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Abstract

Aligning the world model with the environment for the agent’s specific task is
crucial in model-based reinforcement learning. While value-equivalent models may
achieve better task awareness than maximum-likelihood models, they sacrifice a
large amount of semantic information and face implementation issues. To combine
the benefits of both types of models, we propose Task-aware Environment Modeling
Pipeline with bi-level Optimization (TEMPO), a bi-level model learning framework
that introduces an additional level of optimization on top of a maximum-likelihood
model by incorporating a meta weighter network that weights each training sample.
The meta weighter in the upper level learns to generate novel sample weights
by minimizing a proposed task-aware model loss. The model in the lower level
focuses on important samples while maintaining rich semantic information in state
representations. We evaluate TEMPO on a variety of continuous and discrete
control tasks from the DeepMind Control Suite and Atari video games. Our
results demonstrate that TEMPO achieves state-of-the-art performance regarding
asymptotic performance, training stability, and convergence speed.

1 Introduction

Reinforcement learning (RL) achieves intelligent behavior by optimizing sequential decision-making
through a trial-and-error process (Sutton and Barto, 2018). While RL has shown outstanding success
in tasks like Go and video games, the enormous quantity of samples required to train such agents
poses great limitations on RL’s application in real-world scenarios involving human operators, real
robots, or computationally expensive simulators (Moerland et al., 2023).

Model-based reinforcement learning (MBRL) aims to enhance the sample efficiency and generaliza-
tion capability of RL agents through two interleaved stages: model learning and behavior learning.
In the model learning stage, an approximate world model of the environment is learned using real
environmental samples to provide the agent with the ability to generate simulated experiences or pre-
dict the outcome of actions. In the behavior learning stage, the agent learns its policy by interacting
with the model without having to take actions in the real environment. This paradigm has received a
lot of attention, and significant progress has been made in both model learning and behavior learning.
(Sutton, 1991; Ha and Schmidhuber, 2018; Janner et al., 2019; Kaiser et al., 2019; Hafner et al.,
2019a; Schrittwieser et al., 2020).

One of the most common approaches to building a model is to learn a deep generative model
through maximum likelihood estimation (MLE) on environmental trajectories (Buesing et al., 2018;
Hafner et al., 2019b,a, 2020; Ozair et al., 2021). Such models can leverage advances in probabilistic
modeling, and can easily be combined with state-of-the-art model-free RL agents for task behavior
(Ha and Schmidhuber, 2018; Kaiser et al., 2019). However, MLE reconstructs all information from
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environmental observations equally, overlooking the information needed for learning specific task
behavior. Since the model is only an approximation of the real environment, model errors can create a
gap between maximizing model return and maximizing environment return, leading to poorly learned
policies (Lambert et al., 2020). Therefore, it is desirable to minimize such a gap by learning a model
that can accurately predict those states that have a higher impact on the agent’s task policy.

Driven by this goal, value equivalent models are designed to predict future state (or state-action)
values rather than the raw observations, such that the model learns to preserve only value-relevant
characteristics of the environment (Farahmand et al., 2017; Schrittwieser et al., 2020; Zhang et al.,
2020; Grimm et al., 2020, 2021; Antonoglou et al., 2021; Nikishin et al., 2022). Nonetheless, such
models often rely on specially-tailored planning algorithms for behavior learning (Schrittwieser
et al., 2020), and may face challenges with implementation and optimization (Farahmand et al.,
2017), constraining their scalability and robustness across different tasks and learning strategies.
Additionally, the substantial amount of semantic information that is discarded during such value-
focused learning can be useful for learning an effective policy.

Is there a favorable trade-off between MLE-based models and value equivalent models, where we
can enjoy the merits of both worlds? In this work, inspired by recent advances in meta-learning
(Nichol et al., 2018; Shu et al., 2019; Jiang et al., 2022), we propose a bi-level framework for model
learning, in which we introduce an additional level of optimization on top of an MLE-based model
by incorporating a meta weighter network that assigns importance weights to each training sample in
the MLE objective function. The meta weighter is then trained to generate novel sample weights by
minimizing a proposed task-aware model loss. Under this hierarchical framework, the meta weighter
in the upper level of optimization learns to prioritize those samples with a positive impact on closing
the task-relevant gap between the environment and model. The model in the lower level is then forced
to focus on important samples, while still learning to reconstruct environmental observations and
thus, form a state representation with rich semantic information to facilitate policy learning. We name
our framework Task-aware Environment Modeling Pipeline with bi-level Optimization (TEMPO).

We build our bi-level framework TEMPO on top of DreamerV2 (Hafner et al., 2020), a powerful
MBRL algorithm with a sequential VAE-like model and an actor-critic agent. A simple approximation
of the gradient is proposed to update the meta weighter efficiently during implementation. We evaluate
the novelty of TEMPO on challenging visual-based RL benchmarks, including both continuous
control tasks from the DeepMind Control Suite (Tassa et al., 2018) and discrete control tasks from
Atari video games (Bellemare et al., 2013). Results show that our framework achieves state-of-the-art
performance compared with model-free RL algorithms, and exceeds the original DreamerV2 in terms
of asymptotic performance, training stability, and convergence speed. Furthermore, we perform
ablation studies to demonstrate the advantage of our proposed meta-weighting mechanism.

2 Task-aware Environment Modeling Pipeline with bi-level Optimization

In this work, we focus on visual-based RL control tasks, which are commonly formulated as partially
observable Markov decision processes (POMDPs) with discrete time steps t ∈ [1 : T ], high-
dimensional observations o1:T (usually images in visual-based cases), continuous or discrete vector-
valued actions a1:T , and scalar rewards r1:T . The observations and rewards are generated by the black-
box environment ot, rt ∼ p(ot, rt|o<t, a<t), with actions generated by the agent at ∼ p(at|o≤t, a<t).
The goal of RL agents is to maximize the expected sum of rewards Ep(

∑T
t=1 rt).

In this section, we first briefly introduce the world model from DreamerV2 (Hafner et al., 2020)
as the foundation of our work. Then, we propose a loss function for evaluating the task awareness
of such a MLE-based world model. Finally, we introduce our main contribution, a bi-level model
learning framework where a meta-weighting mechanism is proposed to subtly combine the world
model with our task-aware model loss.

2.1 The world model

We start with the Recurrent State-Space Model (RSSM) proposed in DreamerV2 (Hafner et al., 2020).
The RSSM is a probabilistic graphical model similar to a sequential VAE (Kingma and Welling, 2013;
Sohn et al., 2015). It conditions on past observations and actions to model the distribution of state
transitions that have occurred in the environment.
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Figure 1: Main workflow of the proposed bi-level model learning paradigm TEMPO, corresponding
to steps 3-8 in Algorithm 1. We start with (a) inferring the states and meta weights with model Mθ,
value function V , and meta weighter Nα, then sequentially perform (b) the lower optimization on the
model and (c) the upper optimization on the meta weighter.

Consider a trajectory τ in the environment, which comprises a sequence of observations, actions,
and rewards τ = {ot, at, rt}Tt=1. The RSSM introduces deterministic states h1:T and stochastic
states s1:T as latent variables for each time step. The observations and rewards are then conditionally
generated from these states. Specifically, the RSSM consists of 4 main components

Deterministic state module: ht = fθ(ht−1, st−1, at−1)

Stochastic state module: st ∼ pθ(st|ht)

Observation & reward module: ot, rt ∼ pθ(ot, rt|ht, st)

Representation module: st ∼ qθ(st|ht, ot)

(1)

The deterministic state module recurrently outputs ht, whereas the stochastic state module, which
corresponds to the prior network in a conditional VAE, predicts the prior st at each time step. These
two state modules work together to perform the state transitions, while the observation & reward
module acts as a decoder to reconstruct ot and rt from ht and st. To enable end-to-end training
through variational inference (Kingma and Welling, 2013), an additional representation module,
which serves as an encoder, is used to infer the posterior st. For clarity, we denote the entire model
together as Mθ with parameters θ.

All components of the model are trained to maximize a variational bound on the trajectory log-
likelihood (also known as the Evidence Lower Bound, ELBO) using gradient-based methods (Kingma
and Welling, 2013). With Jensen’s inequality, the variational bound is written as (see the Appendix
for the full derivation)

log pθ(o1:T , r1:T |a1:T ) ≥ LMLE(τ ; θ) =

T∑
t=1

ELBOt(o≤t, r≤t, a<t; θ)

=

T∑
t=1

(
Eqθ(st|ht,ot)

[
pθ(ot, rt|st, ht)

]
︸ ︷︷ ︸

reconstruction

−Eqθ(st−1|ht−1,ot−1)

[
KL
[
qθ(st|ht, ot) ∥ pθ(st|ht)

]]
︸ ︷︷ ︸

regularization

)

(2)

Here, we denote the objective function as LMLE. For each time step, the variational bound consists
of two terms, i.e. the reconstruction accuracy of ot and rt, and the KL-divergence between the
variational posterior and the predictive prior as a regularization. During model learning, the RSSM
learns the latent dynamics of the environment from real trajectories by predicting future observations
and rewards based on past observations and actions. During behavior learning, the RSSM generates
trajectories by unrolling the state vectors using the deterministic and stochastic state modules given
actions from an agent, allowing the agent to learn task behavior from simulated experiences in the
compact latent state space.
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2.2 The task-aware model loss

The RSSM is a variational world model trained through MLE, which is designed to reconstruct all
information in environmental observations, without taking into account the specific task of the agent.
This can lead to a gap between maximizing model return and actually maximizing environment return.
To understand this, consider a given state-action pair (s, a) and a typical actor-critic RL agent. If the
consequent state predicted by the model is off by ϵ from the ground truth s′, the state value predicted
by the critic will also have an error V (s′ + ϵ)− V (s′). As the actor’s objective is to maximize state
values, such errors in the predicted state values can lead to a sub-optimal policy. Therefore, if we
want to truly align the model and environment for a specific task, it is intuitive to evaluate a model’s
performance using some type of value-relevant metric.

Different from MLE, Farahmand et al. (2017) proposed Value-Aware Model Learning (VAML), a loss
that evaluates a model’s performance by the impact of model errors on the value estimation accuracy.
Given an environment transition distribution p and its model approximation p̂, a distribution over the
state-action space µ, and a value function V , the VAML loss is written as

LVAML(p, p̂;µ, V ) =

∫
µ(s, a)

∣∣∣∣∣
∫

p(s′|s, a)V (s′)ds′︸ ︷︷ ︸
environment value estimate

−
∫

p̂(s′|s, a)V (s′)ds′︸ ︷︷ ︸
model value estimate

∣∣∣∣∣
2

d(s, a) (3)

The primary concept behind VAML is to penalize a model based on the disparity between the state
values of predicted states and those of the ground truth states. However, this loss function has several
critical limitations when it comes to implementation on variational world models like the RSSM. In
particular, VAML requires a value function that works in a pre-defined state space or the original
observation space, while in DreamerV2, the critic from the agent works in the compact latent state
space of the RSSM. Secondly, resolving or approximating the expectations/integrals is challenging in
a realistic RL environment, where the state space is often vast and continuous. Additionally, VAML
compels the model to conserve only the value-relevant characteristics, leading to the rejection of a
considerable amount of semantic information contained in the environmental observations.

To construct a task-aware model loss suitable for evaluating the RSSM in the latent state space, we
explicitly distinguish prior and posterior states, and replace the environment value estimation with
values from the inferred posterior states, model value estimation with values from the predicted
prior states, and the expectations with an empirical summation over a given dataset τ , resulting in a
parsimonious task-aware loss function, which we name V-VAML (Variational VAML)

LV-VAML(τ ;V, θ) =

T∑
t=1

∣∣∣V (spost
t )− V (sprior

t )
∣∣∣2 (4)

Here, we introduce superscripts to differ posterior and prior states. Notice the states are outputs of
the model, and depend on the model’s parameters θ deterministically through reparameterization, i.e.
spost
t (o≤t, a<t; θ) and sprior

t (o<t, a<t; θ). We leave out the inputs for simplicity.

The intuition of V-VAML loss is quite similar to the original VAML loss, yet far easier to implement
given a dataset. It is also evident that LV-VAML has some similarities with the KL regularizer in
LMLE, where a large distance between the posterior and prior is undesirable in both objectives. The
difference is that LV-VAML evaluates the impact of such distance using the value disparity. One could
try somehow replacing the KL regularizer with LV-VAML to achieve task-aware model learning. We
take a different approach and leave that to future works.

2.3 The bi-level framework

We now introduce our proposed meta-weighting mechanism and bi-level framework to subtly fuse
the RSSM and our task-aware loss function into a hierarchical optimization paradigm.

Our intention is to attain task awareness in model learning, while still maintaining an MLE foundation
to preserve abundant semantic information. Inspired by advances in meta-learning (Nichol et al.,
2018; Shu et al., 2019; Jiang et al., 2022), we propose to assign each training sample with different

4



Algorithm 1: Task-aware Environment Modeling Pipeline with bi-level Optimization (TEMPO)
Input: Environmental trajectory τ , world model Mθ, meta weighter Nα, value function V ,

update steps K, learning rate for model η, learning rate for meta weighter λ
1 while θ or α not converged do
2 for update step k = 1 . . .K do
3 Infer states with world model h1:T , s

post
1:T , s

prior
1:T = Mθ(τ) ;

4 Compute values {V (spost
t ), V (sprior

t )}Tt=1 ;
5 Normalize values {V (spost

t ), V (sprior
t )}Tt=1 ← Norm({V (spost

t ), V (sprior
t )}Tt=1);

6 Compute meta weights w1:T = {Nα

(
ht, s

post
t , sprior

t , V (spost
t ), V (sprior

t )
)
}Tt=1 ;

7 Update world model θ ← θ + η · ∂L
lower(τ ;w1:T ,θ)

∂θ ;

8 Update meta weighter α← α− λ · ∂L
upper(τ ;V,θ)

∂θ
∂2Llower(τ ;w1:T ,θ)

∂θ ∂α ;
9 end

10 end

importance weight in a task-aware fashion. To achieve this, we introduce an additional meta weighter
network Nα (with parameters α) that outputs a meta weight wt for each ELBOt(o≤t, r≤t, a<t; θ) in
LMLE, based on the current states and values (Figure 1(a))

wt = Nα

(
ht, s

post
t , sprior

t , V (spost
t ), V (sprior

t )
)

(5)

With these meta weights, the model objective changes from LMLE to a weighted sum of ELBOts.
The meta weights as well as the meta weighter are trained to minimize our task-aware model loss
LV-VAML. This adds another level of optimization on top of the default MLE model learning, forming
a bi-level framework with two hierarchical optimizations of orthogonal objectives, which we name
Task-aware Environment Modeling Pipeline with bi-level Optimization (TEMPO)

min
α
Lupper(τ ;V, θ∗) = LV-VAML(τ ;V, θ∗) =

T∑
t=1

∣∣∣V (spost
t (o≤t, a<t; θ

∗)
)
− V

(
sprior
t (o<t, a<t; θ

∗)
)∣∣∣2

s. t. θ∗ = argmax
θ

Llower(τ ;w1:T , θ) = argmax
θ

T∑
t=1

wt · ELBOt(o≤t, r≤t, a<t; θ)

(6)

Notice that θ∗ depend on meta weights w1:T and parameter α through the gradients of Llower. Under
this bi-level model learning framework, the meta weighter learns to assign importance weight to
training samples regarding their impact on minimizing the task-aware model loss; and the model learns
the environment dynamics through reconstruction while focusing on important training samples.

In practice, as the task behavior of the agent gradually improves, the state values naturally rise,
which will likely lead to larger differences between the posterior and prior state values. If we naively
optimize the meta weighter to minimize Lupper for the upper-level optimization, the meta weighter
may learn to output minimal weight for all training samples to stop the values from rising. Since we
are essentially interested in the relative importance of the samples, we perform a normalization with
moving mean and variance on the state values {V (spost

t ), V (sprior
t )}Tt=1 before computing Lupper.

To implement our TEMPO framework, we alternate between upper-level and lower-level optimization.
That is, we first perform the lower-level optimization on the model parameters θ through a single
gradient update (Figure 1(b))

θ′ = θ + η · ∇θLlower(τ ;w1:T , θ) (7)

where η denotes the learning rate for the model. Then, we perform the upper-level optimization
on the meta weighter parameters α, for which we can simply calculate Lupper using θ′ and take the
gradient w.r.t α
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Figure 2: Evaluation of TEMPO on continuous control tasks from DeepMind Control Suite. (a), a
graphical demonstration of the 9 environments used in the evaluation, from left to right: Acrobot,
Cartpole, Cheetah, Cup, Finger, Hopper, Pendulum, Quadruped, and Walker. (b), the evaluation
curves of 3 seeds and their average significance, with lines showing the mean scores, and shaded
areas showing the standard deviations.

∇αLupper(τ ;V, θ′) =
∂Lupper(τ ;V, θ′)

∂θ′
∂θ′

∂α

=
∂Lupper(τ ;V, θ′)

∂θ′
∂2Llower(τ ;w1:T , θ)

∂θ ∂α

(8)

However, the problem with this direct approach is that we need to infer the states (i.e. h1:T , s
post
1:T , s

prior
1:T )

twice, one time for each objective, for they come from different model parameters (i.e. θ and θ′).
Therefore, to cut down the computational cost, we propose to empirically approximate θ′ with θ,
since they are only one update away. This results in an elegant update formula for α (Figure 1(c))

α′ =α− λ · ∇αLupper(τ ;V, θ′)

≈α− λ · ∂L
upper(τ ;V, θ)

∂θ

∂2Llower(τ ;w1:T , θ)

∂θ ∂α

(9)

It is evident that, with Equation 9, the upper-level objective and lower-level objective are both
calculated with the same set of states, which allows us to infer the states only once during an epoch
of bi-level optimization. See Algorithm 1 for a pseudocode of our bi-level model-learning paradigm
and Figure 1 for a graphical demonstration.

3 Experiments

3.1 Experimental setup

We implement our TEMPO framework on top of DreamerV2 using the official implementation of
Hafner et al. (2020). Specifically, we build the meta weighter to be a 5-layer dense network (MLP)
with concatenated states as input (see Equation 5) and scalar meta weight as output. All hidden
dimensions of the network are set to 400. Batch normalization (Ioffe and Szegedy, 2015) and ELU
(Clevert et al., 2015) activation are performed after each hidden layer. A sigmoid function and an
additive bias are applied to the meta weights after the output layer, so that the weights center around
1, i.e. weight = 0.5× σ(output) + 0.75. An Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 1e−4 is used for updating the meta weighter. We leave the RSSM, the actor-critic agent, as
well as all related settings from DreamerV2 untouched and fix the above configuration across all
following experiments.
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Figure 3: Evaluation of TEMPO on discrete control tasks from Atari video games. (a), a graphical
demonstration of the 6 Atari games used in the evaluation, from left to right: Bank Heist, Crazy
Climber, Freeway, Hero, Kangaroo, and Pong. (b), the evaluation curves of 3 seeds and their average
significance, with lines showing the mean scores, and shaded areas showing the standard deviations.

We use 9 continuous control tasks from the DeepMind Control (DMC) Suite (Tassa et al., 2018)
(i.e. Acrobot Swingup, Cartpole Swingup, Cheetah Run, Cup Catch, Finger Spin, Hopper Stand,
Pendulum Swingup, Quadruped Walk, and Walker Walk), and 6 discrete control tasks from Atari
video games (Bellemare et al., 2013) (i.e. Bank Heist, Crazy Climber, Freeway, Hero, Kangaroo, and
Pong), to evaluate the performance of TEMPO.

We pit TEMPO against the original DreamerV2 and a number of state-of-the-art model-free RL
agents including D4PG (Barth-Maron et al., 2018), A3C (Mnih et al., 2016), IQN (Dabney et al.,
2018), and Rainbow (Hessel et al., 2018). For the model-free agents, we use the results reported by
Tassa et al. (2018) and Castro et al. (2018). For DreamerV2, we use the default hyperparameters
provided by Hafner et al. (2020) in all experiments. More importantly, we fix these hyperparameters
in the corresponding parts of our TEMPO framework (i.e. the RSSM and the actor-critic agent) for a
fair comparison.

Figure 4: Training curve TEMPO on Cart-
pole Swingup from DeepMind Control
Suite. The lines show the means and
shaded areas show the standard deviations
of 3 seeds.

We tuned TEMPO on DMC Walker Walk and Atari Pong
such that meta weighter converges gradually alongside
the RSSM. This is to ensure the weighter doesn’t reach
early convergence on a meaningless state representation.
Empirically, TEMPO trains stably, and both objectives
reach convergence after sufficient training (Figure 4).
Refer to the Appendix for further detailed settings.

Following Henderson et al. (2018), we perform signif-
icance testing to examine TEMPO’s superiority. In par-
ticular, we perform the one-tailed Welch’s t-test (Welch,
1947) on TEMPO’s and DreamerV2’s results for every
evaluation during the training process, and report the
average t and p over all evaluations.

Furthermore, to verify the effectiveness and novelty
of the proposed meta-weighting mechanism, we com-
pare TEMPO’s meta-weighting mechanism with naively
weighting the training samples using the task-aware
model losses. We also perform ablation studies on dif-
ferent inputs of the meta weighter network and different
hyperparameters.
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Figure 5: Ablation studies. The lines show the mean scores and shaded areas show the standard
deviations of 3 seeds. (a), comparison with naive weighting strategy. (b), Comparison of different
meta weighter inputs. Capital letters denote different parts of input: deterministic states (D), stochastic
states (S), and state values (V).

3.2 Continuous control

A subset of the DeepMind Control Suite with 9 tasks is used to evaluate TEMPO’s performance
in continuous control situations. The tasks are each from a different environment, as illustrated in
Figure 2(a). Environmental observations are RGB images of shape 64× 64× 3; actions range from 1
to 12 dimensions; each episode starts with a randomized initial state and lasts for 1000 steps. We
follow the protocol described by Hafner et al. (2020) and set the stochastic latent variable (i.e. st) of
DreamerV2 and TEMPO to be a 32-dim continuous vector following Gaussian distribution.

We evaluate the TEMPO agent’s environment return every 1e4 environmental steps, and compare the
results with those of DreamerV2 and the final performance of D4PG and A3C after 1e8 steps. The
results of 3 tasks are illustrated in Figure 2(b), where TEMPO achieved state-of-the-art performance
in all tasks. Specifically, TEMPO reached or exceeded the performance of D4PG and A3C within
only 1e6 environmental steps, far less than 1e8 steps. Moreover, TEMPO exceeded DreamerV2 in
terms of asymptotic performance, training stability, and convergence speed, which demonstrates the
advantage of TEMPO’s task-aware model learning paradigm under continuous task settings. Refer to
the Appendix for full results on all 9 tasks.

3.3 Discrete control

We then evaluate TEMPO’s performance on discrete control tasks with 6 Atari video games, as
illustrated in Figure 3(a). The actions range from 3 to 18 dimensions. We render the environmental
observations as gray-scale images of shape 64× 64× 1, and set the stochastic latent variable (i.e. st)
to be a 32-column discrete matrix with each column being a 32-dim one-hot vector from a categorical
distribution, following Hafner et al. (2020).

Due to limited computational resources, we train TEMPO and DreamerV2 for 1e7 environmental
steps. We evaluate the TEMPO agent’s environment return every 1e5 steps, and compare the results
with those of DreamerV2 and the final performance of IQN and Rainbow after 1e7 steps. The
results of 3 games are shown in Figure 3(b), where TEMPO again achieved top performance and
exceeded the original DreamerV2. This demonstrates TEMPO’s superiority and robustness under
both continuous and discrete task settings. Refer to the Appendix for full results on all 6 games.
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Figure 6: Comparison of different hyperparameters of the meta weighter. The lines show the mean
scores and shaded areas show the standard deviations of 3 seeds.

3.4 Comparison with naive weighting strategy

In TEMPO, the meta weighter, a deep neural network, generates the meta weights based on state
information. Given that the meta weighter is trained to minimize our task-aware model loss, one
may naturally wonder: is it viable to naively use the losses themselves as sample weights, assigning
greater weights to samples with larger value disparities? To compare this straightforward weighting
approach with our TEMPO framework, we initially normalize the task-aware model losses of each
time step in a training trajectory using a moving mean and variance. Subsequently, we add 1 to these
normalized losses to obtain the final naive sample weights, roughly centering the weights around 1.
As illustrated in Figure 5(a), the naive weighting strategy exhibits strong instability during training,
and fails to gain comparable results as TEMPO.

3.5 Comparison of different meta weighter inputs

In our initial design, the meta weighter generates sample weights by considering three key components
of information: deterministic state ht, stochastic states spost

t and sprior
t , and state values V (spost

t ) and
V (sprior

t ) (see Equation 5). To justify our design, we conduct an ablation study on the inputs to assess
the impact of these inputs on the agent’s performance. We sequentially remove the state values and
deterministic state from the input, and compare the outcomes with our original TEMPO configuration.
As illustrated in Figure 5(b), removing the two parts of input causes the agent to converge slower,
and introduces additional instability and variance in the agent’s performance. Notably, removing the
deterministic states severely affects the outcome performance. This demonstrates the significance of
the information encapsulated within these deterministic states.

3.6 Comparison of different hyperparameters

To examine the robustness of TEMPO’s meta-weighting mechanism, we perform simple ablation
studies on a number of important hyperparameters of the meta weighter, including hidden dimension,
the number of dense layers, the choice of nonlinear activation function, and the normalization
method. The results, depicted in Figure 6, clearly demonstrate TEMPO’s robustness, especially in
the face of reduced hidden dimensions and altered activation functions. While modification to the
normalization method and decrease in the number of layers does affect performance, TEMPO can
consistently maintain an advantage over DreamerV2 during the initial stages of training, ensuring
quicker convergence. Overall, TEMPO proves to be highly adaptable to various hyperparameters.
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4 Related work

Model learning in partially observable MBRL problems has drawn large interest in related works.
A straightforward way for model learning is to learn the dynamics of an environment by fitting the
observations from before and after environment transitions, either deterministically or stochastically
(Oh et al., 2015; Chiappa et al., 2017; Kaiser et al., 2019). We call this type of model observation-space
models. Simulated trajectories can be obtained by unrolling the model in the original observation
space, which facilitates behavior learning in a Dyna fashion (Sutton, 1991). For example, SimPLe
(Kaiser et al., 2019) proposed a video prediction network for pixel-level prediction on environmental
observations, where a PPO (Schulman et al., 2017) agent is trained using the predictions to achieve
behavior learning for Atari games.

However, modeling high-dimensional image observations is unavoidably computationally intensive.
Latent state-space models overcome this limitation by constructing a compact latent space to char-
acterize the environmental states behind each observation, which minimizes the memory footprint
during model unrolling (Watter et al., 2015; Wahlström et al., 2015; Buesing et al., 2018; Gelada et al.,
2019; Hafner et al., 2019b,a, 2020; Ozair et al., 2021). Based on the RSSM, Dreamer (Hafner et al.,
2019a) and DreamerV2 (Hafner et al., 2020) enable behavior learning by constructing an actor-critic
agent that maximizes state values by propagating their analytic gradients back through the dynamics
learned by the model. Ozair et al. (2021) proposed a stochastic state-space model based on VQ-VAE
(Van Den Oord et al., 2017), which is then combined with Monte Carlo tree search (MCTS (Coulom,
2007)) for task behavior.

Observation-space models and state-space models can both be categorized as MLE-based models
that learn environment dynamics through reconstruction. With these models, model errors are likely
to compound during unrolling. Value-equivalent models intend to minimize such errors and improve
task awareness by focusing on end-to-end value prediction (Tamar et al., 2016; Silver et al., 2017;
Farquhar et al., 2017; Farahmand, 2018; Hubert et al., 2021). Specifically, methods like the Predictron
(Silver et al., 2017), Value Prediction Network (VPN (Oh et al., 2017)), MuZero (Schrittwieser et al.,
2020), and Stochastic MuZero (Antonoglou et al., 2021) aims to form a state representation that
can help a parametric value function make accurate value predictions. Other methods like VAML
(Farahmand et al., 2017) and VaGraM (Voelcker et al., 2022) design task/value-aware model losses
that minimize value prediction disparities from a given value function.

Although we base TEMPO on the RSSM and VAML in this work, TEMPO is orthogonal to the
design of MLE-based world models (lower level) and task-aware model loss (upper level). On one
hand, one can find a suitable task-aware model loss to evaluate a MLE-based model (e.g. VAML for
observation-space models and our V-VAML for state-space models), and build a bi-level optimization
to train the model in a TEMPO fashion. On the other hand, one can replace our V-VAML loss with
another task-aware model loss (e.g. VaGraM) by making modifications similar to V-VAML.

5 Limitation and discussion

We present TEMPO, a task-aware framework for learning world models. The framework is driven
by a meta-weighting mechanism and a novel task-aware loss function under a bi-level optimization.
TEMPO achieves state-of-the-art performance on a variety of continuous and discrete control tasks,
while demonstrating better asymptotic performance, training stability, and convergence speed. Abla-
tion studies are performed to justify our method. The main limitation of our work is that TEMPO is
more computationally demanding than previous model learning methods, as it involves two loops of
optimization. In our experiments, we observed that TEMPO trains around 40% slower and requires
80% more RAM than DreamerV2. Nonetheless, TEMPO contributes significant insights and opens
up an exciting new avenue for environment modeling. We aspire that TEMPO will serve as a catalyst
for novel ideas and approaches for model-based RL in the future. A sample code of TEMPO is
available at https://github.com/deng-ai-lab/TEMPO.
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A Further discussion

A.1 Task selection

Our primary concern when choosing tasks is mainly the computational cost. With limited computation
resources, we couldn’t afford to run the extensive 5e6 steps for DMC and 2e8 steps for Atari as the
Dreamer papers did. Instead, we only had a 1e6-step budget for DMC and a 1e7-step budget for
Atari. Consequently, in the case of DMC, we focus on choosing tasks from different environments on
which Dreamer can roughly reach convergence in under 1e6 steps. Similarly, for Atari, we focus on
tasks that DreamerV2 could reach convergence within our 1e7 budget. We are certainly enthusiastic
about exploring how TEMPO performs on more challenging tasks in the future.

A.2 Network settings

The architectural configurations of our meta weighter, such as the number of layers and hidden
dimensions, were informally aligned with the network modules employed in DreamerV2. Specifically,
we mirrored the architectural choices found in modules like the reward module of RSSM, the actor,
and the critic, all of which adopt a similar MLP (Multi-Layer Perceptron) structure. Given that these
modules can handle state representation well, it was a logical choice to build a similar architecture
for our meta weighter as well. Perhaps the most important thing we discovered about architecture
design is that batch normalization in the meta weighter greatly boosts the final performance.

For the mapping the network outputs to meta weights, we toyed with weight = σ(output)+ 0.5 and
weight = 0.5× σ(output) + 0.75 initial experiments and didn’t observe a noticeable difference, so
we stuck with the latter in the hope of stable training.

A.3 Tuning strategy

One of the key pursuits when we built TEMPO was to design a paradigm that could outperform
DreamerV2 with little tuning demand. Since TEMPO operates as an additive bonus algorithm,
essentially fine-tuning the training sample weights within DreamerV2, it is quite easy for TEMPO
to at least meet DreamerV2’s performance, resulting in low tuning demand. Specifically, we tuned
TEMPO on DMC Walker Walk and Atari Pong such that meta weighter converges gradually alongside
the RSSM. This is to ensure the weighter doesn’t reach early convergence on a meaningless state
representation. We have no doubt that superior architecture and hyperparameters exist for TEMPO,
and we remain committed to further exploration and refinement.

A.4 Performance analysis

Based on our findings, TEMPO demonstrates a notable advantage over DreamerV2 in specific tasks,
such as Finger Spin, while in others, like Walker Walk, the two methods exhibit similar performance
levels. We hypothesize that the distance between naive state representation from MLE and the
task-aware state representation can vary on different tasks. When the distance is large, meaning that
the features that can effectively lower reconstruction error don’t coincide well with the task-specific
features, DreamerV2 can stuck in learning task-irrelevant features like a local minimum, while
TEMPO’s bi-level learning quickly captures the task-relevant features, and lets the agent performance
snowball. In other tasks, where the distance is not significant, TEMPO can have less advantage.

We also observe that TEMPO shows larger variances in some tasks than others. We suspect the reason
is that, in these tasks, the meta weighter learns too "eagerly" relative to the RSSM, leading to less
meaningful meta weights, potentially disturbing the learning of RSSM. Lowering the learning rate
for the weighter may be helpful in reducing the variance in these tasks.

A.5 Future directions

World models, especially MLE-based models, encode a broad spectrum of environmental dynamics.
They carry the potential of multi-tasking with a single model, presenting a possible way to multi-
tasking agents, even general AI. With the hierarchical environment modeling paradigm that TEMPO
offers, we aspire for it to serve as a foundational framework for enhancing task awareness across
multiple specific tasks within future world models.
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B Derivations

The variational bound, i.e. Evidence Lower Bound (ELBO), for the Recurrent State-space Model
(RSSM) with a variational posterior q(s1:T |o1:T , a1:T ) =

∏T
t=1 q(st|ht, ot), is written as

log p(o1:T , r1:T |a1:T )

= log

∫ T∏
t=1

p(st|ht) · p(ot, rt|st, ht) ds1:T

= log

∫ T∏
t=1

q(st|ht, ot) ·
p(st|ht) p(ot, rt|st, ht)

q(st|ht, ot)
ds1:T

= log Eq(s1:T |o1:T ,a1:T )

[
T∏

t=1

p(st|ht) p(ot, rt|st, ht)

q(st|ht, ot)

]

≥Eq(s1:T |o1:T ,a1:T )

[
T∑

t=1

log p(ot, rt|st, ht) + log p(st|ht)− log q(st|ht, ot)

]

=

T∑
t=1

(
Eq(st|ht,ot)

[
p(ot, rt|st, ht)

]
− Eq(st−1|ht−1,ot−1)

[
KL
[
q(st|ht, ot) ∥ p(st|ht)

]])

(10)
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C Hyperparameters

Module Name Value

World model Batch size 16

Trajectory length 50

KL balancing 0.8

for DMC Deterministic state dimension 200

Stochastic state dimension 32-dim continuous

Learning rate 3e−4
KL scale 1.0

for Atari Deterministic state dimension 600

Stochastic state dimension 32-dim discrete (32 classes/dim)

Learning rate 2e−4
KL scale 0.1

Agent Imagination horizon 15

Discount factor 0.99

Discount factor for λ-target 0.95

Target critic update interval 100

for DMC Actor learning rate 8e−5
Critic learning rate 8e−5

for Atari Actor learning rate 4e−5
Critic learning rate 1e−4

Meta weighter Number of dense layers 5

Hidden dimension 400

Activation function ELU

Normalization Batch

Learning rate 1e−4
for DMC Input dimension 200 + 2× 32 + 1× 2

for Atari Input dimension 600 + 2× 32× 32 + 1× 2

Common Optimizer Adam

Gradient clipping 100

Adam epsilon 1e−5
Weight decay 1e−6

Table 1: Main hyperparameters of TEMPO. DMC stands for DeepMind Control tasks. We use the
default setting of Dreamerv2 in World model, Agent, and Common. All experiments were run on a
single Nvidia RTX 3090 GPU with Python 3.7 and Tensorflow 2.6. Refer to our sample code for full
implementation details.
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D Full results on continuous control tasks

Figure 7: Evaluation of TEMPO on continuous control tasks from DeepMind Control Suite. The
lines show mean scores and the shaded areas show the standard deviation across 3 random seeds.
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E Full results on discrete control tasks

Figure 8: Evaluation of TEMPO on discrete control tasks from Atari video games. The lines show
mean scores and the shaded areas show the standard deviation across 3 random seeds.
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F Training curves

Figure 9: Training curves of TEMPO on (a) Cartpole Swingup from DeepMind Control Suite and (b)
Bank Heist from Atari, including curves of value estimation, upper objective, lower objective, and
unweighted ELBO. The lines show means and the shaded areas show the standard deviation across 3
random seeds.
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G Sample weights

Set Type Weights (w1:50) Pearson (r)

1 meta [1.18 1.20 1.20 1.16 1.20 1.04 0.99 0.95 ...] -0.20

naive [1.57 0.27 0.35 1.16 0.52 1.07 0.43 0.78 ...]

2 meta [1.17 1.06 1.08 1.13 0.97 0.93 1.03 1.16 ...] -0.09

naive [0.29 1.17 0.68 0.43 0.35 1.67 1.70 0.70 ...]

3 meta [1.07 1.09 0.88 0.80 1.10 0.91 0.94 0.93 ...] 0.29

naive [2.69 4.74 1.42 1.14 2.39 0.49 0.44 0.39 ...]

4 meta [1.09 1.13 1.01 1.17 1.14 1.09 0.92 0.96 ...] 0.02

naive [0.27 0.28 0.79 0.27 0.34 0.28 0.57 0.32 ...]

Table 2: 4 sets of meta weights and corresponding naive weights after 5e5 steps of training in DMC
Cartpole Swingup. The Pearson correlation coefficients show that there is no apparent linear relation
between the two types of weights.
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