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Abstract

Reinforcement learning (RL) often faces the challenges of uninformed search
problems where the agent should explore without access to the domain knowledge
such as characteristics of the environment or external rewards. To tackle these
challenges, this work proposes a new approach for curriculum RL called Diversify
for Disagreement & Conquer (D2C). Unlike previous curriculum learning methods,
D2C requires only a few examples of desired outcomes and works in any environ-
ment, regardless of its geometry or the distribution of the desired outcome examples.
The proposed method performs diversification of the goal-conditional classifiers to
identify similarities between visited and desired outcome states and ensures that the
classifiers disagree on states from out-of-distribution, which enables quantifying
the unexplored region and designing an arbitrary goal-conditioned intrinsic reward
signal in a simple and intuitive way. The proposed method then employs bipartite
matching to define a curriculum learning objective that produces a sequence of
well-adjusted intermediate goals, which enable the agent to automatically explore
and conquer the unexplored region. We present experimental results demonstrat-
ing that D2C outperforms prior curriculum RL methods in both quantitative and
qualitative aspects, even with the arbitrarily distributed desired outcome examples.

1 Introduction

Reinforcement learning (RL) has great potential for the automated learning of behaviors, but the
process of learning individual useful behavior can be time-consuming due to the significant amount
of experience required for the agent. Furthermore, in its general usage, RL often involves solving a
challenging uninformed search problem, where informative rewards or desired behaviors are rarely
observed. While there are some techniques that can alleviate the exploration burden such as reward-
shaping [30] or preference-based reward [21, 6], they often require significant domain knowledge or
human intervention. This makes it difficult to utilize RL directly for problems that require challenging
exploration, especially in many domains of practical significance. Thus, it is becoming increasingly
crucial to tackle these challenges from the algorithmic level by developing RL agents that can learn
autonomously with minimal supervision.

One potential approach is a curriculum learning algorithm. It involves proposing a carefully designed
sequence of curriculum tasks or goals for the agent to accomplish, with each step building upon the
previous one to gradually progress the curriculum. By doing so, it enables the agent to automatically
explore the environment and improve the capability in a structured way. Previous studies primarily
involve a mechanism to adjust the curriculum distribution by maximizing its entropy within the
explored region [35], or taking into account the difficulty level [43, 11], or learning progress of the
agent [36]. However, efficient desired outcome-directed exploration is not available under these
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Figure 1: D2C trains a set of classifiers with labeled source data while diversifying their outputs on
unlabeled target data (red: predicted label 0, blue: predicted label 1). Then, it proposes curriculum
goals based on the diversified classifier’s disagreement and similarity-to-desired outcome.

frameworks as these approaches do not have converging curriculum objectives, resulting in a naive
search for unseen states.

Providing the agent with examples of successful outcomes can make the RL problem more manage-
able, as opposed to letting the agent explore without a particular objective and with an undirected
reward. Such examples can offer considerable guidance on how to achieve a task if the agent can
estimate the similarities between the desired outcome examples and visited states. In the realm of
desired outcome-directed RL, previous studies try to maximize the probability of reaching desired
outcomes [12, 41, 8]. However, these approaches do not have tools for explicitly quantifying an
unexplored region, leading the agent to settle for reaching an initially discovered desired outcome
example, rather than continuing to explore further to find another example. Other works try to mini-
mize the distance between the generated curriculum distribution and the desired outcome distribution
to propose intermediate task goals [37, 18]. But, these approaches have mainly been confined to
problems that do not involve significant exploration challenges because they rely on the assumption
that the Euclidean distance metric can represent the geodesic interpolation between distributions.
This assumption is not universally applicable to all environmental geometries, making these methods
less versatile than desired.

Therefore, it is necessary to develop an algorithm that enables the agent to automatically perform the
outcome-directed exploration by generating a sequence of curriculum goals, which can be applied to
arbitrary geometry and distribution of the given desired outcome examples. To do so, we propose
Diversify for Disagreement & Conquer (D2C), which only requires desired outcome examples and
does not require prior domain knowledge such as 1) the geometry of the environment 2) or the
number of modes or distribution of the desired outcomes, or 3) external reward from the environment.
Specifically, D2C involves diversifying the goal-conditioned classifiers to identify the similarities
between the visited states and the desired outcome states. This is accomplished by ensuring that
the outputs of each classifier disagree on unseen states, which not only allows determining the
unexplored frontier region but also provides an arbitrary goal-conditioned intrinsic reward. Based
on such conditional classifiers, we propose to employ bipartite matching to define a straightforward
and easy-to-comprehend curriculum learning objective, which produces a range of well-adjusted
curriculum goals that interpolate between the initial state distribution and arbitrarily distributed
desired outcome states for enabling the agent to conquer the unexplored region.

To sum up, our work makes the following key contributions.

• We propose a new outcome-directed curriculum RL method that only needs a few arbitrarily
distributed desired outcome examples and eliminates the need for external reward.

• To the best of our knowledge, D2C is the first algorithm for curriculum RL that allows
for automatic progress in any environment without being restricted by its geometry or the
desired outcome distribution by proposing diversified conditional classifiers.

• In various goal-conditioned RL experiments, our method consistently outperforms the
previous curriculum RL methods through precisely calibrated guidance toward the desired
outcome states in both quantitative and qualitative aspects.

2



2 Related Works

Despite various attempts to improve exploration in RL, it remains a difficult issue that has not been
fully solved. Some previous works for exploration have suggested methods based on information
theoretical approaches [9, 39, 50, 20, 17, 27], maximizing the state visitation distribution’s entropy
[47, 25, 26], counting the state visitation [3, 31], utilizing similarity or curiosity [33, 45], and
quantifying uncertainty through prediction models [4, 34]. Other approaches provide a curriculum
to allow the agent to explore the environment through intermediate tasks. Curricula are usually
created by adjusting the distribution of goals to cover new and unexplored areas. It is achieved by
considering an auxiliary objective such as entropy [35] or disagreement between the model ensembles
[49, 15, 28] or difficulty level of the curriculum [11, 43], regret [16], and learning progress [36].
However, these methods only focus on visiting diverse frontier states or do not provide a mechanism
to converge toward the desired outcome distribution. In contrast, our method enables more efficient
outcome-directed exploration via curriculum proposal with an objective to converge rather than
simply exploring various frontier states, only requiring a few desired outcome examples.

Assuming access to desired outcome samples or distribution, some prior methods try to accomplish
the desired outcome states by maximizing the probability of reaching these states [12, 41, 8]. However,
they lack a mechanism for quantifying an under-explored region and synthesizing the knowledge
acquired from the agent’s experiences into versatile policies that can accomplish novel test goals.
Some algorithms generate curricula as an interpolation between the distribution of desired target tasks
and auxiliary tasks [37, 18], but they still rely on the Euclidean distance metric, which is insufficient
to handle arbitrary geometric structures. There exists a work that addresses geometry-agnostic
curriculum generation using the given desired outcome states, similar to our approach [5]. But, it
requires carefully tuned Wasserstein distance estimation that depends on the optimality of the agent.
It leads to inconsistent estimation before the convergence, resulting in numerically unstable training,
while our method does not have such dependence. Also, it adopts a meta-learning-based technique
[10, 23] that requires gradient computation at every optimization iteration, while our method only
requires a single neural network inference, leading to much faster curriculum optimization.

A core idea behind our method is utilizing classifiers to learn a diverse set of hypotheses that
minimize the loss on source inputs but make differing predictions on target inputs [32, 22]. It is
related to ensemble methods [7, 19, 14] that aggregate the multiple functions’ predictions, but the
proposed method is distinct in terms of directly optimizing on an underspecified target dataset for
enhancing diversity. Even though this diversifying strategy for target data is typically considered
from the perspective of out-of-distribution robustness in conditions of distribution shift [29, 24, 38]
or domain adaptation [44, 46, 42], we demonstrate how it can be applied for classifiers to quantify the
similarity between the visited states and desired outcome states, and discuss its links to exploration
and curriculum generation in RL.

3 Preliminary

We consider the Markov decision process (MDP)M = (S,G,A,P, γ), where S indicates the state
space, G the goal space, A the action space, P(s′|s, a) the transition dynamics, and γ the discount
factor. In our framework, the MDP is not provided a reward function and we consider a setting where
only the desired outcome examples {g+k }Kk=1 from the desired outcome distribution p+(g) are given.
Thus, our method utilizes an intrinsic reward r : S × G ×A → R. Also, we represent the curriculum
distribution obtained by our method as pc(s).

3.1 Acquiring knowledge from underspecified data

For diversification-based curriculum RL, we train a classification model y = f(x) in a supervised
learning setting where x ∈ X is input, and y ∈ Y is the corresponding label. The model f is
trained with a labeled source dataset DS ∼ pS(x, y) that includes both the given desired outcome
examples (y = 1) and the visited states in the replay buffer B of the RL agent (y = 0). We
assume that the desired outcome distribution can be modeled as a mixture of outcome distribution,
p+(x) =

∑
o∈O wopo(x), where each o ∈ O corresponds to a specific outcome distribution po(x).

The selection of model f from hypothesis class f ∈ F is achieved by minimizing the predictive risk
EpS(x,y)[L(f(x), y)], where L is a standard classification loss.
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Although f demonstrates good generalization on previously unseen data acquired from the source
distribution pS(x, y), it is ambiguous to evaluate the model f in distribution shift conditions such
as when querying target data obtained from an out-of-distribution (e.g. a state lies in an unexplored
region). This is because there could be many potential models f that can minimize the predictive
risk. To formalize this intuition, we introduce the concept of an ε-optimal set defined as Fε :=
{f ∈ F | Lp(f) ≤ ε} [22], where Lp represents the risk associated with a distribution p, and ε ≥ 0.

The definition of the ε-optimal set implies that the predictions of any two models f1, f2 in the set are
almost identical on pS(x, y) when ε is small. But, using Fε as it is has a few drawbacks: 1) there
is no criterion to prefer any particular hypotheses of Fε over another, and 2) the trained model f
might not be suitable for evaluating the target data distribution as it does not have a mechanism to
quantitatively discriminate unseen target data from the labeled source data.

To address this point, we utilize an unlabeled target dataset DT ∼ pT(x) for comparing the functions
within Fε by examining how their predictions differ on DT. Since DT can be viewed as indicating
the directions of functional change that are most crucial to the automatic exploration of the RL agent,
we set pT(x) as the uniform distribution between the lower and upper bound of the state space to
include all possible candidate states to visit. Knowing the state space’s bounds is a commonly utilized
assumption in many curriculum learning works [37, 18, 5] and it does not require being aware of
the dynamically feasible areas. Then, our objective is to identify a set of classification models that
perform well in pS(x, y) and disagree in pT(x) to recognize the unseen state from the unexplored
region by quantifying the similarity between the observed states in B and desired outcome examples.
Such a function will lie within Fε of pS(x, y), and the model leverages DT to identify a diverse set
of functions within the near-optimal set.

4 Method

For an automatic exploration toward the desired outcome distribution via calibrated guidance of
the curriculum, the proposed D2C suggests curriculum goals via diversified classifiers that disagree
in the unexplored region and enables the agent to conquer this area by exploring through the goal-
conditioned shaped intrinsic reward. It allows the agent to make progress without any prior domain
knowledge of the environment such as obstacles or distribution of the desired outcome states and
advances the curriculum towards the desired outcome distribution p+(g).

4.1 Diversification for disagreement on underspecified data

For the automatic exploration of the RL agent with the curriculum proposal, quantification of whether
a queried state is already explored or not is required. To obtain such a quantification, we diversify a
collection of classifier functions by comparing predictions for the target dataset while minimizing
the training error as briefly described in Section 3.1. The intuition behind this is that diversifying
predictions will produce functions that disagree with data in the ambiguous region [22].

Specifically, we use a multi-headed neural network with N heads to train diverse multiple functions.
Each head i produces a prediction for an input x represented as fi(x). To ensure that every head
has a low predictive risk on pS(x, y), we minimize the cross-entropy loss for each head using
Lxent (fi) = Ex,y∼DS

[CE (fi(x), y)]. Ideally, it is desirable for each function to rely on distinctive
predictive features of the input to encourage differing predictions. Therefore, we train each pair of
heads to generate statistically independent predictions, which implies disagreement in predictions. It
could be achieved by minimizing the mutual information between each pair of heads:

LMI (fi, fj) = Ex∼DT
[DKL (p (fi(x), fj(x)) ∥p (fi(x))⊗ p (fj(x)))] (1)

where the input data is obtained from target dataset DT. For implementation, we compute empirical
estimates of the joint distribution p (fi(x), fj(x)) and the product of the marginal distributions
p (fi(x))⊗ p (fj(x)), which can be computed using libraries developed for deep learning [22].

In summary, the overall objective for classifier diversification is represented with a hyperparameter λ:∑
i

Lxent (fi) + λ
∑
i ̸=j

LMI (fi, fj) (2)
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Figure 2: Overview of the curriculum proposal when we select two candidates for curriculum goals
of g+i by bipartite matching. (1) The curriculum goals are proposed according to the quantification of
the similarity-to-desired outcome (si with a high probability will be selected). (2) If the classifier
is not in the conditional form, it cannot distinguish the source of the desired outcome example g+i ,
resulting in collapsed curriculum proposals, (3) while the conditional classifier enables non-collapsed
curriculum proposals even when the agent achieves a specific desired outcome (e.g. g+2 ) first.

4.2 Quantifying unexplored regions by conditional classifiers

From this section, we slightly abuse the notation s instead of x for the RL setting. Considering the
diversification process in Section 4.1, we can quantify how much a queried state s is similar to the
desired outcome example from p+(g). Specifically, we can define a pseudo probability of the queried
point s by averaging predictions of each head:

ppseudo(y = 1|s) := 1

N

N∑
i=1

fi(s) (3)

When the queried state s is in proximity to the data within pS (with the desired outcome example
labeled as 1 and states from the replay buffer B labeled as 0), it becomes challenging for the classifiers
to give a high probability to labels that substantially differ from the neighboring data, since each
classifier fi is trained to minimize the loss for the source data. On the other hand, if the queried state
s is significantly different from the data in pS, each prediction head will output different values since
the classifiers are trained to diversify the predictions on the target data (uniform distribution on the
state space) to make their prediction values disagree as much as possible. For example, in the case of
two heads, one predicts 1 and the other predicts 0 for the same queried target data, resulting in the
pseudo probability of 0.5. This could be interpreted as a quantification of how much disagreement
exists between classifiers, or uncertainty of the queried data, which can be utilized as an unexplored
region-aware classification (Figure 1).

Thus, we can consider a curriculum learning objective for interpolating the curriculum distribution
from the initial state distribution to p+(g) represented by the following cross-entropy loss:

Lcurr = Es∼B,g+∼p+(g)

[
CE(ppseudo(y = 1|s); y = ppseudo(y = 1|g+))

]
(4)

Intuitively, before discovering the desired outcome examples in p+(g), the curriculum goal candidate
s ∼ B that minimizes Eq (4) is proposed in the frontier of the explored regions where classifiers fi
disagree. And, as the agent explores and discovers the desired outcome examples, the curriculum
candidate is updated to converge to p+(g) to minimize the discrepancy between the predicted labels
of g+ and s.

However, it is not applicable for a case when the desired outcome examples are spread over multi-
modal distribution or arbitrarily because the trained classifiers fi do not distinguish which po the
desired outcome example is obtained from (Figure 2). In other words, fi will predict a value close to
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1 for any desired outcome example g+, and the loss in Eq (4) will be close to 0. As the curriculum
goal candidates are obtained from the replay buffer B, the curriculum optimization may collapse if
the agent achieves one of the desired outcome distributions (po) earlier, which is not desirable for
achieving all the desired outcome examples regardless of its distribution.

Since we assume that we do not know which po the desired outcome example is obtained from, nor the
number of modes (o) of the desired outcome distributions, we propose to utilize a conditional classifier
to address this point while satisfying the assumption. Specifically, we define goal-conditioned
classifiers, where each classifier takes input s and is conditioned on g, and these classifiers are trained
to minimize the following modified objective of Eq (2):

Eg∼DG

[
Es∼B

[∑
i

Lxent (fi(s; g), y = 0)

]
+ Eε

[∑
i

Lxent (fi(g + ε; g), y = 1)

]

+λEs∼DT

[∑
i ̸=j

LMI (fi(s; g), fj(s; g))

] (5)

where ε is small noise (from uniform distribution around zero or standard normal distribution with a
small variance) for numerical stability, and DG can be either DT or B ∪ p+(g) for training arbitrary
goal-conditioned & unexplored region-aware classifiers. We found that there is no significant
difference between these choices. Then, the pseudo probability can be represented as ppseudo(y =

1|s; g) := 1
N

∑N
i=1 fi(s; g) and we can address the arbitrarily distributed desired outcome examples

without curriculum collapse (Figure 2). This proposed conditional classifier-based quantification is
one of the key differences from the previous similar outcome-directed RL methods [23, 5]. Because
the previous works require computing gradients of thousands of data for meta-learning-based network
inference, while our method only requires a single feedforward inference without backpropagation
which leads to fast computation.

4.3 Curriculum optimization via bipartite matching

As we assume that we have access to desired outcome examples from p+(g) instead of their explicit
distribution, we can approximate it using the sampled set p̂+(g) (|p̂+(g)| = K). Then, the problem
is formulated by the combinatorial setting that requires finding the curriculum goal candidate set
p̂c(s) that will be assigned to each sample of p̂+(g), and it can be solved via bipartite matching.
With curriculum goal candidates and desired outcome examples, the curriculum learning objective is
represented as follows:

min
p̂c(s):|p̂c(s)|=K

∑
si∈p̂c(s),g+

i ∈p̂+(g)

w(si, g
+
i ) (6)

w(si, g
+
i ) := CE(ppseudo(y = 1|si; g+i ); y = ppseudo(y = 1|g+i ; g

+
i )) (7)

The intuition behind this objective is similar to Eq (4), but it is different in terms of considering
conditional quantification, which enables addressing arbitrarily distributed desired outcome examples.
Then, we can create a bipartite graph G with edge costs w by considering the sets of nodes Va

and Vb, which represent achieved states in replay buffer B and p̂+(g), respectively. We define
the bipartite graph G({Va,Vb},E) with edge weights E(·, ·) = −w(·, ·). To solve this bipartite
matching problem, we employ the Minimum Cost Maximum Flow algorithm [1, 37] to find K edges
with the minimum cost w. The entire curriculum RL process is shown in Algorithm 2 in Appendix E.

4.4 Conditional classifier-based intrinsic reward

As we have trained conditional classifiers and defined the pseudo probability, we can additionally use
this value as a shaped intrinsic reward for enabling the agent to solve the uninformed search problem.
As the pseudo probability outputs 0 for the state in the replay buffer B, 1 for the desired outcome
state, and a value between 0 and 1 for the state where the classifiers disagree (meaning unexplored
region), we can define the goal-conditioned intrinsic reward as r = ppseudo(y = 1|s; g). We use this
intrinsic reward in all of our experiments. The ablation study for this reward is detailed in Section 5.2.

6



Table 1: Comparison of our work with the prior curriculum RL methods in conceptual aspects.
Conditional quantification Target dist. of curriculum Arbitrary desired outcome dist. Geometry-agnostic Without external reward

HGG ✗ p+(g) ✓ ✗ ✗
CURROT ✗ uniform or p+(g) ✓ ✗ ✗

PLR ✗ ✗ ✗ ✓ ✗
VDS ✗ ✗ ✗ ✓ ✗

ALP-GMM ✗ ✗ ✗ ✓ ✗
OUTPACE ✗ p+(g) ✗ ✓ ✓

Ours ✓ p+(g) ✓ ✓ ✓

(a) Ours (b) OUTPACE (c) HGG
Figure 3: Curriculum goal visualization of the proposed method and baselines. First row: Ant
Locomotion, Second row: Spiral-Maze.

5 Experiment

We conduct experiments on 6 environments that have multi-modal desired outcome distribution to
validate our proposed method. We use various maze environments (Point Complex-Maze, Medium-
Maze, Spiral-Maze) to validate our curriculum proposal capability, which is not limited to specific
geometries. Additionally, we evaluate our method on more complex dynamics or other domains such
as the Ant-Locomotion and Sawyer-Peg Push, Pick&Place with obstacle environments to demonstrate
its effectiveness in domains beyond the navigation. (Refer to Appendix D for more details.)

We compare our method with several previous curriculum generation approaches, each of which
possesses the following characteristics. OUTPACE [5] prioritizes goals that are considered uncertain
and temporally distant from the initial state distribution through meta-learning-based uncertainty
quantification and Wasserstein-distance-based temporal distance approximation. HGG [37] aims to
reduce the distance between the desired outcome state and curriculum distributions, using a value
function bias and the Euclidean distance metric. CURROT [18] interpolates between the desired
outcome state and curriculum distribution while considering the agent’s current capability using the
Wasserstein distance. VDS [49] proposes epistemic uncertainty-based goals by utilizing the value
function ensembles. ALP-GMM [36] models absolute learning progress score by a GMM. PLR [16]
prioritizes increasingly challenging tasks by ranking task levels based on TD errors. We summarize
the conceptual comparison between our method and baselines in Table 1.

5.1 Experimental results

First, to validate the quality of curriculum goal interpolation from the initial state distribution to the
desired outcome distribution, we qualitatively and quantitatively evaluate the curriculum progress
achieved during the training by optimizing Eq (6). For qualitative evaluation, we visualize the
curriculum goals obtained by the proposed method and other baselines (Figure 3). The proposed
method shows calibrated guidance toward the desired outcome states, even with the multi-modal
distribution. But, HGG shows an inappropriate curriculum proposal due to the Euclidean distance
metric, and OUTPACE shows curriculum goals collapsed only toward a single direction because it
utilizes the Wasserstein distance for biasing curriculum goals into the temporally distant region. Once
the agent explores a temporally far region in a specific direction earlier, the curriculum proposal is
collapsed toward this area. In contrast, our method does not have such dependence, which enables
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(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 4: The mean distance between the curriculum goals and final goals (Lower is better). The
shaded area represents a standard deviation across 5 seeds. The increases of our method at initial
steps in some environments are attributed to the geometry of the environments.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 5: Evaluation success rates, using the same seeds and legends as shown in Figure 4. Note that
some baselines are not visible as they coincide with a success rate of zero.

our method to always propose curriculum goals in any uncertain direction quantified by disagreement
between the diversified classifiers.

We also plot the average distance from the proposed curriculum goals to the desired outcome states
for quantitative evaluation (Figure 4). As we evaluated with multi-modal desired outcome distribution,
the distance cannot be measured by naively averaging the distance between the randomly chosen
desired outcome states and curriculum goals. Thus, we measure the distance by bipartite matching
with the l2 distance metric, which computes the distance between the desired outcome states and
their assigned curriculum goals. As shown in Figure 4, only the proposed method consistently shows
superior interpolation results from the initial state distribution to desired outcome distribution, while
other baselines show some progress only in a simple geometric structure due to the Euclidean distance
metric, or get stuck in some local optimum area due to the lack of or insufficient unexplored region
quantification. We also plot the performance of the outcome-directed RL in Figure 5. As expected by
the average distance measurement in Figure 4, the proposed method is the only one that consistently
and quickly achieves the desired outcome states through the guidance of calibrated curriculum goals,
indicating the advantage of the proposed diversified conditional classifiers.
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(a) Auxiliary loss weight λ (b) Number of prediction heads (c) Intrinsic reward & Curriculum

Figure 6: Ablation study in terms of the episode success rates. First row: Spiral-Maze. Second row:
Sawyer Push. The shaded area represents the standard deviation across 5 seeds.

5.2 Ablation study

Number of prediction heads & Auxiliary loss weight λ. To investigate the sensitivity to the
hyperparameters of our method, we experimented with the different values of the auxiliary loss’
weight λ and with the different number of prediction heads of the conditional classifiers. As shown
in Figure 6a, 6b, the results are slightly dependent on the environment’s characteristics such as the
presence of object interaction or complex geometry. However, the overall performance trend is not
significantly affected by the number of prediction heads and λ, except in the extreme case, which
supports the superiority of our proposed method. More qualitative/quantitative analyses and other
ablation studies are included in Appendix F.

Reward type & Curriculum. We evaluate the effectiveness of the proposed intrinsic reward and
curriculum proposal by conducting two ablation experiments. First, we replace the intrinsic reward
with a sparse reward (Ours w/o IntrinsicReward), which is typically used in goal-conditioned RL
problems. Second, we conduct experiments without the curriculum proposal while utilizing the
intrinsic reward (Ours w/o Curriculum). As shown in Figure 6c, there is performance degradation
without using the proposed intrinsic reward in an environment with complex dynamics since an
informative reward signal is crucial. In addition, the absence of a curriculum proposal leads to
performance degradation in an environment with complex geometry as it requires carefully crafted
guidance for exploration. These results highlight the importance of both proposed components, i.e.
intrinsic reward and curriculum proposal.

6 Conclusion

We propose D2C that 1) performs a classifier diversification process to distinguish the unexplored
region from the explored area and desired outcome example and 2) conquers the unexplored region
by proposing the curriculum goal and the shaped intrinsic reward. It enables the agent to automati-
cally progress toward the desired outcome states without prior knowledge of the environment. We
demonstrate that our method outperforms the previous methods in terms of sample efficiency and
geometry-agnostic, desired-outcome-distribution-agnostic curriculum progress, both quantitatively
and qualitatively.

Limitation & Broader impacts. Despite the promising results, there is a limitation in the scalability
of the proposed method since we use small noise to augment the conditioned goal for numerical
stability, making it difficult to scale to high-dimensional inputs such as images. Thus, addressing
this point would be an interesting future research direction to develop a more generally applicable
method. Also, our work is subject to the potential negative societal impacts of RL, but we do not
expect to encounter any additional negative impacts specific to this work.
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A Training & Experiments details

A.1 Training details

Baselines. The baseline curriculum RL algorithms are trained as follows,

• OUTPACE [5]: We follow the default setting in the original implementation from https:
//github.com/jayLEE0301/outpace_official.

• HGG [37] : We follow the default setting in the original implementation from https:
//github.com/Stilwell-Git/Hindsight-Goal-Generation.

• CURROT [18]: We follow the default setting in the original implementation from https:
//github.com/psclklnk/currot.

• PLR [16], VDS [49], ALP-GMM [36] : We follow the default setting in implementation
from https://github.com/psclklnk/currot.

D2C and all the baselines are trained by SAC [13] with the sparse reward except for the OUTPACE
which uses an intrinsic reward based on Wasserstein distance with a time-step metric.

Training details. We used NVIDIA A5000 GPU and AMD Ryzen Threadripper 3960X for training,
and each experiment took about 1∼2 days for training. We used small noise from a uniform
distribution with an environment-specific noise scale (Table 5) for augmenting the conditioned goal in
Eq (5). Also, we used the mapping ϕ(·) that abstracts the state space into the goal space when we use
the diversified conditional classifiers (i.e. fi(ϕ(s); g). For example, ϕ(·) abstracts the proprioceptive
states (e.g. xy position of the agent) in navigation tasks, and abstracts the object-centric states (e.g.
xyz position of the object) in robotic manipulation tasks.

Table 2: Hyperparameters for D2C
critic hidden dim 512 discount factor γ 0.99

critic hidden depth 3 batch size 512
critic target τ 0.01 init temperature αinit of SAC 0.3

critic target update frequency 2 replay buffer B size 3e6
actor hidden dim 512 learning rate for fi 1e-3

actor hidden depth 3 learning rate for Critic & Actor 1e-4
actor update frequency 2 optimizer adam

Table 3: Default env-specific hyperparameters for D2C
Env name # of λ ϵ fi update fi # of iteration max episode

heads freq (step) per update horizon
Complex-Maze 2 1 0.5 2000 16 100
Medium-Maze 2 1 0.5 2000 16 100

Spiral-Maze 2 1 0.5 2000 16 100
Ant Locomotion 2 2 1.0 4500 16 300
Sawyer-Peg-Push 2 1 0.025 3000 16 200

Sawyer-Peg-Pick&Place 2 1 0.025 3000 16 200

A.2 Environment details

• Complex-Maze: The observation consists of the xy position, angle, velocity, and angular
velocity of the ‘point’. The action space consists of the velocity and angular velocity of the
‘point’. The initial state of the agent is [0, 0] and the desired outcome states are obtained
from the default goal points [8, 16], [−8,−16], [16,−8], [−16, 8]. The size of the map is
36× 36.

• Medium-Maze: It is the same as the Complex-Maze environment except
that the desired outcome states are obtained from the default goal points
[16, 16], [−16,−16], [16,−16], [−16, 16].
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(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 7: Environments used for evaluation: yellow stars indicate the desired outcome examples.
(a)-(c) the agent should navigate various maze environments with multi-modal desired outcome
distribution. (d) the ant locomotion environment with multi-modal desired outcome distribution. (e)
the robot has to push or pick & place a peg to the multi-modal desired locations while avoiding an
obstacle at the center of the table.

• Spiral-Maze: The observation space and actions space and initial state of the agent are the
same as in the Complex-Maze environment. The desired outcome states are obtained from
the default goal points [12, 16], [−12,−16]. The size of the map is 28× 36.

• Ant Locomotion: The observation consists of the xyz position, xyz velocity, joint angle,
and joint angular velocity of the ‘ant’. The action space consists of the torque applied on the
rotor of the ‘ant’. The initial state of the agent is [0, 0] and the desired outcome states are
obtained from the default goal points [4, 8], [−4,−8]. The size of the map is 12× 20.

• Sawyer-Peg-Push: The observation consists of the xyz position of the end-effector,
the object, and the gripper’s state. The action space consists of the xyz position
of the end-effector and gripper open/close control. The initial state of the object is
[0.4, 0.8, 0.02] and the desired outcome states are obtained from the default goal points
[−0.3, 0.4, 0.02], [−0.3, 0.8, 0.02], [0.4, 0.4, 0.02]. The wall is located at the center of the
table. Thus, the robot arm should detour the wall to reach the desired goal states. We
referred to the metaworld [48] and EARL [40] environments.

• Sawyer-Peg-Pick&Place: It is the same as the Sawyer-Peg-Push environment ex-
cept that the desired outcome states are obtained from the default goal points
[−0.3, 0.4, 0.2], [−0.3, 0.8, 0.2], [0.4, 0.4, 0.2], and the wall is located at the center of the
table, fully blocking a path for pushing. Thus, the robot arm should pick and move the
object over the wall to reach the desired goal states.
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B Algorithm

Algorithm 1 Overview of D2C algorithm

1: Input: desired outcome examples p̂+(g), total training episodes N , Env, environment horizon
H , actor π, critic Q, replay buffer B

2: for iteration=1,2,...,N do
3: p̂c ← sample K curriculum goals that minimize Eq (6). We refer to HGG [37] for solving the

bipartite matching problem.
4: for i=1,2,...,K do
5: Env.reset()
6: g ← p̂c

7: for t=0,1,...,H-1 do
8: if achieved g then
9: g ← random goal (randomly sample a few states near st and measure ppseudo. Then

select a state with the highest value of ppseudo.)
10: end if
11: at ← π(·|st, g)
12: st+1 ← Env.step(at)
13: end for
14: B ← B ∪ {s0, a0, g, s1...}
15: end for
16: for i=0,1,...,M do
17: Sample a minibatch b from B and replace the original reward with intrinsic reward in

Section 4.4 (We used relabeling technique based on [2]).
18: Train π and Q with b via SAC [13].
19: Sample another minibatch b′ from DS ∼ {(B, y = 0), (DG, y = 1)} and DT ∼ U .
20: Train fi with b′ via Eq. (5)
21: end for
22: end for
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C More experimental results

C.1 Full results of the main script

We included the full results of the main script in this section. We include the visualization of
the proposed curriculum goals in all environments in Figure 16. The visualization results of the
Sawyer-Peg-Pick&Place are not included as it shares the same map with the Sawyer-Peg-Push
environment.

(a) Ours (b) OUTPACE (c) HGG
Figure 8: Curriculum goal visualization of the proposed method and baselines in all environments.
First row: Complex-Maze. Second row: Medium-Maze. Third row: Spiral-Maze. Fourth row:
Ant Locomotion. Fifth row: Sawyer Push. Sixth row: Sawyer Pick & Place.
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C.2 Additional ablation study results

Full ablation study results of the main script. We conducted ablation studies described in our
main script in all environments. Figure 17 shows the average distance from the proposed curriculum
goals to the desired final goal states along the training steps, and Figure 18 shows the episode success
rates along the training steps. Note that there are no results for the ablation study without a curriculum
proposal in Figure 17c (unlike Figure 18c) since there are no curriculum goals to measure the distance
from the desired final goal states. As we can see in these figures, we could obtain consistent analysis
with the results in the main script in most of the environments.
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(a) Auxiliary loss weight λ (b) Number of prediction heads (c) Intrinsic reward

Figure 9: Ablation study in terms of the distance from the proposed curriculum goals to the desired
final goal states (Lower is better). First row: Complex-Maze. Second row: Medium-Maze. Third
row: Spiral-Maze. Fourth row: Ant Locomotion. Fifth row: Sawyer Push. Sixth row: Sawyer Pick
& Place. The shaded area represents a standard deviation across 5 seeds.
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(a) Auxiliary loss weight λ (b) Number of prediction heads (c) Intrinsic reward & Curriculum

Figure 10: Ablation study in terms of the episode success rate. First row: Complex-Maze. Second
row: Medium-Maze. Third row: Spiral-Maze. Fourth row: Ant Locomotion. Fifth row: Sawyer
Push. Sixth row: Sawyer Pick & Place. The shaded area represents a standard deviation across 5
seeds.
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Curriculum learning objective type. We conduct additional experiments to validate whether
reflecting the temporal distance in a curriculum learning objective (Eq (7)) is required since there
are a few works that estimate the temporal distance from the initial state distribution to propose
the curriculum goals in a temporally distant region or explore based on this temporal informa-
tion [5, 37]. To reflect the temporal distance in the cost function (Eq (7)), we modify it as
w(si, g

+
i ) := CE(ppseudo(y = 1|si; g+i ); y = ppseudo(y = 1|g+i ; g

+
i )) − V π(s0, ϕ(si)) (ϕ(·) is

goal space mapping) since the value function itself implicitly represents the temporal distance if we
use the sparse reward or custom-defined reward similar to the sparse one. In this case, our proposed
intrinsic reward outputs 1 for the desired goal and 0 for the explored states, and it works similarly to
the sparse one.

We experimented with this modified curriculum learning objective (+Value), and the results are
shown in Figure 19, 20. It shows that there is no significant difference, which supports the superiority
of our method in that our method achieves state-of-the-art results without considering additional
temporal distance information.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 11: Ablation study in terms of the average distance from the curriculum goals to the final
goals (Lower is better). +Value means that we additionally consider the value function bias in the
curriculum learning objective to reflect the temporal distance from the initial state distribution.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 12: Ablation study in terms of the episode success rates. +Value means that we additionally
consider the value function bias in the curriculum learning objective to reflect the temporal distance
from the initial state distribution.
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Choice of goal candidates in training conditional classifiers. As mentioned in the main script,
we also experimented with different choices of the goal candidates when we train the conditional
classifiers (Eq (5)). The default setting isDG = DT, and we also experimented withDG = B∪p+(g).
The results are shown in Figure 21, 22. It shows that there is no significant difference, which means
we can even make the problem setting more strict by conditioning the classifier only with the visited
states and the given desired outcome examples.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 13: Ablation study in terms of the average distance from the curriculum goals to the final
goals (Lower is better). There are no significant differences between the choice of goal candidates
to train the conditional classifiers.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 14: Ablation study in terms of the episode success rates. There are no significant differences
between the choice of goal candidates to train the conditional classifiers.

D Training & Experiments details

D.1 Training details

Baselines. The baseline curriculum RL algorithms are trained as follows,

• OUTPACE [5]: We follow the default setting in the original implementation from https:
//github.com/jayLEE0301/outpace_official.
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• HGG [37] : We follow the default setting in the original implementation from https:
//github.com/Stilwell-Git/Hindsight-Goal-Generation.

• CURROT [18]: We follow the default setting in the original implementation from https:
//github.com/psclklnk/currot.

• PLR [16], VDS [49], ALP-GMM [36] : We follow the default setting in implementation
from https://github.com/psclklnk/currot.

D2C and all the baselines are trained by SAC [13] with the sparse reward except for the OUTPACE
which uses an intrinsic reward based on Wasserstein distance with a time-step metric.

Training details. We used NVIDIA A5000 GPU and AMD Ryzen Threadripper 3960X for training,
and each experiment took about 1∼2 days for training. We used small noise from a uniform
distribution with an environment-specific noise scale (Table 5) for augmenting the conditioned goal in
Eq (5). Also, we used the mapping ϕ(·) that abstracts the state space into the goal space when we use
the diversified conditional classifiers (i.e. fi(ϕ(s); g). For example, ϕ(·) abstracts the proprioceptive
states (e.g. xy position of the agent) in navigation tasks, and abstracts the object-centric states (e.g.
xyz position of the object) in robotic manipulation tasks.

Table 4: Hyperparameters for D2C
critic hidden dim 512 discount factor γ 0.99

critic hidden depth 3 batch size 512
critic target τ 0.01 init temperature αinit of SAC 0.3

Critic target update frequency 2 replay buffer B size 3e6
actor hidden dim 512 learning rate for fi 1e-3

actor hidden depth 3 learning rate for Critic & Actor 1e-4
actor update frequency 2 optimizer adam

Table 5: Default env-specific hyperparameters for D2C
Env name # of λ ϵ fi update fi # of iteration max episode

heads freq (step) per update horizon
Complex-Maze 2 1 0.5 2000 16 100
Medium-Maze 2 1 0.5 2000 16 100

Spiral-Maze 2 1 0.5 2000 16 100
Ant Locomotion 2 2 1.0 4500 16 300
Sawyer-Peg-Push 2 1 0.025 3000 16 200

Sawyer-Peg-Pick&Place 2 1 0.025 3000 16 200

D.2 Environment details

• Complex-Maze: The observation consists of the xy position, angle, velocity, and angular
velocity of the ‘point’. The action space consists of the velocity and angular velocity of the
‘point’. The initial state of the agent is [0, 0] and the desired outcome states are obtained
from the default goal points [8, 16], [−8,−16], [16,−8], [−16, 8]. The size of the map is
36× 36.

• Medium-Maze: It is the same as the Complex-Maze environment except
that the desired outcome states are obtained from the default goal points
[16, 16], [−16,−16], [16,−16], [−16, 16].

• Spiral-Maze: The observation space and actions space and initial state of the agent are the
same as in the Complex-Maze environment. The desired outcome states are obtained from
the default goal points [12, 16], [−12,−16]. The size of the map is 28× 36.

• Ant Locomotion: The observation consists of the xyz position, xyz velocity, joint angle,
and joint angular velocity of the ‘ant’. The action space consists of the torque applied on the
rotor of the ‘ant’. The initial state of the agent is [0, 0] and the desired outcome states are
obtained from the default goal points [4, 8], [−4,−8]. The size of the map is 12× 20.
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(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 15: Environments used for evaluation: yellow stars indicate the desired outcome examples.
(a)-(c) the agent should navigate various maze environments with multi-modal desired outcome
distribution. (d) the ant locomotion environment with multi-modal desired outcome distribution. (e)
the robot has to push or pick & place a peg to the multi-modal desired locations while avoiding an
obstacle at the center of the table.

• Sawyer-Peg-Push: The observation consists of the xyz position of the end-effector,
the object, and the gripper’s state. The action space consists of the xyz position
of the end-effector and gripper open/close control. The initial state of the object is
[0.4, 0.8, 0.02] and the desired outcome states are obtained from the default goal points
[−0.3, 0.4, 0.02], [−0.3, 0.8, 0.02], [0.4, 0.4, 0.02]. The wall is located at the center of the
table. Thus, the robot arm should detour the wall to reach the desired goal states. We
referred to the metaworld [48] and EARL [40] environments.

• Sawyer-Peg-Pick&Place: It is the same as the Sawyer-Peg-Push environment ex-
cept that the desired outcome states are obtained from the default goal points
[−0.3, 0.4, 0.2], [−0.3, 0.8, 0.2], [0.4, 0.4, 0.2], and the wall is located at the center of the
table, fully blocking a path for pushing. Thus, the robot arm should pick and move the
object over the wall to reach the desired goal states.
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E Algorithm

Algorithm 2 Overview of D2C algorithm

1: Input: desired outcome examples p̂+(g), total training episodes N , Env, environment horizon
H , actor π, critic Q, replay buffer B

2: for iteration=1,2,...,N do
3: p̂c ← sample K curriculum goals that minimize Eq (6). We refer to HGG [37] for solving the

bipartite matching problem.
4: for i=1,2,...,K do
5: Env.reset()
6: g ← p̂c

7: for t=0,1,...,H-1 do
8: if achieved g then
9: g ← random goal (randomly sample a few states near st and measure ppseudo. Then

select a state with the highest value of ppseudo.)
10: end if
11: at ← π(·|st, g)
12: st+1 ← Env.step(at)
13: end for
14: B ← B ∪ {s0, a0, g, s1...}
15: end for
16: for i=0,1,...,M do
17: Sample a minibatch b from B and replace the original reward with intrinsic reward in

Section 4.4 (We used relabeling technique based on [2]).
18: Train π and Q with b via SAC [13].
19: Sample another minibatch b′ from DS ∼ {(B, y = 0), (DG, y = 1)} and DT ∼ U .
20: Train fi with b′ via Eq. (5)
21: end for
22: end for
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F More experimental results

F.1 Full results of the main script

We included the full results of the main script in this section. We include the visualization of
the proposed curriculum goals in all environments in Figure 16. The visualization results of the
Sawyer-Peg-Pick&Place are not included as it shares the same map with the Sawyer-Peg-Push
environment.

(a) Ours (b) OUTPACE (c) HGG
Figure 16: Curriculum goal visualization of the proposed method and baselines in all environments.
First row: Complex-Maze. Second row: Medium-Maze. Third row: Spiral-Maze. Fourth row:
Ant Locomotion. Fifth row: Sawyer Push. Sixth row: Sawyer Pick & Place.
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F.2 Additional ablation study results

Full ablation study results of the main script. We conducted ablation studies described in our
main script in all environments. Figure 17 shows the average distance from the proposed curriculum
goals to the desired final goal states along the training steps, and Figure 18 shows the episode success
rates along the training steps. As we can see in these figures, we could obtain consistent analysis with
the results in the main script in most of the environments.
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(a) Auxiliary loss weight λ (b) Number of prediction heads (c) Intrinsic reward & Curriculum

Figure 17: Ablation study in terms of the distance from the proposed curriculum goals to the desired
final goal states (Lower is better). There are no results for the ablation study without a curriculum
proposal since there are no curriculum goals to measure the distance from the desired final goal
states. First row: Complex-Maze. Second row: Medium-Maze. Third row: Spiral-Maze. Fourth
row: Ant Locomotion. Fifth row: Sawyer Push. Sixth row: Sawyer Pick & Place. The shaded area
represents a standard deviation across 5 seeds.
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(a) Auxiliary loss weight λ (b) Number of prediction heads (c) Intrinsic reward & Curriculum

Figure 18: Ablation study in terms of the episode success rate. First row: Complex-Maze. Second
row: Medium-Maze. Third row: Spiral-Maze. Fourth row: Ant Locomotion. Fifth row: Sawyer
Push. Sixth row: Sawyer Pick & Place. The shaded area represents a standard deviation across 5
seeds.
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Curriculum learning objective type. We conduct additional experiments to validate whether
reflecting the temporal distance in a curriculum learning objective (Eq (7)) is required since there
are a few works that estimate the temporal distance from the initial state distribution to propose
the curriculum goals in a temporally distant region or explore based on this temporal informa-
tion [5, 37]. To reflect the temporal distance in the cost function (Eq (7)), we modify it as
w(si, g

+
i ) := CE(ppseudo(y = 1|si; g+i ); y = ppseudo(y = 1|g+i ; g

+
i )) − V π(s0, ϕ(si)) (ϕ(·) is

goal space mapping) since the value function itself implicitly represents the temporal distance if we
use the sparse reward or custom-defined reward similar to the sparse one. In this case, our proposed
intrinsic reward outputs 1 for the desired goal and 0 for the explored states, and it works similarly to
the sparse one.

We experimented with this modified curriculum learning objective (+Value), and the results are
shown in Figure 19, 20. It shows that there is no significant difference, which supports the superiority
of our method in that our method achieves state-of-the-art results without considering additional
temporal distance information.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 19: Ablation study in terms of the average distance from the curriculum goals to the final
goals (Lower is better). +Value means that we additionally consider the value function bias in the
curriculum learning objective to reflect the temporal distance from the initial state distribution.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 20: Ablation study in terms of the episode success rates. +Value means that we additionally
consider the value function bias in the curriculum learning objective to reflect the temporal distance
from the initial state distribution.
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Choice of goal candidates in training conditional classifiers. As mentioned in the main script,
we also experimented with different choices of the goal candidates when we train the conditional
classifiers (Eq (5)). The default setting isDG = DT, and we also experimented withDG = B∪p+(g).
The results are shown in Figure 21, 22. It shows that there is no significant difference, which means
we can even make the problem setting more strict by conditioning the classifier only with the visited
states and the given desired outcome examples.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 21: Ablation study in terms of the average distance from the curriculum goals to the final
goals (Lower is better). There are no significant differences between the choice of goal candidates
to train the conditional classifiers.

(a) Complex-Maze (b) Medium-Maze (c) Spiral-Maze

(d) Ant Locomotion (e) Sawyer Push (f) Sawyer Pick&Place

Figure 22: Ablation study in terms of the episode success rates. There are no significant differences
between the choice of goal candidates to train the conditional classifiers.
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