
A Appendix

A.1 Experimental Setup Details

A.1.1 Hyperparameters for model training

As mentioned in Section 3.4, we use the same hyperparameters and configurations as the original OPT
model architecture from Zhang et al. [59]. We describe these hyperparameters briefly in Table A1.
We chose these configurations because they are openly available and have been used as the standard
in many previous works [1, 13, 29, 48, 59]. All models use GELU activation [18], Adam optimizer
[26] with �1 = 0.9, �2 = 0.95, ✏ = 10�8, weight decay set to 0.1, and we clip gradient norms at 1.0.
We use a polynomial learning rate schedule, where learning rate warms up from 0.0 to peak learning
rate over the first 375 million tokens, and is then annealed to (0.1 * Peak LR) over the remaining
(Ttarget � 375) M tokens. We train all our models in fully sharded data parallel mode [2] using
Megatron-LM Tensor Parallelism [45] with fp16 precision. For reproducibility (and perhaps the only
difference from the original configuration in Zhang et al. [59]) is that we do not use dropout.

Table A1: Model architecture details. Most of the parameter configurations are the same as in Table
1 of Zhang et al. [59]. Batch size denotes the total tokens that the model sees during one gradient
descent update.

Scale Num Layers Num Heads Embedding Dim Peak Learning Rate (LR) Batch Size

8M 4 2 128 1.0e-3 0.5M
125M 12 12 768 6.0e-4 0.5M
1.3B 24 32 2048 2.0e-4 1M
6.7B 32 32 4096 1.2e-4 2M

A.1.2 Dataset Curation Details

In this subsection, we describe how we curate CC-dedup, the starting source dataset used throughout
the paper. We start with 5 CommonCrawl dumps 2 which range from 2017 to 2020. We then use
CC-net [54], to de-duplicate data at the paragraph level, remove non-English web pages, and filter
out low-quality pages. The pipeline we use is identical to the pipeline used in Touvron et al. [50] (see
the section after the subtitle "English CommonCrawl [67%]", within Section 2).

On top of this, we add an additional step of MinHash [8] de-duplication at the document-level. The
parameters for MinHash are 20 hashes per signature, 20 buckets, and 1 row per bucket. These
parameters are the default parameters in the spark implementation of MinHashLSH, and we did
not do a hyperparameter sweep on these parameters due to compute limitations. Previous work has
attempted running MinHash with much more aggressive parameters: Lee et al. [27] and Penedo
et al. [39] use 20 buckets, 450 hashes per bucket, and 9000 signatures per hash. We conjecture
that more aggressive MinHash would remove more templates, resulting in a higher-quality starting
dataset, potentially making the SemDeDup step of D4 less necessary. Abbas et al. [1] did find that the
performance of MinHash from Lee et al. [27] and SemDeDup are comparable at a fixed data selection
ratio of 3.9% on C4, indicating that SemDeDup filters out similar data to aggressive MinHash does.
We leave sweeping over these hyperparameters as future work.

We note that since our dataset is curated from CommonCrawl dumps, there is risk that our training
set contains offensive or PII content. We note, however, that this risk is no more than that of standard
language modeling curation such as Touvron et al. [50], since we use the same pipeline to filter
CommonCrawl dumps.

A.1.3 Parameters for Data Selection

All methods introduced in Section 3.4 involve clustering embeddings using K-Means. Our starting
training dataset CC-dedup contains roughly 600 million documents in total. Running K-Means
clustering on all 600 million 768-sized vectors would take a considerable amount of compute. Instead,
we follow previous work [1, 47] and randomly sample roughly 100M documents with which to

2https://commoncrawl.org/the-data/get-started/
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calculate centroids. We normalize the embeddings for these 100M documents to have L2-norm of
1.0, and then use faiss [24] with the following parameters:

faiss.Kmeans(

768 # 125M OPT model embedding size,

11000 # 11K clusters,

niter=20 # 20 iterations,

verbose=True,

seed=0,

gpu=False,

spherical=True,

min_points_per_centroid=1,

max_points_per_centroid=100000000

)

We choose 11000 clusters following previous work [1] and we note that this choice sticks to the
heuristic that the number of clusters should roughly be the square root of the number of total points
being clustered. We also note that in initial experiments for data selection at the 125M OPT model
scale, we did not find a significant effect of number of clusters on the performance of our data
selection methods (see Figure A1) this finding agrees with Abbas et al. [1] who notice significant
overlap between datasets selected by SemDeDup with different number of clusters (see Figure A2 in
Abbas et al. [1]).

Figure A1: Effect of number of clusters in K-Means on data selection performance. All models
are 125M OPT models, where the training set (and starting source dataset) is C4 and we select
data with SSL prototypes. The y-axis is the change in perplexity compared to baseline training,
meaning that baseline training is at 0.0, and going down on the graphs indicates better performance.
The x-axis is the source dataset size. We show results for average perplexity on Non-web snapshot
validation sets (left) and Instruct + Answers (right). We notice that there is not a significant difference
when changing number of clusters (e.g. if we drew error bars around each line, they would all be
overlapping), but 11K clusters is generally among the top-3 best performing methods.

We deliberately set min points per centroids low and max points per centroid high so that faiss
does not attempt to manually balance the clusters while doing K-Means. Sorscher et al. [47] found
that explicitly class-balancing is important: they introduce the "class balance score" (see Section
H of Sorscher et al. [47]) which is the expectation of the quantity size of majority class

size of minority class over all pairs of
classes. They then set a hard limit for the class balance score of 0.5, meaning that "every class has at
least 50% of the images that it would have when pruning all classes equally" [47]. We consider the
unsupervised-learning analog of the class-balance score, which we refer to as the "cluster balance"
score. The cluster balance score is the expectation of the quantity size of bigger cluster

size of smaller cluster over all pairs
of clusters. Across all of our data selection methods (and choices for R) we find that this value is
generally equal to or bigger than 0.5 without any explicit intervention. For this reason, we do not
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explicitly cluster balance, although we note that changing how many points are sampled from each
cluster (based on properties of the cluster) is very interesting future work.

D4 parameters: The choice of parameters Rproto and Rdedup while using D4 will have impact on the
performance of D4. Given limited compute, we are not able to sweep over these hyperparameters.
Instead, we strategically choose these parameters: we first look at the highest value of R in SemDeDup
that results in perplexity improvement across validation sets. We choose the "highest value" because
the purpose of SemDeDup is to remove duplicate-driven clusters and low R with SemDeDup generally
removes more than just templates/semantic duplicates. As seen in Section A.3, this generally occured
with Rdedup = 0.75. Thus, we chose Rdedup = 0.75 and varied Rproto to obtain different data
selection ratios for D4.

A.1.4 Which validation sets go into the averages?

For clarity, we explicitly state the validation sets which we consider "Web Snapshots", "Non Web
Snapshots", and "Instruct + Answers" when reporting averages:

Web Snapshots: perplexity on validation set of C4, CC-dedup, CommonCrawl (from the Pile)

Non-web Snapshots: perplexity other validation sets from the Pile, comprising of OpenWebText2,
HackerNews, Wikipedia (en), BookCorpusFair, DM Mathematics, Gutenberg PG-19, OpenSubtitles,
and USPTO. Also included in this average is "redditflattened" (validation set from Pusshift.io Reddit
[4]), "stories", "prompts_with_answers" (which is described below) and "prompts" (which is the
same as "prompts_with_answers" but where each sample is just the instruction-tuning prompt without
the answer).

Instruct + Answers: perplexity on instruction-tuning data from OPT-IML [21], where each sample
contains both the instruction-tuning prompt and the answer (in Figure A4 this is referred to as
"prompts_with_answers."

While the validation sets in web-snapshots and non-web snapshots are clear (they are either standard
open-sourced datasets, or derived from commonly used data), we expect that the "Instruct + Answers"
data might be new to some readers. We provide a few examples of what this validation set looks like
in Table A2.

Table A2: Examples from "Instruct + Answers" validation set
Raw Text

Instructions: In this task, you are given two phrases: Head and Tail, separated with <sep>. The
Head and the Tail events are short phrases possibly involving participants. The names of specific
people have been replaced by generic words (e.g., PersonX, PersonY, PersonZ). PersonX is always
the subject of the event. You have to determine whether the Head is located or can be found at/in/on
the Tail or not. Classify your answers into "Yes" and "No". The phrase may also contain "___", a
placeholder that can be an object, a person, and/or an action.Input: Head: PersonX acknowledges
gratefully the ___<sep>Tail: to use it Output: No
Read the given sentence and if it is a general advice then indicate via "yes". Otherwise indicate via
"no". advice is basically offering suggestions about the best course of action to someone. advice can
come in a variety of forms, for example Direct advice and Indirect advice. (1) Direct advice: Using
words (e.g., suggest, advice, recommend), verbs (e.g., can, could, should, may), or using questions
(e.g., why don’t you’s, how about, have you thought about). (2) Indirect advice: contains hints from
personal experiences with the intention for someone to do the same thing or statements that imply an
action should (or should not) be taken. Input: Let it go. Output: yes"
Instructions: You are given a sentence in English. Your job is to translate the English sentence into
Italian. No! Demand to understand. Ask. Answer: No! Esigete di comprendere. Chiedete.
Task: In this task you will be given a list of integers. You should round each integer to the nearest
tens place. That means you should round the number to the nearest multiple of 10.Input: [528, -636,
-686, 368, -433, 992, 886] Answer: [530, -640, -690, 370, -430, 990, 890]
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A.2 Efficiency gains across model scales and training

In this section, we investigate the relationship between model scale, and performance gain obtained
by selecting data via D4. Specifically, we train three groups of models: 125M OPT models trained
on Ttarget = 3B tokens, 1.3B OPT models trained on Ttarget = 40B tokens, and 6.7B OPT models
trained on Ttarget = 100B tokens. We notice in Figure A2 that D4 results in efficiency gains across
the board in terms of perplexity. Surprisingly, these efficiency gains seem to increase with scale,
indicating that at bigger model scales, D4 might lead to even more efficiency gains. We also see
efficiency gains in 0-shot downstream accuracy for 1.3B and 6.7B model scales on the order of 30%
for both 1.3B and 6.7B models, but we note that evaluation downstream performance on intermediate
checkpoints is not completely fair due to unfinished learning rate schedule. Nonetheless, we see that
downstream accuracy efficiency gains are not decreasing with scale.
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Figure A2: Training trajectory of OPT models trained on raw data (gray line) and data selected via
D4 (pink line). Across model scales (1st row: 8M OPT models trained on 2B tokens, 2nd row: 125M
OPT models trained on 3B tokens, 3rd row: 1.3B OPT models trained on 40B tokens, 4th row: 6.7B
OPT models trained on 100B tokens), we see significant efficiency gains in both perplexity (left two
columns) and 0-shot downstream accuracy on 16 NLP tasks (right column). Importantly, we see
that increasing model scale does not decrease efficiency gains. All plots show mean and standard
error across three seeds, except for the last row. We do not evaluate downstream accuracy for models
smaller than 1.3B because they are likely too close to random performance to indicate whether a
particular data selection method is better.

A.3 Individual Breakdowns of Downstream Accuracy and PPL

In Section 4, we see that D4, SSL prototypes, and SemDeDup achieves significant gains on perplexity
(averaged across different validation sets) and downstream accuracy (averaged across different NLP
tasks) compared to baseline training. Further, we generally see that D4 outperforms SSL prototypes
and SemDeDup. In this section, we provide a more fine-grained analysis of these claims across
individual tasks.

For perplexity, we notice in Figure A4 that the claims in Section 4 generally hold across validation
sets: for web snapshots validation sets such C4, CC-dedup, and CommonCrawl, we see performance
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Figure A3: Per-task breakdown of 0-shot downstream accuracy comparison across data selection
methods, for 1.3B, 40B OPT model. For a description of the 16 NLP tasks shown above, see
Section 3.4. We note that there is considerable variability across individual downstream tasks.

worsens with data selection compared to baseline training, and that D4 generally has the slowest
rate of performance degradation. We note that, across all non web-snapshot validation sets, there is
no clear winner among data selection methods. We emphasize however that we observe consistent
improvement over baseline training on most validation sets we use — for example in Figure A4
we observe that, when selecting tokens from a 1.25x source dataset, all data selection methods
improve over baseline across all validation sets except C4 and CC-dedup (however, as we explain in
Section 4.4, this decrease in performance on C4 and CC-dedup is expected).

For downstream accuracy, we chose to match the exact downstream evaluation done in Zhang et al.
[59] since we use OPT architecture and hyperparameters. Similar to Zhang et al. [59], we notice
considerable variability across the 16 NLP tasks in Figure A3, motivating us to look at the mean
downstream accuracy across tasks.
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Figure A4: Perplexity as a function of source dataset size for 1.3B OPT model 40B token training
runs, across data selection runs. Each plot above represents perplexity on an individual validation set
(see Section 3.4 for more information). Mean and standard error across 3 seeds is shown (standard
error is denoted by shaded regions).

A.4 SSL prototypes and SemDeDup overlap

Figure A5 shows the overlap between datasets selected by SemDeDup and SSL Prototypes. While
the two methods do not arrive at the same set of data points, there is a significant overlap between
the datasets curated by the two methods. We hypothesize that this is because both SSL prototypes
and SemDeDup prune away dense regions of space surrounding cluster centroids: by definition,
SemDeDup sparsifies dense regions of space within a cluster; similarly, by definition, SSL prototypes
will prune away datapoints close to the cluster centroids. Since K-means clustering places centroids
in dense regions of space (see Figure A6 where we observe that the distribution of cosine distances
to cluster centroid is skewed right), we know that the regions of space surroundings centroids will
be dense, and expect SSL prototypes and SemDedup to have significant overlap. Qualitatively, we
inspect a few examples of points close to cluster centroids in Figure A3, Figure A4, Figure A5, and
see that examples close to cluster centroids can be semantically redundant (e.g. templates). Therefore,
it makes sense that any reasonable data selection strategy would prioritize sparsifying these dense
regions of space surrounding cluster centroids. As mentioned in Section 3.4, sparsifying these dense
regions of space containing excessive semantic duplicates is the original motiviation behind D4. As
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Figure A5: Similarity between data selection methods. Each square represents the percentage of
training data that is intersecting, when selecting data via two different strategies. The x and y axis
enumerate different data selection strategies.

shown in Figure 7, omitting the re-clustering step significantly worsens performance, and we observe
in the rightmost plot of Figure 7 that SemDeDup indeed removes duplicate-driven clusters.

Figure A6: Distribution of cosine distance to cluster centroids for 50M randomly selected documents
from the training set of CC-dedup. We notice that the distribution is skewed right, implying that
datapoints are generally close to centroids.

A.5 Investigating Train-Validation overlap

As briefly described in Section 4.4, we observe that many of our validation sets are close (in cosine
distance) to our training sets, and the impact of data selection is varies across individual validation
sets. Individual validation sets live in different regions of the embedding space, and as such they are
affected differently by data selection. For example, one could imagine that web-snapshot validation
sets such as C4 is close to CC-dedup in the embedding space, while esoteric validation sets (such
as Gutenberg PG 19 or DM Mathematics) might be far. To quantify this, we first find the nearest
neighbors in the training set to each validation point in all of our validation sets. We then qualitatively
check (see Table A8 and Table A9 for examples) that nearest-neighbors in the training set truly
convey information about validation points. we observe significant overlap between training points
and validation points. We then quanitatively analyze how close each validation set is to the training
set: in Figure A12, we show the breakdown of this distribution for each validation set. We see a
general trend, that web-snapshots validation sets are closest to the training set as they are skewed to
the right, while more esoteric validation sets (Gutenberg, or Wikipedia (en)) are more centered or
even slightly left-skewed.

Motivated by this, we compare validation sets side-by-side (in terms of distance to training set) in
Figure 5, and we see a similar trend. To further understand why different validation sets are affected
differently by data selection, we loop through each data point in the validation set and record:
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• distance to the training set e.g. how close is the validation point to the training set

• perplexity difference before and after data selection with D4 e.g. how much was this
validation point affected by data selection

• original perplexity e.g. how easy was this data point originally

In Figure A11, we observe an interesting trend: for web-snapshot validation sets such as C4, the
validation points closest to the training set are both (1) the easiest (lowest perplexity) points before
data selection and (2) the points most affected by data selection. This seems to indicate that these
validation points are "easy" due to their proximity to training points, and when these training points
are removed from the training set due to data selection, the close-by validation points become difficult
for the model. We do not see this trend on non-web snapshot validation sets such as DM Mathematics
and Open Subtitles; in fact, we see an opposite trend where points furthest from the training set are
generally most affected by data selection.

As a sanity check, we change the sizes of validation sets used to plot Figure 5 in Section 4.4. We see
in Figure A8 that controlling for validation set size, we get the same jump going from web-derived
to web-independent validation sets. In running this experiment, we are forced to randomly sample
if the particular validation set is too big; to ensure that such random sampling does not change the
distance to nearest neighbor in the training dataset too much, we vary the amount we sample for three
differently sized datasets in Figure A7. We observe that changing the amount we randomly sample
from a validation set does not significantly change the mean distance to nearest neighbor in train.

We also investigate whether the differences between validation sets in Figure 5 is due to training set
size. We would expect that smaller training sets are "further" from validation sets, since (). Indeed
we see this in Figure A9. However, we observe that the relative ordering of validation sets (with
respect to average distance to the training set) remains the same for any fixed training dataset size.
Moreover, we see in Figure A10 that the relative ranking of all validation sets as well as the jump
from web-derived to web-independent validation sets from the original Figure 5 holds, even as we
reduce training dataset size.

Figure A7: Studying the effect of validation set size on cosine distance to nearest-neighbor in training
set. On the x-axis, we vary the size of the validation set (by randomly sampling the original larger
validation set), and the y-axis represents distance to nearest neighbor in the training set (averaged
across the validation set). We observe that regardless of what fraction of the original validation set is
sampled, the mean distance to the nearest neighbor in train does not change, indicating that Figure 5
is not due to different validation set sizes.
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Figure A8: Investigating whether Figure 5 changes if we control for validation set size. In the Figure
above, each validation set contains 50 data points, which is the size of the smallest validation set
we use (BookCorpusFair). If a validation set is bigger than 50 data points, we randomly sample the
validation set to obtain 50 data points.

Figure A9: Studying the effect of training set set size on cosine distance to nearest-neighbor in
training set. On the x-axis, we vary the size of the training set (by randomly sampling the original
training set), and the y-axis represents distance to nearest neighbor in the training set (averaged across
the validation set). We observe that cosine distance to the training set increases with smaller training
sets, but the relative ordering of validation sets (with respect to mean distance to training set) remains
the same.

23



Figure A10: Investigating whether Figure 5 changes if we change training set size set size. In the
figure above, each plot randomly samples a fraction of the training set (the fraction is denoted by the
title of the plot). We see that the relative ranking of the validation sets generally remains the same,
and there is consistently a jump between web-derived and web-independent validation sets.

Figure A11: (Top): Histogram of cosine distance to nearest neighbor in train. Within each bin, we
show the mean original perplexity (middle) and mean difference in perplexity after data selection
(bottom), for DM_Mathematics (left), OpenSubtitles(middle), and C4 (right). We note that points
in the C4 validation set closest to the training set are both "easy" (perhaps because of proximity to
training points) and are affected the most by data selection. We do not see this trend for non-web
snapshot validation sets such as DM_Mathematics and OpenSubtitles.
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Figure A12: Distribution of cosine distance to nearest neighbor in the training set, for each individual
validation set.

A.6 Further investigation of repeating tokens

In this section, we investigate whether the findings from Section 4.2 hold across model scale, data
selection ratio (e.g. number of epochs), and data selection method.

Across data selection methods: We first take the same configuration as Section 4.2, where we have a
starting source dataset of 40B tokens, use each of our data selection methods with R = 0.25 to select
a subset of documents, and repeat over these documents until we reach the target token budget of 40B
tokens. Note that this is at the 1.3B model scale. In Figure A13 we see that repeating data selected
by both SemDeDup and SSL prototypes also outperforms randomly selecting new data. However,
we quickly notice that for fixed data selection strategy (e.g. fixed column in Figure A13), repeating
tokens either outperforms or matched selecting new tokens. In other words: cleverly repeating tokens
can outperform randomly selecting new tokens, but if we fix the data selection strategy (random,
SemDeDup, SSL prototypes, or D4) then it is usually preferable to select new tokens. We also
note in Figure A16 that D4 outperforms other methods, although by a smaller margin than in the
fixed-compute regime.

Across model scale and data selection ratio: We fix our data selection strategy as D4 as done in
Section 4.2, but attempt repeating tokens across 3 model scales (125M, 1.3B, and 6.7B), and across
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Figure A13: Effect of repeating tokens across data selection methods over training. X-axis denotes
the number of updates, and the y-axis denotes average perplexity across non-web-snapshot validation
sets (top row) and Instruct OPT (bottom row). Each column in the plot above denotes a different
data selection method. Within each column: (1) the gray line denotes baseline training, (2) the
colored-dashed line denotes repeating tokens via the specified data selection method, and (3) the
colored-solid line denotes selecting new tokens via the specified data selection method. Repeating
data is generally worse than selecting new data for a fixed data selection method (e.g., fixed column).

data selection ratios (R = 0.5 and R = 0.25). We see in Figure A15 that repeating data with D4
outperforms randomly selecting new tokens across all model scales and choice of R.

We note that for fixed R, different data selection methods will choose subsets of the source dataset
that contain different amounts of tokens. This means that different data selection methods will epoch
a different number of times. For example, for a 1.3B OPT model 40B token budget training run, if
randomly repeating data with R = 0.25 chooses a subset with 10B tokens and D4 with R = 0.25
chooses a subset with 15B tokens, then the random run will epoch 4 times while the D4 run will
epoch 2.67 times. To show this more clearly, we plot 1.3B and 6.7B repeated data runs with the x-axis
changed to number of epochs in Figure A14. We see that up to roughly 2 epochs of data chosen with
D4 significantly outperforms randomly selected new data; however, close to 5 epochs leads to worse
performance.

Figure A14: Comparison of repeating tokens with D4 (pink line), randomly selecting new tokens
(horizontal dashed gray line), and randomly repeating data (gray line). We see with different epoch
numbers. The y-axis denotes perplexity, and x-axis denotes number of epochs.
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Figure A15: Comparison of repeating tokens with D4 (pink line), randomly selecting new tokens
(horizontal dashed gray line), and randomly repeating data (gray line). We see across model scales
(top: 125M trained on 3B tokens; middle: 1.3B trained on 40B tokens; bottom: 6.7B trained on 100B
tokens) and data selection ratios, repeating data selected by D4 outperforms randomly selecting new
data.

Figure A16: Comparison data selection methods when repeating data at the 125M, 3B token budget
scale. The x-axis is data selection ratio R, and the y-axis is average perplexity on validation sets. We
observe that selecting data to repeat via D4 outperforms other data selection methods, especially at
low selection ratios R (note that low selection ratios in the fixed-data regime correspond to more
epochs).

A.7 Choice of Embedding Space

All data selection methods we employ rely heavily on the quality of the underlying embedding space.
We qualitatively analyzed the embedding produced by the last-token last-layer OPT 125M model and
observed a bias towards end-of-document format. For example, if documents all end with an email
or a standard phrase ("Buy our product today!"), then these documents would be clustered together.
This likely helps detect templates (since templates tend to end their text in very similar ways), but has
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clear pitfalls — for example, if we took thousands of wikipedia articles about unrelated topics and
appended the same email at the end of each article, they might be clustered together.

Motivated by this, we briefly experiment with different embedding spaces and discuss our results in
this section.

A.7.1 SentenceTransformer models

BERT embeddings have generally been used to accomplish various NLP tasks, because BERT (unlike
GPT/OPT) is able to attend to every token in the input when producing an embedding (BERT is a
encoder-decoder model, while OPT/GPT are decoder only). While there are numerous BERT-style
models available, we hoped to achieve an embedding space that focused on semantic similarity. Thus,
we opted to use the widely popular SentenceTransformer models 3, which are BERT-style models
finetund specifically >1B text similarity pairs. We choose the top model on the SentenceTransformer
leaderboard (all-mpnet-base-v2) and the smallest well-performing model (all-Mini-LM-v6). Note
that these models have max context length of 256 and 384 (respectively), and we stuck with the
SentenceTransformer default of truncating inputs to fit the max sequence length (i.e. these embeddings
only consider the beginning of documents).

We observe, in Figure A17 that at small model scales, sentence transformer embedding spaces
outperforms the OPT embedding space. Given these initial results, we took our most overall-all
efficient embedding space at the 1.3b model scale ("all-mini-lm-v6") and ran a 6.7b training run
with it. Surprisingly, we observed that at larger model scale, the OPT embedding space outperforms
the "all-mini-LM-v6" embedding space. Given that the difference between "all-mini-LM-v6" and
"all-mp-net-base-v2" is generally small (see Figure A17), we also expect the OPT embedding space to
beat "all-mpnet-base-v2" at the 6.7b, although we were not able to complete this run due to compute
restrictions. We see the same trend when we consider overall and naive efficiency of using D4 with
different embedding spaces in Figure A18.

In an effort to understand why SentenceTransformer embedding spaces perform worse at larger
model scales, we qualitatively analyze the clusterings with each SentenceTransformer embedding
space. We find that using D4 with "all-mp-net-base-v2" and "all-mini-lm-v6" disproportionately
prunes long documents. We hypothesize that this is because sentence transformer models are trained
and finetuned on actual sentence pairs, which very rarely saturate the max context length of the
model. This might result in all "long" documents (or at least any input that is max-context-length size)
seem out-of-distribution to the model. We guess that this results in long documents being clustered
together, and therefore disproportionately affected during pruning. This might be especially relevant
in domains like Wikipedia articles, where headers and introductions look semantically similar, but
the actual content (past the first max-context-length tokens) is very different.

In an effort to circumvent this problem, we tried two approaches at a small model scale:

• M1: Chunking long documents into max-context-length chunks, and averaging all-mini-
LM-v6 embeddings across chunks to produce a final document embedding.

• M2: Using Contriever [22] embeddings, where we chose the Contriever model because it is
trained to determine if two sentences are from the same document, and therefore should be
agnostic to position within a document.

Both in terms of perplexity improvement at the end of training (see Figure A19) and efficiency (see
Figure A18) we do not observe a significant difference between the OPT embedding space and
embedding spaces M1 and M2 at the small model scale (125 million parameters). We note that M1
and M2 are significantly worse than the all-mp-net-base-v2 and all-mini-LM-v6 at small scales and

suffer from the same problem of pruning away long documents (compared to the OPT embedding
space), so we expect these models to under-perform the OPT embedding space at the 6.7b scale.

3https://www.sbert.net/docs/pretrained_models.html
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Figure A17: Perplexity (y-axis) versus selection ratio R (x-axis) for different embedding spaces,
when selecting data via D4. Across different 8m (top), 125m (middle) and 1.3b (bottom) model scales,
we see that the SentenceTransformer embedding spaces outperform the OPT embedding space, but at
the 6.7b model scale, we see that the OPT embedding space begins outperforming the all Mini LM v6
embedding space. We were unable to run an "all-mp-net-base-v2" 6.7b experiment due to compute
restrictions, but we note that the difference between "all-mini-lm-v6" and "all-mp-net-base-v2" across
model scales and selection ratios is generally small, so we expect the OPT embedding space to
outperform the "all-mp-net-base-v2" at the 6.7b scale.
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Figure A18: Comparison of naive efficiency for different embedding spaces, when using D4 as the
data selection strategy. Similar to Figure A17, we see that all-mini-LM-v6 outperforms the OPT
embedding space at small scale, but not at large (6.7b) model scale.

Figure A19: Comparison of embedding spaces M1 (averaging embedding of all-mini-LM-v6 across
all chunks in a document, where a chunk is defined as 256 tokens) and M2 (embeddings from the
Contriever model), with the OPT model embedding space, when using D4 as a the selection strategy.
We note that neither embedding space signifigantly outperforms the OPT model embedding space at
the 125M scale.
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A.8 Replicating Fixed Compute Results on C4

In this section, we briefly show our results for comparing data selecting methods at the 125M scale,
where the pre-training dataset is the C4 [41] dataset instead of CC-dedup. We see in Figure A20 that
D4 generally outperforms other methods. These initial experiments motivates us to try comparing
data selection methods on more heavily filtered web-data (i.e. CC-dedup).

Figure A20: Comparison of data selection strategies with the OPT model embedding space, when
using D4 as a the selection strategy, when using C4 as the starting training dataset. The x-axis is
selectoin ratio R, and the y-axis is perplexity difference compared to baseline (the horizontal gray
dotted line at 0.0 represents our baseline i.e. when no data selection is done), so lower is better.
Notice that D4 and SemDeDup match at 90%, because we use Rdedup = 0.9 and varied Rproto for
this experiment.
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A.9 Investigating Duplicate-Driven Clusters

In this subsection, we present a few examples of duplicate-driven clusters, which are clusters that are
very dense and near centroids. We find that these clusters tend to be filled with semantic duplicates
and/or duplicated text. We generally can find such extreme duplicate-driven clusters by looking at
clusters whose standard deviation of cosine distance to cluster centroid is less than 0.03. This is
essentially looking at clusters in the lower tail of the empirical CDF in Figure 7 (brown line). We
present a few examples of such clusters below:

Table A3: Nearest Neighbors to Cluster Centroid 682
Cosine Distance to Centroid Raw Text

0.03581655 The USGS (U.S. Geological Survey) publishes a set of the most com-
monly used topographic maps of the U.S. called US ......... may have
differences in elevation and topography, the historic weather at the two
separate locations may be different as well.

0.03584063 The USGS (U.S. Geological Survey) publishes a set of the most com-
monly used topographic maps of the U.S. called US ......... may have
differences in elevation and topography, the historic weather at the two
separate locations may be different as well.

0.036803484 The USGS (U.S. Geological Survey) publishes a set of the most com-
monly used topographic maps of the U.S. called US ......... may have
differences in elevation and topography, the historic weather at the two
separate locations may be different as well.

0.037270606 Search Near Clinton County, OH: Trails National and State Parks City
Parks Lakes Lookouts Marinas Historical Sites The USGS (U.S. Geolog-
ical ......... may have differences in elevation and topography, the historic
weather at the two separate locations may be different as well.

Table A4: Nearest Neighbors to Cluster Centroid 975
Cosine Distance to Centroid Raw Text

0.011662006 The American Way, Inc. The American Way, Inc. is a suspended
Californian business entity incorporated 19th August 1949. is listed as
......... for bulk data downloadsI want to request the removal of a page on
your websiteI want to contact California Explore

0.012483656 John St-Amour, Inc. John St-Amour, Inc. is a suspended Californian
business entity incorporated 5th October 1962. is listed as the agent
......... for bulk data downloadsI want to request the removal of a page on
your websiteI want to contact California Explore

0.012564898 Joseph E. Barbour, Inc. Joseph E. Barbour, Inc. is a suspended Califor-
nian business entity incorporated 27th January 1959. is listed as .........
for bulk data downloadsI want to request the removal of a page on your
websiteI want to contact California Explore

0.012756169 The Jolly Boys, Inc. The Jolly Boys, Inc. is a suspended Californian
business entity incorporated 4th March 1955. is listed as ......... for bulk
data downloadsI want to request the removal of a page on your websiteI
want to contact California Explore
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Table A5: Nearest Neighbors to Cluster Centroid 10715
Cosine Distance to Centroid Raw Text

0.035506427 Search hundreds of travel sites at once for hotel deals at Hotel Olympic
Kornarou Square 44, Heraklion, Greece 34 m Bembo Fountain 262 .........
hundreds of travel sites to help you find and book the hotel deal at Hotel
Olympic that suits you best.

0.036230028 Search hundreds of travel sites at once for hotel deals at Hotel Estrella
del Norte Juan Hormaechea, s/n, 39195 Isla, Cantabria, ......... travel
sites to help you find and book the hotel deal at Hotel Estrella del Norte
that suits you best.

0.036280274 Search hundreds of travel sites at once for hotel deals at H10 Costa Adeje
Palace Provided by H10 Costa Adeje Palace Provided ......... travel sites
to help you find and book the hotel deal at H10 Costa Adeje Palace that
suits you best.

0.036827266 Search hundreds of travel sites at once for hotel deals at Hotel Miguel
Angel by BlueBay Calle Miguel Angel 29-31, 28010 ......... sites to help
you find and book the hotel deal at Hotel Miguel Angel by BlueBay that
suits you best.

Table A6: Random Examples from Cluster 695
Cosine Distance to Cluster Centroid Raw Text

0.044178426 Eastern Florida State College nutritional sciences Learn about
Eastern Florida State College nutritional sciences, and registering
for electives. Which college degrees ......... System (IPEDS). If
any stats on Hagerstown Community College career planning are
incorrect, please contact us with the right data.

0.056984067 Albany State University introduction to business Find info con-
cerning Albany State University introduction to business, and
registering for elective discussion sections ......... If any stats
on Warren County Community College plant science major are
incorrect, please contact us with the right data.

0.0534693 Baldwin Wallace University cost per unit Learn about Baldwin
Wallace University cost per unit, submitting required application
forms, and follow-up scheduling. ......... (IPEDS). If any stats
on San Jose State nursing degree programs are incorrect, please
contact us with the right data.

0.06892538 Niagara University managerial accounting Information about
Niagara University managerial accounting, and registering for
elective lectures. Which college degrees give you the ......... Sys-
tem (IPEDS). If any stats on Midwestern University pharmacy
tech program are incorrect, please contact us with the right data.

0.07246786 Fanshawe College app download Learn about Fanshawe College
app download, and registering for elective discussion sections and
seminars. Which college degrees ......... Data System (IPEDS). If
any stats on Stratford University cell biology are incorrect, please
contact us with the right data.

0.07147932 Standish Maine Licensed Vocational Nurse LVN Jobs Find out
about Standish, ME licensed vocational nurse LVN jobs options.
It’s a smart ......... (IPEDS). If any stats on William Jewell College
medical insurance coding are incorrect, please contact us with
the right data.
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Table A7: Random Examples from Cluster 8342
Cosine Distance to Cluster Centroid Raw Text

0.027729392 Seenti - Bundi Seenti Population - Bundi, Rajasthan Seenti is a
medium size village located in Bundi Tehsil of Bundi district,
Rajasthan ......... 6 months. Of 186 workers engaged in Main
Work, 63 were cultivators (owner or co-owner) while 0 were
Agricultural labourer.

0.036407113 Kodunaickenpatty pudur - Salem Kodunaickenpatty pudur Pop-
ulation - Salem, Tamil Nadu Kodunaickenpatty pudur is a large
village located in Omalur Taluka of ......... 6 months. Of 3523
workers engaged in Main Work, 1500 were cultivators (owner or
co-owner) while 1533 were Agricultural labourer.

0.017463684 Chhotepur - Gurdaspur Chhotepur Population - Gurdaspur, Pun-
jab Chhotepur is a medium size village located in Gurdaspur
Tehsil of Gurdaspur district, Punjab ......... 6 months. Of 677
workers engaged in Main Work, 123 were cultivators (owner or
co-owner) while 142 were Agricultural labourer.

0.02616191 Maksudanpur - Azamgarh Maksudanpur Population - Azamgarh,
Uttar Pradesh Maksudanpur is a small village located in Sagri
Tehsil of Azamgarh district, Uttar ......... 6 months. Of 22 workers
engaged in Main Work, 14 were cultivators (owner or co-owner)
while 0 were Agricultural labourer.

0.028420448 Karambavane - Ratnagiri Karambavane Population - Ratnagiri,
Maharashtra Karambavane is a medium size village located in
Chiplun Taluka of Ratnagiri district, Maharashtra ......... 6 months.
Of 444 workers engaged in Main Work, 116 were cultivators
(owner or co-owner) while 214 were Agricultural labourer.

0.037917078 Barda - Purba Medinipur Barda Population - Purba Medinipur,
West Bengal Barda is a large village located in Egra - I Block
......... 6 months. Of 1182 workers engaged in Main Work, 278
were cultivators (owner or co-owner) while 252 were Agricultural
labourer.
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Table A8: Nearest Neighbors to random validation point in C4
Cosine Distance Raw Text

0.0(original validation text) Offers two child care opportunities to Charles County citizens— the Port
Tobacco Onsite Child Care Program and the Before and After School
Child Care Program (BASCC). Supports parents through home visits
to first time parents and by helping them search for child care, find
resources for a child with social, emotional . . . . . . . . Special needs
kids. Free to look, a fee to contact the providers. Hotline is staffed by
highly-trained and friendly Child Care Consumer Education Specialists
who offer both parents and providers invaluable information about child
care, and referrals to local Child Care Resource and Referral agencies
where they can receive individualized assistance.

0.12867724895477295 Child Care Options is a program of Options Community Services , a
non-profit registered charity dedicated to making a difference in the
South Fraser Region. Options is committed to empowering individuals,
supporting families and promoting community health. Funding for
Child Care Options is provided through British Columbia’s Ministry of
Children . . . . . . . . Rock. Child Care Options links families and child
care providers in the communities of Delta, Surrey and White Rock by
offering free consultation, support and child care referral services and
subsidy support to parents seeking child care. Child care providers are
supported through information, outreach, resource library, networking,
and learning opportunities.

0.15080827474594116 Below are links to child development resources, both from within the
department and from external sources. Child Development Division
Publications Publications that can help you will help you follow your
child’s development (from birth to age five) so you can identify and
address any issues early on. Resources to help you understand children’s
. . . . . . . . families to local resources and services. Specialists are
available from 9 AM to 6 PM Monday – Friday. Services are confidential.
Caregivers can also visit http://www.helpmegrowvt.org/families.html to
learn more about child development, discover developmental tips, and
watch videos demonstrating children’s developmental milestones (click
a button to choose your child’s age).

0.15738284587860107 National Domestic Violence Hotlines Programs that provide immedi-
ate assistance for women and men who have experienced domestic
abuse which may include steps to ensure the person’s safety; short-
term emotional support; assistance with shelter; legal information and
advocacy; referrals for medical treatment; ongoing counseling and/or
group support; and other related services. Hotline . . . . . . . . RP-
1500.1400-200) www.thehotline.org/ Toll Free Phone: 800-799-SAFE
URL: https://www.thehotline.org/ Eligibility: Anyone affected by rela-
tionship abuse. Services Provided: Available 24/7/365 via phone, TTY,
and chat. Provides lifesaving tools and immediate support to enable
victims to find safety and live lives free of abuse. Highly trained, ex-
perienced advocates offer support, crisis intervention, education, safety
planning, and referral services.
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Table A9: Nearest Neighbors to random validation point in USPTO
Cosine Distance Raw Text

0.0(original validation text) SONET (Synchronous Optical NETwork) is a North American transmis-
sion standard for optical communication systems. SDH (Synchronous
Digital Hierarchy), a European transmission standard, is a minor variant
of SONET. SONET defines a hierarchy of electrical signals referred to as
Synchronous Transport Signals (STS). The STS hierarchy is built upon a
basic signal . . . . . . . . the corresponding row and column numbers may
include up to 18 comparison operations, which are onerous to implement,
for example, in terms of the required logic circuitry. This problem is
exacerbated at the upper levels of the STS hierarchy, where processing
of multiple pointer values per data frame is performed.

0.1998944878578186 US20080109728A1 - Methods and Systems for Effecting Video Transi-
tions Represented By Bitmaps - Google Patents Methods and Systems
for Effecting Video Transitions Represented By Bitmaps Download PDF
David Maymudes Multi-media project editing methods and systems are
described. In one embodiment, a project editing system comprises a
multi-media editing application that is configured to . . . . . . . .
synchronization models for multimedia data US20120206653A1 (en)
2012-08-16 Efficient Media Processing US6658477B1 (en) 2003-12-02
Improving the control of streaming data through multiple processing
modules US6212574B1 (en) 2001-04-03 User mode proxy of kernel
mode operations in a computer operating system US7752548B2 (en)
2010-07-06 Features such as titles, transitions, and/or effects which vary
according to positions

0.21122217178344727 Both the Ethernet II and IEEE 802.3 standards define the minimum
frame size as 64 bytes and the maximum as 1518 bytes. This includes
all bytes from the Destination MAC Address field through the Frame
Check Sequence (FCS) field. The Preamble and Start Frame Delimiter
fields are not included when . . . . . . . . frame. Dropped frames are
likely to be the result of collisions or other unwanted signals and are
therefore considered invalid. At the data link layer the frame structure is
nearly identical. At the physical layer different versions of Ethernet vary
in their method for detecting and placing data on the media.

0.2133803367614746 A byte is a group of bits, usually eight. As memory capacities increase,
the capacity of chip cards is often quoted in bytes rather than in bits as
in the past.
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