
A Further discussion

A.1 Task selection

Our primary concern when choosing tasks is mainly the computational cost. With limited computation
resources, we couldn’t afford to run the extensive 5e6 steps for DMC and 2e8 steps for Atari as the
Dreamer papers did. Instead, we only had a 1e6-step budget for DMC and a 1e7-step budget for
Atari. Consequently, in the case of DMC, we focus on choosing tasks from different environments on
which Dreamer can roughly reach convergence in under 1e6 steps. Similarly, for Atari, we focus on
tasks that DreamerV2 could reach convergence within our 1e7 budget. We are certainly enthusiastic
about exploring how TEMPO performs on more challenging tasks in the future.

A.2 Network settings

The architectural configurations of our meta weighter, such as the number of layers and hidden
dimensions, were informally aligned with the network modules employed in DreamerV2. Specifically,
we mirrored the architectural choices found in modules like the reward module of RSSM, the actor,
and the critic, all of which adopt a similar MLP (Multi-Layer Perceptron) structure. Given that these
modules can handle state representation well, it was a logical choice to build a similar architecture
for our meta weighter as well. Perhaps the most important thing we discovered about architecture
design is that batch normalization in the meta weighter greatly boosts the final performance.

For the mapping the network outputs to meta weights, we toyed with weight = σ(output)+ 0.5 and
weight = 0.5× σ(output) + 0.75 initial experiments and didn’t observe a noticeable difference, so
we stuck with the latter in the hope of stable training.

A.3 Tuning strategy

One of the key pursuits when we built TEMPO was to design a paradigm that could outperform
DreamerV2 with little tuning demand. Since TEMPO operates as an additive bonus algorithm,
essentially fine-tuning the training sample weights within DreamerV2, it is quite easy for TEMPO
to at least meet DreamerV2’s performance, resulting in low tuning demand. Specifically, we tuned
TEMPO on DMC Walker Walk and Atari Pong such that meta weighter converges gradually alongside
the RSSM. This is to ensure the weighter doesn’t reach early convergence on a meaningless state
representation. We have no doubt that superior architecture and hyperparameters exist for TEMPO,
and we remain committed to further exploration and refinement.

A.4 Performance analysis

Based on our findings, TEMPO demonstrates a notable advantage over DreamerV2 in specific tasks,
such as Finger Spin, while in others, like Walker Walk, the two methods exhibit similar performance
levels. We hypothesize that the distance between naive state representation from MLE and the
task-aware state representation can vary on different tasks. When the distance is large, meaning that
the features that can effectively lower reconstruction error don’t coincide well with the task-specific
features, DreamerV2 can stuck in learning task-irrelevant features like a local minimum, while
TEMPO’s bi-level learning quickly captures the task-relevant features, and lets the agent performance
snowball. In other tasks, where the distance is not significant, TEMPO can have less advantage.

We also observe that TEMPO shows larger variances in some tasks than others. We suspect the reason
is that, in these tasks, the meta weighter learns too "eagerly" relative to the RSSM, leading to less
meaningful meta weights, potentially disturbing the learning of RSSM. Lowering the learning rate
for the weighter may be helpful in reducing the variance in these tasks.

A.5 Future directions

World models, especially MLE-based models, encode a broad spectrum of environmental dynamics.
They carry the potential of multi-tasking with a single model, presenting a possible way to multi-
tasking agents, even general AI. With the hierarchical environment modeling paradigm that TEMPO
offers, we aspire for it to serve as a foundational framework for enhancing task awareness across
multiple specific tasks within future world models.

1

B Derivations

The variational bound, i.e. Evidence Lower Bound (ELBO), for the Recurrent State-space Model
(RSSM) with a variational posterior q(s1:T |o1:T , a1:T) =

∏T
t=1 q(st|ht, ot), is written as

log p(o1:T , r1:T |a1:T)

= log

∫ T∏
t=1

p(st|ht) · p(ot, rt|st, ht) ds1:T

= log

∫ T∏
t=1

q(st|ht, ot) ·
p(st|ht) p(ot, rt|st, ht)

q(st|ht, ot)
ds1:T

= log Eq(s1:T |o1:T ,a1:T)

[
T∏

t=1

p(st|ht) p(ot, rt|st, ht)

q(st|ht, ot)

]

≥Eq(s1:T |o1:T ,a1:T)

[
T∑

t=1

log p(ot, rt|st, ht) + log p(st|ht)− log q(st|ht, ot)

]

=

T∑
t=1

(
Eq(st|ht,ot)

[
p(ot, rt|st, ht)

]
− Eq(st−1|ht−1,ot−1)

[
KL
[
q(st|ht, ot) ∥ p(st|ht)

]])

(1)

2

C Hyperparameters

Module Name Value

World model Batch size 16

Trajectory length 50

KL balancing 0.8

for DMC Deterministic state dimension 200

Stochastic state dimension 32-dim continuous

Learning rate 3e−4

KL scale 1.0

for Atari Deterministic state dimension 600

Stochastic state dimension 32-dim discrete (32 classes/dim)

Learning rate 2e−4

KL scale 0.1

Agent Imagination horizon 15

Discount factor 0.99

Discount factor for λ-target 0.95

Target critic update interval 100

for DMC Actor learning rate 8e−5

Critic learning rate 8e−5

for Atari Actor learning rate 4e−5

Critic learning rate 1e−4

Meta weighter Number of dense layers 5

Hidden dimension 400

Activation function ELU

Normalization Batch

Learning rate 1e−4

for DMC Input dimension 200 + 2× 32 + 1× 2

for Atari Input dimension 600 + 2× 32× 32 + 1× 2

Common Optimizer Adam

Gradient clipping 100

Adam epsilon 1e−5

Weight decay 1e−6

Table 1: Main hyperparameters of TEMPO. DMC stands for DeepMind Control tasks. We use the
default setting of Dreamerv2 in World model, Agent, and Common. All experiments were run on a
single Nvidia RTX 3090 GPU with Python 3.7 and Tensorflow 2.6. Refer to our sample code for full
implementation details.

3

D Full results on continuous control tasks

Figure 1: Evaluation of TEMPO on continuous control tasks from DeepMind Control Suite. The
lines show mean scores and the shaded areas show the standard deviation across 3 random seeds.

4

E Full results on discrete control tasks

Figure 2: Evaluation of TEMPO on discrete control tasks from Atari video games. The lines show
mean scores and the shaded areas show the standard deviation across 3 random seeds.

5

F Training curves

Figure 3: Training curves of TEMPO on (a) Cartpole Swingup from DeepMind Control Suite and (b)
Bank Heist from Atari, including curves of value estimation, upper objective, lower objective, and
unweighted ELBO. The lines show means and the shaded areas show the standard deviation across 3
random seeds.

6

G Sample weights

Set Type Weights (w1:50) Pearson (r)

1 meta [1.18 1.20 1.20 1.16 1.20 1.04 0.99 0.95 ...] -0.20

naive [1.57 0.27 0.35 1.16 0.52 1.07 0.43 0.78 ...]

2 meta [1.17 1.06 1.08 1.13 0.97 0.93 1.03 1.16 ...] -0.09

naive [0.29 1.17 0.68 0.43 0.35 1.67 1.70 0.70 ...]

3 meta [1.07 1.09 0.88 0.80 1.10 0.91 0.94 0.93 ...] 0.29

naive [2.69 4.74 1.42 1.14 2.39 0.49 0.44 0.39 ...]

4 meta [1.09 1.13 1.01 1.17 1.14 1.09 0.92 0.96 ...] 0.02

naive [0.27 0.28 0.79 0.27 0.34 0.28 0.57 0.32 ...]

Table 2: 4 sets of meta weights and corresponding naive weights after 5e5 steps of training in DMC
Cartpole Swingup. The Pearson correlation coefficients show that there is no apparent linear relation
between the two types of weights.

7

	Further discussion
	Task selection
	Network settings
	Tuning strategy
	Performance analysis
	Future directions

	Derivations
	Hyperparameters
	Full results on continuous control tasks
	Full results on discrete control tasks
	Training curves
	Sample weights

