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Abstract

This paper considers the problem of inferring the behaviors of multiple interacting
experts by estimating their reward functions and constraints where the distributed
demonstrated trajectories are sequentially revealed to a group of learners. We
formulate the problem as a distributed online bi-level optimization problem where
the outer-level problem is to estimate the reward functions and the inner-level
problem is to learn the constraints and corresponding policies. We propose a novel
“multi-agent behavior inference from distributed and streaming demonstrations"
(MA-BIRDS) algorithm that allows the learners to solve the outer-level and inner-
level problems in a single loop through intermittent communications. We formally
guarantee that the distributed learners achieve consensus on reward functions, con-
straints, and policies, the average local regret (over N online iterations) decreases at
the rate of O(1/N1−η1 +1/N1−η2 +1/N), and the cumulative constraint violation
increases sub-linearly at the rate of O(Nη2 + 1) where η1, η2 ∈ (1/2, 1).

1 Introduction

Multi-agent systems (MASs) are an effective tool to model networked systems where multiple entities
interact with each other to reach certain goals. Due to the lack of a centralized authority, the data
in MASs is usually distributed [1, 2]. Therefore, distributed learning is desired for MASs where
machine learning models are trained over distributed data sets. Current works on distributed learning
include distributed supervised learning [3, 4], distributed unsupervised learning [5, 6], distributed
reinforcement learning [7, 8], etc. Recently, distributed learning is applied to learn the behaviors in
MASs from distributed experts’ demonstrations via inverse reinforcement learning (IRL) [9].

In IRL [10, 11, 12, 13, 14], a learner aims to learn a policy that imitates the expert behaviors in the
demonstrations by first learning a reward function. Multi-agent IRL [15, 16, 17] extends IRL to
MASs where the reward functions and policies of a group of experts are learned. However, current
works on multi-agent IRL have the following two limitations: (i) As mentioned, the demonstration
data in MASs is usually distributed while these works assume that there is a centralized learner which
can obtain all the demonstrations. (ii) There are usually many underlying constraints in MASs, e.g.,
avoiding collision with each other and obstacles, and thus learning a reward function combined with
a set of constraints is better than learning a single reward function in terms of explaining the experts’
behaviors [18, 19]. Therefore, distributed inverse constrained reinforcement learning (D-ICRL) [9] is
proposed where a group of learners cooperatively learn the behaviors in an MAS by estimating the
experts’ reward functions and constraints and each learner can only access a local demonstration set.

While D-ICRL performs over pre-collected distributed data, recent applications [20, 21] of IRL
motivate the need for algorithms that can learn from sequentially revealed demonstrations and
continuously improve the learned models. For example, inferring a person’s intent by observing her
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ongoing daily routine [20] and updating evasion strategies by continuously observing the patrollers’
behaviors [21]. However, D-ICRL is not efficient to deal with streaming data because it has a
double-loop learning structure where the outer loop is to update the constraints and the inner loop
needs to find a corresponding reward estimate. While the computation overhead of this double-loop
structure is reluctantly acceptable in offline settings, it is too time-consuming for streaming data since
the computation may not be finished before the next data arrives. As D-ICRL is the most important
baseline of our work, we include a section in Appendix to summarize our improvements from it.

Related works and our improvements. Current theoretical works on online IRL [20, 21] only
consider linear reward functions and thus cast the problem as online convex optimization. While these
approaches achieve sub-linear regret, their analysis does not hold for non-linear reward functions
(e.g., neural networks) as the corresponding objective functions can be non-convex. To quantify the
algorithmic performance on online non-convex optimization, “local regret" [22, 23] is proposed which,
at each online iteration, quantifies the gradient norms of the average sum of some already-revealed
loss functions. Current state-of-the-arts [22, 23] use follow-the-leader-based methods to minimize
the local regret. While their methods can achieve the tight regret bound, the follow-the-leader-based
methods require multiple gradient descent steps until reaching a near-stationary point at each online
iteration. However, if the data arrival rate is fast, the computation may not be done before the next
data arrives. To alleviate the computation burden at each online iteration, we use an online gradient
descent (OGD) method which only updates the decision variable by one gradient descent step at each
online iteration. To the best of our knowledge, no works can quantify the local regret of OGD.

Inspired by [9, 24], we formulate a distributed online bi-level optimization problem where the
learners cooperatively learn the reward functions in the outer-level problem and the constraints
and corresponding policies in the inner-level problem. Papers [9, 24, 25] use double-loop methods
[26, 27, 28] to solve their bi-level optimization problems where they first find a (sub)optimal solution
of the inner-level problem in a faster loop and then solve the outer-level problem in a slower loop.
However, when it comes to streaming data, the double-loop method needs multiple steps for the
inner-level problem before updating the decision variable of the outer-level problem, which can be
too slow to finish the update of the outer decision variable when the data is revealed in a fast speed.
Therefore, we use a single-loop method which updates both the outer and inner decision variable only
once at each iteration. Notice that the state-of-the-arts on single-loop bi-level optimization [29, 30]
cannot be directly applied to our problem because they are centralized and require the inner objective
function to be strongly convex while our problem does not have these properties.

Contribution statement. Our contributions are threefold. First, we consider the problem where a
group of learners cooperatively recover the policies by estimating the reward functions and constraints
from distributed streaming demonstrations of cooperative experts. We formulate this “multi-agent
behavior inference from distributed and streaming demonstrations" (MA-BIRDS) problem as a dis-
tributed online bi-level optimization problem. Second, we propose a novel distributed online gradient
descent algorithm for the learners to learn the reward functions, constraints, and the corresponding
policies in a single loop where the decision variables of both the outer-level and inner-level problems
are updated only once at each online iteration. Third, we prove that the distributed learners achieve
consensus in reward functions, constraints, and policies, respectively, at the rate of O(1/Nη1 + ϵ̄N ),
O(1/Nη2 + ϵ̄N ), and O(1/Nη1 + 1/Nη2 + ϵ̄N ) where ϵ̄ ∈ (0, 1) and η1, η2 ∈ (1/2, 1). The local
regret averaged over N iterations decreases at the rate of O(1/N1−η1 + 1/N1−η2 + 1/N) and the
cumulative constraint violation grows sub-linearly at the rate of O(Nη2 +1). Moreover, if the reward
functions are linear, we prove that the average cumulative reward difference between the experts and
learners diminishes at the rate of O(1/N1−η1 + 1/N).

2 Model

This section presents the models of the experts and learners.

Experts. There are NE experts whose decision making is modeled as a constrained Markov game
(CMG) [31]. A CMG (S,A, γ, T, P0, P, rE , cE , b) consists of a state set S ≜

∏NE

i=1 S(i), an action
set A ≜

∏NE

i=1 A(i), a discount factor γ, a time horizon T , and an initial state distribution P0. The
state transition function is P and P (s′|s, a) represents the probability of transitioning to state s′ from
s by taking action a ≜ (a(1), · · · , a(NE)). Expert i’s reward function is r(i)E : S × A → R and the
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experts are cooperative, i.e., rE ≜
∑NE

i=1 r
(i)
E . The cost function of expert i is c

(i)
E ≜ (ω

(i)
E )⊤ϕ(i)

where ϕ(i) : S ×A → [0, d1]
l(i) is an l(i)-dimensional cost feature vector, d1 is a bounded constant,

and ω
(i)
E ∈ Rl(i)

+ is the weight. The cost function of all the experts is cE ≜
∑NE

i=1 c
(i)
E . Expert i’s

policy π
(i)
E (a(i)|s) represents the probability of expert i taking action a(i) at state s and the joint policy

of all the experts is πE(a|s) ≜
∏NE

i=1 π
(i)
E (a(i)|s). We define JrE (π) ≜ Eπ

S,A[
∑T

t=0 γ
trE(St, At)]

as the expected cumulative reward under policy π where the initial state is drawn from P0 and
JcE (π) ≜ Eπ

S,A[
∑T

t=0 γ
tcE(St, At)] as the expected cumulative cost. The experts’ policy πE wants

to maximize JrE (π) subject to JcE (π) ≤ b where b is the budget. Following [9, 18, 19], we study
hard constraints (i.e., b = 0). These experts use πE to demonstrate NL trajectories {ζ [v](n)}NL

v=1

at each online iteration n where each trajectory ζ [v](n) ≜ s
[v]
0 (n), a

[v]
0 (n), · · · , s[v]T (n), a

[v]
T (n) is a

state-action sequence of all the experts. This distributed online data style can also be found in [32].

Learners. There are NL learners where each learner v knows (γ, T, {ϕ(i)}NE
i=1, ζ

[v](n)) and ζ [v](n) is
a demonstration observed by learner v at online iteration n. Each learner wants to use communications
to learn the cost functions by estimating ωE ≜ [(ω

(1)
E )⊤, · · · , (ω(NE)

E )⊤]⊤ and reward functions
using parameterized models {r(i)

θ(i)}NE
i=1 where θ(i) ∈ Rd(i)

is d(i)-dimensional. Here we relax the
linear reward assumption in [9] but keep its linear cost assumption because non-linear cost functions
can make the problem ill-defined (explained in Appendix).

Assumption 1. The reward function rθ satisfies the following: |rθ(s, a)| ≤ C, ||∇θrθ(s, a)|| ≤ C̄,
and ||∇2

θθrθ(s, a)|| ≤ C̃ for any (s, a) ∈ S ×A and any θ where C, C̄, and C̃ are positive constants.

Notice that Assumption 1 is standard in RL [33, 34, 35].

The communication network is modeled as a time-varying directed graph G(n) ≜ (V, E(n)) where
V ≜ {1, · · · , NL} is the node (learner) set and E(n) ⊆ V × V is the set of directed edges (commu-
nication links) at time n. The edge (v, v′) ∈ E(n) means that learner v receives information from
learner v′ at time n and (v, v) ∈ E(n) for all n ≥ 0. The adjacency matrix of the graph at time n is
W (n) ≜ [W [vv′](n)]v,v′∈V ∈ RNL×NL where W [vv′](n) = 0 if and only if (v, v′) /∈ E(n). The set
of neighbors of learner v at time n is N [v](n) ≜ {v′ ∈ V|(v, v′) ∈ E(n)}.

Assumption 2. There exists an integer B ≥ 1 such that the graph (V, E(n) ∪ · · · ∪ E(n+B − 1))
is strongly connected for all n ≥ 0.

Assumption 3. The adjacency matrix W (n) has the following properties: (i) 1⊤W (n) = 1⊤ and
W (n)1 = 1 where 1 is the column vector whose entries are all ones. (ii) There is an ϵ ∈ (0, 1) such
that W [vv](n) ≥ ϵ for all v ∈ V and W [vv′](n) ≥ ϵ if (v, v′) ∈ E(n).

Notice that these two assumptions are standard in distributed learning [3, 9, 36].

Figure 1: Relation between experts and learners

Figure 1 shows that the learners stand
outside the MAS observing the se-
quential data revealed by the ex-
perts and collaboratively learn the re-
ward functions and constraints. Each
learner aims to learn the reward func-
tions and constraints of all the ex-
perts where θ[v] and ω[v] are the re-
ward and cost function parameter es-
timates of all the experts learned by learner v.

Notions and Notations. Define θ ≜ [(θ(1))⊤, · · · , (θ(NE))⊤]⊤ and rθ ≜
∑NE

i=1 r
(i)

θ(i) . We
use θ[v] to represent learner v’s learned θ. Therefore, the dimension of each θ[v] is

∑NE

i=1 d
(i).

Given a trajectory ζ = s0, a0, · · · , sT , aT , the empirical cumulative reward under rθ is Ĵrθ (ζ) ≜∑T
t=0 γ

trθ(st, at), the empirical cumulative cost feature is defined as µ̂(ζ) ≜
∑T

t=0 γ
tϕ(st, at)

where ϕ ≜ [(ϕ(1))⊤, · · · , (ϕ(NE))⊤]⊤. The expectation of cumulative cost feature under a given
policy π is µ(π) ≜ Eπ

S,A[
∑T

t=0 γ
tϕ(St, At)] and the expectation of cumulative reward rθ under a
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given policy π is Jrθ (π) ≜ Eπ
S,A[

∑T
t=0 γ

trθ(St, At)]. The set of all stochastic policies is Π where
every π ∈ Π satisfies π(a|s) ≥ 0 for any (s, a) ∈ S ×A and

∫
a∈A π(a|s)da = 1 for any s ∈ S.

3 Problem Formulation

In MA-BIRDS, the learners collaboratively learn the experts’ policy πE by estimating the reward
function rE and cost function cE , and each learner v does not share its private data such as local
trajectory ζ [v] and local estimates Ĵrθ (ζ

[v]) and µ̂(ζ [v]). While it seems that learning a well-structured
reward function is enough to prevent “bad" movements by assigning negative reward, we include a
section (in Appendix) to further discuss the benefits of learning both reward and cost functions.

Many IRL works [9, 11, 24, 37? ] have a bi-level learning structure where the outer level is to learn
a reward function and the inner level is to learn a corresponding policy by solving an RL problem
under the current learned reward function. Inspired by their bi-level structure, we formulate a bi-level
optimization problem where the outer level is to learn a reward function rθ and the inner level is to
find the cost function and policy corresponding to rθ. In what follows, we first define the inner-level
optimization problem and then introduce the bi-level optimization problem.

The inner-level optimization. Given a learned reward function rθ, the corresponding policy πrθ is
the optimal solution of the following constrained RL problem where the reward function is rθ:

πrθ = argmax
π∈Π

{
H(π) + Jrθ (π), s.t. µ(π) =

1

NL

NL∑
v=1

µ̂(ζ [v](n))

}
, (1)

where H(π) ≜
∑T

t=0 ES,A[−γt lnπ(At|St)] is causal entropy [38]. The constraint in problem (1) is
cost feature expectation matching similar to the spirit of “feature expectation matching" in [11, 38].

However, the policy πrθ is hard to get because problem (1) is non-convex. A standard way to
tackle this difficulty is dual methods [39], therefore, we introduce the dual function of problem (1):
G(ω; θ, n) ≜ maxπ∈Π H(π) + Jrθ (π) + ω⊤(µ(π)− 1

NL

∑NL

v=1 µ̂(ζ
[v](n))) where the dual variable

ω is used to estimate ωE . Notice that the dual function G(ω; θ, n) is convex in ω [39].
Lemma 1. The optimal solution of problem (1) is the constrained soft Bellman policy πω∗(θ,n);θ and
its parameter ω∗(θ, n) is the optimal solution of the dual problem minω G(ω; θ, n).

The expression of constrained soft Bellman policy is in Appendix. Lemma 1 shows that πω∗(θ,n);θ =
πrθ and ω∗(θ, n) = argminω G(ω; θ, n). Therefore, we can solve problem (1) by solving its dual
problem. We use the dual problem to be the inner-level problem where ω∗(θ, n) is the learned cost
function and πω∗(θ,n);θ is the learned policy corresponding to the current learned reward function rθ.

The bi-level optimization. Given a reward function rθ, the inner-level problem argminω G(ω; θ, n)
can find the corresponding cost function and policy. The outer level aims to learn rθ via minimizing
the following loss function over θ:

L(θ, ω∗(θ, n), n), s.t. ω∗(θ, n) = argmin
ω

G(ω; θ, n), (2)

where L(θ, ω∗(θ, n), n) ≜ −
∑NL

v=1

∑T
t=0 γ

t lnπω∗(θ,n);θ(a
[v]
t (n)|s[v]t (n)) is the negative log like-

lihood of the trajectories {ζ [v](n)}NL
v=1 received at time n under the policy πω∗(θ,n);θ [9, 40] and

ζ [v](n) = {(s[v]t (n), a
[v]
t (n))}0≤t≤T . The likelihood function is widely used in IRL [9? , 40] to learn

the reward function.

Notice that (2) requires all the demonstrations {ζ [v](n)}NL
v=1 at time n. However, each learner v can

only observe ζ [v](n) and formulate its local negative log likelihood function L[v](θ, ω∗(θ, n), n) ≜

−
∑T

t=0 γ
t lnπω∗(θ,n);θ(a

[v]
t (n)|s[v]t (n)) and local dual function G[v](ω; θ, n) ≜ maxπ∈Π H(π) +

Jrθ (π) + ω⊤(µ(π)− µ̂(ζ [v](n))). Notice that L =
∑NL

v=1 L
[v] and G = 1

NL

∑NL

v=1 G
[v].

As the demonstrations are streaming, we have a sequence of loss functions {L(·, ω∗(·, n), n)}n≥1. We
use this sequence of loss functions to formulate an online learning problem and a common problem for
online learning is to minimize the regret:

∑N
n=1 L(θ(n), ω

∗(θ(n), n), n)−
∑N

n=1 L(θ
∗, ω∗(θ∗, n), n)
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which quantifies the difference of the accumulative losses between the learned parameter θ and the best
parameter θ∗ in hindsight. However, it is too challenging to minimize the regret in our case because L
is non-convex [22]. Therefore, we use local regret [22, 23] which is widely used in online non-convex
optimization. It quantifies the general stationarity of a sequence of loss functions. In specific, given
a sequence of loss functions {f(·, n)}n≥1, the local regret [22, 23] at online iteration n is defined
as || 1l

∑l−1
i=0 ∇f(x(n), n− i)||2 which quantifies the gradient norms of the average of l previously

received loss functions under the current learned parameter x(n). The total local regret is defined as
the sum of the local regret at every online iteration n, i.e.,

∑N
n=1 ||

1
l

∑l−1
i=0 ∇f(x(n), n− i)||2. In

our case, we replace f with our loss function (2) and thereby formulate the local regret (3)-(4) which
has a distributed bi-level formulation. We want to minimize the local regret (3)-(4).

N∑
n=1

||1
l

l−1∑
i=0

NL∑
v=1

∇L[v](θ(n), ω∗(θ(n), n), n− i)||2, (3)

s.t. ω∗(θ(n), n) = argmin
ω

NL∑
v=1

G[v](ω; θ(n), n). (4)

The time window length is 1 ≤ l ≤ N and L[v](θ, ω, i) = 0 if i ≤ 0 [22]. The outer-level problem
(3) is to learn the reward parameter θ and the inner-level problem (4) is to learn the cost parameter ω
given θ. The learned policy is the constrained soft Bellman policy πω;θ with parameters (θ, ω).

4 Algorithm and Performance Guarantee

This section consists of two subsections where the first one introduces an approximation method
to solve the bi-level optimization problem (3)-(4) in a single loop and the second one introduces a
consensus-based method for the multiple learners to solve the problem in a distributed way.

4.1 Approximation-based single-loop method

In this part, we develop an approximation-based single-loop method which (i) does not use the exact
gradient of the outer-level problem (3) but an approximation of the gradient; (ii) solves the outer-level
and inner-level problems in a single loop. In the following analysis, for simple notations, we omit the
time index n and imply that the analysis holds for all n.
Lemma 2. The problem minω G(ω; θ) has a unique optimal solution ω∗(θ) for any θ.

Since the inner-level problem (4) is unconstrained and ω∗(θ) is its optimal solution, then we have
∇ωG(ω∗(θ); θ) = 0. Taking derivative with respect to θ on both sides renders:

∇2
ωθG(ω∗(θ); θ) +∇2

ωωG(ω∗(θ); θ)∇ω∗(θ) = 0 ⇒ ∇ω∗(θ) = −M(θ, ω∗(θ))⊤,

where M(θ, ω) ≜ ∇2
θωG(ω; θ)[∇2

ωωG(ω; θ)]−1. Then, using the chain rule, we have:

∇L(θ, ω∗(θ)) = ∇θL(θ, ω
∗(θ))−M(θ, ω∗(θ))∇ωL(θ, ω

∗(θ)). (5)

At online iteration n, an intuitive way to solve the bi-level optimization problem (3)-(4) is to solve it in
a double-loop way [9, 26, 28]. In specific, the double-loop method first solves the inner-level problem
(4) to find a close approximation of ω∗(θ) and then uses the obtained result to get the gradient (5),
thus solving the outer-level problem (3). However, it requires multiple gradient descent for the
inner-level problem (4) to get ω∗(θ) before updating the decision variable of the outer-level problem
where each gradient descent of the inner-level problem needs to solve a constrained RL problem in
our case. Therefore, the double-loop method is not suitable to be an online algorithm when the data
is revealed in a fast speed. To design an algorithm suitable for the online fashion, we adopt the spirit
of [29, 30] and solve the outer-level and inner-level problems in a single loop. However, our method
is not a simple extension of [29, 30] to online settings because they are centralized and require the
inner objective function to be strongly convex but our problem does not have these properties.

In specific, at each online iteration, the decision variables of both the outer-level and inner-level
problems update only once where the gradient of the inner objective function is given in Lemma 3.
For the outer-level problem, as ω∗(θ) is inaccessible, we cannot get the exact gradient defined in
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(5). Therefore, we propose the following gradient approximation whose derivation can be found in
Appendix: ∇̄L(θ, ω) = NLE

πω;θ

S,A [
∑T

t=0 γ
t∇θrθ(St, At)] −

∑NL

v=1 ∇θĴrθ (ζ
[v]), where πω;θ is the

constrained soft Bellman policy with parameters (ω, θ). Compared to (5), this gradient approximation
does not include the second-order term M(θ, ω) and thus is much more computationally efficient. It
is shown in Appendix that the approximation error ||∇L(θ, ω∗(θ))− ∇̄L(θ, ω)|| ≤ Cθ||ω∗(θ)− ω||
where Cθ is a positive constant whose expression is in Appendix. Intuitively, as the inner decision
variable ω approaches ω∗(θ) in the learning process, this gradient approximation error can be
sufficiently small.

Lemma 3. The gradient of G[v](ω; θ) is µ(πω;θ)− µ̂(ζ [v]) where πω;θ is the constrained soft Bellman
policy with parameters (θ, ω).

Lemma 4. The global likelihood function L(θ, ω) is CL-lipschitz continuous and C̄L-smooth in
(θ, ω), where CL and C̄L are positive constants.

4.2 Consensus-based distributed learning

In our distributed learning setting, each learner v only knows its local information (e.g., L[v]

and G[v]), so that it cannot directly solve the problem (3)-(4). Therefore, each learner v up-
dates the decision variables using the gradients of its local outer-level and inner-level objec-
tive functions and uses communications to collaboratively solve the problem (3)-(4). Similar
to the global gradient approximation ∇̄L(θ, ω), learner v has its local gradient approximation:
∇̄L[v](θ, ω) = E

πω;θ

S,A [
∑T

t=0 γ
t∇θrθ(St, At)] − ∇θĴrθ (ζ

[v]). Learner v uses samples to estimate

∇̄L[v](θ, ω) via ∇̂L[v](θ, ω) ≜ 1
m[v]

∑m[v]

j=1 ∇θĴrθ (ζ
j) − ∇θĴrθ (ζ

[v]) where ζj is generated by
rolling out πω;θ and m[v] is the number of the samples. Moreover, learner v also uses the same

samples to estimate ∇G[v](ω; θ) in Lemma 3 via ∇̂G[v](ω; θ) ≜ 1
m[v]

∑m[v]

j=1 µ̂(ζj)− µ̂(ζ [v]).

Algorithm 1 Multi-agent behavior inference from distributed and streaming demonstrations

Input: {θ[v](1)}NL
v=1, {ω[v](1)}NL

v=1,W (n)

Output: θ[v](N), ω[v](N), πω[v](N);θ[v](N), ∀v ∈ V
1: for n = 1, · · · , N do
2: for v ∈ V do
3: Finds policy πω[v](n);θ[v](n) using soft Q-learning [41] or soft actor-critic [42].

4: Simulates samples {ζj}m[v]

j=1 using πω[v](n);θ[v](n).
5: Receives θ[v

′](n), ω[v′](n) from the neighbors v′ ∈ N [v](n) and observes ζ [v](n).
6: ω[v](n+ 1) =

∑NL

v′=1 W
[vv′](n)ω[v′](n)− α(n)

l

∑l−1
i=0 ∇̂G[v](ω[v](n); θ[v](n), n− i)

7: θ[v](n+ 1) =
∑NL

v′=1 W
[vv′](n)θ[v

′](n) −β(n)
l

∑l−1
i=0 ∇̂L[v](θ[v](n), ω[v](n), n− i)

8: end for
9: end for

In Algorithm 1, at online iteration n, each learner v sequentially executes the following two steps:
(i) uses current reward and cost function parameters to get the corresponding policy and generate
samples (Lines 3-4); (ii) communicates with neighbors and updates its parameters for both outer-level
and inner-level problems in a single loop using the samples generated in last step (Lines 5-7). In
the update process (Lines 6-7), the first term (convex combination) encourages consensus among
different learners and the second term (gradient) drives to the set of stationary points. Notice that
even though soft Q-learning and soft actor-critic are designed for unconstrained RL, as shown in
Appendix, we can revise them to approximate the constrained soft Bellman policy.

Theorem 1. Suppose Assumptions 1, 2, 3 hold. Let the step sizes α(n) = ᾱ
nη1

and β(n) = β̄
nη2

where η1, η2 ∈ ( 12 , 1) and ᾱ, β̄ ∈ (0, 1
NL(2C̄L+1)

), then for any v, v′ ∈ V in Algorithm 1:

(consensus): ||θ[v](N) − θ[v
′](N)|| ≤ O( 1

Nη1
+ ϵ̄N ), ||ω[v](N) − ω[v′](N)|| ≤ O( 1

Nη2
+ ϵ̄N ),

and sup(s,a)∈S×A{|πω[v](N);θ[v](N)(a|s)−πω[v′](N);θ[v′](N)(a|s)|} ≤ O( 1
Nη1

+ 1
Nη2

+ ϵ̄N )), where
sup(s,a)∈S×A{·} outputs the supremum value over S × A and the expression of ϵ̄ ∈ (0, 1) can be
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found in Appendix.
(decreasing average local regret): 1

N

∑N
n=1 E

[
1
l ||

∑l−1
i=0 ∇L(θ[v](n), ω[v](n), n − i)||2

]
≤

O( 1
N1−η1

+ 1
N1−η2

+ 1
N ) + 2(CL)2

l .

(sub-linear cumulative constraint violation):
∑N

n=1 E
[
J2
cE (πω[v](n);θ[v](n))

]
≤ O(Nη2 + 1), where

the expectation is taken over randomly demonstrated trajectories at each online iteration.

Theorem 1 shows that the learners will achieve consensus on the reward and cost function parameters,
and policy. The average local regret decreases to an upper bound 2(CL)

2/l. Notice that this upper
bound has similar property with that in [22, 23]: (i) they are both less that the uniform upper bound
C2

L of the global loss function L when l > 2; (ii) they are both diminishing if l is dependent on n and
l(n) = ω(1) [23]. The number of total outer gradient steps taken by each learner in Algorithm 1 is
O(N) which is smaller than O(2Nl + l2) in [22] and O(Nl2) in [23]. The reason of fewer gradient
steps in Algorithm 1 is that it is an online gradient descent algorithm, which does not require multiple
gradient calls at each online iteration as follow-the-leader-based methods [22, 23] do.

Moreover, if the reward functions are linear as in [20, 21], we have the following stronger result:
Corollary 1. If the reward functions are linear, the average difference of cumulative reward between
the learned policy and expert policy diminishes: 1

N

∑N
n=1 E

[
(JrE (πω[v](n);θ[v](n))− JrE (πE))

2
]
≤

O( 1
N1−η1

+ 1
N ) for any v ∈ V .

5 Simulations

This section shows that Algorithm 1 is effective to both discrete and continuous environments. We use
four centralized baselines for comparisons: (i) Behavior inference from centralized and streaming
demonstrations (BICS): This is the centralized counterpart of MA-BIRDS where a central learner
obtains all the demonstrations at each online iteration. (ii) Follow the leader (FTL): This method
[22] uses a follow-the-leader-based method to solve online non-convex optimization problems where
a (near)-stationary solution of the sum of all the previous loss functions is found at each online
iteration. As this method only solves single-level optimization problems, we revise it to a single-loop
method to solve bi-level optimization problems. (iii) Double-loop method (DLM): This method
extends D-ICRL [9] to online centralized settings where the inner-level problem is first solved and
then the result is used to solve the outer-level problem. At each online iteration, DLM only updates
the decision variable of the outer-level problem once. (iv) ME-greedy: This method is an online
extension of [18] which assumes the access to the ground truth reward and uses a greedy method to
estimate the constraints based on maximum entropy (ME) IRL [11].

5.1 Evasion from patrolled area

(a) Ground truth environment (b) Learned environment

Figure 2: Evader-patroller environment.

We consider the evader-patroller setting (Fig-
ure 2a) introduced in [21]. The experts (E1
and E2) are the patrollers patrolling around
the area and they aim to switch their posi-
tions. They have four actions (i.e., moving up,
down, left, and right) and need to avoid colli-
sions with each other and the obstacles (i.e.,
constraints). The experts are programmed to
follow the optimal policy. The learners (L1
and L2) are the evaders who want to learn
the behavior model of the experts in order
to reach the goal G without being caught.
The red crosses in Figure 2 represent the con-
straints and each state is colored according to
the scaled visitation frequency.

Figure 2b shows the results learned by Algorithm 1 (each learner recovers the same constraints). Two
constraints are not recovered as the experts’ policy will not change even these constraints are absent.
Three constraints are falsely learned because the experts (optimal policy) do not visit those states
but the learned policy (constraint soft Bellman policy) have a high chance of visiting the states if the
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states are not prohibited as the constrained soft Bellman policy has non-zero probability of choosing
any action and this probability can be large if the corresponding action is not heavily penalized.

To reason about the performance of our algorithm, we use four metrics: false positive rate (FPR),
false negative rate (FNR), constraint violation rate (CVR), and success rate (SR). The FPR [18], is
the proportion of learned constraints that are not the ground truth constraints, FNR is the proportion
of the ground truth constraints that are not learned, CVR introduced in [19] is the percentage of the
learned policy violating any constraint, and SR is the percentage of the learned policy reaching the
destinations and avoiding collisions.

(a) FPR (lower is better) (b) FNR (lower is better) (c) CVR (lower is better) (d) SR (higher is better)

Figure 3: Algorithm performance. The L1 and L2 are the distributed learners in MA-BIRDS.

Figure 3 shows that Algorithm 1 is on par with and even outperforms the baselines even if it is
distributed and does not have the access to the ground truth reward. For the baselines, the centralized
learners receive two demonstrations at each online iteration. We can see that the gradient-based
methods (i.e., MA-BIRDS, BICS, FTL, and DLM) have much better performance than the greedy-
based method (i.e., ME-greedy). The reason is that the greedy-based method can only learn one
constraint at each online iteration while the gradient-based methods can learn multiple constraints at
each online iteration because the gradient-based methods update ω which works on all the possible
constraints indicated by the cost feature vector ϕ.

Table 1: Performance comparisons. Here, D means distributed and NATR means no access to the
(ground truth) rewards.

D NATR FPR FNR CVR SR
MA-
BIRDS

L1 ✓ ✓ 0.053± 0.008 0.013± 0.013 0.040± 0.010 0.960± 0.010
L2 ✓ ✓ 0.053± 0.008 0.013± 0.013 0.045± 0.015 0.955± 0.015

BICS × ✓ 0.038± 0.019 0.013± 0.013 0.040± 0.005 0.960± 0.005
FTL × ✓ 0.047± 0.009 0.032± 0.032 0.030± 0.010 0.970± 0.010
DLM × ✓ 0.050± 0.009 0.022± 0.022 0.015± 0.005 0.985± 0.005

ME-greedy × × 0.019± 0.000 0.753± 0.000 1.000± 0.000 0.000± 0.000

Table 1 shows the final results after the 40 demonstrations are revealed. Notice that even if the
gradient-based methods have different results in FPR and FNR, they achieve similar performance in
CVR and SR. The reason is that the different constraints they learn will not affect the learned policy
as those constraints are either blocked by other constraints or occupy the states that the experts will
barely visit (as shown in Figure 2b).

Table 2: Computation time comparisons.

STPOI 50% ST 90% ST
L1 1.000 1.000 1.000
L2 1.000 1.000 1.000

BICS 1.157 1.155 1.158
FTL 7.500 3.753 5.769
DLM 7.482 3.740 7.481

ME-greedy 63.615 > 318.075 > 97.869

Moreover, to show that MA-BIRDS is suitable
for online learning when the streaming data ar-
rives at a fast speed, we propose the following
three metrics: scaled time per online iteration
(STPOI), 50% SR scaled time (50% ST), and
90% SR scaled time (90% ST). The STPOI is
the scaled time that an algorithm needs to fin-
ish the computation of an online iteration, 50%
ST is the scaled time that an algorithm needs to
reach 50% SR, and 90% ST is the scaled time to
reach 90% SR. We use scaled time instead of actual time because actual time varies a lot on different
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hardwares and different problems. The time is scaled in the way that the fastest algorithm has scaled
time 1.000.

Table 2 shows that MA-BIRDS and BICS are much faster than the baselines in each online iteration,
and thus are more suitable for the online setting with fast streaming data. The MA-BIRDS is slightly
faster than BICS in each online iteration because the centralized learner needs to process two new
demonstrations at each online iteration while each distributed learner only needs to process one.
Moreover, we can see that MA-BIRDS achieves 50% and 90% SR with the shortest time.

5.2 Drone motion planning with obstacles

(a) Gazebo simulator (b) Learned environment

Figure 4: Drone motion planning with obstacles.

In this example, we analyze MA-BIRDS on a real-
world problem with continuous state and action
spaces introduced in [9]. We build a simulator in
Gazebo (Figure 4a) where we (humans) control
the two drones to their diagonal doors while avoid-
ing collisions. We reveal each of the four learners
one demonstration at each online iteration. In this
experiment, the learners are the computers record-
ing the demonstrations of the experts (humans)
controlling the drones. As the state and action
spaces are continuous, the potential constraints
can also be continuous. Therefore, we cannot use
the metrics FPR and FNR, and we cannot use the
baseline ME-greedy. As ME-greedy is designed
for discrete state-action space, we replace it with
ME-gradient [19] which extends ME-greedy to
continuous settings where a cost function is learned using a gradient-based method. Similar to
ME-greedy, ME-gradient is centralized and assumes access to the ground truth reward. Figure 4b
shows the learned constraints on which the learners reach consensus and the trajectories of the learned
policy. Each of the four trajectories is generated by one of the four learners L1-L4. Each trajectory
consists of the paths of the two drones (i.e., a red path and a blue path).

Table 3: Performance and computation time comparisons (drone motion planning).
D NATR CVR SR STPOI 50% ST 90% ST

L1 ✓ ✓ 0.025± 0.025 0.974± 0.025 1.000 1.000 1.000
L2 ✓ ✓ 0.030± 0.010 0.970± 0.010 1.000 1.000 1.000
L3 ✓ ✓ 0.025± 0.025 0.973± 0.025 1.000 1.000 1.000
L4 ✓ ✓ 0.025± 0.025 0.972± 0.015 1.000 1.000 1.000

BICS × ✓ 0.015± 0.015 0.979± 0.020 1.029 1.025 1.027
FTL × ✓ 0.015± 0.010 0.981± 0.018 10.481 7.860 5.240
DLM × ✓ 0.020± 0.015 0.975± 0.015 9.658 6.767 6.837

ME-gradient × × 0.013± 0.013 0.980± 0.018 1.013 1.010 1.012

Table 3, together with Table 2, shows that MA-BIRDS and BICS can reach the same good performance
with the baselines and use much shorter time or have fewer requirements. In specific, compared to
FTL [22], MA-BIRDS only requires about 20% of the time to reach the same performance and is
more than six times faster in each iteration. Compared to DLM [9], MA-BIRDS only requires about
15% of the time to reach the same performance and is also more than six times faster in each iteration.
Compared to ME-gradient, MA-BIRDS can reach the same performance within the same amount of
time even if it is distributed and has no access to the ground truth reward.

6 Discussion and future work

We propose MA-BIRDS, the first IRL framework that is effective in learning multi-agent behaviors
from distributed and streaming demonstrations under continuous and discrete environments. We
formulate a distributed online bi-level optimization problem and propose a fast distributed online
gradient descent single-loop algorithm with theoretical guarantees that is suitable to online settings.
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Experimental results show that MA-BIRDS is effective in both continuous and discrete environments.
Despite its benefits, one limitation is the assumption of linear cost functions. We will explore
approaches to relax this assumption in the future.

Potential negative social impact. Since MA-BIRDS can infer the experts’ behaviors, potential
negative social impact may occur if the learners are malicious. Take the evader-patroller setting as an
example; the patrollers could be safeguards or park rangers, and the evaders could be poachers. The
malicious poachers may use MA-BIRDS to escape. To avoid this situation, the experts should take
additional strategies such as regularly demonstrating misleading behaviors so that MA-BIRDS will
learn a wrong behavior model of the experts.
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