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In this supplementary material, we provide additional details and results that were not included in the
main paper due to space constraints. In Sec. A we provide additional details for the formulation of
our proposed approach. Next, in Sec. B we present implementation details. Finally, in Sec. C we
present additional qualitative results.

A Additional Formulation Details

A.1 Notation table

Table 3: Notations. We list the symbol, variable name, state space, and some notes for the key
variables in the paper.

Symbol Variable name State space Notes

ccam Camera translation R3

c Primitive translation R3

R Primitive rotation SO(3)
Rcam Camera rotation SO(3)
s Global deformations R3

e Superquadric surface R3

d Local deformations RN N : sampling points on primitive surface
qc Parameters for primitive translation R3 qc = c
qθ Parameters for primitive rotation R4 qθ is a 4D quaternion vector following [3, 8, 7]
qs Parameters for global deformations R11 qs = (a, ε, t,b), a ∈ R4, ε ∈ R2, t ∈ R2,b ∈ R3

qd Parameters for local deformations RN qd = d as we use one to one mapping
B Rotation related matrix R3×4 B = ∂Rp/∂qθ

J Jacobian matrix R3×11 J = ∂s/∂qs, J ∈ R3×6 if no global deformations

A.2 Primitive kinematics in 3D

In this section, we provide detailed derivation for the kinematics proposed in the main paper. Specifi-
cally, given a point p on the primitive surface, its 3D location x = (x, y, z) in the global coordinate
system Φ is

x = c + Rp = c + R(s + d). (15)

From Eq. (15), we can derive the velocity of a point on the primitive surface as

ẋ = ċ + Ṙp + Rṗ = ċ + Bq̇θ + Rṡ + RSq̇d, (16)

where · denotes the first-order time derivative. B = ∂Rp/∂qθ is a 3 × 4 transformation matrix
related to the rotation matrix R and the relative position p of points on the primitive surface. ṡ =
[∂s/∂qs]q̇s = Jq̇s, where J is the Jacobian matrix of the model-centered coordinates ϕ w.r.t. the
global deformation parameters at each point. We note that the size of the Jacobian matrix is determined
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Figure 8: Network architecture. We show the architecture of the encoder-decoder for the estimation
of primitive parameters. The numbers in (·) indicate the dimension of output features.

by the type of global deformations used. S is a shape matrix that we set to the identity matrix I in
LEPARD since we use one-to-one mapping for the local deformation estimation. Eq. (16) can be
further written in the form:

ẋ = [I,B,RJ,R]q̇ = Lq̇, (17)
where L is the overall deformable model’s Jacobian matrix (termed model Jacobina matrix) that
includes the Jacobians for translation, rotation, global and local deformations [6]. Eq. (17) shows
the relationship between any point x on the 3D primitive surface and its corresponding primitive
parameters q that control the transformation of the primitive. As shown in Sec. 3.2 of the main paper,
this kinematic formulation further allows us to convert the 3D forces f3D to the generalized forces fq
which we use to supervise the primitive transformation during training.

B Implementation Details

B.1 Training protocol

We implement the LEPARD training using PyTorch on eight Nvidia A100 GPUs and optimize all
network parameters using an Adam optimizer [5]. To extract the semantic features from images, we
follow [9, 10] and use a self-supervised ViT (DINO-ViT) which is trained using a self-distillation
approach [1]. Specifically, we extract the keys from the last layer of DINO given an input image with
the size 512 × 512 and obtain a feature map with size 64 × 64. Similarly, we extract the class tokens
and use their average attention map as a saliency estimation. We then collect and cluster the features
of salient image patches by thresholding the saliency scores. The feature clustering is done by an
off-the-shelf K-means algorithm with four clusters. Finally, we obtain a pseudo ground-truth object
silhouette G by thresholding the minimum feature distance to the center of the clusters.

B.2 Network architecture

In Fig. 8, we provide the architecture of the encoder-decoder model proposed in the main paper. The
architecture comprises two main components: 1) a feature encoder to map the input image into a
low-dimensional feature map that is further used to output a set of global primitive parameters and 2)
a decoder with convolutional layers and a diffeomorphic mapping to predict the local deformation
parameters.

In our experiments, the feature encoder is a ResNet-18 [4] that is pre-trained on ImageNet [2].
From the original architecture, we remove the final fully connected layer and keep only the feature
vector of length 512 after global average pooling. Subsequently, we use two MLP modules and
a fully connected (FC) layer to map this to the global primitive parameters ccam, Rcam, qc, qθ, qs
that correspond to camera translation and rotation, primitive translation and rotation, and global
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Figure 9: LEPARD v.s. LASSIE. We compare LEPARD with LASSIE and show part discovery
results on their self-collected animal image ensembles.

deformations of each primitive part. Each MLP module consists of a fully connected layer with 128
hidden dimensions, an instance normalization, and a Leaky ReLU activation. During training, we use
the pre-trained batch statistics for normalization.

The decoder comprises two convolutional layers with an output size of 128 to map the encoded
feature to a vector filed v0 which is further used as the input of the diffeomorphic mapping. We
employ a Gaussian smoothing layer to map v0 to a stationary velocity field (SVF) v and obtain the
local deformation parameters qd ∈ RN using a scaling and squaring (S&S) layer. We uniformly
sample N =1K points for each primitive part during training.

C Additional Results

Additional comparisons with LASSIE. We show more qualitative results on various animal cate-
gories in Fig. 9 and Fig. 10, comparing our approach with LASSIE. As can be seen in Figs 9 & 10,
LEPARD yields higher quality reconstructions than LASSIE.

Comparison with Hi-LASSIE. In addition to the quantitative comparison with Hi-LASSIE [10]
using their reported numbers in the main paper, in Fig. 11 we provide a visual comparison using
some sample results taken from their paper. We observe that our approach generates more accurate
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Figure 10: LEPARD v.s. LASSIE. We compare LEPARD with LASSIE and show part discovery
results on their self-collected animal image ensembles.
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Figure 11: LEPARD v.s. Hi-LASSIE. We provide results of LEPARD compared to LASSIE [9] and
Hi-LASSIE [10]. The visual results of Hi-LASSIE are taken from [10] as they haven’t released their
code.

3D articulated shapes with finer details than LASSIE and Hi-LASSIE. Moreover, our approach can
preserve the semantic consistency among different species, while Hi-LASSIE uses a variant number
of primitive parts with sub-optimal semantic meaning to reconstruct the shapes of different animal
categories.
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