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Abstract

Webly supervised learning has attracted increasing attention for its effectiveness in
exploring publicly accessible data at scale without manual annotation. However,
most existing methods of learning with web datasets are faced with challenges from
label noise, and they have limited assumptions on clean samples under various noise.
For instance, web images retrieved with queries of “tiger cat” (a cat species) and
“drumstick” (a musical instrument) are almost dominated by images of tigers and
chickens, which exacerbates the challenge of fine-grained visual concept learning.
In this case, exploiting both web images and their associated texts is a requisite
solution to combat real-world noise. In this paper, we propose Cross-modality
Aligned Prototypes (CAPro), a unified prototypical contrastive learning framework
to learn visual representations with correct semantics. For one thing, we leverage
textual prototypes, which stem from the distinct concept definition of classes,
to select clean images by text matching and thus disambiguate the formation of
visual prototypes. For another, to handle missing and mismatched noisy texts, we
resort to the visual feature space to complete and enhance individual texts and
thereafter improve text matching. Such semantically aligned visual prototypes
are further polished up with high-quality samples, and engaged in both cluster
regularization and noise removal. Besides, we propose collective bootstrapping to
encourage smoother and wiser label reference from appearance-similar instances
in a manner of dictionary look-up. Extensive experiments on WebVision1k and
NUS-WIDE (Web) demonstrate that CAPro well handles realistic noise under
both single-label and multi-label scenarios. CAPro achieves new state-of-the-art
performance and exhibits robustness to open-set recognition. Codes are available
at https://github.com/yuleiqin/capro.

1 Introduction

Large-scale annotated datasets (e.g., ImageNet [1]) were the driving force behind the revolution of
computer vision in the past decade, but the expensive and time-consuming collection process now
becomes the bottleneck of model scaling. Consequently, researchers seek to crawl web images, where
search queries and user tags are directly used as labels. However, the large proportion of noise in
web datasets (e.g., 20% in JMT-300M [2], 34% in WebVision1k [3], and 32% in WebFG496 [4])
impedes learning visual concepts. Many studies on Webly Supervised Learning (WSL) are conducted
to reduce the negative impact of noise and effectively explore web data [5, 6, 7, 8, 9, 10].
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Figure 1: (a) We explore cross-modality alignment to select clean examples and generate visual
prototypes with correct semantics. (b) Collective bootstrapping provides consistent label references
and regularization from visual dictionary. (c) Compared to 765 unambiguous classes, our advantage
is much more highlighted on 235 classes where semantic noise prevails due to polysemy concepts.

Early WSL methods claim that simply scaling up datasets with standard supervised learning suffices
to overcome web noise [3, 11, 2, 12]. Such a solution comes at the cost of huge computation
resources, and the supervision source from noisy labels is proved suboptimal [13, 10, 14]. Therefore,
various techniques are designed to reduce noise [15], such as neighbor density [16], guidance of
clean samples [17, 18, 19], confidence bootstrapping [20, 21, 22], and side information [23, 24].

Despite the promising improvement, the above-mentioned methods still face challenges. First, most
of them address certain types of noise such as label-flipping noise and out-of-distribution (OOD),
neglecting the critical-yet-under-explored semantic noise. To clarify, semantic noise is caused by the
misalignment between image contents and the associated texts when the search query (e.g., class)
has multiple and ambiguous interpretations and the retrieved images do not correspond to the correct
semantics. Without proper contextual information, it is rather difficult to pinpoint clean examples in
polysemy classes. Second, the dominant idea of bootstrapping labels and discarding incorrect data is
prone to noise overfitting [13]. The model predictions on individual images vary sharply over training
epochs and such inconsistency also makes WSL inefficient. Some methods [4, 25, 26] also maintain
peer models and require alternative steps to improve the reliability of bootstrapping. However, their
complicated training procedures restrict scalability in practice.

To this end, we propose CAPro: Cross-modality Aligned Prototypes for robust representation learning
from web data. Compared with previous prototypical methods [19, 27, 28], CAPro is able to handle
label-flipping noise, OOD, and especially the semantic noise that remains unexplored (see Fig. 1).

First, CAPro exploits web data across modalities to formulate semantically-correct textual and visual
prototypes. Since visual prototypes simply formed with images suffer from semantic ambiguity,
we propose text matching to leverage textual prototypes to establish their noise-robust estimation.
Motivated by successful language models [29, 30, 31], we extract textual knowledge to imply the
extent to which one instance is aligned with its textual prototype. Specifically, we prepare descriptive
texts (e.g., definitions) of each category and project them into the embedding space as textual
prototypes via the pre-trained language model. For each sample, its affiliated texts of the website
title, caption, and tags are also encoded into the same embedding space. The similarity between a
sample and its prototype indicates “cleanness”. Since incomplete and mismatched image-text pairs
introduce additional noise [32], we bring in text enhancement with text guidance from visually-
similar neighbors to mitigate the effect of noisy texts on clean sample selection. We consecutively
construct image and text graphs and rerank neighbor candidates for text matching and enhancement.
Samples that exactly match the target semantics are chosen as anchors for the initialization of visual
prototypes. These visual prototypes are continuously polished up by high-quality web images to
improve generalizability and discriminability. During representation learning, the intra-class distance
between prototypes and instances is minimized by contrastive learning for regularization. By means
of class-representative visual prototypes, various kinds of noise can be filtered out.

Second, we propose collective bootstrapping (CB) to provide smoother label reference by extending
bootstrapping with collective knowledge. For each sample, instead of bootstrapping its target
independently [33, 34], CAPro keeps bootstrapping the entire dynamic dictionary and provides label
reference in the mode of dictionary look-up. The dictionary keys are the learned representations from
the sampled data while the query is the current encoded sample. We aggregate model predictions on
all keys and use their weighted combination as the pseudo target, where weights are determined by
the matching scores of query-key pairs. By penalizing deviation from such targets, The proposed
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Figure 2: Overview of CAPro. Images xi and texts ti are respectively fed into the image and text
encoders for features vi and si. Then, vi is projected into the embedding space as zi, followed
by the reconstruction from zi to ṽi. Visual prototypes zc are initialized with anchor instances that
are selected by matching enhanced texts s̃i to textual prototypes sc for semantic alignment. They
are constantly polished up by clean images and engage in contrastive learning to constrain cluster
distribution. Collective bootstrapping exploits visual dictionary for regularization on the auxiliary
classifier output qi, where each key embedding is matched to the query for the reference bi. Web
labels yi are simultaneously refined as ỹi for “denoised” supervision on the classifier output pi.

CB achieves two advantages: 1) It encourages consistent performance among the query and visually
similar keys. 2) Unstructured noise is suppressed by referring to the dictionary for label regularization.
Our CB can also be viewed as encoding the neighborhood structure of data in the low-dimensional
space, where the closely matched keys are neighbors of the query. Inductive propagation of self-
labels is implicitly realized through such a structure, which draws on the assumption of manifold
regularization [35] that close samples probably belong to the same class.

In summary, our contributions are summarized as:

• We propose CAPro, a prototypical learning framework to efficiently handle various noises
including label-flipping noise, OOD, and semantic noise for webly supervised learning.

• We integrate class prototypes across text and image modalities to align with unambiguous
semantics. We verify that text enhancement by visual guidance is the key to handling noisy
texts for clean sample selection, which in turn improves visual prototypes.

• We investigate collective bootstrapping as label regularization by matching one query to all
keys in a dynamic dictionary for reference. We show that scaling up the nearest neighbors
from the mini-batch to the entire dictionary better leverages the visual data structure.

Experiments on WebVision1k and NUS-WIDE (Web) confirm the competitiveness of CAPro with
prior state-of-the-art methods. CAPro performs robustly against real-world noise under single-label
and multi-label scenarios and demonstrates superiority in open-set recognition.

2 Related Work

Webly Supervised Learning (WSL) WSL aims at utilizing abundant but weakly labeled web
data. It serves a range of tasks, such as recognition [36, 37, 38, 39, 40, 41], detection [42, 43], and
segmentation [44, 45]. In this study, we focus on visual representation learning [46, 11, 2, 3, 47, 12].
To combat noise, previous studies combine web labels with the pseudo labels generated by the model.
With respect to the pseudo labels, Hinton et al. [34] adopts soft targets in a fashion of distillation.
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Tanaka et al. [21] considers both soft and hard targets and proposes an alternative optimization
framework. Yang et al. [22] estimates the correctness of hard targets on a case-by-case basis and
dynamically balances the two supervision sources with label confidence. Recently, the idea of
prototypical learning [48] has been applied for WSL. Han et al. [49] predicts self-labels by prototype
voting and uses a constant ratio to combine web and pseudo labels. Momentum Prototype (MoPro)
[28] improves prototypes with the momentum update policy [50] for smooth label adjustment.

The differences between CAPro and the closely related MoPro exactly highlight our contributions.
First, we take advantage of both textual and visual prototypes to handle semantic misalignment
noise. MoPro neglects such noise and its prototypes could be overwhelmed by irrelevant samples,
which impairs the subsequent sample correction. Second, MoPro does not refer to appearance-similar
samples for self-labels, which is prone to real-world noise that causes unreasonable label updates. In
contrast, CAPro adopts bootstrapping wisely by performing dictionary look-up: the model prediction
of the current query sample refers to its matching keys in the dictionary, where the matching score
by visual similarity determines the contribution of each key. Third, MoPro only tackles single-label
representation learning while CAPro extends prototypical contrastive learning for the multi-label
scenario, which is non-trivial due to the intricate nature of noisy multi-labeled data. In that case,
CAPro maintains prototypes in subspaces of the shared embedding space, which not only resolves
the inter-class contrastive conflicts but also fosters implicit exploitation of label dependency.

Noise-Robust Learning from Neighbors Several approaches attempt to correct labels with neigh-
borhood consensus. Both Wang et al. [51] and Guo et al. [16] measure data complexity using local
neighbor density for sample selection. Huang et al. [52] progressively discovers neighbors to form
decision boundaries in an unsupervised manner. Bahri et al. [53] filters out training data whose label
collides with the predictions of its k-NN. Wu et al. [54] employs topology to only keep the largest
connected component of a k-NN graph. Neighborhood collective estimation [55] evaluates model
confidence on the “cleanness” of each candidate by its neighbors. Ortego et al. [56] identifies correct
examples by comparing original labels with the soft labels from their neighbors. Neighbors are also
involved in consistency regularization [57, 58] to encourage similar outputs on samples within the
k-neighborhood. Such inductive label propagation allows correct supervision to transfer directly to
mislabeled data via the neighborhood structure.

Unfortunately, the aforementioned methods are not scalable due to the huge complexity of updating a
global k-NN graph frequently. Both Li et al. [57] and Iscen et al. [58] only consider neighbors within
a mini-batch for on-the-fly graph construction. However, web data tends to be sparsely distributed
and the graph built within mini-batch samples hardly provides reliable neighbors. To deal with such
a trade-off, CAPro pinpoints all potential neighbors in the dictionary by matching representations
without explicit graph building. We maintain the dictionary as a queue whose length is much larger
than the batch size, enabling collective bootstrapping from appropriate neighbors.

Nearest neighbors play a vital role throughout our CAPro, from text enhancement to matching and
collective bootstrapping. Compared with previous methods, our mechanism differs in that: 1) We
acquire guidance from cross-modality neighbors, where noisy texts are enhanced by image neighbors
to alleviate the mismatch problem. In contrast, existing studies investigate neighbors of one modality.
2) We exploit reciprocal structures to filter nearest neighbors for pertinent text matching, while
most works neglect those top-ranked false positive neighbors. 3) We resort to neighbors for on-line
collective bootstrapping in a manner of dictionary look-up instead of explicit graph construction.

Learning with Visual-Semantic Alignment Various tasks seek to learn visual representations for
semantic concepts, including retrieval [59, 60, 61, 62, 63], caption [64, 65, 66], matching [67, 68],
visual question answer [69], and zero-shot learning [70, 71]. Recently, learning unified embeddings
has been studied for foundation models by language-image pre-training [72, 73, 74, 75, 76, 77].

In WSL, textual metadata such as titles and hashtags are too scarce to carry out language-image
pre-training. Few studies harness both images and texts to learn semantically-correct representations.
Zhou et al. [23] designs a co-training scheme to extract semantic embeddings to transfer knowledge
from head to tail classes. Cheng et al. [24] builds visual and textual relation graphs to choose
prototypes by graph-matching. Yang et al. [78] builds a visual-semantic graph and uses a graph
neural network for label refinement. Nevertheless, these methods do not take noisy texts into serious
consideration and underestimate their negative effect on seed selection. We also find that image
outliers are wrongly kept even with textual concept matching. For example, images of a rugby team
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are ranked top for the class “tiger-cat” just because the team name “tiger-cat” is frequently mentioned.
On the contrary, CAPro introduces text enhancement by smoothing and reranking to improve its
robustness to noise. Furthermore, the prototypes in [24, 78] are fixed during training, while CAPro
keeps polishing up prototypes with clean examples for better domain generalizability.

Noisy Correspondence Rectification One paradigm similar to WSL is noisy correspondence
rectification or calibration [60, 65, 62, 66, 61, 63, 68, 79]. It tackles the mismatched image and
text pairs and aims to simultaneously learn aligned visual and textual embeddings for improved
cross-modal retrieval. Huang et al. [65] utilizes the memorization effect of neural networks to
partition clean and noisy data and then learns to rectify correspondence. Hu et al. [61] derives a
unified framework with contrastive learning to reform cross-modal retrieval as an N-way retrieval.
Han et al. [66] proposes a meta-similarity correction network to view the binary classification of
correct/noisy correspondence as the meta-process, which facilitates data purification. Our CAPro
differs in two aspects: 1) We focus on the label noise where images are wrongly-labeled by keywords
or hashtags. Noisy correspondence emphasizes the instance-level mismatch between an image and its
associated text. 2) We aim to learn visual representations with categorical labels while most methods
on noisy correspondence align image and text embeddings to improve cross-modal retrieval.

3 Method

3.1 Problem Definition and Framework Architecture

Given an interested class yi ∈ {1, ..., C}, web data are collected as D = {(xi, ti, yi)}Ni=1, where xi

and ti respectively denote the image and textual metadata. Due to the noise issues, yi might not equal
to the ground-truth y∗i . We aim to optimize a deep model F(θe; θc) with parameters of an encoder
θe and a classifier θc. Existing WSL studies often neglect ti and seldom consider the intervention
between images and texts. Comparatively, our CAPro unearths ti for aligning visual representations
with semantic concepts, which facilitates correction of various kinds of noise.

CAPro consists of the following components (see Fig. 2). Siamese image encoders extract features
vi,v

′
i ∈ IRdv from inputs xi and their augmented counterparts x′

i. Following MoCo [50], parameters
of the first query encoder θ1e are updated by back-propagation and those of the second key encoder
θ2e are updated by the momentum method. A text encoder generates embeddings si, s

c ∈ IRdt

respectively from the instance ti and the category tc. Any off-the-shelf language model can be
used with its pre-trained encoder frozen. A classifier, via a fully-connected (FC) layer, maps
vi to predictions pi ∈ IRC over C classes. A projector distills discriminative low-dimensional
embeddings zi ∈ IRdp from vi. It has two FC layers, followed by ℓ2-normalization for unit-sphere
constraint on zi. A reconstructor, symmetric to the projector, recovers ṽi from zi to be close to vi.
An auxiliary classifier, of the same structure as the classifier, outputs predictions qi ∈ IRC on zi. A
dictionary, implemented as a queue of size Q× dp, records keys for both contrastive learning and
collective bootstrapping. The latest embeddings z′i are enqueued while the oldest are dequeued.

Image encoders and classifiers are trained with a cross-entropy loss. Since features vi contain redun-
dant description that is vulnerable to image corruption and domain gap, we emphasize class-indicative
contents by learning a low-dimensional embedding space. Inspired by denoising autoencoders [80,
27], a projector and a reconstructor are designed to optimize the projection from vi to zi. An auxiliary
classifier helps retain the representation capacity of zi.

Lcls
i = − log(pi(yi)), L

prj
i = ∥ṽi − vi∥22 − log(qi(yi)). (1)

3.2 Cross-Modality Alignment

Text Encoding For raw texts in metadata, we remove all html tags, file format extensions, punctua-
tions, digits, and stop words. Then, tokenization is performed in accordance with the language model
in use. After that, we obtain the pre-processed metadata ti and use the text encoder to extract si.

Text Enhancement To handle missing and mismatched texts, we assume that similar images should
share similar texts, and consider text enhancement with guidance from visual data structure. One
simple way of encoding visual structure is to build a global k-NN graph on vi [78]. However, our
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preliminary experiments show that the top-ranked neighbors may not be pertinent due to the noise
and domain gap. To detect truly matched neighbors, we construct a k-reciprocal-NN graph [81]
G = {V, E} and use the re-ranking technique to evaluate neighbor relationship. Each node in V
denotes an image and the edge connectivity from E is represented as the adjacency matrix A.

Aij =

{
1− d(vi,vj) , if xi ∈ R(xj , k) or xj ∈ R(xi, k),

0 , otherwise,
(2)

where N (xi, k) and R(xi, k) = {xj |xj ∈ N (xi, k) ∧ xi ∈ N (xj , k)} respectively denote k-NN
and k-reciprocal-NN of xi. The cosine distance is used here: d(vi,vj) = 1− vi·vj

∥vi∥∥vj∥ . Neighbor
re-ranking is achieved by re-calculating the pairwise distance. The vanilla cosine distance only
weighs relative priority by measuring features, overlooking the context information of overlapped
reciprocal neighbors. Hence, Jaccard Distance [81, 82, 83] is introduced to measure the intersection
between reciprocal neighbors. The refined distance d∗(vi,vj) =

1
2 (d(vi,vj) + dJ(vi,vj)):

dJ(vi,vj)=1−
∑N

k=1min(Vvi,vk
,Vvj,vk

)∑N
k=1max(Vvi,vk

,Vvj,vk
)
,Vvi,vj =

{
exp(−d(vi,vj)) ,ifxj ∈ R(xi, k)

0 ,otherwise.
(3)

Given G, smoothing is performed on S = (s1, s2, ..., sN ) ∈ IRN×dt via graph convolution [84]:
Ŝ = D̃− 1

2 ÃD̃− 1
2S, Ã = A + IN , D̃ii =

∑
j Ãij , where Ã refers to the adjacency matrix with

self-connection and D̃ is the diagonal degree matrix.

Textual Prototypes To establish textual prototypes, we do not estimate sc from instances in one
class (e.g., average) considering the insufficient, noisy nature of metadata. Instead, we refer to
WordNet [85] for the vocabulary hierarchy [86, 78, 24]. For the c-th class, we extract its definition
in WordNet and expand context with its siblings (synonyms), children (hyponyms), and parents
(hypernyms). Then, we get tc and encode it for sc. Such prototypes sc have two advantages: 1)
It enriches semantic representations of classes. For instance, the comprehensive text of the class
“tiger cat” is a cat having a striped coat; domestic_cat, house_cat, felis_domesticus, felis_catus: any
domesticated member of the genus Felis. It provides disambiguation to web instances of “tiger-cat”
(medium-sized wildcat in Central South America) and “tiger, cat” (large feline of forests in most of
Asia having a tawny coat with black stripes; endangered). 2) It reveals the underlying inter-class
relationship by language encoding. The structural information of class hierarchy is hard to infer from
metadata instances but can be directly indexed in WordNet.

Text Matching With textual prototypes as queries, web instances with correct semantics can be
retrieved by matching queries to their embeddings as keys. To improve precision, the same distance
measurement in Eq. (3) for k-reciprocal-NN encoding is adopted to rerank the matched candidates.
We sort samples by distance in an ascending order, and select the top-K as clean set DK .

DK = D1
K ∪D2

K ∪ ... ∪DC
K ,Dc

K = {(xi, ti, yi)|(yi = c) ∧ (d∗(̂si, s
c) ≤ σc

K)}, (4)

where σc
K denotes the K-th smallest distance in the c-th class.

Visual Prototypes DK plays an anchoring role in shaping visual prototypes. We initialize the c-th
prototype zc by averaging instances in Dc

K : ẑc = 1
K

∑
xi∈Dc

K
zi, z

c = ẑc

∥ẑc∥2
. Given such a good

starting point, visual prototypes are consistently polished up by trustworthy web examples with a
momentum coefficient mp: ẑc = mpz

c + (1−mp)zi, z
c = ẑc

∥ẑc∥2
. We perform instance-prototype

contrastive learning to pull instances around their prototypes and push apart different class clusters.
Instance-level discrimination is also encouraged to improve separation across classes.

Lpro
i = − log

exp(zi · zyi/τ)∑C
c=1 exp(zi · zc/τ)

, Lins
i = − log

exp(zi · z′i/τ)∑Q
j=1 exp(zi · z′j/τ)

, (5)

where τ is a temperature coefficient.
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Noise Removal Noisy instances can be filtered out by self-prediction and instance-prototype
similarity. We refer to MoPro [28] for rules of label adjustment by oi ∈ IRC :

oi = αpi + (1− α)ri, ri(k) =
exp(zi · zk/τ)∑C
c=1 exp(zi · zc/τ)

, (6)

where α balances two terms. Given a threshold 0 ≤ γ ≤ 1, the pseudo-label ŷi is estimated by:

ŷi =


yi if xi ∈ DK ,
argmaxc oi(c) else ifmaxc oi(c) > γ,
yi else if oi(yi) > 1/C,
Null (OOD) otherwise.

(7)

The above control flow guarantees continuous guidance from DK on cluster separation. If the highest
score of oi is above γ, the label will be changed accordingly. To prevent aggressive elimination of
hard examples, we keep an instance till the next epoch so long as its confidence is above average.
Otherwise, it is removed as OOD. The refined label ŷi successively affects Eqs. (1) and (5).

3.3 Collective Bootstrapping

Due to memorization [87], as the training epoch increases, deep models will be prone to overfit
noise even with the carefully designed logic of noise removal. We assume that overfitting occurs less
dramatically when a majority can be consulted for the model to avoid over-confident decision on
one single instance. With regard to the consultancy basis, the low-dimensional embedding is a good
choice because its distilled description about visual contents is robust enough. Therefore, we propose
to exploit the large dictionary, which is originally set up for instance-wise contrastive learning, to
realize collective bootstrapping by dictionary look-up. The matching scores of the current query zi to
all keys z′j in the dictionary act as the weights for the bootstrapped representations bi ∈ IRC .

bi=

Q∑
j=1

wij(αq
′
j + (1− α)r′j), wij=

exp(zi · z′j/τ)∑Q
j=1 exp(zi · z′j/τ)

, r′j(k)=
exp(z′j · zk/τ)∑C
c=1 exp(z

′
j · zc/τ)

. (8)

We minimize the difference between predictions and bootstrapping targets via a KL-divergence loss.

Lbts
i = DKL(qi ∥ bi) =

C∑
c=1

qi(c) log
qi(c)

bi(c)
. (9)

It not only allows collaborative contribution to individual soft label estimation, but also encourages
consistent performance on visually similar examples. Note that such regularization is imposed on the
auxiliary classifier qi. Compared with pi, constraints on qi coincide with our contrastive learning
setting without potential conflicts with the hard label assignment in Eq. (7). The total objective is:
L =

∑N
i=1(1− λbts)Lcls

i + λbtsLbts
i + λprjLprj

i + λproLpro
i + λinsLins

i .

4 Experiments

4.1 Experimental Setup

We evaluate CAPro on WebVision1k [3] (Google500 [78]) and NUS-WIDE (Web) [88] for single-
label and multi-label representation learning, respectively. They contain image-text pairs which are
in line with our WSL setting. All datasets under investigation are described in Sec. A. We perform
ablation studies on Google500 and NUS-WIDE for low cost without losing generalization [22, 78].
The R50 [89]/MiniLM (L6) [30] are used as image/text encoders by default. Exhaustive details about
hyper-parameters, implementation, and training are elaborated in Secs. B C and Algo. 1.

4.2 Comparison with the SOTA

Table 1 reports the top1/top5 accuracy of WebVision1k and Google500. Results of the SOTA methods
trained and evaluated on the same datasets are quoted here. Due to different choices of image encoders
and training strategies, prior methods may not be directly comparable. For example, VSGraph adopts
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Table 1: Results on WebVision1k and Google500. Best/2nd best are marked bold/underlined.

Method Back- WebVision1k ImageNet1k Google500 ImageNet500
bone Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

MentorNet [17] IRV2 [90] 72.6 88.9 64.2 84.8 – – – –
Curriculum [16] IV2 [91] 72.1 89.1 64.8 84.9 – – – –
Multimodal [92] IV3 [93] 73.2 89.7 – – – – – –
Vanilla [22] R50D [94] 75.0 89.2 67.2 84.0 75.4 88.6 68.8 84.6
SCC [22] R50D 75.3 89.3 67.9 84.7 76.4 89.6 69.7 85.3
Vanilla† [78] R50 74.2 89.8 68.2 86.2 66.9 82.6 61.5 78.8
CoTeach [20, 78] R50 – – – – 67.6 84.0 62.1 80.9
VSGraph† [78] R50 75.4 90.1 69.4 87.2 68.1 84.4 63.1 81.4
Vanilla [28] R50 72.4 89.0 65.7 85.1 – – – –
SOMNet [8] R50 72.2 89.5 65.0 85.1 – – – –
Curriculum [16] R50 70.7 88.6 62.7 83.4 – – – –
CleanNet [18] R50 70.3 87.7 63.4 84.5 – – – –
SINet [24] R50 73.8 90.6 66.8 85.9 – – – –
NCR [58] R50 73.9 – – – – – – –
NCR† [58] R50 75.7 – – – – – – –
MILe [26] R50 75.2 90.3 67.1 85.6 – – – –
MoPro [28] R50 73.9 90.0 67.8 87.0 – – – –
Vanilla (ours) R50 72.6 89.7 67.0 86.8 69.9 86.5 64.5 83.1
CAPro (ours) R50 74.2 90.5 68.0 87.2 76.0 91.3 72.0 89.2
† Results on WebVision1k are under optimized training settings with batch size of 1024.

the same R50, but is trained with a batch-size of 1024. The benefits of a larger batch size have been
validated in NCR, where the same method achieves 75.7% and 73.9% in top1 accuracy respectively
for the batch size of 1024 and 256. We believe batch size is the reason that a vanilla baseline [78]
surpasses most SOTAs. Due to the limited budget, training with a batch size of 1024 is currently
not affordable, but we will experiment in the future. In this case, methods within each row group of
Table 1 are fairly comparable with each other, including the vanilla trained by a cross-entropy loss.

CAPro achieves quite competitive performance on WebVision1k, with an improvement of 1.6% (top1
accuracy) over our vanilla. Although SCC and VSGraph respectively opt for stronger backbones
(e.g., R50D) and longer training epochs (e.g., 150) with a larger batch size (e.g., 1024), CAPro still
excels in terms of the top5 accuracy. Furthermore, our gain of 1% (top1 accuracy) on ImageNet1k
demonstrates that CAPro is robust to the domain gap between web and real-world datasets. Web
data include advertisements, artworks, and renderings that differ from realistic photographs. On
Google500 and ImageNet500, CAPro outperforms existing methods despite our disadvantages.

Table 2: Results on NUS-WIDE (Web).

Method Back- NUS-WIDE
bone C-F1 O-F1 mAP

Vanilla [78] R50 37.5 39.6 43.9
VSGraph [78] R50 38.6 40.2 44.8
MCPL [95] R101 22.5 17.2 47.4
Vanilla (ours) R50 37.8 42.4 38.3
CAPro (ours) R50 39.3 45.4 48.0

Table 3: Results on open-set recognition.

Method WebVision ImageNet
C-F1 C-F1

Vanilla [78] 50.5 46.4
CoTeach [20, 78] 51.0 47.7
VSGraph [78] 57.2 52.8
Vanilla (ours) 54.6 48.3
CAPro (ours) 62.2 57.8

Table 2 reports per-Class F1 (C-F1), Overall F1 (O-F1), and mean Average Precision (mAP) on
NUS-WIDE. Most prior multi-label methods are developed for ground-truth labels, while we are
concerned with noisy WSL settings. Under this circumstance, CAPro is compared with methods that
are trained on NUS-WIDE (Web) and evaluated on clean testing set. Following [96, 78], the top three
categories of an image by prediction confidence are chosen for metric calculation. CAPro reaches the
SOTA with a significant increase of 1.5% (C-F1), 3.0% (O-F1), and 9.7% (mAP) over our vanilla.

4.3 Discussion on Open-Set Recognition

To verify if CAPro can identify outliers of unknown categories, we conduct experiments on open-
set recognition. Specifically, we train CAPro on Google500 and validate on the testing sets of
WebVision1k and ImageNet1k. Images from the remaining 500 classes all belong to one open-set
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category. We follow [97, 98, 78] to classify an image as open-set if its highest prediction confidence is
below a threshold. The average C-F1 is adopted to reflect whether a model can discriminate between
base and novel classes (501 in total). Table 3 confirms our superiority over existing methods, showing
that CAPro is capable of detecting semantic novelty. More analysis can be found in Sec. E.

Table 4: Ablation study on text encoding, enhancement, and reference provider.
Text Text Enhan- Reference

Provider
Google500 ImageNet500 NUS-WIDE

Encoding cement Top1 Top5 Top1 Top5 C-F1 O-F1 mAP
× × × 71.5 87.8 66.5 84.6 37.2 42.4 46.2
MiniLM VSGraph [78] × 72.0 88.0 66.9 85.4 39.2 44.4 46.8
MiniLM ✓ (ours) × 75.5 91.0 71.5 88.8 39.3 44.9 47.4
XLNet VSGraph [78] × 71.6 87.8 66.8 84.8 38.6 43.4 47.6
XLNet ✓ (ours) × 75.4 91.0 71.5 88.8 39.3 45.1 47.5
GPT-Neo VSGraph [78] × 72.0 88.0 67.2 85.3 39.2 45.0 47.4
GPT-Neo ✓ (ours) × 75.7 91.1 71.6 88.8 39.2 45.1 47.6
MiniLM ✓ (ours) Mix-up (MU) [99] 75.7 90.9 71.4 88.6 38.7 45.3 47.2
MiniLM ✓ (ours) Bootstrap [33] 75.5 90.8 71.3 88.4 38.1 43.2 46.0
MiniLM ✓ (ours) Label smooth [100] 75.4 90.8 71.2 88.4 36.9 42.1 46.8
MiniLM ✓ (ours) SCC [22] 73.8 89.9 70.2 88.0 35.6 41.3 45.0
MiniLM ✓ (ours) NCR [58] 75.5 91.1 71.5 88.8 37.6 43.4 46.8
MiniLM ✓ (ours) ✓ CB (ours) 76.0 91.3 72.0 89.2 39.3 45.4 48.0
MiniLM ✓ (ours) ✓ CB (ours) + MU 76.5 91.1 71.9 88.8 40.4 46.7 49.9
GPT-Neo ✓ (ours) ✓ CB (ours) 76.1 91.4 72.1 89.4 39.3 44.9 47.7
GPT-Neo ✓ (ours) ✓ CB (ours) + MU 76.5 91.2 72.0 88.8 40.7 45.2 50.0

4.4 Ablation Study

Text Encoding and Enhancement Table 4 reveals the benefit from cross-modality alignment. For
the method without text encoding and enhancement, we sample K examples randomly from each
category. These instances barely provide reliable prototypes with semantic correctness. With respect
to the text encoder, we additionally validate XLNet (base) [29] and GPT-Neo (1.3B) [31]. MiniLM
surpasses XLNet by a minor margin, but both exhibit similar performance with our enhancement.
GPT-Neo displays its power even with the plain k-NN-based smoothing in VSGraph [78], implying
that advanced a Large Language Model (LLM) would boost CAPro. Note that encoders in CLIP [76]
are not applicable here to avoid visual data leakage. All methods with text encoding and enhancement
outperforms the vanilla one, validating the guidance from textual knowledge. Besides, we notice an
increase up to 3.8%/4.7% on Google500/ImageNet500 by our text enhancement, showing that proper
noise suppression is indispensable. Fig. 3 presents a comparison on the top-K matched instances.
Enhancement in VSGraph can filter out OOD to a certain degree, but can do nothing with lexical
confusion (e.g., food in Drumstick and players in Tiger cat). More qualitative results are in Sec. D.1.

Reference Provider Our collective bootstrapping is compared against commonly used regulariza-
tion methods which provide reference on targets. Surprisingly, most existing methods bring about no
or even negative impact. In one respect, bootstrapping and label smoothing are already implicitly
inherited in our framework as Eqs. (6) and (7). Therefore, no further gains can be seized. As for SCC,
its estimated confidence may not comply with our Eq. (6), which leads to incompatible optimization.
NCR has two drawbacks: 1) The chance of similar instances appear in one mini-batch is fairly small
for large web datasets. 2) It only counts on self-prediction as reference source which is fragile to noise.
In contrast, CAPro is enlightened by MoCo to maintain the dictionay as a queue, which enlarges the
number of reference objects beyond instances in a mini-batch. Our enriched sources from both self-
prediction and instance-prototype similarity expedite a steady learning progress. Moreover, mix-up
improves CAPro in top1 but lowers top5. It adopts convex combinations for both inputs and targets,
enforcing a stronger regularization than our CB where we only recombine targets. For WebVision1k,
examples with noisy labels still resemble prototypes and therefore neighbor knowledge brings useful
reference. Mix-up does not consider appearance similarity and causes over-regularization.

λbts and top-K Fig. 4 shows that an increasing λbts triggers off worse results on Google500 and
ImageNet500. This suggests that collective knowledge should not overwhelm individual instance
decision. With regard to top-K on prototype initialization, there exists a trade-off between domain-
variety and class-purity. The rise of K increases diversity but also the risk of noise.
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More ablation studies on the threshold γ, the update frequency of visual prototypes, and the noise
removal policy can be found in Secs. D.2, D.3, and D.4, respectively. Empirical guidelines on
hyper-parameter tuning are concluded in Sec. F. We also provide analysis of failure cases in Sec. G.
Our computation cost with respect to performance gains can be found in Sec. H.

Figure 3: Top-matched WebVision1k instances are chosen: (a) without text enhancement, (b) with
text enhancement in VSGraph [78], and (c) with our text enhancement.

Figure 4: Impact of hyper-parameters λbts and top-K on CAPro.

5 Conclusion

CAPro utilizes web datasets to learn visual representations that are aligned with correct semantics.
Cross-modality alignment and collective bootstrapping are corroborated as two keys to improve
WSL. The benefits of building prototypes are two-fold: 1) Noisy web data whose visual and textual
descriptions can be efficiently removed by simply measuring the distance between an instance and
its prototype in the embedding space. 2) The inter-class relationship can be statistically studied
by comparing each instance to all class prototypes, which may shed light on visual similarity for
species. Three potential drawbacks should be considered: 1) the limited intra-class diversity with
less tolerance to the minority in one category. Images crawled from websites follow the long-tailed
distribution, which means that the more common or typical one instance is, the greater the likelihood
that it gets exposed online. Over-emphasis on the purity of class prototypes leads to false negatives
on the recognition of atypical samples. One possible solution is to introduce randomness into the
initialization and update of prototypes to improve generalization. 2) the noteworthy domain gap and
bias of web data. Even image contents are correct, their styles (e.g., advertising photos, artworks,
and rendering) are different from the realistic datasets. When it comes to modalities such as infrared
or medical tomography images, there exist very few images online. Therefore, it is encouraged to
prepare realistic images for guided-training and evaluation, where early-stopping and normalization
techniques can be used to avoid overfitting. 3) the accuracy of prior knowledge about class hierarchy.
Since definitions of class prototypes rely on the systematic understanding of concepts, improper,
coarse-grained, or even wrong descriptions would devalue the semantic alignment. A thorough
analysis on class concepts is a requisite to developing prototypes. Future work includes extension to
other modalities (e.g., audio and video clips) and to other tasks (e.g., semi-supervised learning).

Broader Impact CAPro manoeuvres language models for visual concept learning, where LLMs
(e.g., GPT-Neo) can deliver promising results for future development. Regardless of data sources, we
showcase a cost-efficient and practical way to utilize cross-modality data. It also promotes rethinking
the key-value matching mechanism for creative usages. For example, the visual dictionary originally
built for instance-wise contrastive learning is re-discovered for our collective bootstrapping.
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A Datasets Details

A.1 WebVision1k

It contains 2.4M web images collected from Google and Flickr, which share the same 1k category
names with ImageNet1k [1]. For each example, we use all available description, title, and tag in
its metadata for raw text preparation. Besides, we follow [22, 78] to use the subset of WebVision–
Google500 for ablation studies in consideration of lower GPU resource and time consumption without
losing generalization. It contains 0.48M images from Google with randomly chosen 500 categories.
The testing set of ImageNet1k and its subset ImageNet500 are involved as well for evaluation.

A.2 NUS-WIDE (Web)

It contains 0.26M web images from Flickr with 5k unique user tags. Each example is manually
annotated with multiple labels within 81 concepts that are filtered out of the 5k tags. It also provides
weak labels (an official web version) by checking if each of the 81 category name appears in user
tags of every example. Almost 50% of the web labels are wrong and 50% of the true labels are
missing in tags [88]. Since tags contain phrases without delimiters, we split phrases based on unigram
frequencies [101] for raw text preparation. We follow [78] to train models with weakly-labeled
training set (a.k.a., NUS-WIDE Web) and validate them on the clean testing set.

B Mathmatical Notations

In this section, we present the description of all math notations in the manuscript (see Table 5).

C Implementation and Training Details

C.1 General Settings

In consideration of performance and efficiency, we adopt ResNet-50 [89] and MiniLM-L6 [30] as
image and text encoders by default. The training settings are listed in Table 6. In general, we refer to
[28] for: batch size is 256; optimizer is SGD; learning rate linearly rises with 10 warm-up epochs and
decays by cosine schedule. Specifically, although the benefit of an increased batch size (e.g., 1024)
has been validated [78, 58], we follow the standard batch size setting of 256 on WebVision1k for two
reasons: 1) comparability with most of the previous methods; 2) limited computing resources with 8
GPUs (a mini-batch size of 32 on each GPU for a batch size of 256 in total).

We empirically set λprj = 1, λpro = 1, λins = 1, λbts = 0.1, mp = 0.999, dp = 128, τ = 0.1,
α = 0.5, and K = 50 by default. Their optimal values require meticulous fine-tuning of each
hyper-parameter, which is beyond consideration of the present study.

Data augmentation (random cropping, resacling, and horizontal flipping) is applied on the inputs to
the query encoder while stronger augmentation, including color jittering and blurring [50]), is added
on those to the key encoder.

Experiments are conducted on a CentOS 7 workstation with an Intel 8255C CPU, 377 GB Mem,
and 8 NVIDIA V100 GPUs. The training of CAPro on WebVision1k, Google500, and NUS-WIDE
respectively costs about ten days, three days, and one day under the environment mentioned above.

C.2 WebVision1k-only Implementation

We refer to [28] for Q = 8192 and γ = 0.6. The learning rate is 0.1 and the number of epochs is 120.
Given the complexity of graph construction, we use k = 5 for both text denoising and matching.

C.3 NUS-WIDE (Web)-only Implementation

In view of the dataset scale, we set Q = 2048 with a learning rate of 2 × 10−3 and a total of 100
epochs. k = 10 is chosen since user tags are noiser and sparser in NUS-WIDE.
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Table 5: List of symbols.
Symbol Description
xi a web image indexed with i
ti textual metadata associated with xi

yi web label associated with xi

y∗i ground-truth label associated with xi

N the total number of images in a web dataset
C the total number of categories
D a web dataset
θe parameters of image encoder
θc parameters of classifier
F(θe; θc) a deep model with image encoder and classifier
dv dimension of the visual features
vi visual features of xi extracted by image encoder, vi ∈ IRdv

dt dimension of the textual embeddings
si textual embeddings of ti extracted by text encoder, si ∈ IRdt

tc category definition of the c-th class
sc textual embeddings of tc extracted by text encoder, sc ∈ IRdt

pi predictions on vi from classifier, pi ∈ IRC , pi(k) denotes its k-th element
dp dimension of the visual embeddings
zi low-dimensional embeddings of vi after projection, zi ∈ IRdp

ṽi reconstructed visual features from zi, ṽi ∈ IRdv

qi predictions on zi from auxiliary classifier, qi ∈ IRC

Q the size of dictionary, namely the length of queue
k number of nearest neighbors (NN) in k-NN and k-reciprocal-NN
V vertices, nodes
E edges
G graph, G = {V, E}
A adjacency matrix
N (xi, k) k-NN sets of xi

R(xi, k) k-reciprocal-NN sets of xi

d(vi,vj) distance between vi and vj

d∗(vi,vj) refined distance between vi and vj

Vvi,vj
k-reciprocal feature encoding the distance between vi and vj

S concatenated textual embeddings, S = (s1, s2, ..., sN ),S ∈ IRN×dt

IN identity matrix
Ã adjacency matrix A with self-connection IN
D̃ii degree matrix of Ã
Ŝ denoised S after smoothing
ŝi denoised si after smoothing
K top-K selected examples with visual-semantic alignment
σc
K the K-th smallest distance d∗(̂si, s

c) in the c-th class
Dc

K top-K set of the c-th class
DK sets of top-K examples from all classes
ẑc unnormalized visual prototype of the c-th class
zc normalized visual prototype of the c-th class
τ temperature coefficient
α weight between self-prediction and prototype-instance similarity
oi fused, comprehensive output for label correction, oi ∈ IRC

ri prototype-instance similarity, ri ∈ IRC , ri(k) denotes its k-th element
γ threshold for label correction
mp momentum coefficient
bi collective bootstrapping target on zi
wij weight of contribution from z′j in the dictionary for bi

λbts weight for collective bootstrapping loss
λprj weight for projection and reconstruction losses
λpro weight for prototypical contrastive loss
λins weight for instance contrastive loss
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Table 6: List of hyper-parameters for training settings.
Settings WebVision1k/Google500 NUS-WIDE
Optimizer SGD
Optimizer momentum 0.9
Optimizer weight decay 1× 10−4

Batch size 256
Step1 pre-training scheduler Cosine decay with linear warm-up
Step1 pre-training warm-up epochs 5/10 10
Step1 pre-training learning rate 1× 10−1 2× 10−3

Step1 pre-training epochs with encoders frozen 0
Step1 pre-training epochs in total 120 100
Step2 training scheduler Cosine decay with linear warm-up
Step2 training warm-up epochs 5/10 10
Step2 training learning rate 1× 10−1 2× 10−3

Step2 training epochs with encoders frozen 5/10 10
Step2 training epochs in total 60/120 100
Step3 fine-tuning scheduler Cosine decay
Step3 fine-tuning warm-up epochs 0
Step3 fine-tuning learning rate 1× 10−4 2× 10−5

Step3 fine-tuning epochs with encoders frozen 15/20 20
Step3 fine-tuning epochs in total 15/20 20
Image encoder (by default) ResNet-50 [89]
Text encoder (by default) MiniLM-L6 [30]
λprj 1
λpro 1
λins 1
λbts 0.1
mp 0.999
dp 128
τ 0.1
α 0.5
top-K 50
Q 8192 2048
γ 0.6 0.9
k-NN/k-reciprocal-NN 5 10

To support multi-label learning, it is necessary, but not yet enough, to simply replace the softmax-based
cross-entropy losses with sigmoid-based binary cross-entropy losses. The premise of prototypical
contrastive learning does not hold true anymore because one instance can be simultaneously engaged
in formation of multiple clusters, which violates the exclusivity inherited in softmax activation.
Our experiments demonstrate that, only by projecting vi into compact subspaces specific to each
class, can we properly learn the decision boundary to continue prototypical learning. Technically,
we set C additional fully-connected (FC) layers after the projector to respectively map zi into
z̃i,c ∈ IRdp , c = 1, 2, ..., C. For the c-th class, both positive and negative prototypes z̃c+, z̃c−

are shaped accordingly for the contrast against z̃i,c. Such operation can be viewed as magnifying
class-indicative contents via recombination of the shared embedding zi. Another minor modification
is required on noise removal, where the output oi,c is fused independently for the c-th class for binary
separation. Considering the overwhelming negative instances, we set γ = 0.9 to avoid deviation by
majorities in label rectification. Discussion on the hyper-parameter γ can be found in Sec. D.2.

C.4 Training Steps

CAPro adopts a three-step training pipeline. It employs a pre-training step to learn common visual
patterns from the original web dataset D . Then, the training starts with instance-prototype and
instance-wise contrastive learning, collective bootstrapping, and on-line noise removal. Finally, given
the trained model, off-line noise removal is performed on D for data cleaning and we fine-tune the
classifier alone with the cleaned dataset.
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Step1 pre-training We perform visual pre-training on ResNet-50 with cross-entropy and projection-
reconstruction losses. At this time, we only use original web labels to train the model to learn common
visual description, which lays foundation for the subsequent prototype initialization in step2. Note
that the pre-trained model is also the vanilla method in our experiments.

Step2 training All components are initialized with the pre-trained parameters in step1. As shown
in Table 6, we keep the encoders frozen with warm-up epochs. This helps stabilize training to avoid
the prototypical embeddings, which are initialized at the beginning by averaging top-K semantically-
correct examples, being perturbed drastically. In this step, we re-train the model with all losses. Apart
from classification, we perform instance-wise and instance-prototype contrastive learning, collective
bootstrapping, noise removal, and prototype update.

Step3 fine-tuning We follow MoPro [28] to perform noise removal on the training dataset D . The
trained model in step2 is used to correct labels or discard OOD examples with our control flow. Then,
we keep encoders frozen and fine-tune the classifier alone with the cleaned set for better performance.
Note that such fine-tuned model is exactly the CAPro in experiments.

Algorithm 1: CAPro’s training procedure.

Data: Web images and their associated texts and labels D = {(xi, ti, yi)}Ni=1.
1 Step1 pre-training
2 for (xi, yi) ∈ D do
3 Li = Lcls

i + Lprj
i ;

4 Update image encoder, classifier, projector, and reconstructor to minimize Li;
5 end
6 Step2 training
7 for (xi, ti, yi) ∈ D do
8 Extract vi from xi via the image encoder;
9 Extract si from ti via the text encoder;

10 end
11 Build k-reciprocal-NN graph G = {V, E} with {vi}Ni=1;
12 Enhance text embeddings from si to ŝi via graph convolution on G;
13 for c ∈ {1, 2, ..., C} do
14 Extract sc from tc via the text encoder;
15 for i ∈ {1, 2, ..., N |yi = c} do
16 Match textual instances si to prototypes sc to obtain visual anchors Dc

K ;
17 end
18 end
19 Initialize visual prototypes with DK ;
20 for (xi, yi) ∈ D do
21 Li = (1− λbts)Lcls

i + λbtsLbts
i + λprjLprj

i + λproLpro
i + λinsLins

i ;
22 Update image encoder, classifier, and projector to minimize Li;
23 Refine yi to ŷi to remove noise;
24 end
25 Step3 fine-tuning
26 for (xi, ŷi) ∈ D do
27 Li = Lcls

i ;
28 Update classifier to minimize Li;
29 end

We also prepare Algo. 1 to explicitly explain the entire training process.
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Figure 5: Top-matched WebVision1k instances are chosen: (a) without text enhancement, (b) with
text enhancement in VSGraph [78], and (c) with our text enhancement.

Figure 6: Top-matched NUS-WIDE (Web) instances are chosen: (a) without text enhancement, (b)
with text enhancement in VSGraph [78], and (c) with our text enhancement.
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D Ablation Study

D.1 Effect of Text Enhancement

Figs. 5 and 6 present additional qualitative comparison for selecting instances with potentially-
correct semantics. For WebVision, noiser categories are chosen to validate the effectiveness of text
enhancement by smoothing and reranking. We can observe that due to the problem of polysemy,
a majority of the retrieved images are irrelevant to the correct semantics and simple k-NN-based
smoothing in [78] can hardly handle such situation. In contrast, our text enhancement helps pinpoint,
not perfect but comparatively reliable, web instances that share similar semantics (e.g., metalwork
in Nail). Besides, we also sample three categories from the noiser NUS-WIDE to double-check the
effectiveness of text enhancement. For example, in the category of airport, direct matching of user tag
embeddings to the textual prototype returns a few close-up images of warcrafts, which has nothing to
do with Airport. On the contrary, our text enhancement helps to select the truly matched instances.

Table 7: Effect of γ on CAPro without collective bootstrapping.

γ
Reference
Provider

Google500 ImageNet500 NUS-WIDE
Top1 Top5 Top1 Top5 C-F1 O-F1 mAP

0.6 × 72.0 88.0 66.9 85.4 8.3 9.1 6.9
0.8 × 71.2 87.7 65.9 84.8 – – –
0.9 × – – – – 39.2 44.4 46.8

D.2 Effect of γ on Noise Removal

Table 7 reports the influence of γ when collective bootstrapping is not applied. We follow MoPro [28]
to validate two γ candidates: γ = 0.6 and γ = 0.8. We find that γ = 0.6 works the best on Google500.
As γ increases, it becomes more difficult for the model to correct labels and thereafter label-flipping
errors may still exist. As suggested by MoPro, the optimum γ is related to the percentage of noise in
web datasets. For noiser datasets, γ should be decreased for the model to correct wrong labels at an
early stage. Otherwise, overfitting might occur and weaken prototypical representation learning. The
fine-tuning of γ requires elaborate experiments, which is beyond the scope of the present study.

For multi-label learning on NUS-WIDE, the optimum γ is not only related to the noise level but
also to the ratio of the number of positive examples to that of negative examples. Since the negative
instances in each class exceeds positive ones by more than one order of magnitude, decreasing γ will
easily make the model to classify any instance as negative. Once the model overfits the overwhelming
negative examples, valid positive supervision sources would only come from the top-K matched
examples with cross-modality alignment, which degrades generalizability greatly. In this case, we
should keep a stricter threshold γ = 0.9 to only allow confident label rectification.

Table 8: Effect of prototype update frequency on CAPro. By default, we update visual prototypes
every epoch using high-quality examples in each mini-batch. For 0-epoch per update, we do not
introduce additional high-quality web examples to polish prototypes, but only update them with the
top-K matched semantically-correct examples with their latest visual embeddings.

# Epochs
per update

Google500 ImageNet500 NUS-WIDE
Top1 Top5 Top1 Top5 C-F1 O-F1 mAP

0 75.5 91.1 71.6 88.8 39.2 44.4 47.2
1 (by default) 76.0 91.3 72.0 89.2 39.3 45.4 48.0
5 75.9 91.2 71.8 89.2 39.6 45.0 47.6
10 76.0 91.2 71.7 89.1 39.3 45.8 48.2

D.3 Effect of Prototype Update Frequency

By default, we update prototypes by examples in a mini-batch for every epoch. We additionally
perform ablation study on the update frequency where comparison is conducted between: 1) 0-
epoch, 2) 1-epoch (by default), 3) 5-epoch, and 4) 10-epoch. For 0-epoch update, we do not update
prototypes with embeddings from other high-quality web examples. Instead, prototypes are renewed
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with the latest embeddings only from the top-K matched examples to avoid being out-of-date. For
5-epoch and 10-epoch update, we polish prototypes every 5 and 10 epochs, respectively.

Table 8 reports the effect of prototype update frequency on CAPro. On the Google500 and NUS-
WIDE datasets, if prototypes are only formed by limited clean examples, their generalization across
domain becomes poor and thus causes performance drop of 0.45% (top1) and 0.6% on average,
respectively. For Google500, reduced update frequency generally causes lower performance, meaning
that the prototypes should keep refreshed for large-scale datasets. For NUS-WIDE, if the update
frequency decreases a bit (5-epoch), the model improves on C-F1 but underperforms a little on
O-F1 and mAP. With the 10-epoch frequency, we surprisingly find that results are improved on all
evaluation metrics. One possible explanation is that the delayed prototype update can help stabilize
training at an early stage, but the optimal frequency might be subject to dataset scale and noise level.

Table 9: Effect of noise removal policy on CAPro. We compare with MoPro to show the effectiveness
of keeping labels of top-K matched semantically-correct examples unchanged.

Noise Removal
policy

Google500 ImageNet500 NUS-WIDE
Top1 Top5 Top1 Top5 C-F1 O-F1 mAP

MoPro [28] 75.8 91.1 71.7 89.0 38.8 42.2 47.2
CAPro (ours) 76.0 91.3 72.0 89.2 39.3 45.4 48.0

D.4 Effect of Noise Removal Policy

Table 9 reports the effect of noise removal policy on CAPro. Our label adjustment policy is inspired
from the Eq. (5) of MoPro [28] but differs in that we keep labels of the top-K matched examples
selected in cross-modality alignment unchanged. Therefore, if we replace our noise removal policy
with the MoPro one, we actually allow the deep model to get rid of the guidance from top-K examples.
These selected top-K examples can be altered or even discarded by the MoPro-style policy.

It turns out that without such enforcement, the performance dropped under both single-label and
multi-label scenarios. The possible reason behind is that, due to the overwhelming noise (e.g., the
semantic-misalignment noise) in certain categories, the model itself cannot keep representation
learning robust to noise even with a good start. The labels of top-K samples will be prone to the noisy
majority, which invalidates prototypical learning. Besides, the superiority of CAPro over MoPro-style
update also substantiates the purity and correctness of the selected examples.

E Analysis on Open-Set Recognition

We provide detailed analysis on CAPro for open-set recognition. Fig. 7 presents the per-class F1
(C-F1), per-class Precision (C-P), and per-class Recall (C-R). We compare five methods for ablation
study including: 1) the vanilla method, 2) CAPro without text enhancement (TE) & collective
bootstrapping (CB), 3) CAPro without CB, 4) CAPro, and 5) CAPro with mix-up (MU).

We vary the confidence threshold from 0 to 1 with an interval of 0.01 to comprehensively measure
the performance of CAPro. For each example, if the highest model prediction confidence is below
the threshold, the example will be classified as the open-set category. Otherwise, the example will
be classified into one of the known categories. We train methods on the Google500 training set and
validate them on WebVision1k and ImageNet1k testing sets. Examples from the remaining 500 novel
categories should all fall into the open-set category.

It can be observed that compared with vanilla method, CAPro enjoys a much higher recall but a
relatively lower precision. It means that our CAPro is more confident about its prediction and a
threshold around 0.6 would end up with an optimal C-F1 over 66%. The precision-recall curve
reflects that each key component does improve open-set recognition. Note that due to the limited
sampling of confidence threshold, the precision-recall curve is not spanning across the entire axes.
However, the tendency of curves confirms the effectiveness of our components.
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Figure 7: Effect of threshold for open-set recognition on (a) WebVision1k and (b) ImageNet1k.
TE, CB, and MU respectively refer to our text enhancement, collective bootstrapping, and mix-up.
Examples with prediction confidence lower than the threshold will be classified as open-set category.
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F Guidelines on Tuning of Hyper-Parameters

Loss weights of λbts, λprj, λpro, and λins First, for the total objective, we follow MoPro [28] to use
λpro = 1 and λins = 1. Out of simplicity, we also use λprj = 1 as default.

Second, we would like to explain the effect of λpro, λins, and λprj on regularzation. A larger λpro may
pull instances too close totheir prototypes, which "shrinks" class clusters in the embedding space.
A larger λins will enforce stronger visual discriminability between two instances. It may cause two
examples from the same category to differ greatly and thereafter downgrades the visual prototype
update and class cluster regularization. A larger λprj improves the reconstruction quality of ṽi, which
encourages zi to retain more information of vi in the embedding space. The projection-reconstruction
loss is only involved in the pre-training stage (see Algo. 1), and therefore λprj will not affect the
prototypical and instance-wise contrastive learning in the following stage.

Third, for one’s custom web datasets, we suggest that λpro, λins, and λprj should be tuned according
to the performance results under three settings: 1)λpro = 0 vs. λpro = 1; 2)λins = 0 vs. λins = 1;
3)λprj = 0 vs. λprj = 1.

According to our experiments on both single-label and multi-label datasets, the default settings of
λpro = 1, λins = 1, and λprj = 1 should work well on most cases.

For λbts, we suggest 0.1 would achieve a balance between the individual and collective label references.
A much larger value may cause over smoothing and over-regularization on visual learning.

Threshold γ For γ on single-label datasets, its value is related to the percentage of noise in datasets.
For WebVision1k and Google500 (34% noise [3]), γ = 0.6 works better than γ = 0.8. For one’s
own web dataset, if the noise ratio is larger, γ should be tuned lower so that wrong labels could be
corrected at an earlier stage before overfitting. For γ on multi-label datasets, its value is related to
both the percentage of noise and the number ratio of positive-negative samples. For NUS-WIDE (50%
noise [78] and 0.02 avg. ratio of positive-negative examples), γ = 0.9 works better than γ = 0.6. For
one’s own web dataset, if the noise ratio is smaller and the positive over negative ratio is smaller, γ
should be tuned higher so that hard positive samples will not be easily discarded to avoid underfitting.

Prototype Update Frequency For the update frequency, its value is related to the dataset scale
and noise level. For WebVision1k and Google500, visual prototypes should be updated per epoch to
improve their diversity, which better handles the domain gap between web and realistic datasets. For
NUS-WIDE, the update frequency could be reduced to stabilize training, where the prototypes can be
prone to the overwhelming negative examples in each category.

Top-K For top-K, its value is related to the percentage of noise. If the noise ratio is less than 30%,
K should be set higher than 50 to include more diverse examples.

Others The current settings of other hyper-parameters (see Table 6) work well. For one’s own
dataset, we believe these values can be set as starting points and finetuned accordingly. Among
all hyper-parameters, our ablation results show that for λbts, γ, and top-K, their values do affect
performance and should be set following the rules mentioned above (such as the dataset scale, the
noise ratio, and the positive-negative ratio). For the remaining hyper-parameters such as the prototype
update frequency, we do not observe significant fluctuation. In other words, the model is robust to
these hyper-parameters.

G Failure Cases

We provide failure cases of our CaPro on the WebVision1k dataset (see Fig. 8). Our observations are
summarized as the following.

First, CAPro can handle fine-grained categories on WebVision1k. The introduction of atypicals
increases the risk of noise. For generalization on anomalies or rarities, one solution is to choose both
top-K and randomly sampled instances.

Second, for WebVision1k, both MoPro and CAPro underperform the vanilla baseline (optimized only
by the cross-entropy loss) on a total of 387 and 312 classes, respectively. Top5 failures of classes
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Figure 8: Failure cases of our CAPro on certain classes where the simple vanilla baseline achieves
better performance.

include screen, sunGlasses, bellCote, ballPlayer, and popBottle. For ImageNet1k, MoPro and CAPro
underperform the vanilla on a total of 450 and 358 classes, respectively. Top-5 failures of classes
include silkyTerrier, walkerHound, academicGown, standardSchnauzer, and bellCote.

We also provide interesting findings below:

First, the domain gap exists between web and realistic datasets as the top 5 failure cases on the
WebVision1k and ImageNet1k testing sets are quite different.

Second, the vanilla method tends to overfit the training set so that it outperforms on highly similar
concepts such as screen vs. monitor and sunGlasses vs. sunGlass.

Third, mistakes on silky vs. yorkshire Terrier and walker vs. englishFox hound are ascribed to
over-regularization. The inter-class relationship might be used for class-wise adjustment.

H Computational Complexity

Table 10: The parameters and GFLOPs of different encoders.
Encoders Number of Parameters GFLOPs
R50 [89] 25M 3.8
MiniLM [30] 22M 4.7
XLNet [29] 110M 29
GPT-Neo [31] 1.3B 3400

First, we present the number of parameters and GFLOPs for the image and text encoders in Table 11.

Table 11: The cost of the text enhancement of our CAPro with respect to its performance gains.
Text
Encoding

Text
Enhancement Cost Google500

Top1
ImageNet500
Top1

MiniLM [30] VSGraph [78] O(N2dv)+O(Ndv
2 +Nkdv) 72.0 66.9

Ours +O(3Nkdv)+O(4k)+O(4klog(4k)) +3.5 +4.6

XLNet [29] VSGraph [78] O(N2dv)+O(Ndv
2 +Nkdv) 71.6 66.8

Ours +O(3Nkdv)+O(4k)+O(4klog(4k)) +3.8 +4.7

GPT-Neo [31] VSGraph [78] O(N2dv)+O(Ndv
2 +Nkdv) 72.0 67.2

Ours +O(3Nkdv)+O(4k)+O(4klog(4k)) +3.7 +4.4

Second, we present the cost of the text enhancement of our CAPro with respect to its performance
gains. Here, N denotes the number of all nodes in the visual graph. k is the number of neighbors per
node and dv is the dimension of the feature v. With k = 5 and k = 10 respectively for WebVision1k
and NUS-WIDE, our improvement over VSGraph is worthy at the expense of such a low cost.

Third, we present the cost of the reference provider of our CAPro with respect to its performance
gains. Here, m is the batch size, dv is the dimension of v, Q is the size of dictionary, dp is the
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Table 12: The cost of the reference provider of our CAPro with respect to its performance gains.
Text
Encoding

Reference
Provider Cost Google500

Top1
ImageNet500
Top1

MiniLM [30]
Mix-up [99] – 75.7 71.4
NCR [58] O(m2(dv + C)) -0.2 +0.1
Our CB O(mQ(dp + C)) +0.3 +0.6

MiniLM [30]
Bootstrap [33] – 75.5 71.3
NCR [58] O(m2(dv + C)) +0 +0.2
Our CB O(mQ(dp + C)) +0.5 +0.7

MiniLM [30]
LabelSmooth [100] – 75.4 71.2
NCR [58] O(m2(dv + C)) +0.1 +0.3
Our CB O(mQ(dp + C)) +0.6 +0.8

MiniLM [30]
SCC [22] – 73.8 70.2
NCR [58] O(m2(dv + C)) +1.7 +1.3
Our CB O(mQ(dp + C)) +2.2 +1.8

dimension of z, and C is the number of classes. The common reference provider techniques such as
the Mix-up, Bootstrapping, label smoothing, and SCC do not incur significant overhead. Operations
of our CB are fast to compute for moderate m = 256, Q = 8192, dp = 128, and C = 1000
since PyTorch supports efficient matrix multiplication on GPUs. Besides, compared with NCR, our
dp = 128 is 16x smaller than dv=2048 in NCR, and our m = 256 is 4x smaller than m = 1024 in
NCR. For WebVision1k, our cost is 1.35x smaller than NCR. For NUS-WIDE, our cost is 20.37x
smaller than NCR. It is reasonable to conclude that our CB is more efficient and effective than NCR.

Finally, it is noted that the text encoding and text enhancement methods are performed off-line and
executed only once. They do not participate in network optimization. Besides, the pretrained text
encoders are only used for inference under 1 V100 GPU. Therefore, the additional cost is acceptable
in return for semantically-correct web images.
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