
Supplementary Material
CAPro: Webly Supervised Learning with

Cross-modality Aligned Prototypes

Yulei Qin1 Xingyu Chen2 Yunhang Shen1 Chaoyou Fu1

Yun Gu3 Ke Li1 Xing Sun1 Rongrong Ji4

1Tencent YouTu Lab 2ByteDance
3Shanghai Jiao Tong University 4Xiamen University

yuleiqin@tencent.com

S1 Datasets Details

S1.1 WebVision1k

It contains 2.4M web images collected from Google and Flickr, which share the same 1k category
names with ImageNet1k [1]. For each example, we use all available description, title, and tag in
its metadata for raw text preparation. Besides, we follow [2, 3] to use the subset of WebVision–
Google500 for ablation studies in consideration of lower GPU resource and time consumption without
losing generalization. It contains 0.48M images from Google with randomly chosen 500 categories.
The testing set of ImageNet1k and its subset ImageNet500 are involved as well for evaluation.

S1.2 NUS-WIDE (Web)

It contains 0.26M web images from Flickr with 5k unique user tags. Each example is manually
annotated with multiple labels within 81 concepts that are filtered out of the 5k tags. It also provides
weak labels (an official web version) by checking if each of the 81 category name appears in user tags
of every example. Almost 50% of the web labels are wrong and 50% of the true labels are missing in
tags [4]. Since tags contain phrases without delimiters, we split phrases based on unigram frequencies
[5] for raw text preparation. We follow [3] to train models with weakly-labeled training set (a.k.a.,
NUS-WIDE Web) and validate them on the clean testing set.

S2 Mathmatical Notations

In this section, we present the description of all math notations in the manuscript (see Table S1).

S3 Implementation and Training Details

S3.1 General Settings

In consideration of performance and efficiency, we adopt ResNet-50 [6] and MiniLM-L6 [7] as image
and text encoders by default. The training settings are listed in Table S2. In general, we refer to [8]
for: batch size is 256; optimizer is SGD; learning rate linearly rises with 10 warm-up epochs and
decays by cosine schedule. Specifically, although the benefit of an increased batch size (e.g., 1024)
has been validated [3, 9], we follow the standard batch size setting of 256 on WebVision1k for two

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table S1: List of symbols.
Symbol Description
xi a web image indexed with i
ti textual metadata associated with xi

yi web label associated with xi

y∗i ground-truth label associated with xi

N the total number of images in a web dataset
C the total number of categories
D a web dataset
θe parameters of image encoder
θc parameters of classifier
F(θe; θc) a deep model with image encoder and classifier
dv dimension of the visual features
vi visual features of xi extracted by image encoder, vi ∈ IRdv

dt dimension of the textual embeddings
si textual embeddings of ti extracted by text encoder, si ∈ IRdt

tc category definition of the c-th class
sc textual embeddings of tc extracted by text encoder, sc ∈ IRdt

pi predictions on vi from classifier, pi ∈ IRC , pi(k) denotes its k-th element
dp dimension of the visual embeddings
zi low-dimensional embeddings of vi after projection, zi ∈ IRdp

ṽi reconstructed visual features from zi, ṽi ∈ IRdv

qi predictions on zi from auxiliary classifier, qi ∈ IRC

Q the size of dictionary, namely the length of queue
k number of nearest neighbors (NN) in k-NN and k-reciprocal-NN
V vertices, nodes
E edges
G graph, G = {V, E}
A adjacency matrix
N (xi, k) k-NN sets of xi

R(xi, k) k-reciprocal-NN sets of xi

d(vi,vj) distance between vi and vj

d∗(vi,vj) refined distance between vi and vj

Vvi,vj
k-reciprocal feature encoding the distance between vi and vj

S concatenated textual embeddings, S = (s1, s2, ..., sN),S ∈ IRN×dt

IN identity matrix
Ã adjacency matrix A with self-connection IN
D̃ii degree matrix of Ã
Ŝ denoised S after smoothing
ŝi denoised si after smoothing
K top-K selected examples with visual-semantic alignment
σc
K the K-th smallest distance d∗(̂si, s

c) in the c-th class
Dc

K top-K set of the c-th class
DK sets of top-K examples from all classes
ẑc unnormalized visual prototype of the c-th class
zc normalized visual prototype of the c-th class
τ temperature coefficient
α weight between self-prediction and prototype-instance similarity
oi fused, comprehensive output for label correction, oi ∈ IRC

ri prototype-instance similarity, ri ∈ IRC , ri(k) denotes its k-th element
γ threshold for label correction
mp momentum coefficient
bi collective bootstrapping target on zi
wij weight of contribution from z′j in the dictionary for bi

λbts weight for collective bootstrapping loss
λprj weight for projection and reconstruction losses
λpro weight for prototypical contrastive loss
λins weight for instance contrastive loss

2

Table S2: List of hyper-parameters for training settings.
Settings WebVision1k/Google500 NUS-WIDE
Optimizer SGD
Optimizer momentum 0.9
Optimizer weight decay 1× 10−4

Batch size 256
Step1 pre-training scheduler Cosine decay with linear warm-up
Step1 pre-training warm-up epochs 5/10 10
Step1 pre-training learning rate 1× 10−1 2× 10−3

Step1 pre-training epochs with encoders frozen 0
Step1 pre-training epochs in total 120 100
Step2 training scheduler Cosine decay with linear warm-up
Step2 training warm-up epochs 5/10 10
Step2 training learning rate 1× 10−1 2× 10−3

Step2 training epochs with encoders frozen 5/10 10
Step2 training epochs in total 60/120 100
Step3 fine-tuning scheduler Cosine decay
Step3 fine-tuning warm-up epochs 0
Step3 fine-tuning learning rate 1× 10−4 2× 10−5

Step3 fine-tuning epochs with encoders frozen 15/20 20
Step3 fine-tuning epochs in total 15/20 20
Image encoder (by default) ResNet-50 [6]
Text encoder (by default) MiniLM-L6 [7]
λprj 1
λpro 1
λins 1
λbts 0.1
mp 0.999
dp 128
τ 0.1
α 0.5
top-K 50
Q 8192 2048
γ 0.6 0.9
k-NN/k-reciprocal-NN 5 10

reasons: 1) comparability with most of the previous methods; 2) limited computing resources with 8
GPUs (a mini-batch size of 32 on each GPU for a batch size of 256 in total).

We empirically set λprj = 1, λpro = 1, λins = 1, λbts = 0.1, mp = 0.999, dp = 128, τ = 0.1,
α = 0.5, and K = 50 by default. Their optimal values require meticulous fine-tuning of each
hyper-parameter, which is beyond consideration of the present study.

Data augmentation (random cropping, resacling, and horizontal flipping) is applied on the inputs to
the query encoder while stronger augmentation, including color jittering and blurring [10]), is added
on those to the key encoder.

Experiments are conducted on a CentOS 7 workstation with an Intel 8255C CPU, 377 GB Mem,
and 8 NVIDIA V100 GPUs. The training of CAPro on WebVision1k, Google500, and NUS-WIDE
respectively costs about ten days, three days, and one day under the environment mentioned above.

S3.2 WebVision1k-only Implementation

We refer to [8] for Q = 8192 and γ = 0.6. The learning rate is 0.1 and the number of epochs is 120.
Given the complexity of graph construction, we use k = 5 for both text denoising and matching.

3

S3.3 NUS-WIDE (Web)-only Implementation

In view of the dataset scale, we set Q = 2048 with a learning rate of 2 × 10−3 and a total of 100
epochs. k = 10 is chosen since user tags are noiser and sparser in NUS-WIDE.

To support multi-label learning, it is necessary, but not yet enough, to simply replace the softmax-based
cross-entropy losses with sigmoid-based binary cross-entropy losses. The premise of prototypical
contrastive learning does not hold true anymore because one instance can be simultaneously engaged
in formation of multiple clusters, which violates the exclusivity inherited in softmax activation.
Our experiments demonstrate that, only by projecting vi into compact subspaces specific to each
class, can we properly learn the decision boundary to continue prototypical learning. Technically,
we set C additional fully-connected (FC) layers after the projector to respectively map zi into
z̃i,c ∈ IRdp , c = 1, 2, ..., C. For the c-th class, both positive and negative prototypes z̃c+, z̃c−

are shaped accordingly for the contrast against z̃i,c. Such operation can be viewed as magnifying
class-indicative contents via recombination of the shared embedding zi. Another minor modification
is required on noise removal, where the output oi,c is fused independently for the c-th class for binary
separation. Considering the overwhelming negative instances, we set γ = 0.9 to avoid deviation by
majorities in label rectification. Discussion on the hyper-parameter γ can be found in Sec. S4.2.

S3.4 Training Steps

CAPro adopts a three-step training pipeline. It employs a pre-training step to learn common visual
patterns from the original web dataset D . Then, the training starts with instance-prototype and
instance-wise contrastive learning, collective bootstrapping, and on-line noise removal. Finally, given
the trained model, off-line noise removal is performed on D for data cleaning and we fine-tune the
classifier alone with the cleaned dataset.

Step1 pre-training We perform visual pre-training on ResNet-50 with cross-entropy and projection-
reconstruction losses. At this time, we only use original web labels to train the model to learn common
visual description, which lays foundation for the subsequent prototype initialization in step2. Note
that the pre-trained model is also the vanilla method in our experiments.

Step2 training All components are initialized with the pre-trained parameters in step1. As shown
in Table S2, we keep the encoders frozen with warm-up epochs. This helps stabilize training to avoid
the prototypical embeddings, which are initialized at the beginning by averaging top-K semantically-
correct examples, being perturbed drastically. In this step, we re-train the model with all losses. Apart
from classification, we perform instance-wise and instance-prototype contrastive learning, collective
bootstrapping, noise removal, and prototype update.

Step3 fine-tuning We follow MoPro [8] to perform noise removal on the training dataset D . The
trained model in step2 is used to correct labels or discard OOD examples with our control flow. Then,
we keep encoders frozen and fine-tune the classifier alone with the cleaned set for better performance.
Note that such fine-tuned model is exactly the CAPro in experiments.

We also prepare Algo. S1 to explicitly explain the entire training process.

S4 Ablation Study

S4.1 Effect of Text Enhancement

Figs. S1 and S2 present additional qualitative comparison for selecting instances with potentially-
correct semantics. For WebVision, noiser categories are chosen to validate the effectiveness of text
enhancement by smoothing and reranking. We can observe that due to the problem of polysemy,
a majority of the retrieved images are irrelevant to the correct semantics and simple k-NN-based
smoothing in [3] can hardly handle such situation. In contrast, our text enhancement helps pinpoint,
not perfect but comparatively reliable, web instances that share similar semantics (e.g., metalwork
in Nail). Besides, we also sample three categories from the noiser NUS-WIDE to double-check the
effectiveness of text enhancement. For example, in the category of airport, direct matching of user tag
embeddings to the textual prototype returns a few close-up images of warcrafts, which has nothing to
do with Airport. On the contrary, our text enhancement helps to select the truly matched instances.

4

Figure S1: Top-matched WebVision1k instances are chosen: (a) without text enhancement, (b) with
text enhancement in VSGraph [3], and (c) with our text enhancement.

Figure S2: Top-matched NUS-WIDE (Web) instances are chosen: (a) without text enhancement, (b)
with text enhancement in VSGraph [3], and (c) with our text enhancement.

5

Algorithm S1: CAPro’s training procedure.

Data: Web images and their associated texts and labels D = {(xi, ti, yi)}Ni=1.
1 Step1 pre-training
2 for (xi, yi) ∈ D do
3 Li = Lcls

i + Lprj
i ;

4 Update image encoder, classifier, projector, and reconstructor to minimize Li;
5 end
6 Step2 training
7 for (xi, ti, yi) ∈ D do
8 Extract vi from xi via the image encoder;
9 Extract si from ti via the text encoder;

10 end
11 Build k-reciprocal-NN graph G = {V, E} with {vi}Ni=1;
12 Enhance text embeddings from si to ŝi via graph convolution on G;
13 for c ∈ {1, 2, ..., C} do
14 Extract sc from tc via the text encoder;
15 for i ∈ {1, 2, ..., N |yi = c} do
16 Match textual instances si to prototypes sc to obtain visual anchors Dc

K ;
17 end
18 end
19 Initialize visual prototypes with DK ;
20 for (xi, yi) ∈ D do
21 Li = (1− λbts)Lcls

i + λbtsLbts
i + λprjLprj

i + λproLpro
i + λinsLins

i ;
22 Update image encoder, classifier, and projector to minimize Li;
23 Refine yi to ŷi to remove noise;
24 end
25 Step3 fine-tuning
26 for (xi, ŷi) ∈ D do
27 Li = Lcls

i ;
28 Update classifier to minimize Li;
29 end

Table S3: Effect of γ on CAPro without collective bootstrapping.

γ
Reference
Provider

Google500 ImageNet500 NUS-WIDE
Top1 Top5 Top1 Top5 C-F1 O-F1 mAP

0.6 × 72.0 88.0 66.9 85.4 8.3 9.1 6.9
0.8 × 71.2 87.7 65.9 84.8 – – –
0.9 × – – – – 39.2 44.4 46.8

S4.2 Effect of γ on Noise Removal

Table S3 reports the influence of γ when collective bootstrapping is not applied. We follow MoPro [8]
to validate two γ candidates: γ = 0.6 and γ = 0.8. We find that γ = 0.6 works the best on Google500.
As γ increases, it becomes more difficult for the model to correct labels and thereafter label-flipping
errors may still exist. As suggested by MoPro, the optimum γ is related to the percentage of noise in
web datasets. For noiser datasets, γ should be decreased for the model to correct wrong labels at an
early stage. Otherwise, overfitting might occur and weaken prototypical representation learning. The
fine-tuning of γ requires elaborate experiments, which is beyond the scope of the present study.

For multi-label learning on NUS-WIDE, the optimum γ is not only related to the noise level but
also to the ratio of the number of positive examples to that of negative examples. Since the negative
instances in each class exceeds positive ones by more than one order of magnitude, decreasing γ will
easily make the model to classify any instance as negative. Once the model overfits the overwhelming
negative examples, valid positive supervision sources would only come from the top-K matched
examples with cross-modality alignment, which degrades generalizability greatly. In this case, we
should keep a stricter threshold γ = 0.9 to only allow confident label rectification.

6

Table S4: Effect of prototype update frequency on CAPro. By default, we update visual prototypes
every epoch using high-quality examples in each mini-batch. For 0-epoch per update, we do not
introduce additional high-quality web examples to polish prototypes, but only update them with the
top-K matched semantically-correct examples with their latest visual embeddings.

Epochs
per update

Google500 ImageNet500 NUS-WIDE
Top1 Top5 Top1 Top5 C-F1 O-F1 mAP

0 75.5 91.1 71.6 88.8 39.2 44.4 47.2
1 (by default) 76.0 91.3 72.0 89.2 39.3 45.4 48.0
5 75.9 91.2 71.8 89.2 39.6 45.0 47.6
10 76.0 91.2 71.7 89.1 39.3 45.8 48.2

S4.3 Effect of Prototype Update Frequency

By default, we update prototypes by examples in a mini-batch for every epoch. We additionally
perform ablation study on the update frequency where comparison is conducted between: 1) 0-
epoch, 2) 1-epoch (by default), 3) 5-epoch, and 4) 10-epoch. For 0-epoch update, we do not update
prototypes with embeddings from other high-quality web examples. Instead, prototypes are renewed
with the latest embeddings only from the top-K matched examples to avoid being out-of-date. For
5-epoch and 10-epoch update, we polish prototypes every 5 and 10 epochs, respectively.

Table S4 reports the effect of prototype update frequency on CAPro. On the Google500 and NUS-
WIDE datasets, if prototypes are only formed by limited clean examples, their generalization across
domain becomes poor and thus causes performance drop of 0.45% (top1) and 0.6% on average,
respectively. For Google500, reduced update frequency generally causes lower performance, meaning
that the prototypes should keep refreshed for large-scale datasets. For NUS-WIDE, if the update
frequency decreases a bit (5-epoch), the model improves on C-F1 but underperforms a little on
O-F1 and mAP. With the 10-epoch frequency, we surprisingly find that results are improved on all
evaluation metrics. One possible explanation is that the delayed prototype update can help stabilize
training at an early stage, but the optimal frequency might be subject to dataset scale and noise level.

Table S5: Effect of noise removal policy on CAPro. We compare with MoPro to show the effectiveness
of keeping labels of top-K matched semantically-correct examples unchanged.

Noise Removal
policy

Google500 ImageNet500 NUS-WIDE
Top1 Top5 Top1 Top5 C-F1 O-F1 mAP

MoPro [8] 75.8 91.1 71.7 89.0 38.8 42.2 47.2
CAPro (ours) 76.0 91.3 72.0 89.2 39.3 45.4 48.0

S4.4 Effect of Noise Removal Policy

Table S5 reports the effect of noise removal policy on CAPro. Our label adjustment policy is inspired
from the Eq. (5) of MoPro [8] but differs in that we keep labels of the top-K matched examples
selected in cross-modality alignment unchanged. Therefore, if we replace our noise removal policy
with the MoPro one, we actually allow the deep model to get rid of the guidance from top-K examples.
These selected top-K examples can be altered or even discarded by the MoPro-style policy.

It turns out that without such enforcement, the performance dropped under both single-label and
multi-label scenarios. The possible reason behind is that, due to the overwhelming noise (e.g., the
semantic-misalignment noise) in certain categories, the model itself cannot keep representation
learning robust to noise even with a good start. The labels of top-K samples will be prone to the noisy
majority, which invalidates prototypical learning. Besides, the superiority of CAPro over MoPro-style
update also substantiates the purity and correctness of the selected examples.

S5 Analysis on Open-Set Recognition

We provide detailed analysis on CAPro for open-set recognition. Fig. S3 presents the per-class F1
(C-F1), per-class Precision (C-P), and per-class Recall (C-R). We compare five methods for ablation

7

Figure S3: Effect of threshold for open-set recognition on (a) WebVision1k and (b) ImageNet1k.
TE, CB, and MU respectively refer to our text enhancement, collective bootstrapping, and mix-up.
Examples with prediction confidence lower than the threshold will be classified as open-set category.

8

study including: 1) the vanilla method, 2) CAPro without text enhancement (TE) & collective
bootstrapping (CB), 3) CAPro without CB, 4) CAPro, and 5) CAPro with mix-up (MU).

We vary the confidence threshold from 0 to 1 with an interval of 0.01 to comprehensively measure
the performance of CAPro. For each example, if the highest model prediction confidence is below
the threshold, the example will be classified as the open-set category. Otherwise, the example will
be classified into one of the known categories. We train methods on the Google500 training set and
validate them on WebVision1k and ImageNet1k testing sets. Examples from the remaining 500 novel
categories should all fall into the open-set category.

It can be observed that compared with vanilla method, CAPro enjoys a much higher recall but a
relatively lower precision. It means that our CAPro is more confident about its prediction and a
threshold around 0.6 would end up with an optimal C-F1 over 66%. The precision-recall curve
reflects that each key component does improve open-set recognition. Note that due to the limited
sampling of confidence threshold, the precision-recall curve is not spanning across the entire axes.
However, the tendency of curves confirms the effectiveness of our components.

S6 Guidelines on Tuning of Hyper-Parameters

Loss weights of λbts, λprj, λpro, and λins First, for the total objective, we follow MoPro [8] to use
λpro = 1 and λins = 1. Out of simplicity, we also use λprj = 1 as default.

Second, we would like to explain the effect of λpro, λins, and λprj on regularzation. A larger λpro may
pull instances too close totheir prototypes, which "shrinks" class clusters in the embedding space.
A larger λins will enforce stronger visual discriminability between two instances. It may cause two
examples from the same category to differ greatly and thereafter downgrades the visual prototype
update and class cluster regularization. A larger λprj improves the reconstruction quality of ṽi, which
encourages zi to retain more information of vi in the embedding space. The projection-reconstruction
loss is only involved in the pre-training stage (see Algo. S1), and therefore λprj will not affect the
prototypical and instance-wise contrastive learning in the following stage.

Third, for one’s custom web datasets, we suggest that λpro, λins, and λprj should be tuned according
to the performance results under three settings: 1)λpro = 0 vs. λpro = 1; 2)λins = 0 vs. λins = 1;
3)λprj = 0 vs. λprj = 1.

According to our experiments on both single-label and multi-label datasets, the default settings of
λpro = 1, λins = 1, and λprj = 1 should work well on most cases.

For λbts, we suggest 0.1 would achieve a balance between the individual and collective label references.
A much larger value may cause over smoothing and over-regularization on visual learning.

Threshold γ For γ on single-label datasets, its value is related to the percentage of noise in datasets.
For WebVision1k and Google500 (34% noise [11]), γ = 0.6 works better than γ = 0.8. For one’s
own web dataset, if the noise ratio is larger, γ should be tuned lower so that wrong labels could be
corrected at an earlier stage before overfitting. For γ on multi-label datasets, its value is related to
both the percentage of noise and the number ratio of positive-negative samples. For NUS-WIDE (50%
noise [3] and 0.02 avg. ratio of positive-negative examples), γ = 0.9 works better than γ = 0.6. For
one’s own web dataset, if the noise ratio is smaller and the positive over negative ratio is smaller, γ
should be tuned higher so that hard positive samples will not be easily discarded to avoid underfitting.

Prototype Update Frequency For the update frequency, its value is related to the dataset scale
and noise level. For WebVision1k and Google500, visual prototypes should be updated per epoch to
improve their diversity, which better handles the domain gap between web and realistic datasets. For
NUS-WIDE, the update frequency could be reduced to stabilize training, where the prototypes can be
prone to the overwhelming negative examples in each category.

Top-K For top-K, its value is related to the percentage of noise. If the noise ratio is less than 30%,
K should be set higher than 50 to include more diverse examples.

Others The current settings of other hyper-parameters (see Table S2) work well. For one’s own
dataset, we believe these values can be set as starting points and finetuned accordingly. Among

9

all hyper-parameters, our ablation results show that for λbts, γ, and top-K, their values do affect
performance and should be set following the rules mentioned above (such as the dataset scale, the
noise ratio, and the positive-negative ratio). For the remaining hyper-parameters such as the prototype
update frequency, we do not observe significant fluctuation. In other words, the model is robust to
these hyper-parameters.

S7 Failure Cases

Figure S4: Failure cases of our CAPro on certain classes where the simple vanilla baseline achieves
better performance.

We provide failure cases of our CaPro on the WebVision1k dataset (see Fig. S4). Our observations
are summarized as the following.

First, CAPro can handle fine-grained categories on WebVision1k. The introduction of atypicals
increases the risk of noise. For generalization on anomalies or rarities, one solution is to choose both
top-K and randomly sampled instances.

Second, for WebVision1k, both MoPro and CAPro underperform the vanilla baseline (optimized only
by the cross-entropy loss) on a total of 387 and 312 classes, respectively. Top5 failures of classes
include screen, sunGlasses, bellCote, ballPlayer, and popBottle. For ImageNet1k, MoPro and CAPro
underperform the vanilla on a total of 450 and 358 classes, respectively. Top-5 failures of classes
include silkyTerrier, walkerHound, academicGown, standardSchnauzer, and bellCote.

We also provide interesting findings below:

First, the domain gap exists between web and realistic datasets as the top 5 failure cases on the
WebVision1k and ImageNet1k testing sets are quite different.

Second, the vanilla method tends to overfit the training set so that it outperforms on highly similar
concepts such as screen vs. monitor and sunGlasses vs. sunGlass.

Third, mistakes on silky vs. yorkshire Terrier and walker vs. englishFox hound are ascribed to
over-regularization. The inter-class relationship might be used for class-wise adjustment.

S8 Computational Complexity

Table S6: The parameters and GFLOPs of different encoders.
Encoders Number of Parameters GFLOPs
R50 [6] 25M 3.8
MiniLM [7] 22M 4.7
XLNet [12] 110M 29
GPT-Neo [13] 1.3B 3400

First, we present the number of parameters and GFLOPs for the image and text encoders in Table S7.

Second, we present the cost of the text enhancement of our CAPro with respect to its performance
gains. Here, N denotes the number of all nodes in the visual graph. k is the number of neighbors per

10

Table S7: The cost of the text enhancement of our CAPro with respect to its performance gains.
Text
Encoding

Text
Enhancement Cost Google500

Top1
ImageNet500
Top1

MiniLM [7] VSGraph [3] O(N2dv)+O(Ndv
2 +Nkdv) 72.0 66.9

Ours +O(3Nkdv)+O(4k)+O(4klog(4k)) +3.5 +4.6

XLNet [12] VSGraph [3] O(N2dv)+O(Ndv
2 +Nkdv) 71.6 66.8

Ours +O(3Nkdv)+O(4k)+O(4klog(4k)) +3.8 +4.7

GPT-Neo [13] VSGraph [3] O(N2dv)+O(Ndv
2 +Nkdv) 72.0 67.2

Ours +O(3Nkdv)+O(4k)+O(4klog(4k)) +3.7 +4.4

node and dv is the dimension of the feature v. With k = 5 and k = 10 respectively for WebVision1k
and NUS-WIDE, our improvement over VSGraph is worthy at the expense of such a low cost.

Table S8: The cost of the reference provider of our CAPro with respect to its performance gains.
Text
Encoding

Reference
Provider Cost Google500

Top1
ImageNet500
Top1

MiniLM [7]
Mix-up [14] – 75.7 71.4
NCR [9] O(m2(dv + C)) -0.2 +0.1
Our CB O(mQ(dp + C)) +0.3 +0.6

MiniLM [7]
Bootstrap [15] – 75.5 71.3
NCR [9] O(m2(dv + C)) +0 +0.2
Our CB O(mQ(dp + C)) +0.5 +0.7

MiniLM [7]
LabelSmooth [16] – 75.4 71.2
NCR [9] O(m2(dv + C)) +0.1 +0.3
Our CB O(mQ(dp + C)) +0.6 +0.8

MiniLM [7]
SCC [2] – 73.8 70.2
NCR [9] O(m2(dv + C)) +1.7 +1.3
Our CB O(mQ(dp + C)) +2.2 +1.8

Third, we present the cost of the reference provider of our CAPro with respect to its performance
gains. Here, m is the batch size, dv is the dimension of v, Q is the size of dictionary, dp is the
dimension of z, and C is the number of classes. The common reference provider techniques such as
the Mix-up, Bootstrapping, label smoothing, and SCC do not incur significant overhead. Operations
of our CB are fast to compute for moderate m = 256, Q = 8192, dp = 128, and C = 1000
since PyTorch supports efficient matrix multiplication on GPUs. Besides, compared with NCR, our
dp = 128 is 16x smaller than dv=2048 in NCR, and our m = 256 is 4x smaller than m = 1024 in
NCR. For WebVision1k, our cost is 1.35x smaller than NCR. For NUS-WIDE, our cost is 20.37x
smaller than NCR. It is reasonable to conclude that our CB is more efficient and effective than NCR.

Finally, it is noted that the text encoding and text enhancement methods are performed off-line and
executed only once. They do not participate in network optimization. Besides, the pretrained text
encoders are only used for inference under 1 V100 GPU. Therefore, the additional cost is acceptable
in return for semantically-correct web images.

11

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 248–255. IEEE, 2009.

[2] Jingkang Yang, Litong Feng, Weirong Chen, Xiaopeng Yan, Huabin Zheng, Ping Luo, and
Wayne Zhang. Webly supervised image classification with self-contained confidence. In
European Conference on Computer Vision, pages 779–795. Springer, 2020.

[3] Jingkang Yang, Weirong Chen, Litong Feng, Xiaopeng Yan, Huabin Zheng, and Wayne Zhang.
Webly supervised image classification with metadata: Automatic noisy label correction via
visual-semantic graph. In Proceedings of ACM International Conference on Multimedia, pages
83–91, 2020.

[4] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. NUS-
WIDE: a real-world web image database from national university of singapore. In Proceedings
of the ACM International Conference on Image and Video Retrieval, pages 1–9, 2009.

[5] Jorge Ramón Fonseca Cacho, Ben Cisneros, and Kazem Taghva. Building a wikipedia n-gram
corpus. In Proceedings of SAI Intelligent Systems Conference, pages 277–294. Springer, 2021.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 770–778, 2016.

[7] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained transformers. Advances
in Neural Information Processing Systems, 33:5776–5788, 2020.

[8] Junnan Li, Caiming Xiong, and Steven Hoi. Mopro: Webly supervised learning with momentum
prototypes. In International Conference on Learning Representations, 2020.

[9] Ahmet Iscen, Jack Valmadre, Anurag Arnab, and Cordelia Schmid. Learning with neighbor
consistency for noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4672–4681, 2022.

[10] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[11] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvision database:
Visual learning and understanding from web data. arXiv preprint arXiv:1708.02862, 2017.

[12] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in
Neural Information Processing Systems, 32, 2019.

[13] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https:
//doi.org/10.5281/zenodo.5297715. If you use this software, please cite it using these
metadata.

[14] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.

[15] Scott E Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and
Andrew Rabinovich. Training deep neural networks on noisy labels with bootstrapping. In
International Conference on Learning Representations (Workshop), 2015.

[16] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help?
Advances in Neural Information Processing Systems, 32, 2019.

12

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

	Datasets Details
	WebVision1k
	NUS-WIDE (Web)

	Mathmatical Notations
	Implementation and Training Details
	General Settings
	WebVision1k-only Implementation
	NUS-WIDE (Web)-only Implementation
	Training Steps

	Ablation Study
	Effect of Text Enhancement
	Effect of on Noise Removal
	Effect of Prototype Update Frequency
	Effect of Noise Removal Policy

	Analysis on Open-Set Recognition
	Guidelines on Tuning of Hyper-Parameters
	Failure Cases
	Computational Complexity

