideoMAE encoder across training iterations. To increase visibility, the lines have been smoothened
by applying a moving average with a window length of 100. The average line across 3 seeds is
plotted. B-D) The linear evaluation score of the pretrained VideoMAE models on downstream video
classification tasks of SomethingSomethingV2-10class, UCF101, and ToyBox object transformation.
Each black dot indicates the result from one seed. The performance of an untrained VideoMAE
model is shown in gray.

stages. Finally, we pretrained on adult data in stage 1 followed by g1 and g2 in stage 2 and stage 3,
respectively.

As shown in Figure 2, training in developmental order (blue bars) led to the highest performance in
the subsequent classification tasks. Anti-developmental curriculum (orange bars) led to the lowest
downstream performance. This is an important result since data from g0 were used in both the
developmental and the anti-developmental curricula. However, because g0 was used at the last stage
of pretraining for the anti-developmental curriculum, the performance gain was less than when g0 was
used in stage 1. This underscores the importance of training data arriving in the correct developmental
order.

6.3 Developmental advantage comes from the temporal slowness and simplicity of the views
acquired by young infants

In this subsection, we ask why training with young infant data leads to better results. Previous work
shows that the visual experience of young infants is substantially slower than that of older infants
[Sheybani et al., 2023]. We hypothesize that the advantage of the developmental curriculum is due
to this temporal slowness. A considerable literature also shows that young infants’ immature visual
system has low acuity [Lewis and Maurer, 2005] and as a result, in laboratory studies, young infants
prefer to look at arrays with high contrast and a few edges [Kiorpes, 2016], that is scenes that are
spatially simple. To test this hypothesis, we created simplicity-matched subsets of the data from
the different age groups: To match temporal complexity, we created samples that consist of only
one frame. To match spatial complexity, we selected a subset of frames from each age group where
around 6% of frame pixels were part of an edge, as computed using the Canny edge detector. We
then repeated our computational experiment in the last section, using the newly created version of the
developmental and anti-developmental curricula (Figure 3).

7



As predicted, reducing the spatial complexity (Matched Spatial and Matched Spatiotemporal) as
well as training on single frames (Matched Temporal and Matched Spatiotemporal) increased the
gradient norm in both curricula (Figure 3 panel A). This increase in the gradient norms is echoed in
the downstream performance of the models within the same stage and curriculum. Comparing the
gap between the developmental and anti-developmental curricula, we find both metrics of gradient
norm and downstream performance largely reduce as we match the spatial complexity, temporal
complexity, or both. The aforementioned observations confirm the advantage of early temporal and
spatial simplicity in the self-supervised learning models. We finally note that the models trained
on single frames had diminished performance on SSv2, demonstrating the value of the motion
information across multiple frames (Figure 3 panel B).
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Figure 3: The effect of the learning curriculum before and after controlling for spatial and
temporal complexity. The curricula are indicated by color hue and the conditions are indicated by
lightness. A) The norm of the gradient at the last layer of the VideoMAE encoder across training
iterations. To increase visibility, the lines have been smoothened by applying a moving average with a
window length of 100. The average line across 3 seeds is plotted. B-D) the linear evaluation score of
pretrained VideoMAE models on downstream video classification tasks of SomethingSomethingV2-
10class, UCF101, and ToyBox object classification. The performance of an untrained VideoMAE
model is shown in gray.

6.4 Curriculum effects hold for other learning objectives

In this subsection, we asked whether the curriculum effect is limited to the generative learning
objective or the vision transformer architecture. Several computer vision algorithms have been
considered by the computational neuroscience community as potential algorithmic hypotheses for
human perceptual learning, with no consensus as of yet. We previously focused on VideoMAE due to
its direct interaction with the spatial and temporal complexity of the input, without potential difficulties
of predictive algorithms, such as representation collapse. Here we reproduce our main result using
two more self-supervised learning algorithms: JEPA-TT with a vision transformer backbone and
SimCLR-TT with a convolutional backbone (see the Methods section for implementation details).
Both of these algorithms take single images as inputs and, therefore, only indirectly interact with the
temporal continuity of the input. However, they can still benefit from the spatial simplicity of young
infant views and may also indirectly benefit from temporal slowness because of the similarity of the
image pairs that are close in time.

Figure 4 shows that the advantage of the developmental curriculum holds for both JEPA-TT and
SimCLR-TT. We observe that the effect size is smaller than that of VideoMAE, which may be due to
the indirect interaction of these algorithms with the spatiotemporal complexity of their data stream.
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Figure 4: The effect of the learning curriculum on two CLTT learning systems (JEPA-TT w/
ViT-Base backbone), SimCLR-TT w/ ResNet18 backbone). The curricula are indicated by color
hue, with blue for Developmental and orange for Anti-Developmental. A,B) The gradient norm of the
last layer of the encoder. C-F) The linear evaluation score of the pretrained models on downstream
image classification tasks. The performance of an untrained model is shown in gray.

6.5 Ablation Analysis

To determine the robustness of the results, we conducted several ablations studies. We showed that
the qualitative pattern of results did not change when we used a different optimizer (Figure S3), or
a different number of pretraining iterations (Figure S5). Similar to [Wu et al., 2020, Saglietti et al.,
2022], we observed that the importance of curriculum order decreases as the number of training
iterations and epochs increases.

7 Discussion

Our findings make three contributions. First, they provide computationally explicit evidence that
human infants generate high quality data for visual learning across the first year of development
that changes in a developmentally ordered way in its underlying properties. Critically, we show that
the order of the data matters. Deep neural networks trained on developmentally ordered datasets
outperformed those trained on “developmentally incorrect” datasets. Second, the findings indicate
that the properties of the initial training set are particularly critical. This result accords with studies
showing that the first few months after birth constitute a critical period for human visual development,
with disruptions in the expected input leading to lifelong consequences for vision and visual cognition
[Maurer, 2017]. The relative importance of the earliest training set in these computational models
offers new insights into human visual development. Critical periods in biological development are
typically thought to emerge from changes in the brain rather than from changes in experience. The
current findings suggest that the properties of earliest experiences in and of themselves constrain what
can be learned from later experiences in infants and machine learning. Third, the findings indicate a
potential principle for what constitutes an optimal starting point for visual learning: Simplicity in
spatial structure of the images and in the slowness of change in those images.
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Recently Joshi and Mirzasoleiman [2023] showed that data samples that contribute the most to
self-supervised learning are those that have the most similar augmentations to the other samples.
Such samples are shown to ensure a high alignment between the augmented views of the same class,
and preserve the centers of class representations. This suggests a possible computational mechanism
for how slowness and spatial simplicity benefit SSL: by providing more similar augmentations of
the same object (and class). This may be particularly beneficial at the start of training by stabilizing
and distinguishing the representation of objects in the high-dimensional space. The constraints of
physical space and time on infant experiences mean that real-world experience is extremely skewed to
many experiences of just a few individual instances. Infants, for example, do not see many instances
from a given object class early on, e.g. not many different cups, but rather they see one cup frequently
[Clerkin et al., 2017]. Smith et al. [2018] discussed several verbal hypotheses of how this property of
the infant experience can facilitate or affect visual learning. A noteworthy account in accordance
with [Joshi and Mirzasoleiman, 2023] is that early learning in both infants and SSL models can be
facilitated by learning to see fewer objects but in many different viewing conditions. We note that
the notion of class centroids in [Joshi and Mirzasoleiman, 2023] closely resembles the concept of
prototype in the prototype theory of human perceptual categorization [Rosch and Mervis, 1975]. This
is another indication that self-supervised deep ANNs can appropriately function as a continuation of
the classic connectionist models in the human perceptual learning literature [Way, 1997, Doerig et al.,
2023].

Traditional theories of visual development also do not provide a quantitative account of how newborn
visual systems learn from raw visual inputs. As such, these theories do not explain how or why
newborn visual systems develop the way that they do. By training deep neural networks “through the
eyes” of developing humans, we can tackle these problems and begin building neurally mechanistic,
image-computable models of human newborn visual systems.

7.1 Limitations and Future Directions

Our study focused on showing the effect of the learning curriculum on the learning outcomes, which
are likely related to the learning dynamics of SGD networks, particularly those learning from self-
supervised errors. We did not aim for the models trained here to perform competitively on any
benchmark of neural or behavioral match to humans. Nevertheless, a promising future direction for
this work is to aim for milestone models of development – models that develop the same visual skills
as infants at a particular stage given the same visual experience. This endeavor involves developing
benchmarks of infant behavioral and neural responses in machine learning tasks, similar to [Schrimpf
et al., 2021, Geirhos et al., 2021] as well as making engineering progress in continual and lifelong
learning [Zhuang et al., 2022].

Upon the remarkable success of the neuroconnectionist research program [Doerig et al., 2023],
there have been calls for bridging visual developmental neuroscience and deep learning [Mur, 2023,
Zaadnoordijk et al., 2022]. We argue that work along the aforementioned lines can take a remarkable
step towards a computational understanding of the developmental trajectory of the human visual
system while also providing a road map for training computer vision systems more efficiently.
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