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Abstract

In this paper, we investigate a class of constrained saddle point (SP) problems where
the objective function is nonconvex-concave and smooth. This class of problems
has wide applicability in machine learning, including robust multi-class classifica-
tion and dictionary learning. Several projection-based primal-dual methods have
been developed to tackle this problem; however, the availability of methods with
projection-free oracles remains limited. To address this gap, we propose efficient
single-loop projection-free methods reliant on first-order information. In particular,
using regularization and nested approximation techniques, we propose a primal-
dual conditional gradient method that solely employs linear minimization oracles to
handle constraints. Assuming that the constraint set in the maximization is strongly
convex, our method achieves an ϵ-stationary solution within O(ϵ−6) iterations.
When the projection onto the constraint set of maximization is easy to compute, we
propose a one-sided projection-free method that achieves an ϵ-stationary solution
within O(ϵ−4) iterations. Moreover, we present improved iteration complexities
of our methods under a strong concavity assumption. To the best of our knowl-
edge, our proposed algorithms are among the first projection-free methods with
convergence guarantees for solving nonconvex-concave SP problems.

1 Introduction

Let (X , ∥·∥X ) and (Y, ∥·∥Y) be finite-dimensional, real normed spaces with the corresponding dual
spaces denoted by (X ∗, ∥·∥X∗) and (Y∗, ∥·∥Y∗), respectively. In this paper, we study a saddle point
(SP) problem of the following form:

min
x∈X

max
y∈Y

L(x, y), (1)

where L : X ×Y → R is possibly nonconvex in x for any y ∈ Y and concave in y for any x ∈ X with
certain differentiability properties (see Assumption 2.6); moreover, X ⊆ X and Y ⊆ Y are convex
and compact sets. Such a problem has a broad range of applications including robust optimization
[4], reinforcement learning [11], and adversarial learning [17], to name just a few.

There has been vast research conducted on developing algorithms for solving SP problems [37, 41, 8,
42, 18]. Despite the extensive studies conducted on the development of algorithms to solve problem
(1) a common drawback of these methods is their reliance on costly operations involving the projection
onto constraint sets. In the optimization literature, the shortcomings associated with projection-based
techniques prompted the emergence and advancement of projection-free approaches. Namely, Frank
Wolfe-based algorithms [14] are first-order methods designed for minimizing smooth constrained
optimization problems where instead of projection onto a constraint set only a linear minimization
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over the set needs to be solved. Such an operation can significantly reduce the computational cost of
the algorithm as in the case of nuclear-norm ball constraints.

Nonconvex SP problems have already been extensively investigated in the literature and various meth-
ods have been proposed for different settings. Namely, the vanilla projected gradient descent ascent
has been shown to achieve iteration complexity O(ϵ−2) for finding an ϵ-stationary of nonconvex-
strongly concave problem [27] matching the lower bound in this setting. However, this method fails
to address nonconvex-concave problems, therefore, many researchers studied various smoothing [51]
and acceleration [40] techniques to ensure a convergence rate guarantee. Most of these methods are
built upon the idea of solving regularized subproblems inexactly resulting in a multi-loop method
that can pose implementation challenges. To avoid such a complication, single-loop primal-dual
methods have gained popularity. Recently, a unified projected primal-dual gradient using the reg-
ularization technique has been studied [49]. The proposed method can achieve the complexities
of O(ϵ−2) and O(ϵ−4) for nonconvex-strongly concave and nonconvex-concave settings. While
the studies on primal-dual projected gradient-based methods are rich and fruitful, less is known
about projected-free methods for SP problems. With only a handful of studies focusing on (strongly)
convex-(strongly) concave problems [16, 46, 9], no projection-free method for solving nonconvex
SP problems is currently available, to the best of our knowledge. Moreover, recently there has been
a growing interest in developing algorithms for solving bilevel optimization problems [43, 20, 13]
which subsumes SP problems as a special case. However, it is important to note that most of the
existing methods for solving bilevel optimization problems consider an additional assumption on
the lower-level objective function satisfying strong convexity or Polyak Lojasiewicz (PL) condition
[20, 2, 31]. These assumptions in the context of SP problems translate into strong concavity or PL
condition for L(x, ·) which cannot handle merely concave setting considered in this paper. Therefore,
in this paper, we focus on developing projection-free methods for solving (1). In particular, our main
research question is

Can we develop a one-sided or fully projection-free primal-dual method with a convergence rate
guarantee for solving nonconvex-(strongly) concave SP problem in (1)?

Our response to this question is affirmative, and next we outline the key contributions of our work.

1.1 Contribution

In this paper, we consider a broad class of constrained SP problems where the objective function
is nonconvex-concave and smooth. Motivated by the pressing need for developing projection-free
algorithms from an application perspective as well as the lack of efficient methods with theoretical
guarantees, we propose primal-dual projection-free methods for solving nonconvex-concave SP
problems. Using regularization and nested approximation techniques we first develop a single-loop
primal-dual method that solely uses linear minimization oracle (LMO) to find a direction for both
primal and dual steps. Next, assuming that the projection oracle (PO) is available for the maximization
component of the objective function, we develop a one-sided projection-free method with regularized
projection gradient ascent. Our main theoretical contributions are summarized below.

1) Assuming the constraint set in the maximization component is strongly convex, we show that our
proposed primal-dual conditional gradient method that employs LMOs for both variables achieves
an ϵ-stationary solution within O(ϵ−6) iterations. To the best of our knowledge, this is the first
complexity result for primal-dual methods with only LMOs for nonconvex-concave SP problems.
Moreover, when the objective function is nonconvex-strongly concave, our proposed method achieves
ϵ-primal and ϵ-dual gaps within O(ϵ−4) and O(ϵ−2) iterations, respectively.

2) Considering the case where projection onto the constraint set of the maximization component is
easy to compute, we demonstrate that our one-sided projection-free method achieves an ϵ-stationary
solution within O(ϵ−4) iterations matching the best-known results for single-loop projection-based
primal-dual methods. For nonconvex-strongly concave setting, the iteration complexity improves to
O(ϵ−2).

1.2 Related work

SP problems have been subject to extensive studies, primarily in the context of the convex-concave
setting [37, 41, 8, 18]. However, the practical applications of SP problems in nonconvex settings,
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particularly in the context of robust optimization and adversarial learning have sparked a demand for
a thorough investigation and further exploration. Next, we briefly discuss the state-of-the-art methods
in the literature for nonconvex-(strongly) concave problems. We divide our review into two sections
of projected gradient-based and projection-free-based algorithms.

Projected gradient based algorithms: Various algorithms have been proposed for nonconvex-
concave setting under different assumptions [30, 7, 40, 52, 6, 3]. Authors in [44] proposed a double
loop algorithm to solve nonsmooth weakly convex-concave with a complexity of Õ(ϵ−6). In the
pursuit of more efficient solutions, Triple-loop inexact proximal point methods with the faster
convergence rate of Õ(ϵ−3) are developed in [48, 23]. Additionally, single-loop algorithms for
addressing nonconvex-concave problems were introduced by [29] and [32] where they achieved the
iteration complexities of Õ(ϵ−6) and Õ(ϵ−4), respectively. More recently, authors in [33] proposed
optimistic gradient descent ascent and extra-gradient methods and obtained a convergence rate of
O(ϵ−6). Employing Nesterov’s smoothing technique [38], the iteration complexity of O(ϵ−4) was
obtained by [51] for general nonconvex-concave problem. In addition, [50] achieved the same
convergence rate with linear coupled equality or inequality constraints. Recently, [49] proposed an
alternating gradient projection (AGP) algorithm where it utilizes gradient projection for updating x
and y and it achieves the suboptimal complexity of O(ϵ−4). All the aforementioned methods rely on
projection onto the constraint sets.
Projection-free based algorithms: There has been a surge of interest in the application of projection-
free methods within the machine learning and optimization problems [24, 15, 25, 26]. Despite the
widespread application of projection-free methods such as the Frank Wolfe (FW) algorithm, there have
been limited studies that examine their use in the context of SP problems [1, 19, 47, 16, 46, 9, 22]. In
[19] a projection-free algorithm for convex-concave setting is proposed and achieved the complexity
of O(ϵ−2) LMO calls. This algorithm was subsequently refined by [47] with the development of
a parallelizable algorithm. Gidel et al. [16] presented the first convergence result for an FW-type
algorithm for nonbilinear SP problems. Assuming that the SP solution lies within the interior of
constraint sets, the proposed method achieves a linear rate for strongly convex-strongly concave SP
problems. Moreover, the method achieves the same complexity for convex-concave setting, assuming
that the constraint sets are strongly convex and gradients of the objective function are uniformly
lower-bounded. Roy et al. [46] advanced a projection-free algorithm for the same setting and
introduced a variant of the FW algorithm that is particularly suited for the nonstationary stochastic
SP problems. Additionally, the authors in [9] proposed a four-loop projection-free algorithm which
can be viewed as a variant of Mirror-Prox in which proximal subproblems are solved inexactly using
conditional gradient sliding [25] for convex-strongly concave problems. Considering a nonconvex-
concave setting, Nouiehed et al. [39] proposed a multi-loop one-sided projection-free primal-dual
method that achieves the complexity of Õ(ϵ−3.5) to find an ϵ-game stationary solution. Notably,
in their method, at each iteration k the minimization subproblem needs to be computed over the
set {x ∈ X | x + xk ∈ X, ∥x∥ ≤ 1}. Kolmogorov et al. [22] developed a two-loop one-sided
projection-free primal-dual method for solving bilinear convex-concave SP problems where LMO
is solely used for computing the minimization variable. The proposed method achieves an iteration
complexity of O(ϵ−1). The summary of related work and their comparison are presented in Table 1.

1.3 Motivating Examples

Example 1. Robust Multiclass Classification: Consider a multiclass classification task for a
given training dataset Dtr = {(ai, bi)}ni=1 where ai ∈ Rd denotes the feature vector of the i-th
sample and bi ∈ {1, . . . , k} is the corresponding label. The goal is to find a linear predictor with
parameter θ = [θ⊤1 , θ

⊤
2 , . . . θ

⊤
k ] ∈ Rk×d that is able to predict the labels for an unlabeled dataset

Dtest = {aj}n
′

i=1. In particular, given a new data point â ∈ Dtest, the corresponding label can be
predicted via b̂ = argmaxkj=1 θ

⊤
j â. It has been shown that [12] the linear predictor θ can be found by

minimizing a multinomial logistic loss function, i.e., ℓi(θ) = log
(
1 + exp(

∑
j ̸=bi

(θ⊤j ai − θ⊤biai))
)
,

over a nuclear norm constraint, i.e., X = {θ | ∥θ∥∗ ≤ r} for some r > 0. On the other hand, in
many applications where safety and reliability are crucial distributionally robust optimization offers
a promising approach for a more robust and reliable prediction that can be used in classification
tasks to capture uncertainty in data distribution [35, 34]. This can be achieved by considering a
worst-case performance of non-parametric uncertainty set on the underlying data distribution. This
leads to a min-max formulation where the maximization is taking over an uncertainty set Y . For
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Table 1: Comparative analysis of optimization schemes for convex-strongly concave (C-SC), convex-
concave (C-C), nonconvex-strongly concave (NC-SC) and nonconvex-concave (NC-C) problems,
featuring different oracles: Linear Minimization Oracle (LMO) and Projection/Proximal Oracle
(PO). Õ(·) denotes O(·) up to a logarithmic factor. In the column of “additional assumption”, the
abbreviation SC stands for strongly convex. ∗ The complexities are presented for ϵ-primal and ϵ-dual,
respectively.

Setting Ref Non-bilinear Oracle # of loops Addt’l Assump. Rate
C-SC Chen et al. [9] ✓ LMO-LMO 4 None Õ(ϵ−2)

C-C
Gidel et al. [16] ✓ LMO-LMO 1 X and Y are SC sets O(log ϵ−1)

Kolmogorov et al. [22] ✗ LMO-PO 2 X is SC set O(ϵ−1)

NC-SC
Xu et al. [49] ✓ PO-PO 1 None O(ϵ−2)

CG-RPGA (Theorem 4.2) ✓ LMO-PO 1 None O(ϵ−2)

R-PDCG (Theorem 4.4) ✓ LMO-LMO 1 Y is SC set O(ϵ−4),O(ϵ−2)∗

NC-C
Xu et al. [49] ✓ PO-PO 1 None O(ϵ−4)

CG-RPGA (Theorem 5.1) ✓ LMO-PO 1 None O(ϵ−4)

R-PDCG (Theorem 5.3) ✓ LMO-LMO 1 Y is SC set O(ϵ−6)

instance, Y = {y ∈ ∆n : V (y, 1
n1n) ≤ ρ} is considered in different papers such as [34], where ∆n

is an n-dimensional simplex set, and V (Q,P ) denotes the divergence measure between two sets of
probability measures Q and P . Therefore, distributionally robust multiclass classification can be
formulated as the following SP problem [9]:

min
θ∈X

max
y=[yi]ni=1∈Y

n∑
i=1

yiℓi(θ). (2)

This problem can be readily cast as (1) by defining L(θ, y) =
∑n

i=1 yiℓi(θ). The constraint of the
maximization is the intersection of simplex set and divergence measure constraints. Indeed, one
can relax the simplex constraint using the splitting technique and Fenchel duality. The resulting
equivalent saddle point problem has a maximization constraint of Y = {y : V (y, 1

n1n) ≤ ρ}. which
is only described by the divergence measure constraint. In some popular examples such as the Pearson
Chi-square divergence, i.e., V (y,1n/n) = ∥ny−1n∥2, Y satisfies the assumption of strongly convex
constraint set.
Example 2. Dictionary Learning: Dictionary learning aims to acquire a succinct representation
of the input data extracted from a large dataset. Given an input dataset A = [a1, . . . , an] ∈ Rm×n,
our primary goal is to find a dictionary D = [d1, . . . , dp] ∈ Rm×p that can accurately approximate
the data through linear combinations. Dictionary learning problem can be formulated in nonconvex
optimization form [45]:

min
D∈Rm×p

min
C∈Rp×n

∥A−DC∥2F , s.t. ∥C∥∗ ≤ r; ∥dj∥2 ≤ 1,∀j ∈ {1, . . . , p}, (3)

where C ∈ Rp×n denotes the coefficient matrix. In various learning scenarios, such as lifelong
learning, the learner engages in a sequential series of tasks, aiming to accumulate knowledge from
previous tasks in order to enhance performance in subsequent tasks. Suppose that we have learned a
dictionary D ∈ Rm×p and its corresponding coefficient matrix C ∈ Rp×n for the dataset A. Given a
new dataset A′ ∈ Rm×n′

, we aim to refine a new dictionary D′ ∈ Rm×q such that it still provides an
accurate representation of old dataset A with the learned coefficient matrix C. Consequently, this
problem 3 can be written as the following non-convex problem with a convex nonlinear constraint:

min
D′

min
C′
∥A′ −D′C′∥2F , s.t. ∥A−D′C̃∥2F ≤ δ; ∥C′∥∗ ≤ r;

∥∥d′j∥∥2 ≤ 1,∀j ∈ {1, . . . , q}, (4)

where δ > 0 denotes the user-predefined accuracy for the representation of the old dataset and
C̃ ∈ Rq×n is the extension of C by adding q − p columns of zeros. This problem can be formulated
equivalently as an SP problem (1) using a Lagrangian duality. In particular, it can be cast as (1)
by setting L((D′,C′), y) = ∥A′ −D′C′∥2F + y(∥A−D′C̃∥2F − δ), X = {(D′,C′) | ∥C′∥∗ ≤
r, ∥d′j∥2 ≤ 1,∀j ∈ {1, . . . , q}}, and Y = R+. Note that L is nonconvex-concave and smooth.
Moreover, due to the existence of a Slater point for problem (4) a dual bound, i.e., ∥y∥ ≤ B for some
B > 0, can be constructed efficiently as suggested in [36, 18] to ensure boundedness of set Y .
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Other than min-max formulation, the nuclear-norm constraint in the above examples makes the
problem computationally demanding for projection-based algorithms. Therefore, it is imperative to
address this challenge by developing and utilizing projection-free methods, which can effectively
overcome the computational limitations associated with these problems.

2 Preliminaries

In this section, we outline the notations and required assumptions that we need for the analysis of our
proposed methods as well as some important definitions.

Notations. Given two sets X and Y , X × Y denotes the Cartesian product of X and Y . The
lower-case x and y, as well as their accented variants, are reserved for vectors in the space of X and
Y , respectively; moreover, the letter z will be used to indicate the concatenation of those vectors, i.e.,
z ≜ [x⊤ y⊤]⊤. The upper-case X and Y are reserved for constraint sets; moreover, Z will be used to
indicate their Cartesian product. Given a differentiable function L(x, y), ∇xL(x, y) and ∇yL(x, y)
denote the partial derivatives of L with respect to x and y, respectively. Given a set X , 1X(·) denotes
the indicator function. Given a finite-dimensional normed vector space, ∥·∥p for some p ≥ 1 denotes
the ℓp-norm.

2.1 Oracle Description

In this paper, we will utilize the following oracles to acquire first-order information and solution of
structured subproblems for the proposed algorithms in different settings.

• Given (x, y), first-order oracle (FO) returns∇xL(x, y) and ∇yL(x, y).
• Given a vector x̄ ∈ U and a convex and compact set U ⊆ U , linear minimization oracle

(LMO) returns a solution of minx∈U ⟨x̄, x⟩.
• Given a vector x̄ ∈ U and a convex and compact set U ⊆ U , projection oracle (PO) returns

the solution of minx∈U ∥x− x̄∥U .

Based on the above oracles, we define some gap functions to measure the quality of the solution.
More specifically, when the proposed algorithm uses LMO we use the following definition.
Definition 2.1 (Gap function for LMO). The stationary gap function GX : Z → R for the min-
imization part of problem (1) is defined as GX(x̄, ȳ) ≜ supx∈X ⟨∇xL(x̄, ȳ), x̄− x⟩. Similarly,
for the maximization part of problem (1) the stationary gap function GY : Z → R is defined as
GY (x̄, ȳ) ≜ supy∈Y ⟨∇yL(x̄, ȳ), y − ȳ⟩. Moreover, we define GZ(x̄, ȳ) ≜ GX(x̄, ȳ) + GY (x̄, ȳ).

In the case where the proposed method uses PO for the maximization part of the objective function of
(1), we use the same gap function GX for the minimization component while employing the following
gap function for the maximization component.
Definition 2.2 (Gap function for PO). The stationary dual gap function GY : Z → R corresponding
to the maximization part of problem (1) is defined as GY (x̄, ȳ) ≜ 1

σ ∥y − PY (y + σ∇yL(x̄, ȳ))∥Y .
Moreover, we define GZ(x̄, ȳ) ≜ GX(x̄, ȳ) + GY (x̄, ȳ) where GX is defined in Definition 2.1.
Definition 2.3. For a given gap function GZ : Z → R, a point (x̄, ȳ) ∈ Z is an ϵ-stationary of
problem (1) if GZ(x̄, ȳ) ≤ ϵ.
Remark 2.4. As indicated in the above definitions, since we use different oracles for the maximization
component of the objective function we need to employ different gap functions for the dual iterates.
With a slight abuse of notation, we used GY when using both LMO and PO for the constraint set Y .
The reason is that an ϵ-solution in terms of both definitions implies an ϵ-game stationary solution.
More specifically, if GZ(x̄, ȳ) ≤ ϵ for some (x̄, ȳ) ∈ Z, then

−∇xL(x̄, ȳ) ∈ ∂1X(x̄) + u, s.t. ∥u∥X ≤ O(ϵ),
∇yL(x̄, ȳ) ∈ ∂1Y (ȳ) + v, s.t. ∥v∥Y ≤ O(ϵ).

Therefore, we consider the above definition as a unified notion of ϵ-stationary solution similar to [49].
We refer the reader to [21, 28] for the details of the relation between a game stationary solution and
other notations of stationary solution.
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Definition 2.5. Let (U , ∥·∥U ) be a finite-dimensional normed vector space. A convex set K ⊂ U is
α-strongly convex with respect to ∥·∥U if for any u, v ∈ K, w ∈ U , and γ ∈ [0, 1],

γu+ (1− γ)v + γ(1− γ)
α

2
∥u− v∥2U w ∈ K, s.t. ∥w∥U = 1.

We next state our main assumptions considered in the paper.

2.2 Assumptions

Assumption 2.6. (I) For any y ∈ Y , L(·, y) is continuously differentiable with a Lipschitz continuous
gradient, i.e, there exists Lxx ≥ 0 and Lyx > 0 such that for any x, x̄ ∈ X and y, ȳ ∈ Y the
followings hold

∥∇xL(x, y)−∇xL(x̄, ȳ)∥X∗ ≤ Lxx∥x− x̄∥X + Lyx∥y − ȳ∥Y .
(II) For any x ∈ X , L(x, ·) is concave and continuously differentiable with a Lipschitz continuous
gradient, i.e, there exists Lyy ≥ 0 and Lyx > 0 such that for any x, x̄ ∈ X and y, ȳ ∈ Y the
followings hold

∥∇yL(x, y)−∇yL(x̄, ȳ)∥Y∗ ≤ Lyx∥x− x̄∥X + Lyy∥y − ȳ∥Y .
(III) X ⊆ X and Y ⊆ Y are convex and compact sets with diameters DX and DY , respectively, i.e.,
DX ≜ supx,x̄∈X ∥x− x̄∥X and DY ≜ supy,ȳ∈Y ∥y − ȳ∥Y .

In the case where LMO is available for both minimization and maximization components of (1), we
will consider the following additional assumption.
Assumption 2.7. Y ⊆ Y is α-strongly convex for some α > 0.
Remark 2.8. Strongly convex sets arise in many applications and there have been several studies
characterizing various instances [15]. In particular, in many of these examples, the corresponding
LMO admits a closed-form solution or can be solved efficiently. Here we present two interesting
examples:
(1) Let Bf (r) ≜ {x ∈ X | f(x) ≤ r} where r > 0 and f : X → R+ is a µ-strongly convex and
L-smooth function. Then, the set Bf (r) is strongly convex with modulus α = µ/

√
2Lr. In particular,

this example includes ℓp-norm ball when f(x) = ∥x∥2p for p ∈ (1, 2].
(2) For a given matrix A ∈ Rn×m, let the singular values be denoted by {σi(A)}qi=1 where q =

min(n,m). Schatten ℓp ball for p ∈ (1, 2], i.e., BS(p)(r) ≜ {A ∈ Rn×m | (
∑q

i=1 σi(A)p)1/p ≤ r},
is a strongly convex set with modulus α = (p− 1)q

1
2−

1
2 /r (For details and more examples see [15]).

3 Proposed Methods

In this section, we propose our algorithms based on a primal-dual conditional-gradient approach for
addressing problem (1). As previously mentioned in section 1, we assume that the minimization
component of problem (1) includes a constraint set X , which allows for an efficient LMO, whereas
the associated PO may involve computationally expensive procedures. However, with regard to the
maximization component of the objective function, we consider two main scenarios based on the
Oracle assumption: (i) when an LMO is available; and (ii) when a PO is available.

Note that problem (1) can be viewed as a minimization problem minx∈X f(x) where f(x) ≜
maxy∈Y L(x, y). A naive implementation of a conditional gradient method, such as the Frank
Wolfe method, has two main challenges: Firstly, evaluation of the objective function and/or its
first-order information requires exact evaluation of y∗(x) ∈ argmaxy∈Y L(x, y) at each iteration
given x ∈ X which may not be possible. Secondly, since the objective function L(x, ·) is concave
for any x ∈ X , it implies that f(x) is a nonsmooth and nonconvex function. In fact, it can be
shown that ∇xL(x, y∗(x)) ∈ ∂f(x), for any y∗(x) ∈ argmaxy∈Y L(x, y). To overcome the later
challenge, a typical approach is to add a regularization term to the objective function to provide
a smooth approximation for the function f . More specifically, one can add a regularization term
−µ

2 ∥y − y0∥2Y for some y0 ∈ Y to the objective function leading to the following regularized SP
problem

min
x∈X

max
y∈Y

Lµ(x, y) ≜ L(x, y)−
µ

2
∥y − y0∥2Y .
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Note the objective function in the above problem is strongly concave and smooth in y, hence, for
any given x ∈ X the corresponding maximizer y∗µ(x) = argmaxy∈Y Lµ(x, y) is uniquely defined.
Moreover, to bypass the requirement for evaluating an exact solution at each iteration, one can
provide an increasingly accurate approximated solution for y∗µ(x), however, this leads to a two-loop
method that still requires an excessive computational cost at each iteration to solve a subproblem
inexactly [53]. Moreover, the performance of such inexact methods is generally sensitive to the
choice of the subproblem’s parameters. Therefore, to resolve these issues, we propose single-loop
and easy-to-implement inexact projection-free primal-dual algorithms.

Algorithm 1 Regularized Primal-dual Conditional Gradient (R-PDCG) method

Input: x0 ∈ X , y0 ∈ Y , µ > 0, {τk}k ⊆ R+

for k = 0, . . . ,K − 1 do
sk ← argminx∈X ⟨∇xL(xk, yk), x⟩
xk+1 ← τksk + (1− τk)xk

pk ← argmaxy∈Y ⟨∇yL(xk, yk)− µ(yk − y0), y⟩
yk+1 ← σkpk + (1− σk)yk

end for

In particular, when an LMO is available for both primal and dual steps, we develop an alternating
conditional gradient method where at each iteration a Frank Wolfe step is taken with respect to the
primal variable via the direction ∇xL(xk, yk) followed by a Frank Wolfe step for the regularized
maximization problem with respect to the dual variable. The outline of our proposed method is
presented in Algorithm 1. Moreover, considering the scenario where the projection onto set Y is
efficiently computable, we propose a one-sided projection-free primal-dual method. In particular, at
each iteration, similar to the previous algorithm we perform a Frank Wolfe step with respect to the
primal variable. Then to update the dual variable, instead of taking an FW-type update, we take a
step of projected gradient ascent with respect to the regularized objective function as follows

yk+1 ← PY

(
yk + σk

(
∇yLµ(xk, yk)

))
.

The outline of these steps is presented in Algorithm 2.

Algorithm 2 Conditional Gradient with Regularized Projected Gradient Ascent (CG-RPGA)

Input: x0 ∈ X , y0 ∈ Y , µ > 0, {τk, σk}k ⊆ R+

for k = 0, . . . ,K − 1 do
sk ← argminx∈X ⟨∇xL(xk, yk), x⟩
xk+1 ← τksk + (1− τk)xk

yk+1 ← PY

(
yk + σk

(
∇yL(xk, yk)− µ(yk − y0)

))
end for

4 Convergence Analysis of R-PDCG

In this section, we study the convergence properties of Algorithms 1 and 2. First, in the next lemma,
we provide a one-step analysis of Algorithm 1 by providing an upper bound on the reduction of the
objective function in terms of the consecutive iterates.
Lemma 4.1. Suppose Assumptions 2.6 and 2.7 hold and let {(xk, yk)}k≥0 be the sequence generated
by Algorithm 1 with step-sizes τk = τ > 0 and {σk}k≥0, and parameter µ > 0. Define σk ≜
min{1, α

4(Lyy+µ) ∥∇yLµ(xk, yk)∥Y∗} and Hk ≜ Lµ(xk, y
∗
µ(xk)) − Lµ(xk, yk) for any k ≥ 0.

Then for any k ≥ 0

Hk+1 ≤ max

{
1

2
, 1−

α
√
µ

8
√
2(Lyy + µ)

√
Hk

}
Hk + E(τ), (5)

where E(τ) ≜ LyxτDY DX + 2Lxxτ
2D2

X .
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Note that the above one-step inequality demonstrates that given the iterate sequence {xk}k≥0, the
generated iterates {yk}k≥0 reduce the suboptimality of regularized objective function Lµ within
an error bound E(τ). In other words, the generated iterates {yk} provides a progressively accurate
estimation of the optimal trajectory y∗µ(xk) with an error depending on the primal step-size τ .
Therefore, the key idea lies in the meticulous selection of τ to prevent error growth while ensuring
sufficient progress in the primal variable. To this end, in the following theorem we establish bounds
on the primal and dual gaps based on the previous lemma that are connected via parameters τ and
µ. Subsequently, in the next corollary by carefully selecting those parameters we demonstrate a
convergence rate guarantee for Algorithm 1.
Theorem 4.2. Suppose Assumptions 2.6 and 2.7 hold and let {(xk, yk)}k≥0 be the sequence gener-
ated by Algorithm 1 with step-sizes τk = τ > 0 and {σk}k≥0, and parameter µ > 0. Define σk ≜
min{1, α

4(Lyy+µ) ∥∇yLµ(xk, yk)∥Y∗}, then for any K ≥ 1, there exists t ∈ {⌈K/2⌉, . . . ,K − 1}
such that (xt, yt) ∈ X × Y satisfy the following bounds

GX(xt, yt) ≤
2(f(x0)− f(xK))

τK
+

µ

τK
D2

Y +
(Lxx + L2

yx/µ)τ

K
D2

X +
2
√
2Lyx√
µ

DX

[
√
E(τ) + 3 log(K + 1)

K
max

{√
H0,

16(Lyy + µ)

α
√
µ

}
+

(
8
√
2(Lyy + µ)E(τ)

α
√
µ

)1/3]
,

GY (xt, yt) ≤
36cµ

(K + 4)2
max

{
H0,

256(Lyy + µ)2

α2µ

}
+ cµE(τ)

+

(
8
√
2(Lyy + µ)E(τ)

α
√
µ

)2/3

cµ + µD2
Y .

where cµ ≜ 2 + Lyy/µ and E(τ) is defined in Lemma 4.1.

Now, we are ready to state the convergence rate and complexity results of Algorithm 1.
Corollary 4.3. Under the premises of Theorem 4.2, choose µ = O(ϵ) and τ = O(ϵ5), then for
any K ≥ 1, there exists t ∈ {⌈K/2⌉, . . . ,K − 1} such that (xt, yt) ∈ X × Y satisfy GZ(xt, yt) ≤
O(1/K1/6). Moreover, (xt, yt) satisfy GZ(xt, yt) ≤ ϵ and consequently is an ϵ-game stationary
within O(ϵ−6) iterations.

Considering that the proposed method achieves convergence through dual regularization, it becomes
essential to address the question of convergence guarantee for Algorithm (1) when the objective
function L is nonconvex in x and strongly concave in y. In such a scenario, where the objective
function exhibits strong concavity, regularization can be circumvented by setting µ = 0. This
adjustment aligns Algorithm 1 with the approach presented in [16], albeit it should be noted that the
study in [16] solely focused on convex-concave settings and their analysis does not extend to the
nonconvex scenario.
Theorem 4.4. Suppose Assumptions 2.6 and 2.7 hold and function L(x, ·) is µ̃-strongly concave for
any x ∈ X . Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1 with parameter µ = 0 and
step-sizes τk = O(1/K3/4) and {σk}k≥0. Define σk ≜ min{1, α

4Lyy
∥∇yL(xk, yk)∥Y∗}, then for

any K ≥ 1, there exists t ∈ {⌈K/2⌉, . . . ,K − 1} such that (xt, yt) ∈ X × Y satisfy:
(i) GX(xt, yt) ≤ O(1/K1/4) and GY (xt, yt) ≤ O(1/K1/2).
(ii) (xt, yt) satisfy ϵ-primal gap GX(xt, yt) ≤ ϵ within O(ϵ−4) iterations and satisfy ϵ-dual gap
GY (xt, yt) ≤ ϵ within O(ϵ−2) iterations.
Remark 4.5. It is important to emphasize that Algorithm 1 is a single-loop method that leverages the
gradient of the objective function and relies solely on the use of the LMO for handling constraints. To
the best of our knowledge, our results in Corollary 4.3 and Theorem 4.4 represent the first complexity
results for finding an ϵ-stationary solution in nonconvex-concave and nonconvex-strongly concave SP
problems, respectively, without the need for projection onto the constraint sets.

5 Convergence Analysis of CG-RPGA

In this section, we assume that the projection onto set Y can be computed efficiently and the
vector space Y is equipped with the Euclidean norm, i.e, ∥·∥Y = ∥·∥2. We present the analysis for
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convergence of CG-RPGA (Algorithm 2) for solving problem 1. In particular, we first consider
the nonconvex-concave setting and in the following theorem and corollary, we demonstrate that the
convergence rate can be improved to O(1/K1/4). Afterward, we consider a nonconvex-strongly
concave setting and we establish the convergence rate results for CG-RPGA in Theorem 5.3.

Theorem 5.1. Suppose Assumptions 2.6 holds and let {(xk, yk)}k≥0 be the sequence generated by
Algorithm 2 with step-sizes τk = τ > 0 and σk = σ ≤ 2

Lyy+2µ , and parameter µ > 0. Then for
any K ≥ 1, there exists t ∈ {⌈K/2⌉, . . . ,K − 1} such that (xt, yt) ∈ X × Y satisfy the following
bounds

GX(xt, yt) ≤
2(f(x0)− f(xK))

τK
+

µ

τK
D2

Y +
2Lyx

(1− ρ)K
DX

∥∥y0 − y∗µ(x0)
∥∥
2

+

(
2L2

yxρ

µ(1− ρ)
+ Lxx +

L2
yx

µ

)
τD2

X ,

GY (xt, yt) ≤
2ρK/2

σ

∥∥y0 − y∗µ(x0)
∥∥
2
+

2Lyxρ

σµ(1− ρ)
τDX +

Lyx

σµ
τDX + µDY .

Corollary 5.2. Under the premises of Theorem 5.1, choose µ = O(ϵ) and τ = O(ϵ3), then for
any K ≥ 1, there exists t ∈ {⌈K/2⌉, . . . ,K − 1} such that (xt, yt) ∈ X × Y satisfy GZ(xt, yt) ≤
O(1/K1/4). Moreover, (xt, yt) satisfy GZ(xt, yt) ≤ ϵ and consequently is an ϵ-game stationary
within O(ϵ−4) iterations.

Similar to section 4, it is important to address the question of convergence guarantee for Algorithm (2)
when the objective function is strongly concave in y. In this scenario, regularization can be avoided
by setting µ = 0. In the following theorem, we establish the convergence rate of Algorithm 2 for SP
problem (1) in this setting.

Theorem 5.3. Suppose Assumptions 2.6 holds and function L(x, ·) is µ̃-strongly concave for any
x ∈ X . Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 2 with parameter µ = 0

and step-sizes τk = O(1/K1/2) and σk = σ ≤ 2
Lyy+µ̃ . Then for any K ≥ 1, there exists

t ∈ {⌈K/2⌉, . . . ,K − 1} such that (xt, yt) ∈ X × Y satisfy GZ(xt, yt) ≤ O(1/K1/2). Moreover,
(xt, yt) satisfy GZ(xt, yt) ≤ ϵ within O(ϵ−2) iterations.

6 Numerical Experiment

In this section, we implement our methods to solve Robust Multiclass Classification problem described
in Example 1 and Dictionary Learning problem in Example 2. For all the algorithms, the step-sizes
are selected as suggested by their theoretical result and scaled to have the best performance. In
particular, for R-PDCG we let τ = 10

K5/6 and µ = 10−3

K1/6 ; for CG-RPGA we let τ = 10
K3/4 and

µ = 10−3

K1/4 ; for AGP we let the primal step-size 1√
k

, dual step-size as 0.2, and the dual regularization

parameter as 10−1

k1/4 ; for SPFW both primal and dual step-sizes are selected to be diminishing as 2
k+2 .

Supplementary plots are provided in the appendix.

Robust Multiclass Classification: To assess the performance of our proposed algorithms (R-
PDCG and CG-RPGA), we tested them against the Alternating Gradient Projection (AGP) algorithm
introduced by [49] and the Saddle Point Frank Wolfe (SPFW) algorithm introduced by [16]. We
conduct experiments on rcv1 dataset (n = 15564, d = 47236, k = 53) and news20 dataset
(n = 15935, d = 62061, k = 20) from LIBSVM repository1. As shown in Figure 1, our algorithms
outperform the competing approaches, highlighting the advantage of utilizing a projection-free
approach. In this example, the high per-iteration computational cost of the projection operator
significantly impacts AGP, with more than three iterations taking over 300 seconds reflecting the
benefit of projection-free algorithms for a certain class of problems. For problems with easy-to-project
constraints, projection-based algorithms such as AGP may have a better performance, however, this
example supports the motivation behind the development of projection-free methods for saddle point
problems with hard-to-project constraints, particularly when an LMO is available.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
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(a) rcv1 (b) news20

Figure 1: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA (red)
with AGP (magenta) and SPFW (green) in the Robust Multiclass Classification problem.

Dictionary Learning: Considering the dictionary learning problem in (4), we compared the perfor-
mance of our proposed methods, R-PDCG (Algorithm 1) and CG-RPGA (Algorithm 2) with AGP
[49] and SPFW [16] although SPFW does not have a theoretical guarantee for nonconvex-concave SP.
The datasets are generated randomly from a standard Gaussian distribution with details described in
Section F of the Appendix. Notably, CG-RPGA has a faster convergence rate compared to R-PDCG
matching our theoretical results (see Table 1). Moreover, AGP which is a fully projection-based
algorithm has the slowest convergence behavior in terms of time compared to other methods. Solving
a linear optimization problem over the nuclear norm ball requires computing only a single pair of
singular vectors corresponding to the largest singular value, whereas computing a projection onto the
nuclear norm ball demands a full SVD. The computational cost of latter operation isO(kdmin(k, d)),
while the computational cost of the former one is O(νln(k + d)

√
σ1/
√
ϵ), where ν ≤ kd and σ1

are the number of nonzero entries and the top singular value of −∇xL(x, y), respectively, and ϵ is
the accuracy [10]. Therefore, in this example, LMO is considerably more cost-effective to compute
than the projection method. Figure 2 depicts our methods’ superior performance compared to other
algorithms.

Figure 2: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA (red)
with other methods AGP (magenta) and SPFW (green). The plots from left to right are trajectories of
gap function and infeasibility for problem (4).

7 Conclusion

In this paper, we proposed primal-dual projection-free methods for solving a broad class of constrained
nonconvex-concave problems. Using a regularization technique we devised a single-loop method
relying on LMO for handling constraints. In particular, we show that R-PDCG achieves an ϵ-
stationary solution within O(ϵ−6) iterations assuming that the constraint set is strongly convex. Also,
our method achieves ϵ-primal and ϵ-dual gaps within O(ϵ−4) and O(ϵ−2) iterations, respectively, for
nonconvex-strongly concave problems. To the best of our knowledge, this is the first fully projection-
free primal-dual method with a convergence guarantee for nonconvex SP problems. Additionally,
when the projection on the maximization constraint is easy to compute we propose a one-sided
projection-free primal-dual method called CG-RPGA with iteration complexity of O(ϵ−4) matching
the best-known results for projection-based primal-dual methods, and improves to O(ϵ−2) iterations
for nonconvex-strongly concave setting. We acknowledge that the proposed method is currently
limited to the deterministic setting and we plan to study such SP problems under uncertainty and
distributed settings in future work.

10



References
[1] Jacob D Abernethy and Jun-Kun Wang. On frank-wolfe and equilibrium computation. Advances

in Neural Information Processing Systems, 30, 2017.

[2] Nazanin Abolfazli, Ruichen Jiang, Aryan Mokhtari, and Erfan Yazdandoost Hamedani. An
inexact conditional gradient method for constrained bilevel optimization. arXiv preprint
arXiv:2306.02429, 2023.

[3] Sina Baharlouei, Maher Nouiehed, Ahmad Beirami, and Meisam Razaviyayn. Renyi fair
inference. arXiv preprint arXiv:1906.12005, 2019.

[4] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton
University Press, 2009.

[5] Pierre Bernhard and Alain Rapaport. On a theorem of danskin with an application to a theorem
of von neumann-sion. Nonlinear Analysis: Theory, Methods & Applications, 24(8):1163–1181,
1995.

[6] Morteza Boroun, Zeinab Alizadeh, and Afrooz Jalilzadeh. Accelerated primal-dual scheme
for a class of stochastic nonconvex-concave saddle point problems. In 2023 American Control
Conference (ACC), pages 204–209, 2023.
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