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A Model Architectures

The pose predictor fkp consists of a feature extractor fenc using ResNet-101 and a decoder fdec
with three convtranspose2d - bn - relu blocks. For StyleNet fsty, we follow UniFrame [4] and use
Aladin [6]. The warping estimation module W is based on an hourglass with five conv3×3 - bn - relu
- pool2×2 in the encoders and five upsample2×2 - conv3×3 - bn - relu blocks in the decoders. After
the hourglass, there are two convs to respectively generate mask and inpainting map Cdrv←b. The
mask is used to generate region-wise displacement field Ddrv←b. The generation module G is based
on U-Net with five conv3×3 - bn - relu - avg pool2×2 blocks in the encoders and five upsample2×2
- conv3×3 - bn - relu blocks in the decoders. In G, we use the Johnson architecture [3] with two
down-sampling blocks, six residual-blocks and two up-sampling blocks. The design follows [7].
The inputs are the base image, displacement field, and inpainting map. It downsampled 4× and
upsampled 4× to get the output, i.e. the reconstructed image. The generator is pre-trained with
predicted keypoints before applying the geometric reconstruction module.

B Complementarity Analysis

In this section, we introduce how the two proposed components work separately and how they
complement each other. We conducted the experiments on the task of RHD [12]→ H3D [11] for
hand pose and SURREAL [8]→ Human3.6M [1] for human pose. Baseline refers to only applying
the pseudo-labelling strategy in [4] along with the pre-training Lpre-train used in our method. As
shown in Table A, integrated pseudo-labelling strategy and geometric reconstruction bring 1.2 and
1.4 improvements separately for the task of RHD→ H3D; Moreover, combining the two will boost
the performance and gain an improvement of 3.9. The same phenomenon can also be observed in
the results of the SURREAL→ Human3.6M task. Both results indicate that the two components are
not contradictory to each other but even complement each other.

Method RHD→H3D SURREAL→Human3.6M
MCP PIP DIP Fin All Head Sld Elb Wrist Hip Knee Ankle All

Baseline 87.7 85.0 79.6 68.6 80.2 74.1 77.8 89.3 80.4 49.8 84.2 85.7 79.8
+pseudo 89.0 86.4 79.8 69.5 81.4 (+1.2) 74.5 81.1 90.0 80.6 52.3 84.7 85.3 80.8 (+1.0)
+rec 88.7 85.5 78.9 73.2 81.6 (+1.4) 87.0 81.0 90.2 78.2 50.0 84.7 85.8 81.1 (+1.3)
+pseudo + rec 89.4 88.3 81.9 73.9 84.1 (+3.9) 87.5 89.8 90.1 78.7 69.5 85.4 84.8 83.7 (+3.9)

Table A: Complementarity analysis of geometric reconstruction and integrated pseudo-labelling on
hand pose (left) and human pose (right). Both experiments show that the improvement by simulta-
neously adding two components is much larger than the addition of the improvements of applying
the components separately. It also indicates that the proposed two modules complement each other.
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PCK(@0.05) H3D MVHand

M2D 80.2 63.7

M3D 80.5 65.8

M2D ∪M3D 80.1 64.7

(M2D,M3D) 80.8 67.3

Ours 81.4 68.2
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Table B: (a) Ablation study of the combination strategies on 2D and 3D pseudo-labelling. The optimal strategy
is to initially allow 2D and 3D pseudo-labelling to be independently trained using their respective mask. The
masks can then be combined when there is a high overlap between them. (b) (Red line) The overlap of the
confidence mask from 2D pseudo-labelling and 3D pseudo-labelling. The pseudo-labelling would become
more confident and the overlap would be increased to 80% in the fine-tuning; (Blue line) The coincidence rate
of incorrect labels for both the previous epoch t−1 and subsequent epoch t. Approximately 27% of the training
data continuously selected as pseudo-labels is incorrect.

C Integrated Pseudo-labelling

C.1 The Combination Strategies

As shown in Table B (a), we compared the performance of using only 2D pseudo-labelling with
its mask M2D, only 3D pseudo-labelling with its mask M3D and their combination. It can be
observed that using 3D pseudo-labelling (M3D) arrives at a superior performance to 2D pseudo-
labelling (M2D), which indicates that the kinematic constraints on 3D pose would greatly improve
2D results compared to the guidance from heatmap evidence. Then if directly using their combined
mask (M2D ∪M3D) to guide the pseudo-labelling of 2D and 3D, it would degrade the performance
compared to strategy M3D. This is because, at the beginning of fine-tuning, the domain shift is
still large, and both 2D and 3D pseudo-labelling are not confident with only a 40% mask overlap
rate, as shown by the red line in Table B (b). Independent learning ((M2D,M3D)) could relieve that
problem, but we found that the overlap of their mask would be over 80% in the later fine-tuning. And
during the later fine-tuning, if we used the combination of their confidence mask, the PCK could be
increased by at least 0.5 (80.8 to 81.4 and 67.3 to 68.2). This outcome highlights the capability of
2D and 3D pseudo-labelling techniques to mutually reinforce each other’s confidence, leading to
enriched pseudo-labels that would benefit the adaptation.

C.2 Intrinsic Problems of Pseudo-labelling

We conducted analysis experiments on the MVHand [10] dataset to investigate pseudo-labeling,
uncovering two underlying problems: saturation of correct labels and persistence of incorrect labels.
Note that a pseudo-label is considered correct only if its accuracy is within the range of PCK@0.05.

In Sec. 4.4, we observed that the percentage of accurate pseudo-labels would saturate in the fine-
tuning. Specifically, as the epoch increases, we accumulate the used pseudo-labels and calculate
the percentage of pseudo-labels that have been correct at least once to the total training data. The
experimental results show that even for our integrated pseudo-labelling, only 70% training data
would be given as correct pseudo-labels throughout the fine-tuning, not to mention that this amount
will be less per epoch. Besides, we calculated the coincidence rate of incorrect labels for both the
previous epoch t−1 and subsequent epoch t. Assume that in t epoch, the set of wrong pseudo-labels
is Wt, and Wt−1 is the wrong pseudo-label set in epoch t−1, then we can have a coincidence rate of
incorrect labels as Wt−1∩Wt

Wt−1∪Wt
. As shown by the blue line in Table B (b), the coincidence rate remains

constant at 27% as the epochs progress, indicating that more than a quarter of the data is continuously
selected as pseudo-labels. However, these pseudo-labels are incorrect and consequently negatively
impact the model adaptation.
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Figure A: Qualitative comparison of our method to state-of-the-art methods. The input images (from top to
bottom) are from the Human3.6M [1] and 3DPW [9]. Comparing the other four methods, we can see that our
method predicts better pose location in the presence of self-occlusion and object occlusions.

D Qualitative Results of Comparison

As shown in Fig. A, we provide the qualitative results of the adaptive pose estimation on two bench-
marks. The comparisons are conducted with Souce-only, CC-SSL [5], RegDA [2] and UniFrame [4]
methods. Our method outperforms others on pose accuracy. In particular, when self-occlusion oc-
curs, other methods tend to predict the keypoints to other wrong keypoints or backgrounds. And
these comparison methods also easily collapse when the person is occluded by objects in front of
them (i.e., a table). Compared to them, our method is less affected by the complex backgrounds and
occlusions.
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Figure B: Illustration of the annotation gap between a source domain (SURREAL) and a target do-
main (Human3.6M). The annotations of head, shoulders, and hips in the SURREAL dataset are very
different from those in the Human3.6M. This annotation gap causes distribution-based or pseudo-
labelling-based methods to perform poorly for these keypoints.

E Visualization of Annotation Gap

In the main paper, we claim a large annotation gap, especially in the human pose. Here, we pro-
vide some visual examples to illustrate in Fig. B. As shown, the annotation gaps obviously exist,
especially for head, shoulders, and hips. Even some annotations in the source dataset are somewhat
not accurate, for example, the ground-truth posterior arm (the link between shoulders and elbows)
can include many background pixels. Previous domain adaptation pose estimation methods, includ-
ing distribution-based RegDA, and pseudo-labelling-based UniFrame cannot address this problem
effectively while our method alleviates it considerably.
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