
Generator Born from Classifier

Runpeng Yu Xinchao Wang:

National University of Singapore
r.yu@u.nus.edu xinchao@nus.edu.sg

Abstract

In this paper, we make a bold attempt toward an ambitious task: given a pre-trained
classifier, we aim to reconstruct an image generator, without relying on any data
samples. From a black-box perspective, this challenge seems intractable, since it
inevitably involves identifying the inverse function for a classifier, which is, by
nature, an information extraction process. As such, we resort to leveraging the
knowledge encapsulated within the parameters of the neural network. Grounded
on the theory of Maximum-Margin Bias of gradient descent, we propose a novel
learning paradigm, in which the generator is trained to ensure that the convergence
conditions of the network parameters are satisfied over the generated distribution of
the samples. Empirical validation from various image generation tasks substantiates
the efficacy of our strategy.

1 Introduction

The majority of machine learning research bifurcates into two distinct branches of study: the predictive
task and the generative task. Given the input x and the label y, the former one focuses on the training
of a high-performing classifier or regressor, which approximates ppy|xq [Vaswani et al., 2023,
Dosovitskiy et al., 2021, Jing et al., 2023], whereas the latter one aims to train a generative model
capable of sampling from ppx|yq or ppx, yq [Goodfellow et al., 2014]. The gap between the predictive
and the generative models, as a result, predominantly arises from the lack of information in the
predictive models about the marginal distribution ppxq. In the realm of deep neural networks, however,
the over-parameterization leads to the overfitting on the training distribution and the memorization of
the training samples [Feldman and Zhang, 2020, Daniely, 2020, Arpit et al., 2017], which, in turn,
make the network implicitly retain information about ppxq. With this component in hand, it prompts
the question of whether it is feasible to derive a generative model from a predictive one.

In this paper, we explore this novel task, which attempts to learn a generator directly from a pre-
trained classifier, without the assistance of any training data. Unarguably, this is a highly ambitious
task with substantial difficulty, as either explicitly extracting information about ppxq from a pre-
trained classifier or directly solving this inverse problem from classifier to generator poses significant
challenges. Despite these challenges, the value of this task lies in its potential to offer a new approach
to training generators that mitigates the direct dependence on large volumes of training data. This
provides a possible solution for learning tasks in scenarios where data is scarce or unavailable.
Moreover, this task presents a novel way to utilize and analyze the pre-trained predictive models,
facilitating our understanding of the encoded information within the parameters.

To this end, we propose a novel learning scheme. Our approach is grounded in the theory of
Maximum-Margin Bias of gradient descent, which demonstrates that the parameters of a neural
network trained via gradient descent will converge to the solution of a specific optimization problem.
This optimization problem minimizes the norm of the neural network parameters while maximizing
the classification margin on the training dataset. The necessary condition for the solution of this

: Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(a) MNIST (b) CelebA

Figure 1: Images produced by the generator trained only using pre-trained classifier. The generated
images, positioned in the first row, are accompanied by their nearest neighbors from the original
dataset, displayed in the second row.
optimization problem constructs a system of equations, describing the relationship between the
pre-trained neural network parameters and the training data distribution.

Since our aim is to learn a generator from the pre-trained classifier parameters, the generator
is therefore expected to approximate a distribution that satisfies the necessary condition of this
optimization problem. To accomplish this, we design the loss function for training the generator
and the corresponding training algorithm based on the necessary condition. The entire training
process does not rely on any training data; all available information related to the pre-trained data is
encapsulated within the parameters of the pre-trained classifier.

The intuition behind our design is twofold: on one hand, the generator should guarantee that the
pre-trained classifier performs well under the data distribution it approximated, and on the other
hand, the generator should ensure that the current classifier parameters are the convergence point of
the gradient descent algorithm under the data distribution it approximated. It’s noteworthy that the
original data distribution naturally satisfies these conditions. Therefore, we anticipate that employing
the proposed method will guide the generator to discover the original data distribution.

We conduct experiments on commonly used image datasets. Fig. 1 shows some generated images of
the MNIST and CelebA datasets. Remarkably, even trained without access to the original data, the
generator is able to perform conditional sampling and generate the digits and faces.

Our contribution is therefore a novel approach that, for the first time, attempts to train a generator from
a pre-trained classifier without utilizing training data. The proposed approach produces encouraging
results on synthetic and real-world images.

A list of symbols utilized in this paper and corresponding descriptions can be found in the Appendix.

2 Related Work

Generative Adversarial Networks. Generative Adversarial Network (GAN) consists of a generator
and a discriminator collectively optimizing a minimax problem to learn and replicate the original
data distribution [Goodfellow et al., 2014]. Numerous extensions of the original GAN have been
investigated, including functionality enhancement [Chen et al., 2016, Mirza and Osindero, 2014,
Odena et al., 2017, Donahue et al., 2017]; architecture optimization and scaling [Karras et al., 2018,
Brock et al., 2019, Denton et al., 2015]; and training loss design [Nowozin et al., 2016, Arjovsky et al.,
2017, Wei et al., 2018]. Owing to their superior generation quality, GANs have found wide-ranging
applications in image synthesis [Yang et al., 2017b], blending [Wu et al., 2017], inpainting [Yeh et al.,
2017, Yang et al., 2017a, Yu et al., 2018], super-resolution [Ledig et al., 2017], denoising [Linh et al.,
2020]; image-to-image translation [Zhu et al., 2017, Isola et al., 2017]; 3D object generation [Wu
et al., 2016]; video generation [Vondrick et al., 2016, Tulyakov et al., 2018]; etc.

Both our work and GAN require an additional classifier to guide the training of the generation and
provide a measure of authenticity for generated data. However, in the GAN framework, the classifier
is trained concurrently with the generator, with the explicit goal of discerning the quality of generated
results. In contrast, our method utilizes a pre-trained classifier, which can be arbitrary, and its training
objective is to maximize classification accuracy, not to judge the quality of generated results. This
imbues our approach with considerable flexibility. Furthermore, during the training of GAN, the
generator has access to training data. However, in our task, the training data is not available to the
generator, which makes our task harder.

Feature Visualization and Model Inversion. Besides our task, neural network feature visualization
and model inversion share the objective of extracting information relevant to the training data from

2

pre-trained classifiers. Neural network feature visualization is a technique aimed at identifying input
data that maximally activates specific neurons or layers within the network, thereby providing insights
into the patterns or features that the network is primed to recognize. [Engstrom et al., 2019, Olah
et al., 2017, Nguyen et al., 2016] Model inversion in neural networks refers to the process of inferring
or reconstructing input data given the trained model. [Yin et al., 2020] In the realm of adversarial
attacks, model inversion is deployed to discover sensitive information about the training data from
the model’s outputs. [He et al., 2019, Zhao et al., 2021, Fredrikson et al., 2015]

Unlike these tasks, where an independent gradient optimization is required for each generation, our
goal is to develop a generator capable of sampling from the training data distribution. While there is
research in neural network feature visualization and model inversion that utilizes a generative model
to assist in the restoration of specific training data, these works typically employ the generator more
as a prior for the recovery process. [Nguyen et al., 2017, Jeon et al., 2021, Yang et al., 2019, Zhang
et al., 2020] The training of such a generator necessitates additional training data, which should be
similar to or encompass the original training data used for the classifier. In contrast, our approach
directly derives a generator from the classifier without the utilization of extraneous training data.

Energy-Based Model. Within the framework of energy-based models, pre-trained classifiers have
also been demonstrated to be capable of acting as a conditional probability distribution, generating
data samples. [LeCun et al., 2006, Grathwohl et al., 2020, Guo et al., 2023] Although the energy-
based models theoretically bridge predictive and generative models, practical implementation for
sample generation based on it still relies on an optimization target and executes a multi-step gradient
optimization process, akin to model inversion. In contrast, our objective is to develop a generator
with the ability for random or condition-based sampling, procuring data samples directly through the
forward pass of the neural network.

Maximum-Margin Bias of Gradient Descent. Our work is based on the study of the Maximum-
Margin Bias of gradient descent. These investigations primarily seek to elucidate why gradient
descent algorithms are capable of learning models with robust generalization capabilities, even in
the absence of additional regularization constraints. It has been discovered that under the guidance
of gradient descent, the parameters of a neural network converge to a solution to an optimization
problem aiming to maximize the classification boundary while concurrently minimizing the norm of
the network parameters. Initial studies focused on linear logistic regression models [Rosset et al.,
2003, Soudry et al., 2018], which were subsequently extended to homogeneous neural networks [Wei
et al., 2019, Xu et al., 2018, Nacson et al., 2019, Lyu and Li, 2020b, Ji and Telgarsky, 2020, Le and
Jegelka, 2022] and, more recently, to a broader class of quasi-homogeneous neural networks [Kunin
et al., 2023]. The theory of Maximum-Margin Bias has also been leveraged by Haim et al. [2022]
to recover training data. However, their objective was the restoration of data rather than training
a generator, and their work was exclusively confined to binary classification datasets and fully
connected networks without bias terms.

3 Preliminary

To extract the information about the training dataset from the parameters of the pre-trained classifica-
tion model, we leverage the theory of Maximum-Margin Bias.

Let Φp¨; ζq : Rd Ñ Y denote the classifier parameterized by ζ and trained on multi-class classification
dataset D “ tpxi, yiquNi“1 with each pxi, yiq P Rd ˆY . let Lpζq :“

řN
i“1 lpΦpxi; ζq, yiq denote the

standard cross-entropy loss of Φ on D. To extend the applicability of Maximum-Margin Bias analysis
to various neural network structures, the definition of the Λ-quasi-homogeneous model is introduced.
For a (non-zero) positive semi-definite diagonal matrix Λ , a model Φp¨; ζq is Λ-quasi-homogeneous if
the model output scales as Φpx;ψαpζqq “ eαΦpx; ζq for all α P R and input x, when the parameter
scales as ψαpζq :“ eαΛζ . Many commonly used neural network architectures satisfy the definition of
Λ-quasi-homogeneous model, such as convolutional neural networks and fully connected networks
with biases, residual connections, and normalization layers. The seminorm of ζ corresponding to
Λ is defined as ||ζ||2Λ :“ ζTΛζ. Let λmax :“ maxj Λjj denote the maximal element in Λ, Λ̃ is
the matrix setting all elements less than λmax to 0, i.e., Λ̃jj “ λmax if Λjj “ λmax, otherwise,
Λ̃jj “ 0. Accordingly, the seminorm of ζ corresponding to Λ̃ is defined as ||ζ||2

Λ̃
:“ ζT Λ̃ζ. The

3

normalized parameters is defined as ζ̄ :“ ψτ pζq, such that }ζ̄}2Λ “ 1. The Quasi-Homogeneous
Maximum-Margin Theorem states as follows.

Theorem 1 (Paraphrased from [Kunin et al., 2023]). Let Φp¨; ζq denote a Λ-quasi-homogeneous
classifier trained on D with cross-entropy loss L. Assume that: (1) for any fixed x, Φpx; ζq is locally
Lipschitz and admits a chain rule [Davis et al., 2020, Lyu and Li, 2020a]; (2) the learning dynamic is
described by a gradient flow [Lyu and Li, 2020a]; (3) limtÑ8 ζ̄ptq exists; (4) Dκ ą 0 such that only ζ
with ||ζ||Λmax

ě κ separates the training data; and (5) Dt0 such that Lpζpt0qq ă N´1 log 2. Dα P R
such that ζ̃ :“ ψαplimtÑ8 ζ̄ptqq is a first-order stationary point of the following maximum-margin
problem

min
ζ1

1

2
||ζ 1||2

Λ̃
(1a)

s. t. min
cPY{tyiu

Φyipxi; ζ
1q ´ Φcpxi; ζ

1q ě 1 @i P rN s, (1b)

where Φcp¨; ζ 1q is the prediction of Φ for the class c P Y .

4 Method

Theorem 1 implies that the neural network parameters converge to the first-order stationary point
(or the Karush–Kuhn–Tucker point (KKT) point) of the optimization problem in Eq. (1). Let
tµicuiPrNs,cPY{tyiu denote the set of KKT multipliers, the KKT condition can be written as follows.

Λ̃ζ̃ “
ÿ

iPrNs

ÿ

cPY{tyiu

µicr∇ζ̃Φcpxi; ζ̃q ´ ∇ζ̃Φyipxi; ζ̃qs; (2a)

for all i P rN s, and c P Y{tyiu :

Φyipxi; ζ̃q ´ Φcpxi; ζ̃q ě 1, (2b)
µic ě 0, (2c)

µicr1 ` Φcpxi; ζ̃q ´ Φyipxi; ζ̃qs “ 0, (2d)

where the Eqs. (2a) to (2d) are known as the stationarity condition, primal feasibility condition, dual
feasibility condition, and the complementary slackness condition, respectively.

The intuition behind the stationarity condition can be summarized as follows. According to the value
of the corresponding element in Λ, the neural network parameters can be divided into two groups:
the first group Z1 :“ tζ̃j |Λjj “ λmaxu includes all the parameters whose corresponding elements
in Λ are equal to λmax, and the second set Z2 :“ tζ̃j |Λjj ‰ λmaxu contains all the parameters
whose corresponding elements in Λ are not equal to λmax. The stationarity condition in Eq. (2a)
evaluates the linear combination of the derivatives of the neural network output corresponding to
the parameters, with KKT multipliers tµicuiPrNs,cPY{tyiu as coefficients of the combination. Such a
linear combination of the derivatives corresponding to the parameters in Z1 is equal to the parameters
in Z1. In contrast, such a linear combination of the derivatives corresponding to the parameters in Z2

is equal to a zero vector.

The intuition behind other conditions can be summarized as follows. According to the complementary
slackness condition in Eq. (2d), µic is nonzero only when Φyipxi; ζ̃q´Φcpxi; ζ̃q “ 1. Two conditions
are required for µic to be nonzero. First, for a pair of pi, cq, µic can only be nonzero when c
is the class with the second largest predicted probability for the sample xi, i.e., c P Si, where
Si :“ ty|Φypxi; ζ̃q “ maxy1PY{tyiu Φy1 pxi; ζ̃qu. Second, according to primal feasibility in Eq. (2b),
the minimum possible value of Φyipxi; ζ̃q ´ Φcpxi; ζ̃q is 1. Therefore, for a pair of pi, cq, µic can
only be nonzero when the margin between the true class yi and the class with the second largest
predicted probability for the sample xi is minimum.

The evaluation of ∇ζ̃Φp¨; ζ̃q and Φp¨; ζ̃q requires to first scale all parameters of a pre-trained network.
For the convenience of practical implementation and following derivation, we transform ζ̃ back to ζ
using the definition of the quasi-homogeneous function. The KKT conditions in Eq. (2) are rewritten

4

as:

Λ̄ζ “
ÿ

iPrNs

ÿ

cPY{tyiu

µicr∇ζΦcpxi; ζq ´ ∇ζΦyipxi; ζqs; (3a)

for all i P rN s, and c P Y{tyiu :

Φyipxi; ζq ´ Φcpxi; ζq ě e´α, (3b)
µic ě 0, (3c)

µicre
´α ` Φcpxi; ζq ´ Φyipxi; ζqs “ 0, (3d)

where the new scaling parameter Λ̄ :“ Λ̃eαp2Λ´Iq.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

l(
x

;α
,δ

)

α controls the position

δ controls the basin width

α = 5, δ = 0.1 α = 1, δ = 0.1 α = 1, δ = 0.3

Figure 2: The U-shaped duality loss lpx;α, δq :“
max px´e´α´δ, 0q´min px´e´α, 0q.

From KKT condition to loss function. Given
only the pre-trained neural network Φp¨; ζq, the
undetermined parts in the KKT conditions in
Eq. (3) include the KKT multipliers, a set of
px, yq pairs, and constant α. Regarding the KKT
multiplier a predictable objective, We use a neu-
ral network to learn it. Given an approximate
distribution of the discrete random variable y,
we sample y directly. Our goal is to train a
conditional generator g parameterized by θ to
generate input x “ gpϵ, y; θq given the corre-
sponding label y and random noise ϵ. We also
treat α as a learnable parameter, which will be
discussed in detail later. In the following para-
graphs, we first discuss how to design the loss function for learning these parameters and training the
generator.

First, we discuss how to ensure that the generated samples satisfy the stationary condition in Eq. (3a).
The evaluation of the right-hand side of Eq. (3a) requires generating a dataset with a fixed number of
samples every time to calculate the summation. Alternatively, we divide both sides of Eq. (3a) by the
number of training samples N , which converts the sum on the right-hand side to an expectation:

1

N
Λ̄ζ “ Ex,y

“

ÿ

cPY{tyu

µcr∇ζΦcpx; ζq ´ ∇ζΦypx; ζqs
‰

. (4)

Thus, according to the law of large numbers, the expectation can be estimated by the empirical average
over a batch of M random samples, where M is a hyper-parameter. To ensure that the rescaled
stationary condition in Eq. (4) can be satisfied, we use the following Lstationarity to minimize the
norm of the difference between both sides of Eq. (4).

Lstationaritypθ, ηq :“ ||
1

N
Λ̄ζ ´

1

M

ÿ

iPrMs

ÿ

cPY{tyiu

µicr∇ζΦyipxi; ζq ´ ∇ζΦcpxi; ζqs||. (5)

Conditions in Eqs. (3b) to (3d) constrain the valid values of the KKT multipliers. Accordingly, in
order to satisfy the positivity condition of the KKT multipliers in dual feasibility, instead of directly
optimizing the KKT multipliers, we use the proxy variables µ1

ic, define µic :“ ReLUpµ1
icq. For each

generated sample xi, we set up a µ1
i P R|Y| with µ1

ic is its c-th element. We learn µ1
i “ hpxi, yi; ηq

by network h parameterized by η. To approximate primal feasibility and complementary slackness,
we require each generated sample xi to satisfy 0 ď Φyipxi; ζq ´ Φcpxi; ζq ´ e´α ď δ, where
0 ă δ ! 1 is a hyper-parameter to ensure numerical stability. We minimize Lduality to approximate
this constraint. Fig. 2 illustrates the shape of Lduality.

Ldualitypθ, αq :“
1

M

ÿ

iPrMs

ÿ

cPSi

rmax
`

Φyipxi; ζq ´ Φcpxi; ζq ´ e´α ´ δ, 0
˘

´ min
`

Φyipxi; ζq ´ Φcpxi; ζq ´ e´α, 0
˘

s (6)

5

0 5 10 15 20 251
eα

-100

-50

0

50

100

V
a
lu
e

[O
ri
g
in
a
l

Φ
(·;
ζ
)]

Line Style

Ground Truth : eαΦ(x; ζ)

Estimation : Φ(x; eαΛ̂ζ)

ColorColor

Different x

Figure 3: The plot of Φpx; eαΛ̂ζq and eαΦpx; ζq,
with Λ̂ as the estimation of Λ. Color distinction
signifies diverse input x. The coincidence of
solid and dotted lines validates the precise esti-
mation of Λ, because, by definition, an accurate
estimation fulfills Φpx; eαΛ̂ζq “ eαΦpx; ζq.

Final loss is the combination of Llagrange and
Lduality balanced by hyper-parameter β:

L “ Lstationaritypθ, ηq ` βLdualitypθ, αq. (7)

Determine Λ. To compute Lstationarity, it
is necessary to determine the Λ of the quasi-
homogeneous function Φp¨; ζq. Here, we will
introduce two properties of quasi-homogeneous
functions and demonstrate how to construct a sys-
tem of linear equations based on these properties
to efficiently solve for Λ. First, taking the deriva-
tive of Φpx;ψαpζqq corresponding to ζ, we have

∇ψαpζqΦpx;ψαpζqq “ eαpI´Λq∇ζΦpx; ζq. (8)

This indicates that, for any parameter ζi whose
corresponding Λii ‰ 1, the derivative of Φpx; ζq

corresponding to ζi, denoted by ∇ζiΦpx; ζq, is a
Λ1-quasi-homogeneous function with Λ1 “ 1

1´Λii
Λ. Second, taking the derivative ∇αΦpx;ψαpζqq

at α “ 0, we have:

ζTΛ∇ζΦpx; ζq “ Φpx; ζq. (derivative equation of Φ at x) (9)

For clear notation, we refer to the above Eq. (9) as the derivative equation of Φ at x. which is a linear
equation about Λ and the coefficients can be calculated conveniently given the pre-trained model.

As these properties of quasi-homogeneous function are independent of input x, we can establish a
system of equations by evaluating the derivative equation of Φ and its higher order derivatives at a set
of random samples txiuiPrKs, e.g.,

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ζTΛ∇ζΦpx1; ζq “ Φpx1; ζq, (derivative equation of Φ at x1)

ζTΛ∇ζΦpx2; ζq “ Φpx2; ζq, (derivative equation of Φ at x2)
...

...
1

1 ´ Λ11
ζTΛ∇2

ζζ1ΦpxK ; ζq “ ∇ζ1ΦpxK ; ζq, (derivative equation of ∇ζ1Φ at xK)
...

...

. (10)

Then, the Λ can be calculated from it. As a proof of concept, the estimated results of a two-layer
fully-connected network with ReLU activation are shown in Fig. 3. The architecture of the network
is Linearp2, 10q Ñ ReLUpq Ñ Linearp10, 1q .

Determine α. To compute Lduality, it is necessary to determine the α. Shown in the proof of
Theorem 1 [Kunin et al., 2023], the value of α depends on the minimum classification margin qmin
of the (normalized) neural network on the training dataset, in the case of a multi-class problem:

qmin “ min
iPrNs

min
cPrCs{tyju

rΦyipxi; ζ̄q ´ Φcpxi; ζ̄qs. (11)

Therefore, the value of α depends on the entire training dataset, which is not accessible. To avoid
the accumulation of errors in estimating qmin using generated samples during training, we directly
optimize α as a trainable parameter.

Summary of the method. In short, the optimization problem used to train the generator gp¨, ¨; θq

can be written as:

min
θ,η,α

Lpθ, η, αq “ min
θ,η,α

Lstationaritypθ, ηq ` βLdualitypθ, αq. (12)

The training procedure is summarized in Alg. 1 in the Appendix.

An extension to multiple classifiers. We have previously discussed a method using a single
classifier to train a generator. Here, we present an extension of our approach to employ multiple
classifiers for training a single generator. Given T classifiers tΦptqutPrT s, we encode the training

6

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(a) Training Data

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(b) Prediction Landscape

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(c) Generated Data

Figure 4: An illustrative 2D example showcases our proposed method. Figs. 4a to 4c are the training
data employed for the classifier, the classifier’s learned prediction landscape, and the generated
samples using the learned generator, respectively.

data information from distinct classifiers into one generator by incorporating the classifier index t
as an input of the generator. By providing random noise ϵ, label y, and classifier index t as inputs,
x is generated as x “ gpϵ, y, t; θq. During the training process, we compute the loss for each
classifier, Lptqpθ, η, αptqq, and aggregate them as the final optimization objective. For each classifier,
we optimized a distinct α and use αptq to denote the α for the t-th classifier. We utilize a unified
network h : RdˆY ˆrT s Ñ R|Y| to compute the KKT multipliers, which also includes the classifier
index as an input. The optimization objective for the training process can be formulated as:

min
θ,η,tαptqutPrT s

ÿ

tPrT s

Lptqpθ, η, αptqq. (13)

Upon completion of training, generating samples requires an additional step to sample a suitable
classifier index. Let Ty denote the set of classifier indices, where the indices in the set correspond to
classifiers whose training set contains samples with label y. To generate a sample x with label y, we
first sample a classifier index t from Ty , and then utilize t, along with y and random noise ϵ, as inputs
to the generator to produce the sample.

The algorithm for training a generator using multiple classifiers is summarized in Alg. 2 in the
Appendix.

5 Experiments

5.1 An Example of 2D Synthetic Data

In this subsection, we employ a two-dimensional example to analyze the proposed approach. We
evenly generate 18 data points on a unit circle, and categorize them into three classes to create our
training dataset D. The distribution of D is plotted in Fig. 4a, with distinct colors representing
different categories. Utilizing this data, we train a three-layer fully connected network Φ as the
classifier. The prediction landscape of Φ is displayed in Fig. 4b. The color of the region represents
the category predicted by the classifier for samples within that region. The white areas represent
the classifier’s decision boundary. Given Φ, we train a generator g using the proposed method. The
samples generated by g are plotted in Fig. 4c. Despite the presence of certain noise, the distribution
of the generated data aligns consistently with that of the classifier’s training data.

Leveraging this two-dimensional example, we further analyze our proposed method of training a
generator using multiple classifiers. We evenly split the previous training dataset into D1 and D2,
plotted in Figs. 5a and 5f, respectively. Using these two subsets of data, we train two classifiers,
Φ1 and Φ2, and subsequently train two generators, g1 and g2. Figs. 5c and 5h display the data
generated by g1 and g2, respectively. Here, during the training of g1, we solely use Φ1, and during the
training of g2, we solely use Φ2. Obviously in Figs. 4b and 5g, owing to the generalization ability of
neural networks, Φ1 and Φ2 learn additional categorization capabilities beyond the training data, with
prediction areas with the same color surpassing the region covered by the training data. Contrarily,
the samples generated by training g1 and g2 congregate around the actual data points, effectively

7

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(a)

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(b)

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(c)
0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(d)

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(e)

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(f)

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(g)

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(h)

0°

90°

180°

270°

0.0

0.5

0.8
1.0
1.2

1.5

(i)

Figure 5: An illustrative 2D example showcases the process of using two pre-trained classifiers to
train a generator. Figs. 5a to 5c and Figs. 5f to 5h are two groups of training data, classifier’s learned
prediction landscape, and generator’s generated samples. Fig. 5d shows the generated samples of the
generator trained using two classifiers. Figs. 5e and 5i are the generated samples of the generator in
Fig. 5d with fixed classifier index.

Figure 6: Generator-produced samples. The generator is trained using a single classifier trained on
the MNIST dataset.

recovering the original distribution of the training data. Subsequently, by employing the extension of
the proposed method, we train a generator g1`2 using Φ1 and Φ2 together. As shown in Fig. 5d, g1`2

possesses the generative capabilities of both g1 and g2, capable of generating samples on the entire
training data D. We further fix the classifier index of g1`2 to either 1 or 2, randomly sample noise
and category labels, and observe the data generated by g1`2. As depicted in Figs. 5e and 5h, g1`2 is
also capable of independently generating data belonging to either D1 or D2.

5.2 Image Generation

In this subsection, we showcase the experimental results on the MNIST [Lecun et al., 1998] and
CelebA [Liu et al., 2015] datasets. More results and implementation details are left in the appendix.
For the MNIST dataset, we set up a classification task corresponding to the digits 0-9 with 500
training data (50 images per class) randomly sampled from the original training set. For the CelebA
dataset, we utilized various binary attributes to construct binary classification tasks on facial images,
for example, distinguishing between males and females. For each task, we randomly sampled 100
images (50 images per class) from the original training dataset and resize them to 32x32 to be our
training dataset.

We employed a three-layer fully-connected network with a ReLU activation function and batch
normalization as the classifier for the aforementioned classification tasks. The networks were trained
until the classification loss converges using full batch gradient descent, which ensures the parameters
are close to the convergence point required in the theory of Maximum-Margin Bias.

8

(a) Gender (b) Mouth Opened (c) Pale Skin

Figure 7: Generator-produced samples. The generator is trained using a single classifier trained on
the CelebA dataset. The captions of the subfigures indicate the attributes used as the label.

Figure 8: Generator-produced samples. The generator is trained using two classifiers trained on the
MNIST dataset.

We use generators composed of three fully-connected layers followed by three transposed convolution
layers, with ReLU activation function and batch normalization. Network parameters were initialized
using Kaiming initialization [He et al., 2015] and trained for 50, 000 epochs. The batch size and
learning rate were set as hyperparameters and optimized via random search. In order to control the
noise in generated images, we also utilized total variation loss in pixel space as a regularization term.

The generated results on MNIST and CelebA are shown in Figs. 6 and 7. Odd rows present the
generated images, and even rows present the images from the training dataset that are closest to the
generated images. The distance between images is measured by the SSIM metric. As shown by the
results, the generator trained using our method is capable of generating digits and facial images, even
though it has never been exposed to images of digits or faces.

To validate the extended method we proposed for multiple classifiers, we partitioned the aforemen-
tioned digit classification dataset into two subsets including digits 0´ 4 and digits 5´ 9, respectively,
and trained two classifiers separately. We then employed our method to train a single generator using
both classifiers. Fig. 8 showcases the final images generated. The trained generator successfully
integrates information from both classifiers, being capable of generating all digits from 0-9.

6 Conclusion

In this research, we investigate a pioneering task: training a generator directly utilizing a pre-
trained classifier, devoid of training data. Based on the maximum margin bias theory, we present
the relationship between pre-trained neural network parameters and the training data distribution.
Consequently, we devise an innovative loss function to enable the generator’s training. Essentially,
our loss function requires the generator to guarantee the optimality of the parameters of the pre-trained
classifier under its generated data distribution. From a broader perspective, the reuse and revision
of pre-trained neural networks have been a widely studied direction. [Ma et al., 2023, Fang et al.,
2023a,b, Yu et al., 2023, Yang et al., 2022a,b] Our method offers a novel direction for leveraging
pre-trained models.

Acknowledgment

This project is supported by the National Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG2-RP-2021-023), and the Singapore Ministry of Education
Academic Research Fund Tier 1 (WBS: A0009440-01-00).

9

References
Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In

International Conference on Machine Learning (ICML), 2017. 2

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal,
Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look
at memorization in deep networks. In International Conference on Machine Learning (ICML), 2017. 1

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations (ICLR), 2019. 2

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. In Conference on Neural
Information Processing Systems (NeurlPS), 2016. 2

Amit Daniely. Neural networks learning and memorization with (almost) no over-parameterization. In Conference
on Neural Information Processing Systems (NeurlPS), 2020. 1

Damek Davis, Dmitriy Drusvyatskiy, Sham M. Kakade, and Jason D. Lee. Stochastic subgradient method
converges on tame functions. Found. Comput. Math., 20(1):119–154, 2020. 4

Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative image models using
a laplacian pyramid of adversarial networks. In Conference on Neural Information Processing Systems
(NeurlPS), 2015. 2

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In International Conference
on Learning Representations (ICLR), 2017. 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations (ICLR), 2021. 1

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander Madry.
Adversarial robustness as a prior for learned representations, 2019. 3

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any structural
pruning. In IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2023a. 9

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In Conference on
Neural Information Processing Systems (NeurlPS), 2023b. 9

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail via
influence estimation. In Conference on Neural Information Processing Systems (NeurlPS), 2020. 1

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence in-
formation and basic countermeasures. In Conference on Computer and Communications Security, 2015.
3

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. Generative adversarial nets. In Conference on Neural Information Processing
Systems (NeurlPS), 2014. 1, 2

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and Kevin
Swersky. Your classifier is secretly an energy based model and you should treat it like one. In International
Conference on Learning Representations (ICLR), 2020. 3

Qiushan Guo, Chuofan Ma, Yi Jiang, Zehuan Yuan, Yizhou Yu, and Ping Luo. Egc: Image generation and
classification via a single energy-based model. arXiv, 2023. 3

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data from trained
neural networks. In Conference on Neural Information Processing Systems (NeurlPS), 2022. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. 2015. 9

Zecheng He, Tianwei Zhang, and Ruby B. Lee. Model inversion attacks against collaborative inference. In
David Balenson, editor, Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC,
2019. 3

10

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional
adversarial networks. In IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2017. 2

Jinwoo Jeon, Jaechang Kim, Kangwook Lee, Sewoong Oh, and Jungseul Ok. Gradient inversion with generative
image prior. In Conference on Neural Information Processing Systems (NeurlPS), 2021. 3

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In Conference on Neural
Information Processing Systems (NeurlPS), 2020. 3

Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep graph reprogram-
ming. In CVPR, 2023. 1

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. In International Conference on Learning Representations (ICLR), 2018. 2

Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum margin bias of
quasi-homogeneous neural networks. International Conference on Learning Representations (ICLR), 2023. 3,
4, 6

Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond linear networks. In
International Conference on Learning Representations (ICLR), 2022. 3

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 1998. 8

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-based learning.
Predicting structured data, 1(0), 2006. 3

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew P.
Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic single image super-
resolution using a generative adversarial network. In IEEE / CVF Computer Vision and Pattern Recognition
Conference (CVPR), 2017. 2

Tran Duy Linh, Son Minh Nguyen, and Masayuki Arai. Gan-based noise model for denoising real images. In
Computer Vision - ACCV 2020 - 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 -
December 4, 2020, Revised Selected Papers, Part IV, 2020. 2

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
International Conference on Computer Vision (ICCV), December 2015. 8

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. In
International Conference on Learning Representations (ICLR), 2020a. 4

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. In
International Conference on Learning Representations (ICLR), 2020b. 3

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-Pruner: On the Structural Pruning of Large Language
Models. In Conference on Neural Information Processing Systems (NeurlPS), 2023. 9

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR, 2014. 2

Mor Shpigel Nacson, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, and Daniel Soudry. Lexicographic and
depth-sensitive margins in homogeneous and non-homogeneous deep models. In International Conference on
Machine Learning (ICML), 2019. 3

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play generative
networks: Conditional iterative generation of images in latent space. In IEEE / CVF Computer Vision and
Pattern Recognition Conference (CVPR), 2017. 3

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: Uncovering the different
types of features learned by each neuron in deep neural networks. CoRR, 2016. 3

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers using
variational divergence minimization. In Conference on Neural Information Processing Systems (NeurlPS),
2016. 2

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier
gans. In International Conference on Machine Learning (ICML), 2017. 2

11

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2(11):e7, 2017. 3

Saharon Rosset, Ji Zhu, and Trevor Hastie. Margin maximizing loss functions. In Conference on Neural
Information Processing Systems (NeurlPS), 2003. 3

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of
gradient descent on separable data. J. Mach. Learn. Res., 2018. 3

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion and content
for video generation. In IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2018. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2023. 1

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In Conference
on Neural Information Processing Systems (NeurlPS), 2016. 2

Colin Wei, Jason D. Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and optimization
of neural nets v.s. their induced kernel. In Conference on Neural Information Processing Systems (NeurlPS),
2019. 3

Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the improved training of wasserstein
gans: A consistency term and its dual effect. In International Conference on Learning Representations (ICLR),
2018. 2

Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. GP-GAN: towards realistic high-resolution image
blending. CoRR, 2017. 2

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. In Conference on Neural Information
Processing Systems (NeurlPS), 2016. 2

Tengyu Xu, Yi Zhou, Kaiyi Ji, and Yingbin Liang. Convergence of SGD in learning relu models with separable
data. CoRR, 2018. 3

Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li. High-resolution image inpainting using
multi-scale neural patch synthesis. In IEEE / CVF Computer Vision and Pattern Recognition Conference
(CVPR), 2017a. 2

Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. LR-GAN: layered recursive generative adversarial
networks for image generation. In International Conference on Learning Representations (ICLR), 2017b. 2

Xingyi Yang, Jingwen Ye, and Xinchao Wang. Factorizing knowledge in neural networks. In European
Conference on Computer Vision (ECCV), 2022a. 9

Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly. In
Conference on Neural Information Processing Systems (NeurlPS), 2022b. 9

Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural network inversion in adversarial setting via
background knowledge alignment. In Conference on Computer and Communications Security, CCS, 2019. 3

Raymond A. Yeh, Chen Chen, Teck-Yian Lim, Alexander G. Schwing, Mark Hasegawa-Johnson, and Minh N.
Do. Semantic image inpainting with deep generative models. In IEEE / CVF Computer Vision and Pattern
Recognition Conference (CVPR), 2017. 2

Hongxu Yin, Pavlo Molchanov, Jose M. Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K. Jha, and
Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In IEEE / CVF Computer
Vision and Pattern Recognition Conference (CVPR), 2020. 3

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Generative image inpainting with
contextual attention. In IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2018. 2

Runpeng Yu, Songhua Liu, Xingyi Yang, and Xinchao Wang. Distribution shift inversion for out-of-distribution
prediction. In IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2023. 9

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer: Gener-
ative model-inversion attacks against deep neural networks. In IEEE / CVF Computer Vision and Pattern
Recognition Conference (CVPR), 2020. 3

12

Xuejun Zhao, Wencan Zhang, Xiaokui Xiao, and Brian Y. Lim. Exploiting explanations for model inversion
attacks. In International Conference on Computer Vision (ICCV), 2021. 3

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In International Conference on Computer Vision (ICCV), 2017. 2

13

	Introduction
	Related Work
	Preliminary
	Method
	Experiments
	An Example of 2D Synthetic Data
	Image Generation

	Conclusion

