Contents of Appendix

A Architectures of deep neural networks in Section 3.3.1 17
A. 1 Architecture of deep neural classifier in Section 3.3 17
A. 2 Architecture of GAN in Section 3.3 17
B Proofs 18
B. 1 Proof of Theorem 3.1 18
B. 2 Proof of Theorem 3.2 24
B. 3 Proof of Theorem 3.3 35
C Discussion on existing non-i.i.d. stability bounds 38
C. 1 Stability bounds for mixing processes 38
C. 2 Stability bounds for dependence graph 39
D Experimental details and additional results 40
D. 1 CIFAR-10 dataset 40
D. 2 Models 40
D. 3 Model selection 40
D. 4 Training details 40
D. 5 Computation consumption. 41
D. 6 License 41
D. 7 Additional results 41

Appendix A Architectures of deep neural networks in Section 3.3.1

A.1 Architecture of deep neural classifier in Section 3.3

We consider a general class of neural networks as what is introduced in [50], which includes widely used MLPs and CNNs. We define a deep neural network with L_{C} convolutional layers followed by $L-L_{C}-1$ fully-connected layers as follows:

$$
\begin{aligned}
f(\mathbf{x} ; \mathbf{w}) & =\sum_{k=1}^{m} a_{k} z_{(L-1), k} \\
\mathbf{z}_{l} & =\sigma\left(\mathbf{A}_{l}^{\top} \mathbf{z}_{(l-1)}\right), l \in[L-1]-\left[L_{C}\right] \\
\mathbf{z}_{l} & =\operatorname{pool}\left(\mathbf{y}_{l}\right), l \in\left[L_{C}\right] \\
\mathbf{y}_{l} & =\sigma\left(\mathbf{w}_{l} * \mathbf{z}_{(l-1)}\right), l \in\left[L_{C}\right] \\
\mathbf{z}_{0} & =\mathbf{x}
\end{aligned}
$$

where m is the demension of $\mathbf{z}_{(L-1)}, \sigma(z)$ is the ReLU function $\max \{z, 0\}, *$ is the convolutional operation, and $\operatorname{pool}(\cdot)$ is the average pooling operation. When $L_{C}=0$, this is an MLP. For output layer $l=L$, let $\mathbf{w}_{L}:=\left(a_{1}, \cdots, a_{m}\right)^{\top}$. For fully-connected layer $l \in[L-1]-\left[L_{C}\right]$, we let $\mathbf{w}_{l}:=\operatorname{vector}\left(\mathbf{A}_{l}\right)$. For convolution layer $l \in\left[L_{C}\right]$, we consider the structure Convolution \rightarrow ReLU \rightarrow Pooling, and denotes the weights as \mathbf{w}_{l}.

A. 2 Architecture of GAN in Section 3.3

The abstract form of GAN. The architecture of GAN in Theorem 3.3 is consistent with that in Theorem 19, [49]. We denote by $\mathcal{F}=\left\{f_{\boldsymbol{\omega}}(\mathbf{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$ the discriminator function space. Besides, we let $\mathcal{G}=\left\{g_{\boldsymbol{\theta}}(\mathbf{z}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}\right\}$ be the generator function space. The generator receives $\mathbf{z} \sim \operatorname{unif}[0,1]^{d}$ as the random input. In reality, we estimate the parameters of GAN as

$$
\widehat{\boldsymbol{\theta}}_{m, n} \in \underset{\boldsymbol{\theta}: g_{\boldsymbol{\theta}} \in \mathcal{G}}{\arg \min } \max _{\boldsymbol{\omega}: f_{\boldsymbol{\omega}} \in \mathcal{F}}\left\{\widehat{\mathbb{E}}_{n} f_{\boldsymbol{\omega}}\left(g_{\boldsymbol{\theta}}(Z)\right)-\widehat{\mathbb{E}}_{m} f_{\boldsymbol{\omega}}(X)\right\},
$$

where n and m denote the number of simulated and target distribution samples, respectively. We just let $m=n$ in this paper.

The architecture of the generator network. The generator $g_{\boldsymbol{\theta}}$ is parametrized by a MLP:

$$
\begin{aligned}
\mathbf{h}_{0} & =\mathbf{z} \\
\mathbf{h}_{l} & =\sigma_{a}\left(\mathbf{W}_{l} \mathbf{h}_{l-1}+\mathbf{b}_{l}\right), 0<l<L \\
\mathbf{x} & =\mathbf{W}_{L} \mathbf{h}_{L-1}+\mathbf{b}_{L},
\end{aligned}
$$

where h_{l} denotes the hidden units in the l-th layer, and \mathbf{x} is the final output of the MLP. The activation is leaky ReLU [77].

$$
\sigma_{a}(t)=\max \{t, a t\}, \text { for some fixed } 0<a \leq 1
$$

The space for the generator weights is denoted by

$$
\Theta(d, L):=\left\{\boldsymbol{\theta}=\left(\mathbf{W}_{l} \in \mathbb{R}^{d \times d}, \mathbf{b}_{l} \in \mathbb{R}^{d}, 1 \leq l \leq L\right) \mid \operatorname{rank}\left(\mathbf{W}_{l}\right)=d, \forall 1 \leq l \leq L\right\}
$$

Note that the \mathbf{W}_{l} is required to be full rank so that the generator transformation g_{θ} is invertible. The generator has the capacity to express complex distributions

The architecture of the discriminator network. We consider a discriminator network which includes feed-forward neural networks f_{ω} that satisfies

$$
\begin{aligned}
\mathbf{h}_{1} & =\sigma_{1 / a}\left(\mathbf{V}_{1} \mathbf{x}+\mathbf{c}_{1}\right) \\
& \ldots \\
\mathbf{h}_{L-1} & =\sigma_{1 / a}\left(\mathbf{V}_{L-1} \mathbf{h}_{L-2}+\mathbf{c}_{L-1}\right) \\
q_{\boldsymbol{\omega}}(\mathbf{x}) & :=\sum_{j=1}^{L-1} \sum_{i=1}^{d} \log (1 / a) 1_{h_{j i} \leq 0}+c_{L} .
\end{aligned}
$$

The parameter space is defined as
$\Omega(d, L):=\left\{\boldsymbol{\omega}=\left(\mathbf{V}_{l} \in \mathbb{R}^{d \times d}, \mathbf{c}_{l} \in \mathbb{R}^{d}, c_{L} \in \mathbb{R}, 1 \leq l \leq L-1\right) \mid \operatorname{rank}\left(\mathbf{V}_{l}\right)=d, \forall 1 \leq l \leq L-1\right\}$.
Finally, the discriminator parameterized by $\boldsymbol{\omega}=\left(\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}\right)$, where $\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2} \in \Omega(d, L)$, is defined as

$$
f_{\boldsymbol{\omega}}(\mathbf{x})=q_{\boldsymbol{\omega}_{1}}(\mathbf{x})-q_{\boldsymbol{\omega}_{2}}(\mathbf{x}) .
$$

Appendix B Proofs

B. 1 Proof of Theorem 3.1

Proof. We first list some moment inequalities which are important to this proof.
Lemma B. 1 (Lemma 1, [26]). If $\|Y\|_{p} \leq \sqrt{p} a+p b$ for any $p \geq 1$, then for any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
|Y| \leq e\left(a \sqrt{\log \left(\frac{e}{\delta}\right)}+b \log \left(\frac{e}{\delta}\right)\right)
$$

Lemma B. 2 (Lemma 2, [26]). Consider a function f of independent random variables X_{1}, \ldots, X_{n} where $X_{i} \in \mathcal{X}$. Suppose that for any $i=1, \ldots, n$ and any $x_{1}, \ldots, x_{n}, x_{i}^{\prime} \in \mathcal{X}$ it holds that

$$
\begin{equation*}
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)\right| \leq \beta \tag{3}
\end{equation*}
$$

Then, we have for any $p \geq 2$,

$$
\left\|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)\right\|_{p} \leq 2 \sqrt{n p} \beta
$$

Lemma B. 3 (Theorem 4, [26]). Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ be a vector of independent random variables each taking values in \mathcal{Z}, and let g_{1}, \ldots, g_{n} be some functions $g_{i}: \mathcal{Z}^{n} \rightarrow \mathbb{R}$ such that the following holds for any $i \in[n]$:

- $\left|\mathbb{E}\left[g_{i}(\mathbf{Z}) \mid Z_{i}\right]\right| \leq M$,
- $\mathbb{E}\left[g_{i}(\mathbf{Z}) \mid \mathbf{Z}^{\backslash i}\right]=0$,
- g_{i} has a bounded difference β with respect to all variables except the i-th variable, that is, for all $j \neq i, \mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ and $\mathbf{Z}^{j}=\left(Z_{1}, \ldots, Z_{j}^{\prime}, \ldots, Z_{n}\right) \in \mathbb{R}^{n}$, we have $\left|g_{i}(\mathbf{Z})-g_{i}\left(\mathbf{Z}^{j}\right)\right| \leq \beta$.

Then, for any $p \geq 2$,

$$
\left\|\sum_{i=1}^{n} g_{i}(\mathbf{Z})\right\|_{p} \leq 12 \sqrt{2} p n \beta \log n+4 M \sqrt{p n}
$$

Now, we are ready to prove Theorem 3.1. Formally, we need to bound Gen-error $=\mid \mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-$ $\widehat{\mathcal{R}}_{\widetilde{S}}(\mathcal{A}(\widetilde{S})) \mid$. Recall that $\widetilde{\mathcal{D}}(S)$ has been defined as the mixed distribution after augmentation, to derive such a bound, we first decomposed Gen-error as

$$
\mid \text { Gen-error } \mid \leq \underbrace{\left|\mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-\mathcal{R}_{\widetilde{\mathcal{D}}(S)}(\mathcal{A}(\widetilde{S}))\right|}_{\text {Distributions' divergence }}+\underbrace{\left|\mathcal{R}_{\widetilde{\mathcal{D}}(S)}(\mathcal{A}(\widetilde{S}))-\widehat{\mathcal{R}}_{\widetilde{S}}(\mathcal{A}(\widetilde{S}))\right|}_{\text {Generaliztion error w.r.t. mixed distribution, } \Phi\left(S, S_{G}\right)} .
$$

The distributions' divergence term in the right hand can be bounded by the divergence (e.g., $\mathcal{D}_{\mathrm{TV}}, \mathcal{D}_{\mathrm{KL}}$) between augmented distribution $\widetilde{\mathcal{D}}(S)$ and the true distribution \mathcal{D}. It is heavily dependent on the ability of the chosen generative model. It can be bounded as follows.

$$
\begin{aligned}
\left|\mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-\mathcal{R}_{\widetilde{\mathcal{D}}(S)}(\mathcal{A}(\widetilde{S}))\right| & =\frac{m_{G}}{m_{T}}\left|\mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-\mathcal{R}_{\mathcal{D}_{G}(S)}(\mathcal{A}(\widetilde{S}))\right| \\
& =\frac{m_{G}}{m_{T}}\left|\int_{\mathbf{z}} \ell(\mathcal{A}(\widetilde{S}), \mathbf{z})\left(\mathbb{P}_{\mathcal{D}}(\mathbf{z})-\mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{z})\right) d \mathbf{z}\right| \\
& \leq \frac{m_{G}}{m_{T}} \int_{\mathbf{z}}\left|\ell(\mathcal{A}(\widetilde{S}), \mathbf{z})\left(\mathbb{P}_{\mathcal{D}}(\mathbf{z})-\mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{z})\right)\right| d \mathbf{z} \\
& \leq \frac{m_{G}}{m_{T}} M \int_{\mathbf{z}}\left|\mathbb{P}_{\mathcal{D}}(\mathbf{z})-\mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{z})\right| d \mathbf{z} \\
& \lesssim \frac{m_{G}}{m_{T}} M \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right) .
\end{aligned}
$$

For the second term $\Phi\left(S, S_{G}\right)$, we note that classical stability bounds (e.g. Theorem 2.1) can not be used directly, because points in \widetilde{S} are drawn non-i.i.d.. In contrast, a core property of \widetilde{S} is that S satisfies i.i.d. assumption, and S_{G} satisfies conditional i.i.d. assumption when S is fixed. Inspired by this property, we furthermore decomposed this term and utilized sharp moment inequalities [39, 26] to obtain an upper bound. Similarly to [26], we bound the L_{p} norm of $m_{T} \Phi\left(S, S_{G}\right)$, and then derive a concentration bound. We can write

$$
\begin{aligned}
\left\|m_{T} \Phi\left(S, S_{G}\right)\right\|_{p} & =\left\|m_{T}\left(\mathcal{R}_{\widetilde{\mathcal{D}}(S)}(\mathcal{A}(\widetilde{S}))-\widehat{\mathcal{R}}_{\widetilde{S}}(\mathcal{A}(\widetilde{S}))\right)\right\|_{p} \\
& =\left\|m_{S} \mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))+m_{G} \mathcal{R}_{\mathcal{D}_{G}(S)}(\mathcal{A}(\widetilde{S}))-\sum_{\mathbf{z}_{i} \in S} \ell\left(\mathcal{A}(\widetilde{S}), \mathbf{z}_{i}\right)-\sum_{\mathbf{z}_{i} \in S_{G}} \ell\left(\mathcal{A}(\widetilde{S}), \mathbf{z}_{i}\right)\right\|_{p} \\
& \leq \underbrace{\left\|m_{S} \mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-\sum_{i=1}^{m_{S}} \ell\left(\mathcal{A}(\widetilde{S}), \mathbf{z}_{i}\right)\right\|_{p}}_{\left\|\Phi_{1}\left(S, S_{G}\right)\right\|_{p}}+\underbrace{\left\|m_{G} \mathcal{R}_{\mathcal{D}_{G}(S)}(\mathcal{A}(\widetilde{S}))-\sum_{i=1}^{m_{G}} \ell\left(\mathcal{A}(\widetilde{S}), \mathbf{z}_{i}^{G}\right)\right\|_{p}}_{\left\|\Phi_{2}\left(S, S_{G}\right)\right\|_{p}} .
\end{aligned}
$$

We will bound $\left\|\Phi_{1}\left(S, S_{G}\right)\right\|_{p}$ and $\left\|\Phi_{2}\left(S, S_{G}\right)\right\|_{p}$ respectively. We note that for any function $f(S)$, if we have an bound $\|f\|_{p}\left(S_{V}\right) \leq C$ for some $S_{V} \subseteq S$, then we have

$$
\begin{equation*}
\|f\|_{p}=\left(\mathbb{E} \mathbb{E}\left[|f|^{p} \mid S_{V}\right]\right)^{1 / p} \leq\left(\mathbb{E}\left[C^{p}\right]\right)^{1 / p} \leq C \tag{4}
\end{equation*}
$$

Fix S, then data in S_{G} are independent. We use this property and lemma B.3 to bound $\left\|\Phi_{2}\right\|_{p}(S)$. We introduce functions $f_{i}\left(S_{G}\right)$ which play the same role as g_{i} s in Lemma B.3 as

$$
f_{i}\left(S_{G}\right)=\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right]
$$

where \mathbf{z}_{i}^{G} is the i-th data in S_{G}, and S_{G}^{i} obtained by replacing \mathbf{z}_{i}^{G} by \mathbf{z}_{i}^{\prime}. We note that $\left|f_{i}\right| \leq M$, $\mathbb{E}\left[f_{i} \mid S_{G}^{\backslash i}\right]=0$ and f_{i} has a bounded difference $2 \beta_{m_{T}}$ with respect to all variables except the i-th variable, which can be proved as follows.

$$
\begin{aligned}
\left|f_{i}\right| & =\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right]\right| \\
& =\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)}\left[\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right]\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)}\left|\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right| \\
& \leq \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)}[M]=M, \\
& \mathbb{E}\left[f_{i} \mid S_{G}^{\backslash i}\right]=\mathbb{E}_{\mathbf{z}_{i}^{G} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right] \mid S_{G}^{\backslash i}\right] \\
&=\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\mathbb{E}_{\mathbf{z}_{i}^{G} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right] \mid S_{G}^{\backslash i}\right] \\
&=\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[0 \mid S_{G}^{\backslash i}\right]=0, \\
&\left|f_{i}\left(S_{G}\right)-f_{i}\left(S_{G}^{j}\right)\right|= \mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right] \\
&-\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}, \mathbf{z}_{i}^{G}\right)\right] \mid\right. \\
&= \mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right. \\
&-\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}\right), \mathbf{z}\right)+\ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}, \mathbf{z}_{i}^{G}\right)\right] \mid \\
& \leq\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)}\left[\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}\right), \mathbf{z}\right)\right]\right| \\
&+\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)-\ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}\right), \mathbf{z}_{i}^{G}\right)\right]\right| \\
& \leq \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)}\left|\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}\right), \mathbf{z}\right)\right| \\
&+\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left|\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)-\ell\left(\mathcal{A}\left(S \cup\left(S_{G}^{j}\right)^{i}\right), \mathbf{z}_{i}^{G}\right)\right| \\
& \leq \beta_{m_{T}}+\beta_{m_{T}}=2 \beta_{m T} .
\end{aligned}
$$

Therefore, for any fixed S, by Lemma B.3. for any $p \geq 2$, we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{m_{G}} f_{i}\left(S_{G}\right)\right\|_{p} \lesssim p m_{G} \beta_{m_{T}} \log m_{G}+M \sqrt{p m_{G}} . \tag{5}
\end{equation*}
$$

We note the gap between Φ_{2} and $\sum_{i=1}^{m_{G}} f_{i}$ is small, then for any fixed S, we can bound $\left\|\Phi_{2}\right\|_{p}(S)$ by (5) as follows.

$$
\begin{aligned}
\left\|\Phi_{2}\right\|_{p}(S) & =\left\|m_{G} \mathcal{R}_{\mathcal{D}_{G}(S)}\left(\mathcal{A}\left(S \cup S_{G}\right)\right)-\sum_{i=1}^{m_{G}} \ell\left(\mathcal{A}\left(S \cup S_{G}\right), \mathbf{z}_{i}^{G}\right)\right\|_{p} \\
& =\left\|\sum_{i=1}^{m_{G}}\left(\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}\right), \mathbf{z}_{i}^{G}\right)\right)\right\|_{p} \\
& \leq\left\|\sum_{i=1}^{m_{G}}\left(\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}_{G}(S)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}_{G}(S)} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}^{G}\right)\right]\right)\right\|_{p}+\left\|2 m_{G} \beta_{m_{T}}\right\|_{p}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|\sum_{i=1}^{m_{G}} f_{i}\left(S_{G}\right)\right\|_{p}+\left\|2 m_{G} \beta_{m_{T}}\right\|_{p} \\
& \lesssim p m_{G} \beta_{m_{T}} \log m_{G}+M \sqrt{p m_{G}}+2 m_{G} \beta_{m_{T}} \\
& \lesssim p m_{G} \beta_{m_{T}} \log m_{G}+M \sqrt{p m_{G}} .
\end{aligned}
$$

Therefore, by using (4), we have

$$
\begin{equation*}
\left\|\Phi_{2}\left(S, S_{G}\right)\right\|_{p} \lesssim p m_{G} \beta_{m_{T}} \log m_{G}+M \sqrt{p m_{G}} \tag{6}
\end{equation*}
$$

Now, we use a similar idea to bound $\left\|\Phi_{1}\left(S, S_{G}\right)\right\|_{p}$. We decompose $\left\|\Phi_{1}\left(S, S_{G}\right)\right\|_{p}$ as the following.

$$
\begin{aligned}
&\left\|\Phi_{1}\left(S, S_{G}\right)\right\|_{p}=\| \Phi_{1}-\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m} G}(S) \\
& \Phi_{1}+\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}(S)} \Phi_{1} \|_{p} \\
& \leq \underbrace{\left\|\Phi_{1}-\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}(S)} \Phi_{1}\right\|_{p}}_{\Delta_{1}}+\underbrace{\left\|\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}(S)} \Phi_{1}\right\|}_{\Delta_{2}},
\end{aligned}
$$

We then bound each term and obtain a bound for $\left\|\Phi_{1}\left(S, S_{G}\right)\right\|_{p}$. We note that Δ_{1} can be bounded by using Lemma B. 2 and Δ_{2} can be bounded by using Lemma B. 3 .
To bound Δ_{1}, we first fix S and bound $\left\|\Phi_{1}-\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}(S)} \Phi_{1}\right\|_{p}(S)$. We use the conditional independence property of S_{G} again. To use Lemma B.2 we need to prove that Φ_{1} has the bounded difference with respect to S_{G} when S is fixed. We can write

$$
\begin{aligned}
& \left|\Phi_{1}\left(S, S_{G}\right)-\Phi_{1}\left(S, S_{G}^{i}\right)\right| \\
& =\left|m_{S} \mathcal{R}_{\mathcal{D}}\left(\mathcal{A}\left(S \cup S_{G}\right)\right)-\sum_{i=1}^{m_{S}} \ell\left(\mathcal{A}\left(S \cup S_{G}\right), \mathbf{z}_{i}\right)-m_{S} \mathcal{R}_{\mathcal{D}}\left(\mathcal{A}\left(S \cup S_{G}^{i}\right)\right)+\sum_{i=1}^{m_{S}} \ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}\right)\right| \\
& \leq m_{S}\left|\mathcal{R}_{\mathcal{D}}\left(\mathcal{A}\left(S \cup S_{G}\right)\right)-\mathcal{R}_{\mathcal{D}}\left(\mathcal{A}\left(S \cup S_{G}^{i}\right)\right)\right|+\sum_{i=1}^{m_{S}}\left|\ell\left(\mathcal{A}\left(S \cup S_{G}\right), \mathbf{z}_{i}\right)-\ell\left(\mathcal{A}\left(S \cup S_{G}^{i}\right), \mathbf{z}_{i}\right)\right| \\
& \leq m_{S} \beta_{m_{T}}+m_{S} \beta_{m_{T}}=2 m_{S} \beta_{m_{T}} .
\end{aligned}
$$

Thus, by Lemma B.2, we have

$$
\begin{equation*}
\Delta_{1} \leq 4 \sqrt{m_{G} p} m_{S} \beta_{m_{T}} \lesssim \sqrt{m_{G} p} m_{S} \beta_{m_{T}} \tag{7}
\end{equation*}
$$

We now construct some functions and use Lemma B. 3 again to bound Δ_{2}. We define $h_{i}(S)$ which play the same role as g_{i} s in Lemma B.3, as

$$
h_{i}(S)=\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right]
$$

where \mathbf{z}_{i} is the i-th data in S, and S^{i} obtained by replacing \mathbf{z}_{i} by \mathbf{z}_{i}^{\prime}. We note that $\left|h_{i}\right| \leq M$, $\mathbb{E}\left[h_{i} \mid S^{\backslash i}\right]=0$ and h_{i} has a bounded difference $2 \beta_{m_{T}}+2 M \mathcal{T}\left(m_{S}, m_{G}\right)$ with respect to all variables except the i-th variable, where $\mathcal{T}\left(m_{S}, m_{G}\right)=\sup _{i} \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right)$. These can be proved as follows.

$$
\begin{aligned}
\left|h_{i}\right| & =\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right]\right| \\
& =\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}\left(S^{i}\right)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left[\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right]\right|
\end{aligned}
$$

$$
\begin{align*}
& =\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(S^{i}\right)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left|\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right| \\
& \leq M, \\
& \mathbb{E}\left[h_{i} \mid S^{\backslash i}\right]=\mathbb{E}_{\mathbf{z}_{i} \sim \mathcal{D}}\left[\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m} G\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid S^{\backslash i}\right] \\
& =\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(S^{i}\right)}\left[\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\mathbb{E}_{\mathbf{z}_{i} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid S^{\backslash i}\right] \\
& =0 \text {, } \\
& \left|h_{i}(S)-h_{i}\left(S^{j}\right)\right|=\mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m} G}\left(S^{i}\right)\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \\
& -\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m} G\left(\left(S^{j}\right)^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid \\
& \leq \mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \\
& -\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid \tag{8}\\
& +\mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \\
& -\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(\left(S^{j}\right)^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid . \tag{9}
\end{align*}
$$

We bound (8) and (9) respectively. The first can be bounded by using the property of uniform stability.

$$
\begin{aligned}
& \mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \\
& -\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid \\
& =\mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right. \\
& \left.-\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)+\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid \\
& \leq\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}\left(S^{i}\right)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left[\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)\right]\right| \\
& +\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}\left(S^{i}\right)}\left[\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right]\right| \\
& \leq \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}\left(S^{i}\right)} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left|\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)\right| \\
& +\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)}\left|\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right| \\
& \leq \beta_{m_{T}}+\beta_{m_{T}}=2 \beta_{m_{T}} .
\end{aligned}
$$

We denote $\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)$ by B for convenience, then we have

$$
\mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right]
$$

$$
\begin{aligned}
& -\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(\left(\left(S^{j}\right)^{i}\right)\right.}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid \\
& =\mid \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }^{m}\left(S^{i}\right)}\left[\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \\
& -\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(\left(S^{j}\right)^{i}\right)}\left[\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(\left(S^{j}\right)^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right] \mid \\
& =\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m G}\left(S^{i}\right)}[B]-\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(\left(S^{j}\right)^{i}\right)}[B]\right| \\
& =\left|\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left[\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m G}\left(S^{i}\right)}[B]-\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(\left(S^{j}\right)^{i}\right)}[B]\right]\right| \\
& \leq \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left|\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)}[B]-\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(\left(S^{j}\right)^{i}\right)}[B]\right| \\
& =\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left|\int_{S_{G}}\left(\mathbb{P}\left(S_{G} \mid S^{i}\right)-\mathbb{P}\left(S_{G} \mid\left(S^{j}\right)^{i}\right)\right) B d S_{G}\right| \\
& \leq \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left[\int_{S_{G}}\left|\left(\mathbb{P}\left(S_{G} \mid S^{i}\right)-\mathbb{P}\left(S_{G} \mid\left(S^{j}\right)^{i}\right)\right) B\right| d S_{G}\right] \\
& \leq M \mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}}\left[\int_{S_{G}}\left|\mathbb{P}\left(S_{G} \mid S^{i}\right)-\mathbb{P}\left(S_{G} \mid\left(S^{j}\right)^{i}\right)\right| d S_{G}\right] \\
& \leq 2 M \sup _{i} \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}\left(S^{i}\right), \mathcal{D}_{G}^{m_{G}}(S)\right)=2 M \mathcal{T}\left(m_{S}, m_{G}\right) .
\end{aligned}
$$

Therefore, h_{i} has a bounded difference $2 \beta_{m_{T}}+2 M \mathcal{T}\left(m_{S}, m_{G}\right)$ with respect to all variables except the i-th variable. By Lemma B.3, we have

$$
\begin{align*}
\left\|\sum_{i=1}^{m_{S}} h_{i}(S)\right\|_{p} & \leq 12 \sqrt{2} p m_{S}\left(2 \beta_{m_{T}}+2 M \mathcal{T}\left(m_{S}, m_{G}\right)\right) \log m_{S}+4 M \sqrt{p m_{S}} \tag{10}\\
& \lesssim p m_{S}\left(\beta_{m_{T}}+M \mathcal{T}\left(m_{S}, m_{G}\right)\right) \log m_{S}+M \sqrt{p m_{S}} \tag{11}
\end{align*}
$$

We note the gap between Δ_{2} and $\left\|\sum_{i=1}^{m_{S}} h_{i}(S)\right\|_{p}$ is small, then we can bound Δ_{2} by 10 as follows.

$$
\begin{align*}
& \Delta_{2}=\left\|\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}(S)} \Phi_{1}\right\|_{p} \\
&=\left\|\mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}(S)}\left[m_{S} \mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-\sum_{i=1}^{m_{S}} \ell\left(\mathcal{A}(\widetilde{S}), \mathbf{z}_{i}\right)\right]\right\|_{p} \\
&=\left\|\sum_{i=1}^{m_{S}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m}{ }_{G}(S)}\left[m_{S} \mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-\ell\left(\mathcal{A}(\widetilde{S}), \mathbf{z}_{i}\right)\right]\right\|_{p} \\
& \leq\left\|\sum_{i=1}^{m_{S}}\left(\mathbb{E}_{\mathbf{z}_{i}^{\prime} \sim \mathcal{D}} \mathbb{E}_{S_{G} \sim \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)}\left[\mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}\right)-\ell\left(\mathcal{A}\left(S^{i} \cup S_{G}\right), \mathbf{z}_{i}\right)\right]\right)\right\|_{p} \tag{12}\\
&+\left\|2 m_{S} \beta_{m_{T}}+2 m_{S} M \sup _{i} \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right)\right\|_{p} \\
&=\left\|\sum_{i=1}^{m_{S}} h_{i}(S)\right\|_{p}+\left\|2 m_{S} \beta_{m_{T}}+2 m_{S} M \mathcal{T}\left(m_{S}, m_{G}\right)\right\|_{p}
\end{align*}
$$

$$
\begin{align*}
\lesssim & p m_{S}\left(\beta_{m_{T}}+M \mathcal{T}\left(m_{S}, m_{G}\right)\right) \log m_{S}+M \sqrt{p m_{S}} \\
& +m_{S} \beta_{m_{T}}+m_{S} M \mathcal{T}\left(m_{S}, m_{G}\right) \\
\lesssim & p m_{S}\left(\beta_{m_{T}}+M \mathcal{T}\left(m_{S}, m_{G}\right)\right) \log m_{S}+M \sqrt{p m_{S}} \tag{13}
\end{align*}
$$

Combine (7) and (13), we have

$$
\begin{align*}
\left\|\Phi_{1}\left(S, S_{G}\right)\right\|_{p} & \lesssim \sqrt{m_{G} p} m_{S} \beta_{m_{T}}+p m_{S}\left(\beta_{m_{T}}+M \mathcal{T}\left(m_{S}, m_{G}\right)\right) \log m_{S}+M \sqrt{p m_{S}} \\
& =\sqrt{p}\left(M \sqrt{m_{S}}+\sqrt{m_{G}} m_{S} \beta_{m_{T}}\right)+p m_{S}\left(\beta_{m_{T}}+M \mathcal{T}\left(m_{S}, m_{G}\right)\right) \log m_{S} \tag{14}
\end{align*}
$$

In addition, by (14) and (6), we have

$$
\begin{aligned}
\left\|m_{T} \Phi\left(S, S_{G}\right)\right\|_{p} \lesssim & \sqrt{p}\left(M \sqrt{m_{S}}+M \sqrt{m_{G}}+\sqrt{m_{G}} m_{S} \beta_{m_{T}}\right) \\
& +p\left(m_{S} \beta_{m_{T}} \log m_{S}+m_{G} \beta_{m_{T}} \log m_{G}+m_{S} \log m_{S} M \mathcal{T}\left(m_{S}, m_{G}\right)\right)
\end{aligned}
$$

By Lemma B.1. we can bound the generalization error w.r.t. mixed distribution $\left|\Phi\left(S, S_{G}\right)\right|=$ $\left|\mathcal{R}_{\widetilde{\mathcal{D}}(S)}(\mathcal{A}(\widetilde{S}))-\widehat{\mathcal{R}}_{\widetilde{S}}(\mathcal{A}(\widetilde{S}))\right|$ as follows.

$$
\begin{aligned}
& \left|\mathcal{R}_{\widetilde{\mathcal{D}}(S)}(\mathcal{A}(\widetilde{S}))-\widehat{\mathcal{R}}_{\widetilde{S}}(\mathcal{A}(\widetilde{S}))\right| \\
& \lesssim \frac{M\left(\sqrt{m_{S}}+\sqrt{m_{G}}\right)+m_{S} \sqrt{m_{G}} \beta_{m_{T}} \sqrt{\log \left(\frac{1}{\delta}\right)}}{m_{T}} \\
& +\frac{\beta_{m_{T}}\left(m_{S} \log m_{S}+m_{G} \log m_{G}\right)+m_{S} \log m_{S} M \mathcal{T}\left(m_{S}, m_{G}\right)}{m_{T}} \log \left(\frac{1}{\delta}\right)
\end{aligned}
$$

Finally, we conclude that

$$
\begin{aligned}
& \left|\mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S}))-\widehat{\mathcal{R}}_{\widetilde{S}}(\mathcal{A}(\widetilde{S}))\right| \\
& \lesssim \\
& \quad \frac{m_{G}}{m_{T}} M \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)+\frac{M\left(\sqrt{m_{S}}+\sqrt{m_{G}}\right)+m_{S} \sqrt{m_{G}} \beta_{m_{T}} \sqrt{\log \left(\frac{1}{\delta}\right)}}{m_{T}} \\
& \quad+\frac{\beta_{m_{T}}\left(m_{S} \log m_{S}+m_{G} \log m_{G}\right)+m_{S} \log m_{S} M \mathcal{T}\left(m_{S}, m_{G}\right)}{m_{T}} \log \left(\frac{1}{\delta}\right) \\
& \lesssim \\
& \quad \frac{m_{G}}{m_{T}} M \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)+\frac{M\left(\sqrt{m_{S}}+\sqrt{m_{G}}\right)+m_{S} \sqrt{m_{G}} \beta_{m_{T}}}{m_{T}} \sqrt{\log \left(\frac{1}{\delta}\right)} \\
& \quad+\frac{\beta_{m_{T}}\left(m_{S} \log m_{S}+m_{G} \log m_{G}\right)+m_{S} \log m_{S} M \mathcal{T}\left(m_{S}, m_{G}\right)}{m_{T}} \log \left(\frac{1}{\delta}\right),
\end{aligned}
$$

which completes the proof.

B. 2 Proof of Theorem 3.2

We need to bound terms $M, \beta_{m_{T}}, \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)$ and $\mathcal{T}\left(m_{S}, m_{G}\right)$ in Theorem 3.1. For M (LemmaB.5) and $\beta_{m_{T}}$ (Lemma B.6), we mainly use the boundedness of the multivariate Gaussian variable with high probability (Lemma B.4). In addition, we bound $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right.$) (Lemma B.7) by discussing the distance between the estimated parameters and the true parameters of bGMM. Besides, the concentration property of $\mathcal{T}\left(m_{S}, m_{G}\right)$ (LemmaB.9) can be induced by the preceding discussion.

Lemma B. 4 ("Boundedness" of multivariate Gaussian distribution). Let $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ be a d-dimension isotropic Gaussian random variable, which satisfies $\|\boldsymbol{\mu}\|_{2}=1$ and $\sigma_{i}^{2}=\sigma^{2}$ for any $i \in\{1, \ldots, d\}$. For any $\delta \in(0,1)$, with probability at least $1-\delta$, it holds that

$$
\|\mathbf{X}\|_{2} \lesssim \sigma \sqrt{d+\log \left(\frac{1}{\delta}\right)}
$$

Proof. The proof idea is to bound the distance between $\|\mathbf{X}\|_{2}^{2}$ and its expectation with high probability. Let \mathbf{Z} be the standard d-dimension isotropic Gaussian random variable, we have

$$
\begin{aligned}
& \mathbb{P}\left(\left|\frac{\|\mathbf{X}\|_{2}^{2}}{d}-\sigma^{2}-\frac{1}{d}\right| \geq \epsilon\right) \\
& =\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(X_{i}^{2}-\sigma^{2}-\mu_{i}^{2}\right)\right| \geq \epsilon\right) \\
& =\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(\left(\sigma Z_{i}+\mu_{i}\right)^{2}-\sigma^{2}-\mu_{i}^{2}\right)\right| \geq \epsilon\right) \\
& =\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(\sigma^{2}\left(Z_{i}^{2}-1\right)+2 \sigma \mu_{i} Z_{i}\right)\right| \geq \epsilon\right) \\
& \leq \mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(\sigma^{2}\left(Z_{i}^{2}-1\right)\right)\right|+\left|\frac{1}{d} \sum_{i=1}^{d}\left(2 \sigma \mu_{i} Z_{i}\right)\right| \geq \epsilon\right) \\
& \leq \mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(\sigma^{2}\left(Z_{i}^{2}-1\right)\right)\right| \geq \frac{\epsilon}{2} \cup\left|\frac{1}{d} \sum_{i=1}^{d}\left(2 \sigma \mu_{i} Z_{i}\right)\right| \geq \frac{\epsilon}{2}\right) \\
& \leq \mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(\sigma^{2}\left(Z_{i}^{2}-1\right)\right)\right| \geq \frac{\epsilon}{2}\right)+\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(2 \sigma \mu_{i} Z_{i}\right)\right| \geq \frac{\epsilon}{2}\right) \\
& =\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(Z_{i}^{2}-1\right)\right| \geq \frac{\epsilon}{2 \sigma^{2}}\right)+\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d} \mu_{i} Z_{i}\right| \geq \frac{\epsilon}{4 \sigma}\right) \text {. }
\end{aligned}
$$

We bound each of the two terms respectively. For the first term, we note that Z_{i}^{2} obeys $\chi^{2}(1)$ distribution and is a sub-exponential random variable, so it can be bounded by using Bernstein's inequality (e.g., Proposition 2.9, [78]). By Example 2.8 in [78], for any $\lambda \in(0,1 / 4)$, we have

$$
\mathbb{E}\left[\exp \left(\lambda\left(Z_{i}^{2}-1\right)\right)\right]=\frac{\exp (-\lambda)}{\sqrt{1-2 \lambda}} \leq \exp \left(2 \lambda^{2}\right)
$$

In addition, through Bernstein's inequality, we have

$$
\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d}\left(Z_{i}^{2}-1\right)\right| \geq \frac{\epsilon}{2 \sigma^{2}}\right) \leq \begin{cases}2 \exp \left(-\frac{d \epsilon^{2}}{32 \sigma^{4}}\right) & \text { if } 0 \leq \epsilon \leq 2 \sigma^{2} \\ 2 \exp \left(-\frac{d \epsilon}{32 \sigma^{2}}\right) & \text { if } \epsilon>2 \sigma^{2}\end{cases}
$$

For the second term, we bound it directly by using Hoeffding's inequality (e.g., Proposition 2.5, [78]).

$$
\mathbb{P}\left(\left|\frac{1}{d} \sum_{i=1}^{d} \mu_{i} Z_{i}\right| \geq \frac{\epsilon}{4 \sigma}\right) \leq 2 \exp \left(-\frac{d \epsilon^{2}}{32 \sigma^{4} \sum_{i=1}^{d} \mu_{i}^{2}}\right)=2 \exp \left(-\frac{d \epsilon^{2}}{32 \sigma^{4}}\right)
$$

Therefore, for any $\epsilon \leq 2 \sigma^{2}$, we have

$$
\mathbb{P}\left(\left|\left|\mathbf{X} \|_{2}^{2}-\sigma^{2} d-1\right| \geq d \epsilon\right)=\mathbb{P}\left(\left|\frac{\|\mathbf{X}\|_{2}^{2}}{d}-\sigma^{2}-\frac{1}{d}\right| \geq \epsilon\right) \leq 4 \exp \left(-\frac{d \epsilon^{2}}{32 \sigma^{4}}\right)\right.
$$

Let $4 \exp \left(-\frac{d \epsilon^{2}}{32 \sigma^{4}}\right)=\delta$, then with probability at least $1-\delta$, it holds that

$$
\|\mathbf{X}\|_{2}^{2} \leq \sigma^{2} d+1+d \sigma^{2} \sqrt{\frac{32}{d} \log \left(\frac{4}{\delta}\right)} \lesssim \sigma^{2}\left(d+\sqrt{d \log \left(\frac{1}{\delta}\right)}\right)
$$

which means that

$$
\|\mathbf{X}\|_{2} \lesssim \sigma \sqrt{d+\sqrt{d \log \left(\frac{1}{\delta}\right)}} \leq \sigma \sqrt{d+\frac{1}{2} d+\frac{1}{2} \log \left(\frac{1}{\delta}\right)} \lesssim \sigma \sqrt{d+\log \left(\frac{1}{\delta}\right)}
$$

Similarly, for any $\epsilon>2 \sigma^{2}$, we have

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{\|\mathbf{X}\|_{2}^{2}}{d}-\sigma^{2}-\frac{1}{d}\right| \geq \epsilon\right) & \leq 2 \exp \left(-\frac{d \epsilon}{32 \sigma^{2}}\right)+2 \exp \left(-\frac{d \epsilon^{2}}{32 \sigma^{4}}\right) \\
& \leq 2 \exp \left(-\frac{d \epsilon}{32 \sigma^{2}}\right)+2 \exp \left(-\frac{d \epsilon}{16 \sigma^{2}}\right) \\
& \leq 4 \exp \left(-\frac{d \epsilon}{32 \sigma^{2}}\right)
\end{aligned}
$$

Let $4 \exp \left(-\frac{d \epsilon}{32 \sigma^{2}}\right)=\delta$, then with probability at least $1-\delta$, it holds that

$$
\|\mathbf{X}\|_{2}^{2} \leq \sigma^{2} d+1+d \sigma^{2} \frac{32}{d} \log \left(\frac{4}{\delta}\right) \lesssim \sigma^{2}\left(d+\log \left(\frac{1}{\delta}\right)\right)
$$

which also implies

$$
\|\mathbf{X}\|_{2} \lesssim \sigma \sqrt{d+\log \left(\frac{4}{\delta}\right)} \leq \sigma \sqrt{d+\log \left(\frac{1}{\delta}\right)}
$$

The proof is completed.

Based on the "boundedness" of multivariate Gaussian distribution, we can bound M, β_{m}, $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}(S), \mathcal{D}_{G}\right)$ and $\mathcal{T}\left(m_{S}, m_{G}\right)$, respectively. They are listed as the following.
Lemma B. 5 (Concentration bound for M). For any $\delta \in(0,1)$, with probability at least $1-\delta$, it holds that

$$
|\ell(\mathcal{A}(S), \mathbf{z})| \lesssim d+\log \left(\frac{m}{\delta}\right)
$$

Proof. Given a set $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ and \mathbf{z} sampled from binary mixture Gaussian distribution, by Lemma B. 4 . we know that for any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\max _{i}\left\|\mathbf{x}_{i}\right\|_{2} \lesssim \sigma \sqrt{d+\log \left(\frac{m+1}{\delta}\right)}
$$

Under this condition, we have
$|\ell(\mathcal{A}(S), \mathbf{z})|$

$$
\begin{aligned}
& =\left|\frac{1}{2 \sigma^{2}}(\mathbf{x}-y \boldsymbol{\theta})^{\top}(\mathbf{x}-y \boldsymbol{\theta})\right| \\
& =\frac{1}{2 \sigma^{2}}\left|\mathbf{x}^{\top} \mathbf{x}-2 y \mathbf{x}^{\top} \theta+\theta^{\top} \theta\right| \\
& \leq \frac{1}{2 \sigma^{2}}\left(\left|\mathbf{x}^{\top} \mathbf{x}\right|+2\left|\mathbf{x}^{\top} \theta\right|+\left|\theta^{\top} \theta\right|\right) \\
& \leq \frac{1}{2 \sigma^{2}}\left(\|\mathbf{x}\|_{2}^{2}+2\|\mathbf{x}\|_{2}\|\theta\|_{2}+\|\theta\|_{2}^{2}\right) \\
& =\frac{1}{2 \sigma^{2}}\left(\|\mathbf{x}\|_{2}^{2}+2\|\mathbf{x}\|_{2}\left\|\frac{1}{m} \sum_{i=1}^{m} y_{i} \mathbf{x}_{i}\right\|_{2}+\left\|\frac{1}{m} \sum_{i=1}^{m} y_{i} \mathbf{x}_{i}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 \sigma^{2}}\left(\|\mathbf{x}\|_{2}^{2}+2 \frac{1}{m} \sum_{i=1}^{m}\|\mathbf{x}\|_{2}\left\|\mathbf{x}_{i}\right\|_{2}+\left(\frac{1}{m} \sum_{i=1}^{m}\left\|\mathbf{x}_{i}\right\|_{2}\right)^{2}\right) \\
& \lesssim \frac{1}{2 \sigma^{2}}\left(\sigma^{2}\left(d+\log \left(\frac{m+1}{\delta}\right)\right)+\frac{2}{m} \sum_{i=1}^{m} \sigma^{2}\left(d+\log \left(\frac{m+1}{\delta}\right)\right)+\left(\frac{1}{m} \sum_{i=1}^{m} \sigma \sqrt{d+\log \left(\frac{m+1}{\delta}\right)}\right)^{2}\right) \\
& =\frac{1}{2 \sigma^{2}} 4 \sigma^{2}\left(d+\log \left(\frac{m+1}{\delta}\right)\right)=2\left(d+\log \left(\frac{m+1}{\delta}\right)\right) \\
& \lesssim d+\log \left(\frac{m}{\delta}\right) .
\end{aligned}
$$

Lemma B. 6 (Concentration bound for β_{m}). For any $\delta \in(0,1)$, with probability at least $1-\delta$, it holds that

$$
\left|\ell(\mathcal{A}(S), \mathbf{z})-\ell\left(\mathcal{A}\left(S^{i}\right), \mathbf{z}\right)\right| \lesssim \frac{1}{m}\left(d+\log \left(\frac{m}{\delta}\right)\right)
$$

Proof. Given $m+2$ samples S, \mathbf{z} and \mathbf{z}_{i}^{\prime} randomly sampled from binary mixture Gaussian distribution, for any $\delta \in(0,1)$, with probability at least $1-\delta$, we have

$$
\begin{aligned}
& \left|\ell(\mathcal{A}(S), \mathbf{z})-\ell\left(\mathcal{A}\left(S^{i}\right), \mathbf{z}\right)\right| \\
& =\left|\frac{1}{2 \sigma^{2}}(\mathbf{x}-y \boldsymbol{\theta})^{\top}(\mathbf{x}-y \boldsymbol{\theta})-\frac{1}{2 \sigma^{2}}\left(\mathbf{x}-y \boldsymbol{\theta}^{\prime}\right)^{\top}\left(\mathbf{x}-y \boldsymbol{\theta}^{\prime}\right)\right| \\
& =\frac{1}{2 \sigma^{2}}\left|2 y\left(\mathbf{x}^{\top} \theta^{\prime}-\mathbf{x}^{\top} \theta\right)+\theta^{\top} \theta-\theta^{\prime \top} \theta^{\prime}\right| \\
& =\frac{1}{2 \sigma^{2}}\left|2 y\left(\mathbf{x}^{\top} \theta^{\prime}-\mathbf{x}^{\top} \theta\right)+\left(\theta+\theta^{\prime}\right)^{\top}\left(\theta-\theta^{\prime}\right)\right| \\
& \leq \frac{1}{2 \sigma^{2}}\left(2\left|\left(\mathbf{x}^{\top}\left(\theta^{\prime}-\theta\right)\right)\right|+\left|\left(\theta+\theta^{\prime}\right)^{\top}\left(\theta-\theta^{\prime}\right)\right|\right) \\
& \leq \frac{1}{2 \sigma^{2}}\left(2\|\mathbf{x}\|_{2}\left\|\theta^{\prime}-\theta\right\|_{2}+\left\|\theta+\theta^{\prime}\right\|_{2}\left\|\theta-\theta^{\prime}\right\|_{2}\right) \\
& =\frac{1}{2 \sigma^{2}}\left(2\|\mathbf{x}\|_{2}+\left\|\theta+\theta^{\prime}\right\|_{2}\right)\left\|\theta^{\prime}-\theta\right\|_{2} \\
& =\frac{1}{2 \sigma^{2}}\left(2\|\mathbf{x}\|_{2}+\left\|\theta+\theta^{\prime}\right\|_{2}\right)\left\|\frac{1}{m}\left(y_{i} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{x}_{i}^{\prime}\right)\right\|_{2} \\
& \leq \frac{1}{2 m \sigma^{2}}\left(2\|\mathbf{x}\|_{2}+\|\theta\|_{2}+\left\|\theta^{\prime}\right\|_{2}\right)\left(\left\|\mathbf{x}_{i}\right\|_{2}+\left\|\mathbf{x}_{i}^{\prime}\right\|_{2}\right) \\
& \lesssim \frac{8}{2 m \sigma^{2}} \sigma^{2}\left(d+\log \left(\frac{m+2}{\delta}\right)\right)
\end{aligned}
$$

$$
\lesssim \frac{4}{m}\left(d+\log \left(\frac{m}{\delta}\right)\right) \lesssim \frac{1}{m}\left(d+\log \left(\frac{m}{\delta}\right)\right)
$$

Lemma B. 7 (Concentration bound for $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)$). With high probability at least $1-\delta$, it holds that

$$
\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right) \lesssim \min \left(1, \sqrt{\frac{d}{m} \log \left(\frac{d}{\delta}\right)}\right)
$$

The idea of the proof of Lemma B. 7 built upon the estimation for Gaussian distribution. As the sample size increases, parameters can be estimated more accurately, which leads to a smaller distance between the estimated and true Gaussian distributions. The concentration bound of the estimated parameters can be inscribed by the following lemma.
Lemma B.8. Let $m=O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{d}{\delta}\right)\right)$, then with high probability at least $1-\delta$, for any $i \in$ $\{1, \ldots, d\}$, it holds that

$$
\left|\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right| \leq \epsilon, \quad \frac{\left|\widehat{\mu_{y i}}-\mu_{y i}\right|}{\sigma} \leq \epsilon
$$

Proof. Let $\epsilon \leq 1 / 4$, and m_{y} be the number of samples from category y. By Hoeffding's inequality (Proposition 2.5, [78]), we have

$$
\mathbb{P}\left(\left|m_{y}-\frac{m}{2}\right| \geq m \epsilon\right) \leq 2 \exp \left(-\frac{m^{2} \epsilon^{2}}{2 m(1 / 2)^{2}}\right)=2 \exp \left(-2 m \epsilon^{2}\right)=\delta_{1}
$$

which means $m_{y} \geq m / 2-\epsilon m \geq m / 4$, and $m_{y} \leq m / 2+\epsilon m \leq 3 m / 4$. We can bound $\widehat{\sigma}_{i}^{2}$ and $\widehat{\mu}_{y i}$ based on the concentration property of m_{y}. In terms of $\widehat{\mu}_{y i}$, give a fixed m_{y}, we can write

$$
\begin{aligned}
\mathbb{P}\left(\left.\frac{\left|\widehat{\mu_{y i}}-\mu_{y i}\right|}{\sigma} \geq \epsilon \right\rvert\, m_{y}\right) & =\mathbb{P}\left(\frac{1}{\sigma}\left|\frac{\sum_{y_{i}=y} x_{i}}{m_{y}}-\mu_{y i}\right| \geq \epsilon\right) \\
& =\mathbb{P}\left(\left|\sum_{y_{i}=y} x_{i}-m_{y} \mu_{y i}\right| \geq \sigma m_{y} \epsilon\right) \\
& \leq \exp \left(-\frac{\sigma^{2} m_{y}^{2} \epsilon^{2}}{2 m_{y} \sigma^{2}}\right)=\exp \left(-\frac{m_{y} \epsilon^{2}}{2}\right)
\end{aligned}
$$

Furthermore, by the law of total probability, we have

$$
\begin{aligned}
& \mathbb{P}\left(\frac{\left|\widehat{\mu_{y i}}-\mu_{y i}\right|}{\sigma} \geq \epsilon\right) \\
& =\mathbb{P}\left(\left.\frac{\left|\widehat{\mu_{y i}}-\mu_{y i}\right|}{\sigma} \geq \epsilon \right\rvert\, m_{y} \geq m / 2-\epsilon m\right) \mathbb{P}\left(m_{y} \geq m / 2-\epsilon m\right) \\
& \quad+\mathbb{P}\left(\left.\frac{\left|\widehat{\mu_{y i}}-\mu_{y i}\right|}{\sigma} \geq \epsilon \right\rvert\, m_{y} \leq m / 2-\epsilon m\right) \mathbb{P}\left(m_{y} \leq m / 2-\epsilon m\right) \\
& \leq \exp \left(-\frac{(m / 4) \epsilon^{2}}{2}\right)+\delta_{1}=\exp \left(-\frac{m \epsilon^{2}}{8}\right)+\delta_{1}=\delta_{2} .
\end{aligned}
$$

For the estimation of $\widehat{\sigma}_{i}^{2}$, we can obtain its concentration bound in a similar way.

$$
\begin{aligned}
& \mathbb{P}\left(\left.\left|\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right| \geq \epsilon \right\rvert\, m_{y}\right)=\mathbb{P}\left(\left|\sum_{y} \frac{m_{y}}{m \sigma^{2}} \frac{\sum_{y_{i}=y}\left(x_{i}-\widehat{\mu}_{y i}\right)^{2}}{m_{y}-1}-1\right| \geq \epsilon\right) \\
& =\mathbb{P}\left(\left|\sum_{y} \frac{m_{y}}{m}\left(\frac{\sum_{y_{i}=y}\left(x_{i}-\widehat{\mu}_{y i}\right)^{2}}{\left(m_{y}-1\right) \sigma^{2}}-1\right)\right| \geq \epsilon\right) \\
& \leq \mathbb{P}\left(\sum_{y}\left|\frac{m_{y}}{m}\left(\frac{\sum_{y_{i}=y}\left(x_{i}-\widehat{\mu}_{y i}\right)^{2}}{\left(m_{y}-1\right) \sigma^{2}}-1\right)\right| \geq \epsilon\right) \\
& \leq \mathbb{P}\left(\cup_{y=\{-1,1\}}\left|\frac{m_{y}}{m}\left(\frac{\sum_{y_{i}=y}\left(x_{i}-\widehat{\mu}_{y i}\right)^{2}}{\left(m_{y}-1\right) \sigma^{2}}-1\right)\right| \geq \epsilon / 2\right) \\
& \leq \sum_{y} \mathbb{P}\left(\left|\frac{m_{y}}{m}\left(\frac{\sum_{y_{i}=y}\left(x_{i}-\widehat{\mu}_{y i}\right)^{2}}{\left(m_{y}-1\right) \sigma^{2}}-1\right)\right| \geq \epsilon / 2\right) \\
& \leq \sum_{y} \mathbb{P}\left(\left|\frac{m_{y}}{m}\left(\frac{\sum_{y_{i}=y}\left(x_{i}-\widehat{\mu}_{y i}\right)^{2}}{\sigma^{2}}-\left(m_{y}-1\right)\right)\right| \geq\left(m_{y}-1\right) \epsilon / 2\right) \\
& =\sum_{y} \mathbb{P}\left(\left|\frac{\sum_{y_{i}=y}\left(x_{i}-\widehat{\mu}_{y i}\right)^{2}}{\sigma^{2}}-\left(m_{y}-1\right)\right| \geq \frac{\left(m_{y}-1\right) m}{2 m_{y}} \epsilon\right) \\
& =\sum_{y} \mathbb{P}\left(\left|\chi^{2}\left(m_{y}-1\right)-\left(m_{y}-1\right)\right| \geq \frac{\left(m_{y}-1\right) m}{2 m_{y}} \epsilon\right) \\
& =\sum_{y} \mathbb{P}\left(\left|\frac{1}{m_{y}-1} \sum_{i=1}^{m_{y}-1} \chi^{2}(1)-1\right| \geq \frac{m}{2 m_{y}} \epsilon\right) \\
& \leq \sum_{y} 2 \exp \left(-\frac{m_{y}-1}{8}\left(\frac{m}{2 m_{y}} \epsilon\right)^{2}\right) \quad \text { (Bernstein's inequality) } \\
& =\sum_{y} 2 \exp \left(-\frac{\left(m_{y}-1\right) m^{2} \epsilon^{2}}{32 m_{y}^{2}}\right)
\end{aligned}
$$

Without loss of generality, we assume that $m \geq 8$, then by the law of total probability, it holds that

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right| \geq \epsilon\right) & =\mathbb{P}\left(\left.\left|\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right| \geq \epsilon| | m_{y}-m / 2 \right\rvert\, \leq \epsilon m\right) \mathbb{P}\left(\left|m_{y}-m / 2\right| \leq \epsilon m\right) \\
& +\mathbb{P}\left(\left.\left|\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right| \geq \epsilon| | m_{y}-m / 2 \right\rvert\, \geq \epsilon m\right) \mathbb{P}\left(\left|m_{y}-m / 2\right| \geq \epsilon m\right) \\
& \leq \sum_{y} 2 \exp \left(\left.-\frac{\left(m_{y}-1\right) m^{2} \epsilon^{2}}{32 m_{y}^{2}} \right\rvert\, \frac{1}{4} m \leq m_{y} \leq \frac{3}{4} m\right)+\delta_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{y} 2 \exp \left(-\frac{(3 m / 4-1) m^{2} \epsilon^{2}}{32(3 m / 4)^{2}}\right)+\delta_{1} \quad\left(\frac{x-1}{x^{2}} \text { decreases when } x \geq 2\right) \\
& \leq 4 \exp \left(-\frac{m \epsilon^{2}}{36}\right)+\delta_{1}=\delta_{3}
\end{aligned}
$$

We can conclude that

$$
\begin{aligned}
& \mathbb{P}\left(\cup_{i=1}^{d} \cup_{y} \frac{\left|\widehat{\mu_{y i}}-\mu_{y i}\right|}{\sigma} \geq \epsilon \cup \cup_{i=1}^{d}\left|\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right| \geq \epsilon\right) \\
& =2 d \delta_{2}+d \delta_{3} \\
& =2 d \delta_{1}+2 d \exp \left(-\frac{m \epsilon^{2}}{8}\right)+d \delta_{1}+8 d \exp \left(-\frac{m \epsilon^{2}}{36}\right) \\
& =6 d \exp \left(-2 m \epsilon^{2}\right)+2 d \exp \left(-\frac{m \epsilon^{2}}{8}\right)+8 d \exp \left(-\frac{m \epsilon^{2}}{36}\right) \\
& \leq 16 d \exp \left(-\frac{m \epsilon^{2}}{36}\right)
\end{aligned}
$$

Equivalently, when $m=\frac{36}{\epsilon^{2}} \log \left(\frac{16 d}{\delta}\right)=O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{d}{\delta}\right)\right)$, for any $\delta \in(0,1)$, with probability at least $1-\delta$, for any $i \in\{1, \ldots, d\}$, we have

$$
\left|\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right| \leq \epsilon, \quad \frac{\left|\widehat{\mu_{y i}}-\mu_{y i}\right|}{\sigma} \leq \epsilon
$$

which completes the proof of Lemma B.8.

Based on the Lemma B.8, we can prove Lemma B. 7 as follows.

Proof. Without loss of generality, we let $m=O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{d}{\delta}\right)\right)$ as that in Lemma B. 8 We can bound $\mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}(S) \| \mathcal{D}\right)$ as follows.

$$
\begin{aligned}
& \mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}(S) \| \mathcal{D}\right) \\
& =\int p_{G}(\mathbf{x}, y) \log \frac{p_{G}(\mathbf{x}, y)}{p(\mathbf{x}, y)} \\
& =\int p_{G}(\mathbf{x}, y) \log \frac{p_{G}(\mathbf{x} \mid y) p_{G}(y)}{p(\mathbf{x} \mid y) p(y)} \\
& =\int p_{G}(\mathbf{x}, y) \log \frac{p_{G}(\mathbf{x} \mid y)}{p(\mathbf{x} \mid y)} \\
& =\int_{y} p_{G}(y) \int_{x} p_{G}(\mathbf{x} \mid y) \log \frac{p_{G}(\mathbf{x} \mid y)}{p(\mathbf{x} \mid y)} \\
& =\sum_{y} \frac{1}{2} \int_{x} p_{G}(\mathbf{x} \mid y) \log \frac{p_{G}(\mathbf{x} \mid y)}{p(\mathbf{x} \mid y)}
\end{aligned} \quad\left(p_{G}(y)=p(y)\right)
$$

$$
\begin{aligned}
& =\sum_{y} \frac{1}{2} \sum_{i=1}^{d} \frac{1}{2}\left(\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1-\log \left(\widehat{\frac{\sigma_{i}^{2}}{\sigma^{2}}}\right)+\frac{\left(\widehat{\mu_{y i}}-\mu_{y i}\right)^{2}}{\sigma^{2}}\right) \\
& \leq \sum_{y} \frac{1}{2} \sum_{i=1}^{d} \frac{1}{2}\left(\left(\frac{\widehat{\sigma_{i}^{2}}}{\sigma^{2}}-1\right)^{2}+\frac{\left(\widehat{\mu_{y i}}-\mu_{y i}\right)^{2}}{\sigma^{2}}\right) \quad\left(x-\log (x+1) \leq x^{2},|x| \leq 1 / 2\right) \\
& \leq \sum_{y} \frac{1}{2} \sum_{i=1}^{d} \frac{1}{2}\left(\epsilon^{2}+\epsilon^{2}\right)=d \epsilon^{2} \lesssim \frac{d}{m} \log \left(\frac{d}{\delta}\right) .
\end{aligned}
$$

Finally, by the Pinsker's inequality (such as, [79]), we have

$$
\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right) \leq \min \left(1, \sqrt{2 \log 2 \mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}(S), \mathcal{D}\right)}\right) \lesssim \min \left(1, \sqrt{\frac{d}{m} \log \left(\frac{d}{\delta}\right)}\right)
$$

which completes the proof of Lemma B. 7 .
Lemma B. 9 (Concentration bound for $\mathcal{T}\left(m_{S}, m_{G}\right)$). Let δ in Lemma B. 7 be δ_{1}, and δ in Lemma B. 4 be δ_{2}, then With probability at least $1-\delta_{1}-\delta_{2}$, it holds that

$$
\mathcal{T}\left(m_{S}, m_{G}\right) \lesssim \min \left(1, \frac{\sqrt{m_{G} d}}{m_{S}} \log \left(\frac{m_{S} d}{\delta_{2}}\right)\right) .
$$

Proof. By the triangle inequality, we have

$$
\left.\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right) \leq \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right)+\mathcal{D}_{\mathrm{TV}}\left(S^{\backslash i}\right), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right)
$$

In order to bound $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right)$, We discuss the concentration property of $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right)$, and the same result will hold for $\left.\mathcal{D}_{\mathrm{TV}}\left(S^{\backslash i}\right), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right)$. In a similar way as the proof of Lemma. B.7 we discuss KL divergence $\mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right)$ at first.
As stated in Lemma B.8. without loss of generation, we assume that $\epsilon \leq 1 / 4$, and m_{y} be the number of samples from category y, we have $m_{y} \geq m / 2-\epsilon m \geq m / 4, m_{y} \leq m / 2+\epsilon m \geq 3 m / 4$, and $\left|\widehat{\sigma_{i}^{2}} / \sigma^{2}-1\right| \leq \epsilon$ with probability at least $1-\delta_{1}$.
In addition, by Lemma.B.4 given a set $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ and \mathbf{z}_{i}^{\prime} sampled from the binary mixture Gaussian distribution, with probability at least $1-\delta_{2}$ we have

$$
\max _{i}\left\|\mathbf{x}_{i}\right\|_{2} \lesssim \sigma \sqrt{d+\log \left(\frac{m+1}{\delta_{2}}\right)} .
$$

Therefore, by the union bound, the above statements hold with high probability at least $1-\delta_{1}-\delta_{2}$. We use $\widehat{\sigma}_{k, \backslash i}^{2}$ to denote the k th-dimension variance learned on the set $S^{\backslash i}$, and $\widehat{\mu}_{y k, \backslash i}$ to denote the learned k th-dimension mean of the class y. We can simplify $\mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right)$ as follows,

$$
\begin{aligned}
& \mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right) \\
& =m_{G} \mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}(S), \mathcal{D}_{G}\left(S^{\backslash i}\right)\right) \\
& =m_{G} \int p_{G}(\mathbf{x}, y) \log \frac{p_{G}(\mathbf{x}, y)}{p_{G i \backslash}(\mathbf{x}, y)} \\
& =m_{G} \int p_{G}(\mathbf{x}, y) \log \frac{p_{G}(\mathbf{x} \mid y) p_{G}(y)}{p_{G}(\mathbf{x} \mid y) p_{G}{ }^{\backslash i}(y)}
\end{aligned}
$$

$$
\begin{align*}
& =m_{G} \int p_{G}(\mathbf{x}, y) \log \frac{p_{G}(\mathbf{x} \mid y)}{p_{G \backslash i}(\mathbf{x} \mid y)} \\
& =m_{G} \int_{y} p_{G}(y) \int_{x} p_{G}(\mathbf{x} \mid y) \log \frac{p_{G}(\mathbf{x} \mid y)}{p_{G \backslash i}(\mathbf{x} \mid y)} \\
& =m_{G} \sum_{y} \frac{1}{2} \int_{x} p_{G}(\mathbf{x} \mid y) \log \frac{p_{G}(\mathbf{x} \mid y)}{p_{G \backslash i}(\mathbf{x} \mid y)} \\
& =m_{G} \sum_{y} \frac{1}{2} \sum_{k=1}^{d} \frac{1}{2}\left(\frac{\widehat{\sigma}_{k}^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}-1-\log \left(\frac{\widehat{\sigma}_{k}^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}\right)+\frac{\left(\widehat{\mu}_{y k}-\widehat{\mu}_{y k, \backslash i}\right)^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}\right) \\
& \leq m_{G} \sum_{y} \frac{1}{2} \sum_{k=1}^{d} \frac{1}{2}\left(\left(\frac{\widehat{\sigma}_{k}^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}-1\right)^{2}+\frac{\left(\widehat{\mu}_{y k}-\widehat{\mu}_{y k, \backslash i}\right)^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}\right) \\
& =m_{G} \sum_{y} \frac{1}{4}\left(\sum_{k=1}^{d}\left(\frac{\widehat{\sigma}_{k}^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}-1\right)^{2}+\sum_{k=1}^{d} \frac{\left(\widehat{\mu}_{y k}-\widehat{\mu}_{y k, \backslash i}\right)^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}\right) .
\end{align*} \quad\left(x-\log (x+1) \leq x^{2},|x| \leq 1 / 2\right)
$$

What we need to bound is $\left|\widehat{\sigma}_{k}^{2}-\widehat{\sigma}_{k, \backslash i}^{2}\right|$ and $\left|\widehat{\mu}_{y k}-\widehat{\mu}_{y k, \backslash i}\right|$. They can be bounded by using the boundedness of the data. Without the loss of generation, we assume that $y_{i}=0$, then we have

$$
\begin{aligned}
&\left|\widehat{\mu}_{0 k}-\widehat{\mu}_{0 k, \backslash i}\right|=\left|\sum_{j} \frac{x_{j k}}{m_{0}}-\sum_{j \neq i} \frac{x_{j k}}{m_{0}-1}\right| \\
& \lesssim\left|\sum_{j} \frac{x_{j k}}{m_{0}}-\sum_{j \neq i} \frac{x_{j k}}{m_{0}}\right| \\
& \lesssim\left|\frac{x_{j k}}{m_{0}}\right| \lesssim\left|\frac{x_{j k}}{m}\right| \\
& \leq \frac{1}{m}\left|\mu_{0 k}+\sqrt{2} \sigma \sqrt{\log \left(\frac{(m+1) d}{\delta_{2}}\right)}\right| \\
& \lesssim \frac{1}{m} \sigma \sqrt{\log \left(\frac{(m+1) d}{\delta_{2}}\right)} \\
&\left|\widehat{\mu}_{1 k}-\widehat{\mu}_{1 k, \backslash i}\right|=0 .
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
& \sum_{i=1}^{d} \frac{\left(\widehat{\mu_{0 k}}-\widehat{\mu}_{0 k, \backslash i}\right)^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}} \lesssim \sum_{k=1}^{d} \frac{1}{\widehat{\sigma}_{k, \backslash i}^{2}} \frac{1}{m^{2}} \sigma^{2} \log \left(\frac{(m+1) d}{\delta_{2}}\right) \\
& \lesssim \sum_{k=1}^{d} \frac{1}{m^{2}} \log \left(\frac{(m+1) d}{\delta_{2}}\right) \lesssim \frac{d}{m^{2}} \log \left(\frac{(m+1) d}{\delta_{2}}\right), \tag{16}\\
& \sum_{i=1}^{d} \frac{\left(\widehat{\mu_{1 k}}-\widehat{\mu}_{1 k, \backslash i}\right)^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}=0 \tag{17}
\end{align*}
$$

In terms of $\left|\widehat{\sigma}_{k}^{2}-\widehat{\sigma}_{k, \backslash i}^{2}\right|$, we can write

$$
\begin{aligned}
\left|\widehat{\sigma}_{k}^{2}-\widehat{\sigma}_{k, \backslash i}^{2}\right| & =\left|\frac{m_{0}}{m} \frac{\sum_{j}\left(x_{j k}-\widehat{\mu}_{0 k}\right)^{2}}{m_{0}-1}-\frac{m_{0}-1}{m} \frac{\left.\sum_{j \neq i}\left(x_{j k}-\widehat{\mu}_{0 k, \backslash i}\right)^{2}\right)^{2}}{m_{0}-2}\right| \\
& \lesssim\left|\frac{m_{0}}{m} \frac{\sum_{j}\left(x_{j k}-\widehat{\mu}_{0 k}\right)^{2}}{m_{0}-1}-\frac{m_{0}}{m} \frac{\sum_{j \neq i}\left(x_{j k}-\widehat{\mu}_{0 k, \backslash i}\right)^{2}}{m_{0}-1}\right| \\
& =\frac{m_{0}}{m\left(m_{0}-1\right)}\left|x_{i k}^{2}+\left(m_{0}-1\right) \widehat{\mu}_{0 k, \backslash i}^{2}-m_{0} \widehat{\mu}_{0 k}^{2}\right| \\
& \lesssim \frac{m_{0}}{m\left(m_{0}-1\right)}\left|x_{i k}^{2}+m_{0} \widehat{\mu}_{0 k, \backslash i}^{2}-m_{0} \widehat{\mu}_{0 k}^{2}\right| \\
& \lesssim \frac{m_{0}}{m\left(m_{0}-1\right)}\left|x_{i k}^{2}+m_{0}\left(\widehat{\mu}_{0 k, \backslash i}^{2}-\widehat{\mu}_{0 k}^{2}\right)\right| \\
& =\frac{m_{0}}{m\left(m_{0}-1\right)}\left|x_{i k}^{2}+m_{0}\left(\widehat{\mu}_{0 k, \backslash i}-\widehat{\mu}_{0 k}\right)\left(\widehat{\mu}_{0 k, \backslash i}+\widehat{\mu}_{0 k}\right)\right| \\
& =\frac{m_{0}}{m\left(m_{0}-1\right)}\left|x_{i k}^{2}+m_{0}\left(\sum_{j \neq i} \frac{x_{j k}}{m_{0}-1}-\sum_{j} \frac{x_{j k}}{m_{0}}\right)\left(\sum_{j \neq i} \frac{x_{j k}}{m_{0}-1}+\sum_{j} \frac{x_{j k}}{m_{0}}\right)\right| \\
& \lesssim \frac{m_{0}}{m\left(m_{0}-1\right)}\left|x_{i k}^{2}+m_{0} \frac{x_{i k}}{m_{0}}\left(\sum_{j \neq i} \frac{x_{j k}}{m_{0}-1}+\sum_{j} \frac{x_{j k}}{m_{0}}\right)\right| \\
& \lesssim \frac{1}{m}\left(\left|x_{i k}^{2}\right|+\left|x_{i k}\left(\sum_{j \neq i} \frac{x_{j k}}{m_{0}-1}+\sum_{j} \frac{x_{j k}}{m_{0}}\right)\right|\right) \\
& \lesssim \frac{1}{m}\left(\sigma^{2} \log \left(\frac{(m+1) d}{\delta_{2}}\right)+2 \sigma^{2} \log \left(\frac{(m+1) d}{\delta_{2}}\right)\right) \\
& \lesssim \frac{\sigma^{2}}{m} \log \left(\frac{(m+1) d}{\delta_{2}}\right) .
\end{aligned}
$$

Thus, we can obtain

$$
\begin{align*}
\sum_{k=1}^{d}\left(\frac{\widehat{\sigma}_{k}^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}-1\right)^{2} & \lesssim \sum_{k=1}^{d} \frac{\sigma^{4}}{\widehat{\sigma}_{k, \backslash i}^{4} m^{2}} \log ^{2}\left(\frac{(m+1) d}{\delta_{2}}\right) \\
& \lesssim \frac{d}{m^{2}} \log ^{2}\left(\frac{(m+1) d}{\delta_{2}}\right) \tag{18}
\end{align*}
$$

By plugin (16), (17) and (18) into (15), we have

$$
\begin{aligned}
\mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right) & \leq m_{G} \sum_{y} \frac{1}{4}\left(\sum_{k=1}^{d}\left(\frac{\widehat{\sigma}_{k}^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}-1\right)^{2}+\sum_{k=1}^{d} \frac{\left(\widehat{\mu}_{y k}-\widehat{\mu}_{y k, \backslash i}\right)^{2}}{\widehat{\sigma}_{k, \backslash i}^{2}}\right) \\
& \lesssim m_{G} \frac{d}{m^{2}} \log ^{2}\left(\frac{(m+1) d}{\delta_{2}}\right),
\end{aligned}
$$

which implies

$$
\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right) \lesssim \min \left(2, \sqrt{\mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}(S \backslash i)\right)}\right)
$$

$$
\begin{aligned}
& \lesssim \min \left(2, \sqrt{\mathcal{D}_{\mathrm{KL}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right)}\right) \\
& \lesssim \min \left(2, \frac{\sqrt{m_{G} d}}{m} \log \left(\frac{(m+1) d}{\delta_{2}}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right) & \left.\leq \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}_{G}^{m_{G}}(S), \mathcal{D}_{G}^{m_{G}}\left(S^{\backslash i}\right)\right)+\mathcal{D}_{\mathrm{TV}}\left(S^{\backslash i}\right), \mathcal{D}_{G}^{m_{G}}\left(S^{i}\right)\right) \\
& \lesssim \max \left(1, \frac{\sqrt{m_{G} d}}{m} \log \left(\frac{(m+1) d}{\delta_{2}}\right)\right) \\
& \lesssim \max \left(1, \frac{\sqrt{m_{G} d}}{m} \log \left(\frac{m d}{\delta_{2}}\right)\right)
\end{aligned}
$$

Because it holds for all i, the proof of Lemma $\mathbf{B .} 9$ is completed.
Now we are ready to prove Theorem 3.2 .
Proof. Let δ in Lemma B. 7 be δ_{1} and that in Lemma B. 4 be δ_{2}. With probability at least $1-\delta / 2$, the bounds in Lemma B. 7 hold with $\delta_{1}=\delta / 2$. Then with probability at least $1-\delta / 2$. Besides, the bounds in Lemma B. 5 and Lemma B. 6 hold with $\delta_{2}=\delta / 2$. Thus, by the union bound, we know that with high probability $1-\delta$, the above bounds hold. Furthermore, from the proof of Lemma B. 9 , we know that it holds naturally in this case, where the boundedness of data points and the accurate estimation of the true distribution hold.
Finally, we plugin Lemma B.5, B.7, B.6, B. 9 into Theorem 3.1, and can conclude the statement of Theorem 3.2 with high probability at least $1-\delta$,
\mid Gen-error \mid

$$
\begin{align*}
\lesssim & \frac{m_{G}}{m_{T}}\left(d+\log \left(\frac{m_{S}}{\delta}\right)\right) \min \left(1, \sqrt{\frac{d}{m_{S}} \log \left(\frac{d}{\delta}\right)}\right) \\
& +\frac{\sqrt{m_{S}}+\sqrt{m_{G}}}{m_{T}}\left(d+\log \left(\frac{m_{S}}{\delta}\right)\right) \sqrt{\log \left(\frac{1}{\delta}\right)}+\frac{m_{S} \sqrt{m_{G}}}{m_{T}^{2}}\left(d+\log \left(\frac{m_{T}}{\delta}\right)\right) \sqrt{\log \left(\frac{1}{\delta}\right)} \\
& +\frac{m_{S} \log m_{S}+m_{G} \log m_{G}}{m_{T}^{2}}\left(d+\log \left(\frac{m_{T}}{\delta}\right)\right) \log \left(\frac{1}{\delta}\right) \\
& +\frac{m_{S} \log m_{S}}{m_{T}}\left(d+\log \left(\frac{m_{S}}{\delta}\right)\right) \min \left(1, \frac{\sqrt{m_{G} d}}{m_{S}} \log \left(\frac{m_{S} d}{\delta}\right)\right) \log \left(\frac{1}{\delta}\right) \tag{19}\\
\lesssim & \begin{array}{ll}
\frac{\log \left(m_{S}\right)}{\sqrt{m_{S}}} & \text { if fix } d \text { and } m_{G}=0, \\
\frac{\log ^{2}\left(m_{S}\right)}{\sqrt{m_{S}}} & \text { if fix } d \text { and } m_{G}=\Theta\left(m_{S}\right), \\
\frac{\log _{S}\left(m_{S}\right)}{\sqrt{m_{S}}} & \text { if fix } d \text { and } m_{G}=m_{G, \text { order }}^{*}, \\
d & \text { if fix } m_{S} .
\end{array}
\end{align*}
$$

Corollary B.1. We denote the generalization error upper bound (Equation (19)) by Error $\left(m_{G}\right)$, where m_{G} is the augmentation size. We compare the cases where $m_{G}=0$ (without GDA) and $m_{G} \rightarrow+\infty$. If $d>m_{S}$, then the following holds:

$$
\operatorname{Error}(+\infty) \leq \frac{1}{\log \left(m_{S}\right)} \operatorname{Error}(0)
$$

Proof. By Equation (19, when $d>m_{S}$, we have
$\operatorname{Error}(0)=\left(\frac{1}{\sqrt{m_{S}}} \sqrt{\log \left(\frac{1}{\delta}\right)}+\frac{\log \left(m_{S}\right)}{m_{S}} \log \left(\frac{1}{\delta}\right)+\log m_{S} \log \left(\frac{1}{\delta}\right)\right)\left(d+\log \left(\frac{m_{S}}{\delta}\right)\right)$,
and

$$
\operatorname{Error}(+\infty)=d+\log \left(\frac{m_{S}}{\delta}\right)
$$

When δ is sufficiently small, we have

$$
\begin{aligned}
\operatorname{Error}(0) & =\left(\frac{1}{\sqrt{m_{S}}} \sqrt{\log \left(\frac{1}{\delta}\right)}+\frac{\log \left(m_{S}\right)}{m_{S}} \log \left(\frac{1}{\delta}\right)+\log m_{S} \log \left(\frac{1}{\delta}\right)\right) \operatorname{Error}(+\infty) \\
& \geq \log m_{S} \operatorname{Error}(+\infty)
\end{aligned}
$$

which completes the proof.

B. 3 Proof of Theorem 3.3

The theorem is built upon the recent theoretical works on GAN [49] and SGD [35; 50]. We first list some lemmas from these works.
Lemma B. 10 (Upper bounds for output and gradient, Proposition 5.2, [50]). For deep CNNs or MLPs in Appendix A.1, we have

$$
\begin{aligned}
& |f(\mathbf{w}, \mathbf{x})| \leq\left(\prod_{l=1}^{L}\left\|\mathbf{w}_{l}\right\|_{2}\right)\|\mathbf{x}\|_{2} \\
& \left\|\frac{\partial f(\mathbf{w}, \mathbf{x})}{\partial \mathbf{w}_{l}}\right\|_{2} \leq\left(\prod_{i \neq l}\left\|\mathbf{w}_{l}\right\|_{2}\right)\|\mathbf{x}\|_{2} .
\end{aligned}
$$

Lemma B. 11 (Uniform stability of SGD in the non-convex case, Theorem 5, [35]). Assume f is β-smooth and ρ-Lipschitz. Running $T>m$ iterations of $S G D$ with step size $\alpha_{t}=\frac{c}{\beta t}$, the stability of SGD satisfies

$$
\beta_{m} \leq \frac{16 \rho^{2} T^{c}}{m^{1+c}}
$$

Lemma B. 12 (Learnability of GAN, Theorem 19, [49]). We suppose that the architecture of GAN is the same as that in Appendix $\widehat{A .2}$ Besides, we consider the realizable setting, that is, \mathcal{D} enjoys the same distribution as $g_{\theta_{*}}(Z)$ with some $\theta_{*} \in \Theta(d, L)$ and $Z \sim \operatorname{unif}[0,1]^{d}$. Then, given training set S with m i.i.d. samples, it holds that

$$
\mathbb{E} \mathcal{D}_{\mathrm{TV}}^{2}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right) \lesssim \sqrt{d^{2} L^{2} \log (d L) \frac{\log m}{m}}
$$

Proof. Now we are ready to prove Theorem 3.3, the main idea is to bound $M, \beta_{m_{T}}$, $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)$ in Theorem $3.1 . M$ and Lipschitz property can be bounded by using Lemma B. 10 $\beta_{m_{T}}$ can be induced by Lemma B. 11 with Lipschitz constant. In terms of $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)$, Lemma B.12 can be used to derive an upper bound.

First, we bound the loss function as follows.

$$
\begin{aligned}
\ell(f, \mathbf{z}) & =\ell(f,(\mathbf{x}, y)) \\
& =\log (1+\exp (-y f(\mathbf{w}, \mathbf{x}))) \\
& \leq \log (2)+|y f(\mathbf{w}, \mathbf{x})| \quad(\log (1+\exp (-t)) \text { is 1-Lipschitz }) \\
& =\log (2)+|f(\mathbf{w}, \mathbf{x})|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \log (2)+\left(\prod_{l=1}^{L}\left\|\mathbf{w}_{l}\right\|_{2}\right)\|\mathbf{x}\|_{2} \\
& \leq \log (2)+\left(\prod_{l=1}^{L}\left\|\mathbf{w}_{l}\right\|_{2}\right) \sqrt{d} \\
& \leq \log (2)+\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d} \\
& \lesssim\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d}
\end{aligned}
$$

Thus, we have $M \lesssim\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d}$.
Second, we prove that f is Lipschitz given the bounded parameter space.

$$
\begin{align*}
\left\|\frac{\partial f(\mathbf{w}, \mathbf{x})}{\partial \mathbf{w}}\right\|_{2} & \leq \sum_{l=1}^{L}\left\|\frac{\partial f(\mathbf{w}, \mathbf{x})}{\partial \mathbf{w}_{l}}\right\|_{2} \\
& \leq\|\mathbf{x}\|_{2} \sum_{l=1}^{L}\left(\prod_{i \neq l}\left\|\mathbf{w}_{l}\right\|_{2}\right) \tag{byLemmaB.10}\\
& \leq\|\mathbf{x}\|_{2} \sum_{l=1}^{L}\left(\prod_{i \neq l}\left\|W_{l}\right\|_{2}\right) \\
& \leq \sqrt{d} \sum_{l=1}^{L}\left(\prod_{i \neq l}\left\|\mathbf{w}_{l}\right\|_{2}\right) \\
& \lesssim \sqrt{d} \sum_{l=1}^{L}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right) \\
& =\sqrt{d} L\left(\prod_{i}\left\|W_{l}\right\|_{2}\right) .
\end{align*}
$$

Therefore, f is ρ-Lipschitz with $\sqrt{d} L\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)$. Then, β_{m} can be bounded by Lemma B. 11 .

$$
\beta_{m} \leq \frac{16 \rho^{2} T^{c}}{m^{1+c}} \leq 16 d L^{2}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)^{2} \frac{T^{c}}{m^{1+c}} \lesssim\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)^{2} \frac{d L^{2}}{m}
$$

Third, we bound the expectation of divergence between model distribution and target distribution as follows.

$$
\begin{aligned}
\mathbb{E} \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right) & \lesssim \mathbb{E} \int_{(\mathbf{x}, y)}\left|\mathbb{P}_{\mathcal{D}}(\mathbf{x}, y)-\mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{x}, y)\right| d \mathbf{z} \\
& =\mathbb{E} \sum_{y} \int_{\mathbf{x}}\left|\mathbb{P}_{\mathcal{D}}(\mathbf{x}, y)-\mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{x}, y)\right| d \mathbf{x} \\
& =\mathbb{E} \sum_{y} \int_{\mathbf{x}} \frac{1}{2}\left|\mathbb{P}_{\mathcal{D}}(\mathbf{x} \mid y)-\mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{x} \mid y)\right| d \mathbf{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E} \sum_{y} \mathcal{D}_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{D}}(\mathbf{x} \mid y), \mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{x} \mid y)\right) \\
& =\sum_{y} \mathbb{E}^{\mathrm{D}} \mathrm{TV}\left(\mathbb{P}_{\mathcal{D}}(\mathbf{x} \mid y), \mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{x} \mid y)\right) \\
& =\sum_{y} \sqrt{\left(\mathbb{E} \mathcal{D}_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{D}}(\mathbf{x} \mid y), \mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{x} \mid y)\right)\right)^{2}} \\
& \leq \sum_{y} \sqrt{\mathbb{E} \mathcal{D}_{\mathrm{TV}}^{2}\left(\mathbb{P}_{\mathcal{D}}(\mathbf{x} \mid y), \mathbb{P}_{\mathcal{D}_{G}(S)}(\mathbf{x} \mid y)\right)} \\
& \lesssim \sum_{y} \sqrt{\sqrt{d^{2} L^{2} \log (d L) \frac{\log m}{m}}} \\
& \lesssim\left(d^{2} L^{2} \log (d L) \frac{\log m}{m}\right)^{\frac{1}{4}}=\sqrt{d L}\left(\log (d L) \frac{\log m}{m}\right)^{\frac{1}{4}}
\end{aligned}
$$

Furthermore, because $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right) \leq 1$, we have

$$
\mathbb{E} \mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right) \lesssim \min \left(1, \sqrt{d L}\left(\log (d L) \frac{\log m}{m}\right)^{\frac{1}{4}}\right)
$$

Finally, by taking the expectation for the bound in Theorem 3.1, and plugging $M, \beta_{m_{T}}$ and $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)$ into it, we can conclude the result of Theorem 3.3 with high probability at least $1-\delta$,
$M \lesssim\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d}$

$$
\beta_{m} \leq \frac{16 \rho^{2} T^{c}}{m^{1+c}} \leq 16 d L^{2}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)^{2} \frac{T^{c}}{m^{1+c}} \lesssim\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)^{2} \frac{d L^{2}}{m}
$$

$\mathbb{E} \mid$ Gen-error \mid

$$
\begin{align*}
\lesssim & \frac{m_{G}}{m_{T}}\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d} \min \left(1, \sqrt{d L}\left(\log (d L) \frac{\log m_{S}}{m_{S}}\right)^{\frac{1}{4}}\right) \\
& +\frac{\sqrt{m_{S}}+\sqrt{m_{G}}}{m_{T}}\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d} \sqrt{\log \left(\frac{1}{\delta}\right)}+\frac{m_{S} \sqrt{m_{G}}}{m_{T}^{2}}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)^{2} d L^{2} \sqrt{\log \left(\frac{1}{\delta}\right)} \\
& +\frac{m_{S} \log m_{S}+m_{G} \log m_{G}}{m_{T}^{2}}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)^{2} d L^{2} \log \left(\frac{1}{\delta}\right) \\
& +\frac{m_{S} \log m_{S}}{m_{T}}\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d} \mathscr{T}\left(m_{S}, m_{G}\right) \log \left(\frac{1}{\delta}\right) \tag{20}
\end{align*}
$$

$$
\lesssim \begin{cases}\frac{1}{\sqrt{m_{S}}} & \text { if fix } W, L, d, \text { let } m_{G}=0 \\ \max \left(\left(\frac{\log \left(m_{S}\right)}{m_{S}}\right)^{\frac{1}{4}}, \log m_{S} \mathcal{T}\left(m_{S}, m_{G}\right)\right) & \text { if fix } W, L, d, \text { let } m_{G}=\Theta\left(m_{S}\right) \\ \left(\frac{\log \left(m_{S}\right)}{m_{S}}\right)^{\frac{1}{4}} & \text { if fix } W, L, d, \text { let } m_{G}=m_{G, \text { order }}^{*} \\ d L^{2}\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right)^{2} & \text { if fix } m_{S}\end{cases}
$$

Corollary B.2. We denote the generalization error upper bound (Equation (20)) by Error $\left(m_{G}\right)$, where m_{G} is the augmentation size. We compare the cases where $m_{G}=0$ (without GDA) and $m_{G} \rightarrow+\infty$. If $d>m_{S}^{2}$, then the following holds:

$$
\operatorname{Error}(+\infty) \leq \frac{1}{\prod_{l=1}^{L}\left\|W_{l}\right\|_{2} L^{2}} \operatorname{Error}(0)
$$

Proof. By Equation 20, when $d>m_{S}^{2}$, we have

$$
\operatorname{Error}(0)=\frac{1}{\sqrt{m_{S}}}\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d} \sqrt{\log \left(\frac{1}{\delta}\right)}+\frac{\log m_{S}}{m_{S}}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right)^{2} d L^{2} \log \left(\frac{1}{\delta}\right)
$$

and

$$
\operatorname{Error}(+\infty)=\left(\prod_{l=1}^{L}\left\|W_{l}\right\|_{2}\right) \sqrt{d}
$$

When δ is sufficiently small, we have

$$
\begin{aligned}
& \operatorname{Error}(0) \\
& =\frac{1}{\sqrt{m_{S}}} \operatorname{Error}(+\infty) \sqrt{\log \left(\frac{1}{\delta}\right)}+\frac{\log m_{S}}{m_{S}}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right) \sqrt{d} L^{2} \operatorname{Error}(+\infty) \log \left(\frac{1}{\delta}\right) \\
& \geq \frac{\log m_{S}}{m_{S}}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right) \sqrt{d} L^{2} \operatorname{Error}(+\infty) \\
& \geq \frac{1}{m_{S}}\left(\prod_{i}\left\|W_{l}\right\|_{2}\right) \sqrt{d} L^{2} \operatorname{Error}(+\infty) \\
& \geq\left(\prod_{i}\left\|W_{l}\right\|_{2}\right) L^{2} \operatorname{Error}(+\infty)
\end{aligned}
$$

which completes the proof.

Appendix C Discussion on existing non-i.i.d. stability bounds

In this section, we show that it is unclear how to use existing non-i.i.d. stability bounds to derive a better guarantee than Theorem 3.1 for GDA.

C. 1 Stability bounds for mixing processes

To the best of our knowledge, existing stability bounds for mixing processes only focus on the stationary sequence [27; 28; 72], which is defined as follows.

Figure 2: Dependence graph (left) and a forest approximation (right) of the GDA setting.

Definition C. 1 (Stationary sequence). A sequence of random variables $\mathbf{Z}=\left\{Z_{t}\right\}_{t=-\infty}^{\infty}$ is said to be stationary iffor any t and non-negative integers m and k, the random vectors $\left(Z_{t}, \ldots, Z_{t+m}\right)$ and $\left(Z_{t+k}, \ldots, Z_{t+m+k}\right)$ have the same distribution.

Unfortunately, the GDA setting in this paper does not satisfy the stationary condition, because $\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m_{S}}\right)=S$ and $\left(\mathbf{z}_{m_{S}+1}, \ldots, \mathbf{z}_{2 m_{S}}\right) \subseteq S_{G}$ do not have the same distribution. Furthermore, it is usually difficult to estimate the mixing coefficients which reflect quantitative dependencies among data points.

C. 2 Stability bounds for dependence graph

Recently, [29] provide a framework for the generalization theory of graph-dependent data, which includes the classical stability result in [25] as a special case. We now introduce some elements of graph-dependent random variables and the non-i.i.d. stability bound in [29]. For a graph G, we use $V(G)$ to denote its vertex set and $E(G)$ to denote its edge set.
Definition C. 2 (Dependency Graph, Definition 3.1 in [29]). An undirected graph G is called a dependency graph of a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ if (1) $V(G)=[n]$, (2) if $I, J \subseteq[n]$ are non-adjacent in G, then $\left\{X_{i}\right\}_{i \in I}$ and $\left\{X_{j}\right\}_{j \in J}$ are independent.
Definition C. 3 (Forest Approximation, Definition 3.4 in [29]). Given a graph G, a forest F, and a mapping $\phi: V(G) \rightarrow V(F)$, if $\phi(u)=\phi(v)$ or edge $\langle\phi(u), \phi(v)\rangle \in E(F)$ for any edge $\langle\phi(u), \phi(v)\rangle \in E(G)$, then (ϕ, F) is called a forest approximation of G. Let $\Phi(G)$ be the set of forest approximations of G.
Definition C. 4 (Forest Complexity, Definition 3.5 in [29]). Given a graph G and any forest approximation $(\phi, F) \in \Phi(G)$ with F consisting of trees $\left\{T_{i}\right\}_{i \in[k]}$, let

$$
\lambda_{(\phi, F)}=\sum_{\langle u, v\rangle \in E(F)}\left(\left|\phi^{-1}(u)\right|+\left|\phi^{-1}(v)\right|\right)^{2}+\sum_{i=1}^{k} \min _{u \in V\left(T_{i}\right)}\left|\phi^{-1}(u)\right|^{2}
$$

We call $\Lambda(G)=\min _{(\phi, F) \in \Phi(G)} \lambda_{(\phi, F)}$ the forest complexity of the graph G.
Theorem C.1. Assume that \mathcal{A} is a β_{m}-stable. Given a set \widetilde{S} of size m sampled from the same marginal distribution \mathcal{D} with dependency graph G. Suppose the maximum degree of G is Δ, and the loss function ℓ is bounded by M. For any $\delta \in(0,1)$, with probability at least $1-\delta$, it holds that

$$
\mathcal{R}_{\mathcal{D}}(\mathcal{A}(\widetilde{S})) \leq \widehat{\mathcal{R}}_{\widetilde{S}}(\mathcal{A}(\widetilde{S}))+2 \beta_{m, \Delta}(\Delta+1)+\left(4 \beta_{m}+\frac{M}{m}\right) \sqrt{\frac{\Lambda(G)}{2} \log \left(\frac{1}{\delta}\right)}
$$

where $\beta_{m, \Delta}=\max _{i \leq \Delta} \beta_{m-i}$ and $\Lambda(G)$ is the forest complexity of the dependence graph G.
Remark. Theorem C. 1 requires \widetilde{S} sampled from the same marginal distribution \mathcal{D}, which fails to hold in the context of GDA because the learned distribution $\mathcal{D}_{G}(S)$ is generally not the same as the true distribution \mathcal{D}. It is still unclear to overcome this problem.
Remark. When $m_{G}=0$ and $\widetilde{S}=S$, Theorem C.1 degenerates to the classical result in [25], which requires $\beta_{m}=o(1 / \sqrt{m})$ to converge. In contrast, Theorem 3.1 only requires $\beta_{m}=o(1 / \log (m))$ to converge, which is better than that of TheoremC. 1

Remark. We note that TheoremC. 1 is proposed for the general case with data dependence. Therefore, it does not consider the property of special cases and may fail to give good guarantees. On the one hand, the independence of S and the conditional independence of S_{G} used in the proof of Theorem 3.1 are significant, which is ignored by Theorem C. 1 On the other hand, in the case of strong dependence like GDA, the forest complexity may be too large to give a meaningful bound. The dependence graph and a forest approximation of the GDA setting are presented in Figure 2. Therefore, the forest complexity of the GDA setting can be bounded as follows.

$$
\begin{equation*}
\Lambda(G) \leq m_{S}\left(1+m_{G}\right)^{2}+1^{2} \lesssim m_{S} m_{G}^{2} \tag{21}
\end{equation*}
$$

Plugging 21 into TheoremC.1, and assume $m_{G}=\Theta\left(m_{S}\right)$, we observe that

$$
\frac{M}{m_{T}} \sqrt{\frac{\Lambda(G)}{2} \log \left(\frac{1}{\delta}\right)} \lesssim \frac{M}{m_{T}} \sqrt{\frac{m_{S} m_{G}^{2}}{2} \log \left(\frac{1}{\delta}\right)} \lesssim M \sqrt{\frac{m_{S}}{2} \log \left(\frac{1}{\delta}\right)}
$$

which fails to converge. However, Theorem 3.1 overcomes this problem.
Finally, we conclude that it is hard to directly use existing non-i.i.d. stability results to obtain a better guarantee than Theorem 3.1 .

Appendix D Experimental details and additional results

D. 1 CIFAR-10 dataset

CIFAR-10 is a widely used image dataset and we adopt it to empirically validate Theorem 3.3 Combining the simulations in the bGMM setting, our theory is verified sufficiently.

D. 2 Models

bGMM. We adopt the implementation of naïve Bayes in [80] to estimate the parameters of bGMM.
ResNet. We add the ResNet50 checkpoint released by Pytorch [81], which is also used in [24].
cDCGAN. We use the cDCGAN in this repository and modify its input channel and label dimension to 3 and 10 respectively to keep consistent with the format of images in CIFAR-10 dataset. This repository gains the most stars among repositories that implement cDCGAN. Furthermore, we follow its hyperparameter setting and train 200 epochs to obtain a cDCGAN for the CIFAR-10 dataset.
StyleGAN2-ADA. We use the class-conditional model pre-trained on CIFAR-10 dataset, which is released by NVIDIA Research [56].

EDM. We use the 5M synthetic CIFAR-10 dataset released in [24], which is generated by the pretrained conditional EDM. Given an augmentation size m_{G}, we randomly sample m_{G} from the 5 M synthetic data points.

D. 3 Model selection

GANs are chosen to empirically validate Theorem 3.3 and the EDM is chosen to explore the ability of the diffusion model. First, we choose a "bad" GAN (DCGAN) to empirically verify that GANs can improve the test performance when m_{S} is small and awful overfitting happens (without standard augmentation). Second, we choose a "good" GAN (StyleGAN2-ADA) to verify that GANs can not improve the test performance obviously when the m_{S} is approximately large (with standard augmentation). Third, because diffusion models have achieved good success in recent years, we conduct experiments on the EDM and suggest that diffusion models have a better $\mathcal{D}_{\mathrm{TV}}\left(\mathcal{D}, \mathcal{D}_{G}(S)\right)$ than GANs.

D. 4 Training details

Standard data augmentation. 4 pixels are padded on each side, and a 32×32 crop is randomly sampled from the padded image or its horizontal flip. This augmentation pipeline is widely used [54].

Optimization. We follow the setting in [24]. We use the SGD optimizer, where the momentum and weight decay are set to 0.9 and 5×10^{-4}, respectively. We use the cyclic learning rate schedule with cosine annealing, where the initial learning rate is set to 0.2 . We train the deep neural classifier with 100 epochs. The batch size is 512 .

D. 5 Computation consumption.

All experiments are run on one RTX 3090 GPU . The most consuming case ($\operatorname{ResNet50,} m_{G}=1 \mathrm{M}$) takes 17 GB cuda memory and 20 hours.

D. 6 License

The used codes and their licenses are listed in Table 2

Table 2: The used codes and licenses.

URL	Citation	License
https://github.com/NVlabs/stylegan2-ada-pytorch	$[56$	License
https://github.com/pytorch/pytorch	$[81]$	License
https://github.com/wzekai99/DM-Improves-AT	$[24]$	MIT License
https://github.com/ML-GSAI/Revisiting-Dis-vs-Gen-Classifiers	$[80]$	MIT License
https://github.com/znxlwm/pytorch-MNIST-CelebA-cGAN-cDCGAN	-	-

D. 7 Additional results

We further adopt the CIFAR-10 dataset to empirically verify our theory by estimating the generalization error directly. By definition, given a trained neural classifier, the generalization error of Theorem 3.3 can be estimated by the absolute gap between the mean cross-entropy loss on the training set (with generated data) and the mean cross-entropy loss on the test set. We add the results of cDCGAN, StyleGAN2-ADA, and EDM with this estimator in Table 3

On the one hand, GANs decrease the generalization error when m_{S} is small (without standard augmentation). On the other hand, GANs fail to boost the performance obviously and even hurt the error when m_{S} is approximately large (with standard augmentation). Our experimental results support the theoretical results (Theorem 3.3) again.

Table 3: Estimated generalization error on the CIFAR-10 dataset, where S.A. denotes standard augmentation.

Generator	Classifier	S.A.	GDA (m_{G})					
			w/o	100k	300k	500k	700k	1M
cDCGAN	ResNet18	\times	0.476	0.456	0.413	0.424	0.428	0.455
		$\sqrt{ }$	0.227	0.227	0.227	0.221	0.238	0.240
	ResNet34	\times	0.538	0.564	0.476	0.474	0.514	0.514
		$\sqrt{ }$	0.219	0.234	0.223	0.231	0.239	0.247
	ResNet50	\times	0.634	0.496	0.471	0.531	0.533	0.566
		$\sqrt{ }$	0.235	0.231	0.244	0.234	0.254	0.266
StyleGAN2-ADA	ResNet18	\times	0.476	0.336	0.296	0.298	0.292	0.303
		$\sqrt{ }$	0.227	0.205	0.215	0.205	0.210	0.210
	ResNet34	\times	0.538	0.381	0.340	0.335	0.339	0.346
		$\sqrt{ }$	0.219	0.222	0.219	0.236	0.229	0.223
	ResNet50	\times	0.634	0.357	0.313	0.330	0.331	0.322
		$\sqrt{ }$	0.235	0.236	0.211	0.223	0.198	0.223
EDM	ResNet18	\times	0.476	0.249	0.185	0.172	0.154	0.142
		$\sqrt{ }$	0.227	0.159	0.121	0.100	0.090	0.070
	ResNet34	\times	0.538	0.281	0.215	0.183	0.163	0.150
		$\sqrt{ }$	0.219	0.164	0.120	0.100	0.096	0.084
	ResNet50	\times	0.634	0.265	0.194	0.186	0.172	0.149
		$\sqrt{ }$	0.235	0.160	0.121	0.101	0.089	0.078

