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Abstract

Turn-level dialogue evaluation models (TDEMs), using self-supervised learning
(SSL) framework, have achieved state-of-the-art performance in open-domain dia-
logue evaluation. However, these models inevitably face two potential problems.
First, they have low correlations with humans on medium coherence samples as the
SSL framework often brings training data with unbalanced coherence distribution.
Second, the SSL framework leads TDEM to nonuniform score distribution. There
is a danger that the nonuniform score distribution will weaken the robustness of
TDEM through our theoretical analysis. To tackle these problems, we propose
Better Correlation and Robustness (BCR), a distribution-balanced self-supervised
learning framework for TDEM. Given a dialogue dataset, BCR offers an effective
training set reconstructing method to provide coherence-balanced training signals
and further facilitate balanced evaluating abilities of TDEM. To get a uniform
score distribution, a novel loss function is proposed, which can adjust adaptively
according to the uniformity of score distribution estimated by kernel density esti-
mation. Comprehensive experiments on 17 benchmark datasets show that vanilla
BERT-base using BCR outperforms SOTA methods significantly by 11.3% on
average. BCR also demonstrates strong generalization ability as it can lead multi-
ple SOTA methods to attain better correlation and robustness. Code and datasets:
https://github.com/ypw0102/Better-Correlation-and-Robustness.

1 Introduction

Evaluating model-generated responses efficiently and accurately can facilitate the hyperparameter
tuning and comparison among models, which is essential for the research of open-domain dialogue
system (Bao et al., 2020; Sun et al., 2021; Feng et al., 2021; Li et al., 2023). Therefore, economical
and practical automatic metrics are widely applied instead of human evaluation during development
phase. However, the referenced automatic metrics, assessing dialogue based on the golden response
(e.g. BLEU (Papineni et al., 2002) and BERTScore (Zhang et al., 2020b)), have been shown to
be inaccurate for dialogue evaluation (Liu et al., 2016; Deriu et al., 2021) due to the one-to-many
nature of dialogue (Zhao et al., 2017). Fortunately, the unreferenced metrics, especially the turn-level
dialogue evaluation models (TDEMs) (Mehri and Eskénazi, 2020b,a; Huang et al., 2020; Ye et al.,
2021; Zhang et al., 2021a, 2022b), have achieved a favorable budget between efficiency and accuracy.

Nevertheless, existing TDEMs still perform worse correlations with human judgements on medium
coherence samples (samples with human ranking scores falling within the interval [0.25, 0.75]) and
lack robustness as shown in Figure 1. We argue that these problems stem from the self-supervised
learning (SSL) paradigm, which generally constructs positive and negative samples to strengthen
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Figure 1: Deficiencies of self-supervised TDEM. (a) TDEM possesses low correlations with human
judgements on conversations of medium coherence due to the lack of such samples of training data.
(b) TDEM attains poor robustness due to the nonuniform score distribution caused by discrete label
domain of training data together with general fixed loss functions.

the scoring ability of TDEM. Due to the fact that positive samples possess high coherence while
negative samples possess low coherence (Sato et al., 2020), TDEM lacks training signals of medium
coherence samples, thus leading to a bad performance when evaluating on such samples (e.g., (Q,
R2) in Figure 1). Moreover, current discrete label domain together with fixed loss functions generally
brings TDEM a nonuniform score distribution (Figure 1, 3), which will hurt the robustness of TDEM
according to our theoretical analysis (demonstrated in §3.4).

To solve the aforementioned problems, we propose Better Correlation and Robustness (BCR), a
distribution-balanced SSL framework for TDEM. BCR offers a Training Set Reconstructing (TSR)
method to balance the data coherence distribution of training set and advance a high correlation
with humans on medium coherence samples, and a Dynamic Penalty loss function (DP loss) for a
more uniform model score distribution. In TSR method, we use two rule-based strategies to expand
a conversation into a positive sample and a negative sample respectively to supplement medium
coherence samples. Considering that utterances within a conversation are internally coherent, our
strategies are reasonable. We also provide continuous labels for these medium coherence samples
through self-distillation to alleviate the deviation of discrete two-level labels. DP loss promotes
TDEM to obtain a more uniform score distribution by adaptively adjusting the penalty strength of
samples in different scoring intervals according to the uniformity of score distribution estimated
by kernel density estimation (Parzen, 1962), thus enhancing the robustness. Our contributions are
summarized as follows:

• We propose Better Correlation and Robustness (BCR), a novel distribution-balanced SSL
framework for TDEM, which can effectively alleviate limitations of vanilla SSL framework
through Training Set Reconstructing (TSR) and Dynamic Penalty loss function (DP loss).

• We theoretically prove that the robustness of TDEM and the uniformity of score distribution are
positively correlated, and further verify it through experiments.

• Comprehensive experiments on 17 benchmark datasets show that vanilla BERT-base (Devlin
et al., 2019) applying BCR can outperform SOTA methods significantly by 11.3% on average.
We also demonstrate the strong generalization of BCR as it can lead multiple SOTA methods to
attain better robustness and correlations with human judgements.

2 Related work

Referenced metrics have shown to correlate poorly with human judgements (Liu et al., 2016) and thus
various unreferenced model-based metrics have been proposed, which can be divided into CDEM
(conversation-level) and TDEM (turn-level). CDEMs (Mehri and Eskénazi, 2020a; Ghazarian et al.,
2022; Zhang et al., 2022a) evaluate conversations between real user and dialogue system. As this
interactive evaluation occupies too much extra energy of researchers, we mainly study TDEM, which
can be divided into supervised and self-supervised.

Supervised TDEMs (Lowe et al., 2017; Ye et al., 2021) are currently hard to train due to the lack of
human annotated datasets. It is worth mentioning that the reward models used in the RLHF stage of
LLM training (e.g., InstructGPT (Ouyang et al., 2022)) are essentially supervised TDEMs. Although
existing literature has not published the performance of these models, we proved through experiments
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that as a pre-training method, BCR can help supervised TDEMs converge to better performance faster
(see Appendix C.2). This may inspire scholars to research and apply pre-trained TDEMs to improve
the performance of reward models, thus attaining better LLMs.

Self-supervised TDEMs generally apply next utterance prediction as training task, in which the key
points are training set construction and training loss design. Original response and randomly sampled
response are generally regarded as positive and negative samples respectively for a given context
(Tao et al., 2018; Phy et al., 2020). Some literature attains hard negative samples through Word2Vec
similarity based filtering (Zhang et al., 2022b) , speaker-level utterance shuffling (Zhang et al., 2021a)
, model generation (Lan et al., 2020) and adversarial craft (Sai et al., 2020; Ye et al., 2021). However,
the lack of medium coherence samples will lead TDEMs to unbalanced evaluating ability. General
loss functions are widely used to train TDEMs, such as Triplet loss (Tao et al., 2018), CrossEntropy
loss (Mehri and Eskénazi, 2020b), NCE loss (Sinha et al., 2020), etc. (Ye et al., 2021) applies three
loss functions and attains a score distribution with three peaks. All of these loss functions together
with discrete label domain generally lead to a nonuniform score distribution, which will hurt the
robustness of TDEMs, as proven in 3.4.

3 Preliminary

In this section, we first introduce the task definition and a baseline model, followed by verifying the
low correlations and poor robustness caused by the SSL framework.

3.1 Task Definition

Given a conversation triplet (context, query, response) where response is offered by a dialogue system,
TDEM is required to measure the quality (e.g., coherence) of the response. We can calculate the
correlation coefficient (e.g., Spearman Correlation) with human judgements on annotated datasets to
evaluate the performance of TDEM.

3.2 Baseline Model

Ec Ec Eq Eq Er Er

context query response
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Figure 2: Baseline model. We apply four kinds
of embeddings from top to bottom: token embed-
ding, speaker embedding, position embedding
and class embedding.

Our baseline model is shown in Figure 2. Specifi-
cally, it contains a BERT-base-uncased model (De-
vlin et al., 2019) as feature extractor and a three-
layers multi-layer perceptron to get a coherence
score distributed within interval [0, 1]. Apart from
general embeddings (token, speaker, position), we
additionally apply class embeddings to distinguish
utterances from context, query and response as the
coherence between query and response is the dom-
inant judging factor (Li et al., 2021). Following
GRADE (Huang et al., 2020), we use Triplet loss
to train the baseline model on the DailyDialog2

dataset (Li et al., 2017). The gap of Triplet loss
is set as 0.3 at which our baseline model can at-
tain best performance. For each conversation, we
randomly select T (T>1) consecutive turns as pos-
itive sample and replace the last utterance with a
randomly chosen utterance to get negative sample.

3.3 Coherence Distribution

To verify the impact of unbalanced coherence distribution of training data, we test our baseline model
on subsets of DSTC10 Zhang et al. (2021b) dataset with different coherence respectively (Table
2). Our baseline model (w/o. TSR) obtains 0.125 Spearman correlation at the polarized interval
while only 0.073 at the medium interval. This proves that TDEM applying general SSL framework
performs bad on medium coherence samples.

2http://yanran.li/dailydialog
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Figure 3: Score distribution of TDEM trained with different loss functions on DSTC10 dataset.

3.4 Score Distribution

As shown in Figure 3, widely used loss functions (MAE, MSE, Triplet, CrossEntropy) lead TDEM to
a polarized score distribution under the discrete label domain setting. We conjecture that these loss
functions continuously give a relatively significant penalty loss to the samples already scoring within
polarized interval, which aggravate this polarized trend.

We primarily consider the influence of score distribution on the robustness of TDEM. Given a small
disturbance ϵ at the sample, the corresponding predicted score changes λ, which will affect Spearman
correlations rs between the original score x and the new score x+ λ. Robust TDEM is supposed to
resist noise, thus attains higher rs. Hence, we can use E(rs), the mathematical expectation of rs on n
samples, to reflect the robustness of TDEM, and make the following statement:

Theorem 1 For any f(x), the probability density function of TDEM score distribution, E(rs) has an
upper bound after a small disturbance:

E(rs) ≤ 1− 6E(λ)2

n2 − 1
, (1)

and the equality condition is f(x) ≡ 1,∀x ∈ [0, 1].

Proof 1 The ranking difference d(x) before and after disturbance is :

d(x) =

∫ x+λ

x

f(x)dx (2)

According to the definition of Spearman correlations, E(rs) can be written as:

E(rs) = E(1−
6
∑n

i=1 d(xi)
2

n (n2 − 1)
), (3)

we derive the lower bound of E(d(x)2) as follows (See detailed derivation in Appendix A):

E(d(x)2) =
∫ 1

0

(∫ x+E(λ)

x

f(u)du

)2

f(x)dx

≥

(∫ 1

0

∫ x+E(λ)

x

f(u)duf(x)dx

)2

≥ E(λ)2

(4)

The equality condition of Eq. (4) is f(x) ≡ 1 for x ∈ [0, 1]. Taking the lower bound of E(d(x)2)
into Eq. (3), we conclude the proof.

Note that higher E(rs) denotes better robustness of TDEM. Hence, we can derive that the robustness
of TDEM correlates positively with the uniformity of score distribution based on Theorem 1.

4



I think Michael Jordan is the 
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Figure 4: Illustration of BCR Framework.

4 BCR framework

We propose BCR framework (Figure 4) to alleviate the low correlations on medium coherence
samples and poor robustness caused by SSL framework. BCR offers: (1) training set reconstructing
(TSR) to attain coherence-balanced training samples with continuous label domain (§4.1) ; (2) DP
loss to bring TDEM a more uniform score distribution and better robustness (§4.2).

4.1 Balance Coherence Distribution

As training set of SSL framework generally lacks samples of medium coherence, we propose TSR to
reconstruct a coherence balanced training set. Specifically, We replace N% samples of the original
dataset Dori with samples of medium coherence generated through two strategies, denoted as Daug .

Given a conversation, we suppose that replacing response with an utterance of context generally leads
to a negative sample with medium coherence and disrupting context while maintaining the query
and response leads to a positive sample with medium coherence. Our strategies are motivated by
(Zhang et al., 2021a), which shuffles all utterances of a speaker to attain a hard negative sample. As
a comparison, the samples generated by our strategies are more controllable in terms of coherence.
Take Figure 4 for example. As we randomly replace ④ with ②, although ② does not answer ③, they
have the same topic (NBA player). Thus, (①, ②, ③, ②) constitute a negative sample with medium
coherence. As we exchange the order of ① and ②, it remains a positive example since ④ still answers
③. However, the word talent in ④ seems unnatural as ② is no longer said by Speaker B, which makes
(②, ①, ③, ④) a positive sample with medium coherence. Further human evaluation experiments show
that TSR can provide stronger training signals with medium coherence compared with advanced data
augmentation methods (Appendix B.4).

Assigning discrete two-level labels to samples with medium coherence can result in serious deviation.
Therefore, we combine the original discrete labels and scores of TDEM to attain soft pseudo labels
for the augmented samples and the final labels of the whole reconstructed dataset are as follows:

LabelTSR(x) =

{
Labeldiscrete(x), x ∈ Dori

α× Labeldiscrete(x) + (1− α)×M(x), x ∈ Daug
(5)

where M denotes TDEM, Labeldiscrete(x) = 1 if x is a positive sample and 0 otherwise. During
training process, pseudo labels are obtained in real time.

4.2 Balance Score Distribution

Based on Theorem 1, we consider adaptively approaching the optimal loss function for a uniform score
distribution to strengthen the robustness of TDEM. According to Weierstrass Approximation Theorem
(Weierstrass, 1885) , we consider approximating the optimal loss function in with polynomial loss
function L(x):

Li(x) =| M(x)− LabelTSR(x) |i (6)

L(x) =
∞∑
i=0

βiLi(x) (7)
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functions

To gain a deeper insight of the relationship between
the probability density function of TDEM score dis-
tribution f(x) and Li(x) , we propose Loss Ratio
Curve (Lrc) as a monitor. Taking the difference value
(D-value) between label and predicted score as X-
axis, the ratio of the corresponding loss and fiducial
loss (loss when D-value is 0.5) as Y-axis, we get
Lrc shown in Figure 5. Lrc visualizes the penalty
strength (loss ratio) at different D-value of a certain
loss function. The stronger concavity Lrc possesses,
the smaller penalty the samples with polarized scores
attain. Combining Figure 3 and Figure 5, score dis-
tribution undergoes a transition from polarization to
centralization with the increasing concavity of Lrc
and the rising power of Li(x). This not only confirms
our conjecture in Section 3.4, but also indicates that
Li(x) with small power (e.g., i = 3) generally leads TDEM to a polarized distribution while Li(x)
with large power (e.g., i = 15) promotes a centralized distribution.

Bared this insight in mind, we can simplify Eq. (7) and attain our DP loss function as follows:

LDP (x) = Ls(x) + βLl(x) (8)

where s is smaller than l. During training, Ls(x) and Ll(x) promote polarized and centralized score
distribution respectively, and β adjusts adaptively according to the score distribution to make TDEM
converge stably to a more uniform distribution. Specifically, we use kernel density estimation (KDE)
to estimate the score distribution of TDEM on training set D at the end of each epoch as follows:

f̂(x) =
1

|D|h

|D|∑
i=1

K

(
x−Xi

h

)
(9)

where |D| is the size of the training set, h is the bandwidth of KDE, Xi is the model score of the ith

sample and K(·) is the kernel function. We divide [0, 1] into polarized interval ([0, 0.25] and [0.75,
1]) and centralized interval ([0.25, 0.75]). If the estimated distribution shows a polarized trend (the
integral of f̂(x) in polarized interval > 0.6), we update βnew = βold × 10 to enhance the influence of
Ll, so as to alleviate such trend. On the contrary, we update βnew = βold / 10. From a more intuitive
perspective, DP loss can dynamically adjust the penalty strength on different samples to approximate
the optimal loss function, thereby enabling TDEM to achieve a relatively uniform score distribution.

5 Experiments

We first apply BCR framework on BERT-base, and compare it with the SOTA methods on multiple
datasets to verify its effectiveness. Then, we apply BCR framework on existing SOTA TDEMs
to verify the generalization of BCR and whether it can lead TDEMs to attain better robustness
and correlations with human judgements. Ablation study and case study are followed to further
understand the effectiveness of BCR. 3

5.1 BERT-base With BCR

5.1.1 Experimental Setup

We apply BCR framework to train the baseline model mentioned in Section 3.2 on DailyDialog
dataset. We set learning rate as 5e-5, batch size as 32, α in Eq. (5) as 0.8, initial value of β as 1, N
in TSR as 20. The default value of s and l in Eq. (8) are 3 and 7, and we examined the effects of
different values in 5.3. In Eq. (9), we use Gaussian kernel and set h as 0.01. AdamW Loshchilov and
Hutter (2017) is used as the optimizer (see Appendix B.2 for details).

We conduct experiments on 17 benchmark quality-annotated datasets and compare the results with
SOTA methods of each dataset (see Table 5). As DSTC10 datasets contain five sub-datasets and

3For each experiment, We run four random seeds and report the averaged result.
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Table 1: Spearman correlations between TDEMs and human judgements on 17 datasets, with
standard deviations in gray. BERT refers to baseline model (See Section 3.2). The results of SOTA
TDEMs come from the corresponding papers. All results are statistically significant (p-value < 0.05).

Method FED GCG GCR GDG GDR GEG GER PE DSTC6
BERT 0.205 0.606 0.500 0.310 0.197 0.202 0.315 0.612 0.224
SOTA 0.264 0.617 0.558 0.358 0.187 0.223 0.338 0.699 0.295
BERT+BCR 0.286 0.642 0.519 0.416 0.487 0.341 0.372 0.669 0.274

Method UT UP JSALT ESL NCM DT DP DSTC10 Average
BERT 0.305 0.372 0.166 0.345 0.253 0.220 0.401 0.255 0.323 ± 0.012

SOTA 0.419 0.469 0.116 0.414 0.299 0.326 0.456 0.310 0.373
BERT+BCR 0.421 0.435 0.272 0.531 0.336 0.305 0.428 0.316 0.415 ± 0.005

corresponding 11 qualities, apart from the appropriateness quality shared by the five sub-datasets, we
also report the average results (column DSTC10 in Table 1) of all the 11 qualities. Results of SOTA
methods come from the corresponding papers. We also reproduced the results of GRADE (Huang
et al., 2020) and USR (Mehri and Eskénazi, 2020b) for a convincing comparison (Figure 7).

5.1.2 Experimental Results Model Score
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Figure 6: PCA results of baseline model without (left)
and with (right) BCR on DSTC10 datasets.

As shown in Table 1, BERT-base apply-
ing our BCR framework obtains the high-
est correlations with human judgements on
11 of 17 datasets and 11.3% (4.2 points)
higher average Spearman correlations than
SOTA methods, which demonstrates the
effectiveness of BCR framework (see Ap-
pendix B.3 for the results of Pearson corre-
lations). We further visualize the encoded
features and the predicted scores through
Principal Component Analysis (PCA). As
shown in Figure 6, the transition range
(marked with red box) from high score to
low score is very narrow for baseline model while becomes much broader when applying BCR. This
feature distribution can bring two benefits: (a) more discriminative features bring more accurate
judgments; (b) larger feature space can better resist noise. This sheds light on the reason for the better
robustness and correlations brought by BCR from a deeper perspective.

5.2 SOTA TDEMs With BCR

5.2.1 Experimental Setup

We apply BCR on the following two TDEMs that attain best performance in research (Yeh et al.,
2021) and test them on DSTC10 datasets.

• GRADE (Huang et al., 2020) possesses a BERT branch to get utterance-level contextualized
representations and a Graph-Reasoning branch to get topic-level graph representations.

• USR (Mehri and Eskénazi, 2020b) employs one mask language model and two retrieval models
to measure sub-qualities of given sample and combines them into an overall score.

We replace the original loss with DP loss and apply TSR based on their own training set for both of
the two models to apply BCR. DailyDialog dataset is used to train all the compared TDEMs for a fair
comparison. We also measured the difference in Spearman correlations when testing TDEMs on the
DSTC10 datasets with and without noise to evaluate the robustness:

Diff(M) = Spearman(M, AddNoise(Dtest))− Spearman(M,Dtest) (10)
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Figure 7: Diff and Spearman correlations of SOTA TDEMs on DSTC10 datasets.

where Dtest denotes test dataset, M denotes TDEM and we randomly drop 15% of words in context
and replace 10% of words in both context and query with synonyms to add noise. 4

5.2.2 Experimental Results

As shown in Figure 7, both GRADE and USR attain higher Spearman correlations and Diff when
applying BCR framework, which verifies that BCR can lead SOTA TDEMs to attain better robustness
and correlations with human judgements. This also confirms the stable generalization of BCR
framework.

5.3 Ablation Study

We perform ablation studies for the main components of BCR to better analyze their relative contri-
butions. We conduct experiments on the DSTC10 datasets based on BCR+BERT.

Training Set Reconstructing. We first verify the effectiveness of TSR. As shown in Table 2,
BERT+BCR drops 0.006 and 0.055 Spearman correlations without pseudo label and the whole TSR
respectively. From a more fine-grained perspective, baseline model achieves 79.4% (0.058) Spearman
correlations gain on medium coherence samples and 30.4% (0.038) Spearman correlations gain on
polarized coherence samples respectively when applying TSR. This further proves that TSR can
simultaneously strengthen the evaluating ability of TDEM on both medium and polarized coherence
samples while the former benefits much more.

Table 2: Ablation results (Spearman correlations) of TSR on subsets with different coherence of
DSTC10 datasets, with standard deviations in gray. The Medium indicates samples with coherence
labels ranking within interval [0.25,0.75] while the Polarized indicates the rest.

Metrics Polarized Medium Overall

BERT+BCR 0.163 ± 0.003 0.131 ± 0.002 0.316 ± 0.002

w/o. Pseudo label 0.161 ± 0.002 0.120 ± 0.001 0.310 ± 0.002

w/o. TSR 0.125 ± 0.003 0.073 ± 0.004 0.261 ± 0.003

DP Loss Function. To verify the effectiveness of DP loss and the impact of different values of s and
l in Eq. (8), we apply different loss functions to train TDEM respectively. As shown in Figure 8, DP
loss generally brings better robustness and Spearman correlations compared with other loss functions
when applying different (s, l) couples. We use Uniformity = − lg(σ) to present the uniformity
of score distribution, where σ is the variance of score distribution. We find that the more uniform
the score distribution (greater Uniformity) is, the better robustness TDEM (greater Diff ) attains.
This verifies the theory we proved in §3.4 from an experimental perspective.

4We use EDA tools nlpaug https://github.com/makcedward/nlpaug to add noise.
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Table 4: Comparison of BCR with respect to parameter count, training costs, and computational
costs to the compared methods.

Method BCR+BERT USR GRADE MME-CRS
Parameter Counts (M) 110 373.8 469 >435.2
Training Costs (hours) 2 6 7 >4
Computational Costs Tbase 3 ∗ Tbase Tbase + TGNN 5 ∗ Tbase

5.4 Case Study
Table 3: Two representative examples show the strength of
BCR framework. U1 and U2 are two utterances of the conver-
sation history and R is the corresponding response.

U1: Did you look in the mirror?
R: yeah i did.
Score (Human / USR / USR+BCR): 0.444 / 0.995 / 0.744
Ranking (Human / USR / USR+BCR): 0.81 / 0.83 / 0.83
R (add noise): yes i did.
Score (USR / USR+BCR): 0.999 / 0.732
Ranking (USR / USR+BCR): 0.99 / 0.81

U1: Why aren’t you eating anything else?
U2: Well , fruits and vegetables are very healthy.
R: What kind of vegetables do you want to eat?
Score (Human / USR / USR+BCR): 0.620 / 0.998 / 0.556
Ranking (Human / USR / USR+BCR): 0.45 / 0.87 / 0.47

To illustrate the performance of
BCR, two representative examples
are shown in Table 3. In the
first example, the ranking (cumula-
tive distribution function value of
score distribution) given by USR
and USR+BCR both correlates well
with human before adding noise.
In case of noise, human judgement
stays the same since the meaning of
response remains unchanged. How-
ever, the ranking given by USR
changes sharply (0.83 to 0.99) even
though the score barely changes
(0.995 to 0.999). USR+BCR resists
the noise well by converting the po-
larized distribution to a more uni-
form distribution, which verifies the
better robustness brought by BCR.
The second example shows BCR can bring better correlations with human judgements on medium
coherence samples.

5.5 Efficiency Analysis

Table 4 shows the comparison of BCR with respect to parameter count, training costs, and computa-
tional costs to the methods we have examined. Specifically, Tbase denotes the computational cost for
a single pretrained model and TGNN denotes a typical graph neural network. In the three dimensions
of comparison, BCR used fewer resources but still achieved better results.

6 Conclusion

This paper proposes BCR, a distribution-balanced SSL framework for automatic dialogue evaluation.
BCR offers two novel technologies: TSR and DP loss. TSR reconstructs a coherence distribution
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balanced training set with continuous label domain. DP loss adjusts adaptively according to the score
distribution estimated by kernel density estimation to bring TDEM a more uniform distribution. We
prove that the uniformity of score distribution and the robustness of TDEM are positively correlated,
which guarantees the better robustness brought by DP loss. Empirical results show that BCR
framework brings significant improvements on correlations and robustness to various TDEMs. For
future work, we will analyse the pre-training strategies of TDEM to promote the development of
dialogue system and LLM training.

Limitation. We notice that different TDEMs may produce score disturbance in different scale for
a certain small disturbance at the input, which will affect E(λ) in Section 3.4. Fortunately, this
does not affect the conclusion of Theorem 1, and we find that for different models with the same
backbone network, E(λ) barely changes. We suppose that this is alleviated by the regularization
effect of weight decay. We also notice that though DP loss can approximate the optimal loss function,
a completely uniform distribution of model score on the test set has not yet been achieved, which we
believe is due to the distribution difference in coherence between the training set and the test set. We
will investigate how to better align the distribution of training and test sets in the future.

Acknowledgments and Disclosure of Funding

This work is supported by Beijing Natural Science Foundation (No. 4222037, L181010). We thank
the anonymous reviewers for their constructive comments.

References
Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng Wang. 2020. PLATO: pre-trained dialogue

generation model with discrete latent variable. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 85–96.
Association for Computational Linguistics.

Jan Deriu, Álvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and
Mark Cieliebak. 2021. Survey on evaluation methods for dialogue systems. Artif. Intell. Rev.,
54(1):755–810.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171–4186. Association for Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryscinski, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir R. Radev. 2021. Summeval: Re-evaluating summarization evaluation. Trans. Assoc.
Comput. Linguistics, 9:391–409.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie Utama, Ido Dagan, and Iryna Gurevych. 2019.
Ranking generated summaries by correctness: An interesting but challenging application for natural
language inference. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages
2214–2220. Association for Computational Linguistics.

Shaoxiong Feng, Xuancheng Ren, Kan Li, and Xu Sun. 2021. Multi-view feature representation for
dialogue generation with bidirectional distillation. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages 12812–12820. AAAI Press.

Sarik Ghazarian, Ralph M. Weischedel, Aram Galstyan, and Nanyun Peng. 2020. Predictive en-
gagement: An efficient metric for automatic evaluation of open-domain dialogue systems. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pages 7789–7796. AAAI Press.

10

https://doi.org/10.18653/v1/2020.acl-main.9
https://doi.org/10.18653/v1/2020.acl-main.9
https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.18653/v1/p19-1213
https://doi.org/10.18653/v1/p19-1213
https://doi.org/10.1609/aaai.v35i14.17516
https://doi.org/10.1609/aaai.v35i14.17516
https://ojs.aaai.org/index.php/AAAI/article/view/6283
https://ojs.aaai.org/index.php/AAAI/article/view/6283


Sarik Ghazarian, Nuan Wen, Aram Galstyan, and Nanyun Peng. 2022. DEAM: dialogue coherence
evaluation using amr-based semantic manipulations. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 771–785. Association for Computational Linguistics.

Karthik Gopalakrishnan, Behnam Hedayatnia, Qinglang Chen, Anna Gottardi, Sanjeev Kwatra, Anu
Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tür. 2019. Topical-chat: Towards knowledge-
grounded open-domain conversations. In Interspeech 2019, 20th Annual Conference of the
International Speech Communication Association, Graz, Austria, 15-19 September 2019, pages
1891–1895. ISCA.

Chiori Hori and Takaaki Hori. 2017. End-to-end conversation modeling track in DSTC6. CoRR,
abs/1706.07440.

Lishan Huang, Zheng Ye, Jinghui Qin, Liang Lin, and Xiaodan Liang. 2020. GRADE: automatic
graph-enhanced coherence metric for evaluating open-domain dialogue systems. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pages 9230–9240. Association for Computational Linguistics.

Tian Lan, Xian-Ling Mao, Wei Wei, Xiaoyan Gao, and Heyan Huang. 2020. PONE: A novel
automatic evaluation metric for open-domain generative dialogue systems. ACM Trans. Inf. Syst.,
39(1):7:1–7:37.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. 2017. Dailydialog:
A manually labelled multi-turn dialogue dataset. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing, IJCNLP 2017, Taipei, Taiwan, November
27 - December 1, 2017 - Volume 1: Long Papers, pages 986–995. Asian Federation of Natural
Language Processing.

Yiwei Li, Shaoxiong Feng, Bin Sun, and Kan Li. 2023. Heterogeneous-branch collaborative learning
for dialogue generation. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, pages 13148–13156. AAAI Press.

Ziming Li, Julia Kiseleva, and Maarten de Rijke. 2021. Improving response quality with backward
reasoning in open-domain dialogue systems. In SIGIR ’21: The 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July
11-15, 2021, pages 1940–1944. ACM.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael D. Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation
metrics for dialogue response generation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016,
pages 2122–2132. The Association for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. Gpteval: Nlg
evaluation using gpt-4 with better human alignment.

Ilya Loshchilov and Frank Hutter. 2017. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101.

Ryan Lowe, Michael D. Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio,
and Joelle Pineau. 2017. Towards an automatic turing test: Learning to evaluate dialogue responses.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1116–1126.
Association for Computational Linguistics.

François Mairesse, Milica Gasic, Filip Jurcícek, Simon Keizer, Blaise Thomson, Kai Yu, and
Steve J. Young. 2010. Phrase-based statistical language generation using graphical models and
active learning. In ACL 2010, Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, pages 1552–1561. The Association
for Computer Linguistics.

11

https://doi.org/10.18653/v1/2022.acl-long.57
https://doi.org/10.18653/v1/2022.acl-long.57
https://doi.org/10.21437/Interspeech.2019-3079
https://doi.org/10.21437/Interspeech.2019-3079
http://arxiv.org/abs/1706.07440
https://doi.org/10.18653/v1/2020.emnlp-main.742
https://doi.org/10.18653/v1/2020.emnlp-main.742
https://doi.org/10.1145/3423168
https://doi.org/10.1145/3423168
https://aclanthology.org/I17-1099/
https://aclanthology.org/I17-1099/
https://doi.org/10.1609/aaai.v37i11.26544
https://doi.org/10.1609/aaai.v37i11.26544
https://doi.org/10.1145/3404835.3463004
https://doi.org/10.1145/3404835.3463004
https://doi.org/10.18653/v1/d16-1230
https://doi.org/10.18653/v1/d16-1230
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/P17-1103
https://aclanthology.org/P10-1157/
https://aclanthology.org/P10-1157/


Shikib Mehri and Maxine Eskénazi. 2020a. Unsupervised evaluation of interactive dialog with
dialogpt. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse
and Dialogue, SIGdial 2020, 1st virtual meeting, July 1-3, 2020, pages 225–235. Association for
Computational Linguistics.

Shikib Mehri and Maxine Eskénazi. 2020b. USR: an unsupervised and reference free evaluation
metric for dialog generation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 681–707. Association for
Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
Ryan Lowe. 2022. Training language models to follow instructions with human feedback. In
NeurIPS.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pages 311–318. ACL.

Emanuel Parzen. 1962. On estimation of a probability density function and mode. Annals of
Mathematical Statistics.

Vitou Phy, Yang Zhao, and Akiko Aizawa. 2020. Deconstruct to reconstruct a configurable evaluation
metric for open-domain dialogue systems. In Proceedings of the 28th International Conference
on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020,
pages 4164–4178. International Committee on Computational Linguistics.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. 2019. Towards empathetic
open-domain conversation models: A new benchmark and dataset. In Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 5370–5381. Association for Computational
Linguistics.

Ananya B. Sai, Akash Kumar Mohankumar, Siddhartha Arora, and Mitesh M. Khapra. 2020. Improv-
ing dialog evaluation with a multi-reference adversarial dataset and large scale pretraining. Trans.
Assoc. Comput. Linguistics, 8:810–827.

Shiki Sato, Reina Akama, Hiroki Ouchi, Jun Suzuki, and Kentaro Inui. 2020. Evaluating dialogue
generation systems via response selection. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 593–599.
Association for Computational Linguistics.

Koustuv Sinha, Prasanna Parthasarathi, Jasmine Wang, Ryan Lowe, William L. Hamilton, and Joelle
Pineau. 2020. Learning an unreferenced metric for online dialogue evaluation. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 2430–2441. Association for Computational Linguistics.

Bin Sun, Shaoxiong Feng, Yiwei Li, Jiamou Liu, and Kan Li. 2021. Generating relevant and coherent
dialogue responses using self-separated conditional variational autoencoders. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pages 5624–5637. Association for Computational Linguistics.

Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan. 2018. RUBER: an unsupervised method
for automatic evaluation of open-domain dialog systems. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artifi-
cial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 722–729. AAAI
Press.

12

https://aclanthology.org/2020.sigdial-1.28/
https://aclanthology.org/2020.sigdial-1.28/
https://doi.org/10.18653/v1/2020.acl-main.64
https://doi.org/10.18653/v1/2020.acl-main.64
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.coling-main.368
https://doi.org/10.18653/v1/2020.coling-main.368
https://doi.org/10.18653/v1/p19-1534
https://doi.org/10.18653/v1/p19-1534
https://doi.org/10.1162/tacl_a_00347
https://doi.org/10.1162/tacl_a_00347
https://doi.org/10.18653/v1/2020.acl-main.55
https://doi.org/10.18653/v1/2020.acl-main.55
https://doi.org/10.18653/v1/2020.acl-main.220
https://doi.org/10.18653/v1/2021.acl-long.437
https://doi.org/10.18653/v1/2021.acl-long.437
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16179
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16179


Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020. Asking and answering questions to evaluate the
factual consistency of summaries. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 5008–5020. Association
for Computational Linguistics.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie
Zhou. 2023. Is chatgpt a good NLG evaluator? A preliminary study. CoRR, abs/2303.04048.

Jason W. Wei and Kai Zou. 2019. EDA: easy data augmentation techniques for boosting performance
on text classification tasks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 6381–6387.
Association for Computational Linguistics.

Karl Weierstrass. 1885. Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer
reellen veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
zu Berlin, 2:633–639.

Zheng Ye, Liucun Lu, Lishan Huang, Liang Lin, and Xiaodan Liang. 2021. Towards quantifiable
dialogue coherence evaluation. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pages
2718–2729. Association for Computational Linguistics.

Yi-Ting Yeh, Maxine Eskénazi, and Shikib Mehri. 2021. A comprehensive assessment of dialog
evaluation metrics. CoRR, abs/2106.03706.

Chen Zhang, Yiming Chen, Luis Fernando D’Haro, Yan Zhang, Thomas Friedrichs, Grandee Lee, and
Haizhou Li. 2021a. Dynaeval: Unifying turn and dialogue level evaluation. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pages 5676–5689. Association for Computational Linguistics.

Chen Zhang, Luis Fernando D’Haro, Rafael E. Banchs, Thomas Friedrichs, and Haizhou Li. 2020a.
Deep AM-FM: toolkit for automatic dialogue evaluation. In Conversational Dialogue Systems
for the Next Decade - 11th International Workshop on Spoken Dialogue Systems, IWSDS 2020,
Madrid, Spain, 21-23 September, 2020, volume 704 of Lecture Notes in Electrical Engineering,
pages 53–69. Springer.

Chen Zhang, Luis Fernando D’Haro, Qiquan Zhang, Thomas Friedrichs, and Haizhou Li. 2022a.
Fined-eval: Fine-grained automatic dialogue-level evaluation. CoRR, abs/2210.13832.

Chen Zhang, João Sedoc, Luis Fernando D’Haro, Rafael E. Banchs, and Alexander Rudnicky. 2021b.
Automatic evaluation and moderation of open-domain dialogue systems. CoRR, abs/2111.02110.

Pengfei Zhang, Xiaohui Hu, Kaidong Yu, Jian Wang, Song Han, Cao Liu, and Chunyang Yuan. 2022b.
MME-CRS: multi-metric evaluation based on correlation re-scaling for evaluating open-domain
dialogue. CoRR, abs/2206.09403.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with BERT. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Tiancheng Zhao, Ran Zhao, and Maxine Eskénazi. 2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoencoders. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 654–664. Association for Computational Linguistics.

13

https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.48550/arXiv.2303.04048
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/2021.acl-long.211
https://doi.org/10.18653/v1/2021.acl-long.211
http://arxiv.org/abs/2106.03706
http://arxiv.org/abs/2106.03706
https://doi.org/10.18653/v1/2021.acl-long.441
https://doi.org/10.1007/978-981-15-8395-7_5
https://doi.org/10.48550/arXiv.2210.13832
http://arxiv.org/abs/2111.02110
https://doi.org/10.48550/arXiv.2206.09403
https://doi.org/10.48550/arXiv.2206.09403
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061


A Formula Derivation of Theorem 1

Given ∫ 1

0

f(x)dx = 1,

we perform formula derivation as follows:∫ 1

0
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The equality condition of the first inequality is:∫ x+E(λ)

x

f(u)du
√
f(x)/

√
f(x) ≡ C

⇐⇒
∫ x+E(λ)

x

f(u)du ≡ C

⇐⇒ E(λ) · f(x) ≡ C

for x ∈ [0, 1], where C is a Constant

Considering that generally E(λ) ̸= 0 and∫ 1

0

f(x)dx = 1,

we further derive that f(x) ≡ 1 for x ∈ [0, 1].

The equality condition of the second inequality is:

f(x)/1 ≡ C
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for x ∈ [0, 1], where C is a Constant

=⇒ f(x) ≡ 1 for x ∈ [0, 1]

Thus, the overall equality condition of the main derivation is f(x) ≡ 1 for x ∈ [0, 1].

B Detailed Experimental Information

B.1 Detailed Datasets Statistics

The detailed statistics of annotated benchmark datasets we evaluate in the experiments are shown in
Table 5 and Table 6. For datasets that contains more than one qualities, we select the quality closest
to the overall quality for evaluating. For DSTC10 datasets, we also report the average results on all
the 11 qualities as this is the final evaluating indicator of DSTC10 track5 subtask15.

Table 5: Quality-annotated datasets used in experiments and the corresponding SOTA methods.

Dataset SOTA method

FED (Mehri and Eskénazi, 2020a) DynalEval (Zhang et al., 2021a)

GRADE (Huang et al., 2020)

GRADE
- ConvAI2-Generator (GCG) - DailyDialog-Generator (GDG)
- Empathetic-Generator (GEG) - ConvAI2-Ranker (GCR)
- DailyDialog-Ranker (GDR) - Empathetic-Ranker (GER)

USR (Mehri and Eskénazi, 2020b)
USR

- TopicalChat (UT) - Persona (UP)

DSTC6 (Hori and Hori, 2017) Deep AM-FM (Zhang et al., 2020a)

Predictive Engagement (PE) (Ghazarian et al., 2020) USL-H (Phy et al., 2020)

DSTC10 (Zhang et al., 2021b)
MME-CRS (Zhang et al., 2022b)

- JSALT - ESL - NCM - TopicalChat (DT) - Persona (DP)

B.2 Detailed Experimental Setup

We set learning rate as 5e-5, batch size as 32. AdamW Loshchilov and Hutter (2017) is used as the
optimizer with β1 = 0.9, β2 = 0.999 and eps = 1e-6. We use linear-scheduled learning rate strategy
with decay = 0.02. We train the model for 40 epochs (except for GRADE and USR) and take the
checkpoint of the last epoch. β of DP loss finally converges to 100. All experiments are based on a
single NVIDIA GeForce RTX 3090 GPU with 24GB memory. We use the following Python code
to calculate Spearman correlations and corresponding p-value: from scipy import stats; spearmanr,
p_value = stats.spearmanr(score, label). The p-value here roughly indicates the probability of an
uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the
one computed from these datasets.

We directly used the loss on the Dailydialog validation set as a criterion for hyperparameter selection
except for (s, l). As for (s, l), we choose (3,7) in our setting as it can bring the highest Uniformity.

B.3 Detailed Experimental Results

Apart from Spearman correlations, we also test TDEMs on Pearson correlations to gain a more
comprehensive understanding of BCR framework. As some research have not reported Pearson
correlations results of their methods, comparison can only be performed on 10 datasets. As shown
in Table 7, BERT-base applying our BCR framework obtains the highest correlations with human
judgements on 8 of 10 datasets. This further demonstrates the excellent effectiveness of BCR
framework.

5https://dstc10.dstc.community/home
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Table 6: Detailed statistics of quality-annotated datasets used in experiments. Num. Samples column
refers to the number of samples of the corresponding dataset. Num. Qualities column refers to the
number of annotated qualities of the corresponding dataset. Eva. Quality column refers to the quality
we evaluate in the experiments.

Dataset Num. Samples Num. Qualities Eva. Quality

FED 375 9 Overall

GRADE - ConvAI2-Generator 150 1 Coherence
GRADE - ConvAI2-Ranker 150 1 Coherence
GRADE - DailyDialog-Generator 150 1 Coherence
GRADE - DailyDialog-Ranker 150 1 Coherence
GRADE - Empathetic-Generator 150 1 Coherence
GRADE - Empathetic-Ranker 150 1 Coherence

USR - TopicalChat 300 6 Overall
USR - Persona 240 6 Overall

DSTC6 40000 1 Overall

Predictive Engagement 600 1 Engagement

DSTC10 - JSALT 741 1 Appropriateness
DSTC10 - ESL 1242 1 Appropriateness
DSTC10 - NCM 2461 1 Appropriateness
DSTC10 - TopicalChat 4500 4 Appropriateness
DSTC10 - Persona 5000 4 Appropriateness

Table 7: Pearson correlations between TDEMs and human judgements on benchmark datasets.
BERT refers to our baseline model. The results of SOTA TDEMs come from the corresponding
papers. All results are statistically significant (p-value > 0.05).

Method FED GCG GCR GDG GDR GEG GER PE DSTC6
BERT 0.205 0.616 0.491 0.260 0.261 0.167 0.323 0.612 0.234
SOTA - 0.606 0.535 0.368 0.261 0.257 0.375 0.688 0.326
BERT+BCR 0.307 0.636 0.510 0.377 0.444 0.348 0.399 0.666 0.273

Method UT UP JSALT ESL NCM DT DP DSTC10 Average
BERT 0.339 0.405 0.171 0.403 0.246 0.297 0.412 0.281 0.336
SOTA 0.422 0.411 - - - - - - -
BERT+BCR 0.437 0.452 0.266 0.519 0.323 0.341 0.428 0.318 0.414

B.4 Human Evaluation of Coherence Comparison

We conduct human evaluation to examine the coherence level of samples generated by TSR. Compared
data augmentation methods include: (a) GRADE (Huang et al., 2020) applies both lexical sampling
and embedding-based sampling to obtain negative samples; (b) PONE Lan et al. (2020) applies
EDA (Wei and Zou, 2019) and generative dialogue model to obtain positive samples. For a given
conversation, we use the above two data augmentation methods and medium coherence samples
generating strategies (positive and negative) to obtain four samples respectively and ask five human
annotators to sort them based on the response coherence. We choose researchers in the field of
dialogue as annotators because this work requires certain professional quality. The experiment is
conducted on 100 conversations of DailyDialog dataset. We calculate the average ranking of each
type of the above methods. The average Fleiss’s kappa of annotators is 0.63, indicating annotators
have reached relatively strong agreement. The result of coherence ranking is PONE-positive (1.3) >
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TSR-positive (1.8) > TSR-negative (3.3) > GRADE-negative (3.6), indicating that TSR can provide
stronger training signals with medium coherence compared with general data augmentation methods.

C More Experimental Results

C.1 Impact of Training Dataset

We also evaluate the generalization of BCR on different training datasets. We choose DailyDialog
(Li et al., 2017), Empathetic (Rashkin et al., 2019), Topical (Gopalakrishnan et al., 2019) as training
datasets and test them on DSTC10 dataset respectively. As shown in Table 8, BCR framework brings
significant progress to BERT in all settings, which further demonstrates the strong generalization of
BCR. We also notice that TDEM trained on DailyDialog performs better than other datasets, which
explains why most TDEMs choose this dataset as training set.

C.2 BCR for Pre-training

In the future, supervised TDEM will probably achieve higher consistency with human judgements.
But self-supervised TDEM can still serve as pre-trained model to help supervised TDEM converge
faster to better performance under limited labeled data volume conditions. Thus, we compared the
performance of supervised TDEM with TDEM that first applied BCR pre-training and then underwent
supervised fine-tuning. Specifically, we split FED dataset into train set and test set in a ratio of 7:3 and
the train set is served for supervised learning. We finetuned vanilla BERT and BERT-BCR trained on
DailyDialog on the labeled train set and test them respectively. Supervised TDEM converged on the
5th epochs and attained 0.240 Spearman correlations while TDEM underwent both BCR pre-training
and supervised finetuning converged on the 3th epochs and attains 0.372 Spearman correlations. This
preliminary experiment may inspire scholars to research and apply pre-trained TDEMs to improve
the performance of reward models, thus attaining better LLMs.

C.3 Comparing with GPT4

Recently, some automatic evaluation methods based on LLMs (e.g., GPT-4) (Liu et al.; Wang et al.,
2023) have been proposed to explore new paradigms for addressing TDEM. We have compared BCR
with Liu et al. in Table 9. The results of Liu et al. is obtained with GPT-4 (version: May 15, 2023).
Even in the case of n=20 (self-consistency), BCR+BERT is still able to achieve better average results
than G-EVAL. LLM based methods also have the following drawbacks: higher expenses; more time
costs; much more computational cost and parameters; bias towards specific content. Therefore, how
to effectively combine BCR and LLM is one of our future research directions.

C.4 Transferability to Other Tasks

We further discuss the possibility of migrating BCR to other self-supervised regression tasks. BCR
can be transferred to other tasks, such as Factuality (Falke et al., 2019; Wang et al., 2020), Data to
Text (Mairesse et al., 2010), Text Summarization (Fabbri et al., 2021), etc.

We take Text Summarization task for an example. As for TSR, in the first step, we can obtain positive
samples with medium coherence by randomly deleting or replacing sentences in the text part of the
positive samples; we can also obtain negative samples with medium coherence by randomly deleting
or replacing sentences in the summarization part of the positive samples. Based on this, TSR can
be implemented according to Eq. (5). As for DP loss, we directly use Eq. (8) to train BCR. It turns
out that BERT with DP loss can obtain 0.243 Spearman correlations and -0.013 Diff , both better
than Triplet loss (0.216 Spearman correlations and -0.030 Diff ) and MSE loss (0.205 Spearman
correlations and -0.039 Diff ).

D Further Discussion

In the task of automatic dialogue evaluation, the mainstream approach is to utilize the SSL framework.
This is because constructing a manually annotated training dataset for automatic dialogue evaluation
is highly challenging. For instance, we once attempted to annotate a evaluation dataset for TDEM,

17



Table 8: Spearman correlations of BERT and BERT+BCR trained on different datasets.

Training dataset Method JSALT ESL NCM DT DP DSTC10

DailyDialog
BERT 0.166 0.345 0.253 0.220 0.401 0.255
BERT+BCR 0.272 0.531 0.336 0.305 0.428 0.316

Empathetic
BERT 0.149 0.301 0.129 0.140 0.271 0.157
BERT+BCR 0.215 0.375 0.161 0.166 0.304 0.191

Topical
BERT 0.082 0.201 0.113 0.197 0.277 0.152
BERT+BCR 0.124 0.240 0.135 0.253 0.309 0.194

Table 9: Spearman correlations of BCR and G-EVAL on GRADE datasets. n represents GPT4
generating n scores for each sample and taking the average (self-consistency).

Method GDG GDR GCG GCR GEG GER Avg.
G-EVAL n=1 0.427 0.422 0.501 0.464 0.267 0.370 0.408
G-EVAL n=20 0.448 0.448 0.513 0.559 0.296 0.398 0.443
BERT+BCR 0.416 0.487 0.642 0.519 0.341 0.372 0.463

consisting of 600 instances. Each instance comprises a context and multiple responses. Annotators
were tasked with assigning scores to these responses individually. Each instance was annotated by 5
individuals to reduce noise. Given the longer dialogue contexts, it took approximately 2 minutes for a
single annotator to complete each instance. After data cleaning (removing samples with low internal
consistency), approximately 500 instances remained. As a result, annotating these 500 instances
required a total of around 100 hours of annotation time. Based on this estimation, if we were to
annotate a training set of the size of DailyDialog (13118 samples), we would need approximately
2623 hours of annotation time. Even so, this still does not guarantee that such a training set would
exhibit strong generalization across multiple dialogue domains. The requirement for high inter-
annotator consistency and the characteristic of longer dialogue contexts significantly elevate the
annotation cost of dialogue evaluation training sets. We believe that achieving better evaluation
performance requires a self-supervised (BCR) pre-training approach to impart the evaluation model
with generalized assessment capabilities. Subsequently, fine-tuning can be carried out with limited
annotated training data specific to the data domain. Thus, we look forward to the emergence of
high-quality dialogue evaluation training sets in the future.

18


	Introduction
	Related work
	Preliminary
	Task Definition
	Baseline Model
	Coherence Distribution
	Score Distribution

	BCR framework
	Balance Coherence Distribution
	Balance Score Distribution

	Experiments
	BERT-base With BCR
	Experimental Setup
	Experimental Results

	SOTA TDEMs With BCR
	Experimental Setup
	Experimental Results

	Ablation Study
	Case Study
	Efficiency Analysis

	Conclusion
	Formula Derivation of Theorem 1
	Detailed Experimental Information
	Detailed Datasets Statistics
	Detailed Experimental Setup
	Detailed Experimental Results
	Human Evaluation of Coherence Comparison

	More Experimental Results
	Impact of Training Dataset
	BCR for Pre-training 
	Comparing with GPT4 
	Transferability to Other Tasks

	Further Discussion

