
A The proof of Proposition 1346

Proof. BecauseK is a Hilbert-Schmidt kernel, we have
∫∫

X×X

∣∣K(x,y)∣∣2dµ(x)dµ(y) <∞. Then,347 ∫∫
X×X

∣∣H(q)(x,y)
∣∣2dµ(x)dµ(y) = ∫

X

∫
X

∣∣K(x,y) +K(y,x)
2

∣∣2dµ(x)dµ(y)
≤

∫
X

∫
X

1

2

(∣∣K(x,y)∣∣2 + ∣∣K(y,x)∣∣2)dµ(x)dµ(y)
=

∫
X

∫
X

∣∣K(x,y)∣∣2dµ(x)dµ(y) <∞ .

It holds that the symbol “ ≤′′ in the third row of the above equation because of the Cauchy-Schwarz in-348

equality. The Cauchy-Schwarz inequality states that ∀ai, bi ∈ R, i = 1, · · · , k, then
(∑k

i=1 aibi
)2 ≤349 (∑k

i=1 a
2
i

)(∑k
i=1 b

2
i

)
. Then, we have

∣∣K(x,y)
2 + K(y,x)

2

∣∣2 ≤ ( 14 + 1
4 ) ·

(∣∣K(x,y)∣∣2 + ∣∣K(y,x)∣∣2),350

and measure µ is non-negative. Thus, symbol “ ≤′′ in the third row holds. We finish the proof.351

B The proof of Proposition 2352

Proof. The associated kernel µ(x,y, q) of the operator (5) is a Hermitian kernel, i.e., µ(x,y, q) =353

µ(y,x, q), then the eigenvalues of (5) are real and the spectral radius is equal to the operator norm354

R(ρ) = ∥T (q)∥ [36]. Let f ∈ L2(X,µ), we have355

⟨T (q)f, f⟩ =
∫
X

∫
X

ρ(x,y, q)f(y)f(x)dµ(x)dµ(y)

=

∫
X

∫
X

H(q)(x,y)
f(y)√
m(y)

f(x)√
m(x)

dµ(x)dµ(y) .

If we apply the Cauchy-Schwarz inequality as follows,356 ∣∣∣∣ ∫
X

H(q)(x,y)
f(y)√
m(y)

dµ(y)

∣∣∣∣ ≤ (∫
X

∣∣H(q)(x,y)
∣∣dµ(y)) 1

2
(∫

X

∣∣H(q)(x,y)
1
2
f(y)√
m(y)

∣∣2dµ(y)) 1
2

≤
(∫

X

∣∣H(q)(x,y)
∣∣dµ(y)) 1

2
(∫

X

∣∣H(q)(x,y)
∣∣ |f(y)|2
m(y)

dµ(y)

) 1
2

=

(∫
X

S(x,y)dµ(y)

) 1
2
(∫

X

S(x,y)
|f(y)|2

m(y)
dµ(y)

) 1
2

,

where S(x,y) =
∣∣H(q)(x,y)

∣∣ = 1
2

∣∣K(x,y) +K(y,x)∣∣. The asymmetric kernel K is non-negative,357

thus S(x,y) = 1
2

(
K(x,y) +K(y,x)

)
. Then we have358

∣∣∣∣ ∫
X

H(q)(x,y)
f(y)√
m(y)

dµ(y)

∣∣∣∣ ≤ (∫
X

S(x,y)dµ(y)

) 1
2
(∫

X

S(x,y)
|f(y)|2

m(y)
dµ(y)

) 1
2

=
√
m(x)

(∫
X

S(x,y)
|f(y)|2

m(y)
dµ(y)

) 1
2

.

Consequently,359

⟨T (q)f, f⟩ ≤
∫
X

∣∣f(x)∣∣( ∫
X

S(x,y)
|f(y)|2

m(y)
dµ(y)

) 1
2

dµ(x).
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We can apply the Cauchy-Schwarz inequality again,360

⟨T (q)f, f⟩ ≤ ∥f∥
(∫

X

∫
X

S(x,y)
|f(y)|2

m(y)
dµ(y)dµ(x)

) 1
2

= ∥f∥
(∫

X

|f(y)|2

m(y)

(∫
X

S(x,y)dµ(x)

)
dµ(y)

) 1
2

= ∥f∥
(∫

X

|f(y)|2

m(y)
m(y)dµ(y)

) 1
2

= ∥f∥2 .

It can be noticed that the operator norm ∥T (q)∥ = 1. Therefore, the spectral radius R(ρ) = 1. We361

finish the proof.362

363

C Selection of the scaling parameter q.364

As illustrated in Fig. F1, we suggest choosing a period that encompasses the range of the skew-365

symmetric component, i.e., a should be less than π, where a is defined as follows,366

a := sup
x,y∈X

|K(x,y)−K(y,x)| ,

and the period of the phase function is T = 2π
2πq = 1/q. Thus, we have367

T =
1

q
> 2a ⇒ q <

1

2a
.

Figure F1: A simple illustration for selecting q.
368
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D Algorithm369

To apply MagDM, we require a dataset and an asymmetric kernel or an asymmetric Gram matrix, as370

well as the scaling parameter q and the desired accuracy. Algorithm 1 outlines the MagDM procedure.371

Algorithm 1 MagDM for asymmetric kernels
Input: The Gram matrix K of dataset X endowed with an asymmetric kernel K, the scaling

parameter q and a preset accuracy δ.
Output: The diffusion map ψt,(q) of X .

1: Calculate the Hermitian Gram matrix H of the asymmetric Gram matrix K by (3) and (4).
2: Calculate the t-powers kernel matrix Ht.
3: Run eigen-decomposition of Ht and denote its eigen-system as {λ(q)n , ϕ

(q)
n }.

4: s(δ, t)← max{n ∈ N : |λ(q)n | > δ|λ(q)1 |}.
5: Return the diffusion map ψt,(q) by (8).

Limitations. Researchers should note that the MagDM method proposed in this paper has some372

limitations. One such limitation is its dependence on the choice of asymmetric kernel functions,373

which can impact its performance. Additionally, MagDM may be computationally expensive for374

large datasets, as it requires O(N2) memory and O(N3) computational complexity to derive the375

spectral decomposition. However, this limitation can be addressed through the use of out-of-sample376

extensions, which are discussed in Appendix E.377

E Out-of-sample extensions.378

Out-of-sample extensions are useful in many applications where low-dimensional embeddings379

computed on the original dataset are extended to new data. The Nyström extension is a well-known380

technique used in the machine learning community to approximate the Gram matrix by a low-rank381

embedding. However, the out-of-sample extension of duffision maps for asymmetric kernels has not382

been studied before. Here, we present the corresponding Nyström-based extension for out-of-sample383

cases. As discussed earlier, the integral operator (5) is compact and self-adjoint, whose spectral384

decomposition is {λ(q)n , ϕ
(q)
n }. If λ(q)n ̸= 0, the following identity holds for x ∈ X:385

ϕ(q)n (x) =
T (q)

λ
(q)
n

ϕ(q)n (x) =

∫
X

ρ(x,y, q)

λ
(q)
n

ϕ(q)n (y)dµ(y) .

The Nyström extension extends the equation above to new data Z such that X ⊆ Z as follows,386

ϕ(q)n (z) =

∫
X

ρ(z,y, q)

λ
(q)
n

ϕ(q)n (y)dµ(y) , (a1)

where z ∈ Z and ϕ(q)n (z) =
∑
y∈X

ρ(z,y,q)

Nλ
(q)
n

ϕ
(q)
n (y) is the empirical form of (a1) for X . This allows387

the eigenfunctions to be extended for new data, enabling the extension of MagDM (8) as follows,388

ψt,(q)(z) =
∑
y∈X

[ρ(z,y, q)
N

ϕ
(q)
1 (y),

ρ(z,y, q)

N
ϕ
(q)
2 (y), · · · , ρ(z,y, q)

N
ϕ
(q)
s(δ,t)(y)

]⊤
.

F Descriptions and figures of datasets389

In this section, we visualize the datasets using either expert knowledge or a force-directed layout. We390

hope that these visualizations will help readers gain a better understanding of the data.391

F.1 The first artificial network392

Fig. F2(a) provides the running flow of the first artificial network and Fig. F2(b) shows an example393

of the directed graphs generated with P = 0, where the asymmetric adjacency connection can be394

considered as an asymmetric kernel.395
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(a) The running flow of three groups. (b) Graph using the expert knowledge positions.

Figure F2: An illustration of the first artificial network. (a) The running flow of three groups A, B and
C. The directed/asymmetric information is nested in the running flow. (b) An instance of a directed
graph generated by the running flow with backward flow probability P = 0.

F.2 The second artificial network396

The running flow of the second artificial network comprises four groups (A, B, C, and D). The397

structure of the flow is apparent, with groups A and D serving as out-come and in-come nodes,398

respectively, while groups B and C function as communicators. Groups B and C are two dense sets399

containing 20 nodes and Group A and D are a pair of datasets whose interconnections are much more400

than Group B and C.401

(a) The running flow of four groups.
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(b) Graph using a force-directed layout.

Figure F3: An illustration of the second artificial network. (a) The running flow of three groups A, B,
C and D. The directed/asymmetric information is nested in the running flow. (b) An instance of a
directed graph generated by the running flow with Groups A and D playing a particular role (green
and orange nodes) and Groups B and C playing a role of a communicator (red and blue nodes).

F.3 The Möbius strip402

The Möbius strip dataset is a set of 300 points randomly distributed along the Möbius strip. The403

parametric form of the Möbius strip is defined by,404

x(u, v) =
(
1 +

v

2
cos

u

2

)
cosu, y(u, v) =

(
1 +

v

2
cos

u

2

)
sinu, z(u, v) =

v

2
sin

u

2
,

where 0 ≤ u ≤ 2π and −0.5 ≤ v ≤ 0.5. The dataset is with a color drift in the counterclockwise405

direction on the x-y plane in Fig. F4.406
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Figure F4: Dataset with 300 random points in the Möbius strip.

F.4 Two trophic networks407

We have chosen two specific trophic networks: the Mondego [32] and Florida [33] networks, which408

are part of the Pajek datasets. These networks have recorded the trophic exchanges at Mondego409

estuary and Florida bay during the wet season, respectively. Based on the roles of the nodes in these410

ecosystems, we have classified them into different categories, as shown in Appendix F5. The green411

nodes, such as 2um Spherical Phytoplankt and Phytoplankton, are producers that generate their own412

food through photosynthesis or chemosynthesis. The brown and red nodes are low-level consumers413

like littorina and high-level consumers like bonefish and crocodiles that feed on other organisms for414

energy. Additionally, the purple node in the Florida network represents decomposers that break down415

dead or decaying organic matter. Finally, the blue and turquoise blue nodes correspond to the input,416

output, and organic matter of the ecosystem, respectively.417
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(a) Mondego. (b) Florida.

Figure F5: The trophic networks using force-direct layout. Nodes among this network are classified
into several categories, The green nodes are producers that generate their own food through pho-
tosynthesis or chemosynthesis. The brown and red nodes are low-level consumers and high-level
consumers that feed on other organisms for energy. Additionally, the purple node in the Florida
network represents decomposers that break down dead or decaying organic matter. The blue and
turquoise blue nodes correspond to the input, output, and organic matter of the ecosystem.
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