
A IMP-MARL public repository, license, data, and documentation

The new assets we provide in this paper are listed hereafter. IMP-MARL’s suite of environments
is publicly available on the GitHub repository https://github.com/moratodpg/imp_marl, fea-
turing an open-source Apache v2 license. Moreover, IMP-MARL contains wrappers to facilitate
its implementation on typical MARL ecosystems, i.e., Gym [42], RLLib [45], and PyMarl [9], as
detailed in Section 4.

To reproduce the work reported in this paper, the following process can be executed: (i) cloning the
repository, (ii) installing a virtual environment with the package requirements, and (iii) executing
the script instructions of the corresponding method and IMP-MARL environments. In addition to
the instructions for reproducing our results, we also provide tutorials to add new environments or
wrappers.

We also provide the data files resulting from our experiments, enabling the reproduction of any
reported result without re-running the experiments, as well as the corresponding implementation
code, hence facilitating future cross-comparisons. The readily available results include Figures 3, 11,
and 12, along with Tables 13, 14, 15.

Configuration, execution, and results files are permanently stored at Zenodo, accessible via https://
zenodo.org/record/8032339. Additionally, the controller networks’ weights of the best policies
presented in Figure 3 are also stored there, thus fostering further interpretability studies of MARL-
based strategies. The dataset is open-access and registered with the Digital Object Identifier (DOI)
10.5281/zenodo.8032339. More information and dedicated tutorials can be found on the repository.

B Modelling infrastructure management in IMP-MARL

In this appendix, we thoroughly describe the deterioration, inspection, and transition models imple-
mented in this work. These models drive the dynamics of the IMP-MARL environments provided in
this paper. Based on this information, one can easily learn how to create new environments.

B.1 Deterioration models

The deterioration processes introduced here specifically correspond to fatigue deterioration mecha-
nisms, yet corrosion, erosion, and many other practical infrastructure management problems can be
similarly modelled.

Correlated and uncorrelated k-out-of-n systems Throughout the text and the code, the set of
environments related to correlated and uncorrelated k-out-of-n systems are abbreviated as struct_c
and struct_uc, respectively, or denoted as struct when referring to both of them. In the k-out-of-n
environments currently included in IMP-MARL, the structural components are exposed to fatigue
deterioration, and unless a repair is undertaken, the crack size dt (i.e., damage condition) evolves
over time t as [51]:

dt+1 =

⇣
1� m

2

⌘
CFMSm

R ⇡m/2nS + d1�m/2
t

�2/(2�m)

, (1)

where ln(CFM) ⇠ N (µ = �35.2,� = 0.5) and m = 3.5 stand for material variables, which
directly influence the crack growth. Due to environmental and operational conditions, the components
are subject to a dynamic load characterised by the stress range, SR ⇠ N (µ = 70,� = 10 N/mm2),
over nS = 106 annual stress cycles, i.e., the number of load cycles experienced by the structural
component in one year. At the initial step or after a component is repaired, the initial crack size is at
its intact condition, defined by its initial distribution d0 ⇠ Exp(µ = 1 mm), and a component level
failure occurs when the crack size exceeds a critical size of dc = 20 mm. The component failure
probability pF , defined as pF = p[g 0], can be computed following a through-thickness failure
criterion [52], where the failure limit at time step t is formulated as gt = dc � dt. At the system level,
a failure event occurs if k (out of n) components fail, and its corresponding system failure probability,
pFsys , can be efficiently computed as a function of all components failure probabilities, as proposed
in [40].

The continuous crack size is discretised into a certain number of discrete bins in order to enable
efficient Bayesian inference once inspection indications are available. Further details can be found in

16

https://github.com/moratodpg/imp_marl
https://zenodo.org/record/8032339
https://zenodo.org/record/8032339

Table 2: Description of the discretisation scheme implemented.
Environment Variable Interval boundaries Bins

struct dt [0, exp{ln(10�4) : (ln(dc)� ln(10�4))/28 : ln(dc)},1] 30
owf dt [0, d0 : (dc � d0)/(60� 2) : dc,1] 60

Table 3: Variables specified in the offshore wind farm deterioration models.
Upper component Middle component Mudline component

ln(CFM)
µ = �26.45 µ = �26.04 µ = �26.12
� = 0.12 � = 0.4 � = 0.39

m 3 3 3

q
µ = 10.21 µ = 7.40 µ = 6.74

CoV = 25% CoV = 25% CoV = 25%
dc 20 60 60
nS 5,049,216 5,049,216 5,049,216

[13]. If the initial crack size among components is correlated (i.e., we are dealing with a correlated
k-out-of-n system), the damage condition of each component is defined conditional on a common
correlation factor, ↵, via a Gaussian hierarchical structure [36]. In that case, the discretised damage
bins should be defined conditional on the correlation factor. The specific discretisation implemented
in our environments is defined in Table 2.

Offshore wind farm In this set of environments, a group of n_comp offshore wind substructures is
considered, in which three representative structural components are modelled at different locations of
the wind turbine: (i) at the atmospheric zone - upper level, (ii) at the splash zone - middle level, (iii)
below the seabed - mudline. The deterioration, inspection, and cost models hence differ for each of
the three considered components. While the fatigue deterioration is calculated according to Eq. 1, the
expected dynamic load, Sr, is in this case defined based on industrial standards [53], as:

Sr = q�(1 + 1/�)Y , (2)
corresponding to the expected value of a Weibull distribution defined by the scale parameters listed
in Table 3, q ⇠ N , and shape factor, � = 0.8, weighted by a geometric parameter, Y ⇠ LN (µ =
0.1,� = 0.1). The initial crack size distribution is specified for all wind turbine components as
d0 ⇠ Exp(µ = 0.11) and the remaining specific fatigue variables associated with each wind turbine
component are listed in Table 3. At the wind turbine level, the failure event occurs if one component
of the wind turbine fails. The wind turbine failure risk is then defined as the wind turbine failure
probability multiplied by the consequences associated with a wind turbine failure event. At the wind
farm level, the damage condition of a wind turbine does not influence the condition of the other wind
turbines, and the wind farm system failure risk is defined as the sum of all turbines’ failure risk.

B.2 Inspection models

The inspection models implemented in IMP-MARL are hereafter described, defining the likelihood
of retrieving a certain inspection outcome as a function of the damage size.

Correlated and uncorrelated k-out-of-n systems The inspection model is normally characterised
depending on the accuracy of the measurement instrument, formally specified through probability
of detection (PoD) curves, in which the probability of observing a crack is defined as a function of
the crack size [13]. In this case, the inspection model is described by an exponential distribution
p(idt |dt) ⇠ Exp(µ = 8), defining the probability of observing a crack during an inspection.

Offshore wind farm In this more practical set of environments, an eddy current inspection technique
is here considered, whose PoD can be modelled according to industrial standards [53], as:

p(idt |dt) = 1� 1

1 + (dt/�)b
, (3)

where the factors � and b are specified as 0.4 and 1.43, respectively, for the upper component, but
considered as 1.16 and 0.90, for the middle component. Naturally, less accurate inspection outcomes

17

can be expected for the middle component, as it is located in a region below the water level, where
the visibility is reduced.

B.3 Transition models

An overview of the transition model is explained hereafter. For a more detailed description, we refer
the reader to [36]. Since the crack size is discretised in this work, the transition and inspection models
can be stored in tables. In our code, they are encoded in Numpy files, which are stored in the reposi-
tory folder pomdp_models. In particular, the files are named Dr3031C10.npz, Dr3031_H08.npz,
and owf6021.npz, for k-out-of-n system, correlated k-out-of-n system, and offshore wind farm,
respectively. By relying on already stored transition and inspection models, the environments can
be simulated efficiently. Alternatively, the crack size evolution could also be directly computed at
execution time, yet an additional computational expense would be then incurred.

The transition model can be defined based on the deterioration and inspection models previously
described. If no inspection and maintenance are taken (i.e. do-nothing action), the damage condition
progresses each time step according to the fatigue deterioration model formulated in Eq. 1. Note that
in our three sets of environments, a time step represents a year. Considering that the damage follows
a non-stationary deterioration process, the crack size distribution dt+1 can be efficiently encoded
as a function of the annual deterioration rate, ⌧t+1, and the crack size at the previous time step dt
as p(dt+1|dt, ⌧t+1). Starting from ⌧0 = 0, the deterioration rate increases by one unit every year,
unless a component is repaired, in which case the deterioration rate returns to the initial value. The
deterioration evolution over a time step can be computed as:

p(dt+1) =
X

⌧t+1

X

dt

p(dt+1|dt, ⌧t+1)p(dt)p(⌧t+1) . (4)

If an inspection action is planned, a damage indication idt+1 is collected, and the crack size distribution
can be updated via Bayes’ rule:

p(dt+1|idt+1) / p(idt+1 |dt+1)p(dt+1) , (5)

where the likelihood corresponds to the specific inspection model, described by a probability of
detection curve, as mentioned before. Since the damage probabilities are discrete, the normalisation
constant can be straightforwardly computed by simply summing the unnormalised bins [13].

To enable efficient computation of the deterioration evolution under correlation, a Gaussian hier-
archical structure is adopted [36], in which the crack size probability is defined conditional on a
common factor, ↵ as p(dt|↵). In this work, we consider that the initial damage probabilities are
equally correlated among components with a Pearson coefficient equal to 0.8.

The damage transitions, in this case, are formulated as:

p(dt+1|↵) =
X

⌧t+1

X

dt

p(dt+1|dt, ⌧t+1)p(dt|↵)p(⌧t+1) . (6)

Once an inspection outcome is available, the common correlation factor is also updated based on
the new information, thus influencing all components. The likelihood of collecting one inspection
indication given ↵ can be computed as:

p(idt+1 |↵) =
X

dt+1

h
p(dt+1|↵) p(idt+1 |dt+1)

i
, (7)

and the correlation factor can then be updated:

p(↵|idt+1) / p(↵)p(idt+1 |↵). (8)

Finally, the marginal damage probabilities are computed as:

p(dt+1) =
X

↵

h
p(dt+1|↵) p(↵)

i
. (9)

18

Table 4: Main options available in IMP-MARL.
Option name Environment Dict key Type

Number of components struct n_comp int
k components struct k_comp int
Correlation struct env_correlation bool
Campaign cost struct campaign_cost bool
Number of wind turbines owf n_comp int
Number of components per wind turbine owf lev int
Campaign cost owf campaign_cost bool

Table 5: Observations options available in IMP-MARL.
Option name Env. Dict key Type Dimensionality

Component damage probability struct *by default float 30
Component deterioration rate struct obs_d_rate float 1
All components damage probability struct obs_multiple float n_comp · 30
All components deterioration rate struct obs_all_d_rate float n_comp

Correlation condition struct obs_alphas float 80
Component damage condition owf *by default float 60
Component deterioration rate owf obs_d_rate float 1
All components damage condition owf obs_multiple float n_comp · 60
All components deterioration rate owf obs_all_d_rate float n_comp

C Options available in IMP-MARL and reward model

In IMP-MARL, the environments can be easily set up with specific options, from the definition of the
number of agents to the observation information perceived by the agents and the state information
received by mixers/critics. This can be straightforwardly specified through the configuration files
provided on IMP-MARL’s GitHub repository. These options are in fact parameters included in
IMP-MARL’s classes. In particular, Table 4 lists the main options available.

In addition to the main options previously mentioned, it is also possible to tailor the information
encoded in the observations and states. One can choose which local information, oat , the agents will
receive, as well as the global information, st, available during training. Tables 5 and 6 list all possible
options. Since these options are coded as booleans, the selected configuration can be easily defined
by assigning a True value. Additional details can be found in the code.

In the experiments conducted in this work, the selected parameters are listed in Table 7. Through
the code provided in IMP-MARL, future works may investigate alternative observation and state
information options.

C.1 Reward model

The goal of the agents is to maximise the expected sum of discounted rewards, E[R0] =

E
hPT�1

t=0 �t
⇥
Rt,f +

Pn
a=1

�
Ra

t,ins +Ra
t,rep

�
+Rt,camp

⇤i
, as stated in Section 3.2. The rewards

Table 6: States options available in IMP-MARL.
Option name Environment Dict key Type Dimensionality

All component damage condition struct state_obs float n_comp · 30
All components deterioration rate struct state_d_rate float n_comp

Correlation condition struct state_alphas float 80
All component damage condition owf state_obs float n_comp · 60
All components deterioration rate owf state_d_rate float n_comp

19

Table 7: Options set up in our experiments.
Option name struct_uc struct_c owf

state_obs True True True
state_d_rate True True False
state_alphas False True False
obs_d_rate False False False
obs_multiple False False False
obs_all_d_rate False False False
obs_alphas False True False
env_correlation False True False
campaign_cost True & False True & False True & False

Table 8: Rewards specified in our experiments.
Component Campaign cost Rins Rrep cf Rcamp

struct False -1 -20 -10,000 0
True -0.2 -20 -10,000 -5

owf upper level False -1 -10 -1,000 0
True -0.2 -10 -1,000 -5

owf middle level False -4 -30 -1,000 0
True -1 -30 -1,000 -5

collected at each time step may include inspection Rins and repair Rrep costs for all considered
components, along with the system failure risk, which is defined as the system failure probability
pfsys multiplied by the associated consequences of a failure event cf , formulated as Rf = pfsys · cf .
Additionally, a campaign cost Rcamp may also be included if that option is active. The discount
factor is defined as � = 0.95 in our experiments and the specific rewards are listed in Table 8.

D Cooperative MARL methods

We considered methods from two families of algorithms in MARL: value-based and policy-based.
Here, we propose a brief description of these methods, starting from single-agent RL (SARL)
definitions to MARL. However, for more detailed information, we refer the reader to the original
papers. Furthermore, in addition to the definition of Dec-POMDP in Section 3.1, we define the value
function, also V function, which evaluates the current joint policy V ⇡(s) = E[Rt|st = s,⇡]. Another
function of interest is the state-joint-action value function Qtot = Q⇡(s,u) = E[Rt|st = s,ut = u],
also called Q function. The individual Q function is defined by Q⇡,a(s, u) = E[Rt|st = s, ua

t =
u,⇡] or Qa for short. The reward is common to all agents and implies that Qtot = Qa8a. The
advantage function is defined as A(s, u) = Q(s, u)� V (s).

Value-based methods aim to learn the optimal Q function defined as Q⇡⇤
(s, u) = max⇡ Q⇡(s, u).

This enables the agent to greedily select the action ⇡⇤(s) = argmaxu Q
⇡⇤
(s, u). In SARL, this is

accomplished through Q-learning [54], originally designed for tabular settings. However, as the
size of the state-action space increases, it becomes impractical to compute Q for each state-action
pair. A solution, named DQN [1], approximates Q with a neural network ✓ and learn Q(s, u; ✓) by
minimising the loss L(✓) = Eh.i⇠B

⇥�
rt + �maxu2U Q(st+1, u; ✓0) � Q(st, ut; ✓)

�2⇤ where B is
a replay buffer composed of transitions hst, ut, rt, st+1i and ✓0 is the target network, a copy of ✓
updated periodically. This approach can train a centralised learner in a Dec-POMDP if all agents can
access the state s during execution, resulting in the learning of Qtot = Q⇡(s,u). Issues are that the
joint action space scales exponentially with n, and in practice, agents select their action based only
on their history of observation (o, ⌧) and not the state s. There is a decentralised solution, named
IQL [20], which consists in learning independently Qa. However, there are also CTDE methods that
take the state s into account during training. A solution proposed in QMIX [16] is to approximate
Qtot as a function of all Qa and s during training. Agents select actions based on their Qa, which
are now utility functions that factorise Qtot and not Q function. One condition is that individual

20

Qa satisfy the individual global max (IGM): argmaxut
Q(st,ut) =

S
a argmaxua

t
Qa(⌧at , u

a
t) [55].

In QMIX, the factorisation is achieved by a constrained hypernetwork [56] which links s and Qa

to Qtot. QVMix [17] extends QMIX with the Deep Quality-Value method [57, 58], learning both
V and Q, using the former as the target of the latter. QPLEX [18] extends QMIX with the dueling
structure Q = V +A [59], learning a factorisation of V and A with transformers [60]. We selected
these methods based on their IGM consistency, code availability, and results in the literature.

Policy-based methods learn directly the optimal policy through a neural network ⇡(s, u; ✓) that
maximises J(✓) = E⇡✓ [R0]. The well-known REINFORCE method [61] ascends the gradient
r✓J = E[

P
t Rtr✓ log ⇡(ut|st; ✓)] to find ⇡⇤. Actor-critic methods [62, 63] expand upon this

method by incorporating a parameterised critic that estimates Q(st, ut;�), replacing Rt, with the
actor serving as the parameterised policy. To reduce variance, a baseline b(s) is injected into
the gradient, usually b(s) = V (s), and Q(s, u;�) is replaced by A(s, u;�) [64], leading to the
new gradient expression r✓J = E[

P
t A(st, ut;�)r✓ log ⇡(st, ut; ✓)]. Advantage estimation is

accomplished either by A(st, ut;�) = Q(st, ut;�)�
P

u ⇡(u|st; ✓)Q(st, u;�) or by A(st, ut;�) =
rt+�V (st+1;�)�V (st;�). Extending these methods to MARL is a straightforward process and the
decentralised solution is named IAC [19]. This approach involves each agent learning independently
an actor and a critic, based only on the tuple (⌧, o). However, this solution does not exploit the
additional information provided by the state s. During training, the critic may exploit the full state
s, which would result in a centralised critic. However, this approach provides the same feedback to
all agents, missing out on the crucial aspect of credit assignment [65]. To address this, MADDPG
[8] allows each agent to learn its own critic Qa(s,u;�) that is considered centralised since its use
of s and u. On the other hand, COMA [19] and FACMAC [11] propose solutions with a single
centralised critic. FACMAC suggests using a central but factored critic by employing the value
function factorization of QMIX. The joint-action Q(s,u;�) is built as a function of Qa(⌧, ua),
without the need to satisfy IGM and without the constraints on the hypernetwork. COMA, inspired
by difference reward [66], proposes having the centralised critic compute a counterfactual baseline
for each agent. For an agent a, the difference reward is R(st+1, st,ut) � R(st+1, st, (u

�a
t , cat))

where c is a default action. Computing this requires simulating the environment steps several
times. But in COMA, the centralised critic computes the advantage Aa(st,ut;�) = Q(st,u;�)�P

u0a ⇡(u0a|⌧at ; ✓)Q(st, (u
�a
t , u0a);�) for each agent, allowing it to approximate A without more

environment steps. This has the cost of requiring to increase the input space of A as it additionally
takes u�a actions as input.

Other methods In addition to QMIX [16], QVMix [17] and QPLEX [18], QTRAN [55] and
Weighted-QMIX [67] factorise Qtot differently from QMIX, but do not always satisfy IGM [55].
Other methods, such as MAVEN [68] and LAN [69], also extend over QMIX. The first improves
exploration capabilities while the second learns to cooperate without factorising Qtot. There are
also policy-based methods that rely on the actor-critic paradigm, such as COMA [19] and FACMAC
[11] with a single centralised critic. MADDPG [8] is another well-established method, which does
not learn a single centralised critic, but one per agent and is designed for continuous action spaces.
Another method, LIIR [70], aims to provide credit assessment with individual intrinsic rewards, while
HATPRO and HAPPO [71] demonstrate that popular actor-critic methods like TRPO [72] and PPO
[73] can be extended to cooperative MARL tasks. HATRPO and HAPPO could have been a great
addition to our study but are unfortunately not implemented within the PyMarl library.

Another approach for dealing with cooperative multi-agent settings is to link the recent success of
sequence models and reinforcement learning by using a multi-agent transformer (MAT) that learns to
transform a sequence of observations into a sequence of actions, one per agent [74].

E Experimental details

E.1 Description of the parameters set up in the experiments

In this section, we provide the information required to reproduce the results reported in this paper.
Since the neural networks are trained via MARL using PyMarl’s [9] library, the parameters are here
described following PyMarl’s convention. However, their purpose can be easily deduced from the
names themselves. The experimental parameters set up equal across all experiments are presented in
Table 9, while the parameters specific to each method are hereafter detailed. Note that in Table 9,
some parameters are not used by all methods, e.g., RMS parameters. Besides, target update intervals,

21

Table 9: Parameters set in our experiments.
Parameter name Parameters value Parameter name Parameters value

� 0.95 Time max 2,050,000
Target update 200 RMS epsilon 10�5

RMS alpha 0.99 Grad norm clip 10
Learning rate 0.0005 Obs last action True
Agent network [] - 64 GRU - [] Save model interval 20,000

Table 10: Exploration parameters.
Epsilon start Epsilon finish Epsilon anneal time

Value-base methods 0.5 .01 5000
FACMAC 0.3 0.005 50000

buffer size, and batch size are specified based on the number of episodes. When the number of
agents increases, we only augment the number of trainable parameters of the mixer/critic networks,
while the actor networks and other parameters are not modified. All the parameters can be found
in the configuration files available on the GitHub repository and can be used to launch any of the
experiments conducted in this paper.

Regarding the agent network representation for CTDE methods and IQL, it consists of one GRU
layer with a hidden state that includes 64 features. This means that the input is fully connected to the
64 hidden states, which are then fully connected to the outputs, one per action. We represent it as "[] -
64 GRU - []". Since the number of actions, and hence the number of outputs, of the DQN network is
3n, a network with more representation capacity is needed. In that case, linear layers, whose number
of output features are specified between brackets, are also included in the agent network surrounding
the GRU layer. With n = 2 or n = 3 agents, the network is set as "[128] - 128 GRU - [128,64]"
while for n = 4 or n = 5 agents, it is set as "[256] - 256 GRU - [256,256]". Note that the linear
layers before the GRUs include a Relu activation function and the last taken action is also added to
the observation of the agents as an additional input.

As mentioned previously, some parameters are common to almost all methods. For instance, the
optimiser selected is RMSProp for all methods, except for FACMAC, which is trained with ADAM.
In nearly all methods, the buffer stores the latest 2, 000 episodes, and at each episode, 64 episodes
are sampled to update the network. However, since COMA is an on-policy method, the networks
are updated with the episodes just played. Therefore, in our experiments, COMA’s networks are
updated every four episodes based on these last experienced ones. This update is performed four
times to ensure a fair amount of network updates with respect to the other methods, which are, in
turn, updated every episode.

During training, the value-based methods rely on an epsilon-greedy policy, whose parameters are
specified in Table 10, while they act following a greedy policy at testing. Note, however, that COMA
and FACMAC utilise different training policies. FACMAC samples discrete actions through a Gumbel
softmax for its actor, whereas exploration is performed via an epsilon, whose values are specified
in Table 10. On the other hand, COMA follows a classic stochastic policy during training. At the
testing stage, FACMAC and COMA select actions adhering to a greedy approach, selecting the action
associated with the maximum probability.

In the conducted experiments, the parameters set up in the environments differ with respect to the
number of agents and we distinguish three cases (i) n <= 10, (ii) n = 50, and (iii) n = 100. Starting
with QMIX, the parameters are all the same when increasing n, except for the architecture of the
mixing network, whose embedding size in the middle of the mixer is: (i) 32, (ii) 64, and (iii) 128.
QMIX relies on a double-Q feature, i.e., the loss computed to update ✓ differ from the original. While
in the original loss function, the target Q value used for the update is selected with the action that
maximises the target Q value parameterised by ✓0, in double-Q, the action is the one that maximises
the Q value parameterised by ✓. Therefore, we have: L(✓) = Eh.i⇠B

⇥�
rt + �Q(st+1, u⇤; ✓0) �

Q(st, ut; ✓)
�2⇤ where u⇤ = argmaxu Q(st+1, u; ✓). This target network is updated every 200

22

Table 11: Number of trainable parameters in uncorrelated k-out-of-n systems.
Method Network n = 3 n = 5 n = 10 n = 50 n = 100

QMIX Agent 27,587 27,715 28,035 30,595 33,795
Mixer 18,657 41,249 133,569 5,430,657 42,202,113

QVMix Agent 27,587 27,715 28,035 30,595 33,795
Mixer 64,771 110,083 295,043 10,891,779 84,437,891

QPLEX Agent 27,587 27,715 28,035 30,595 33,795
Mixer 58,249 83,289 155,269 1,830,933 4,901,797

COMA Agent 27,587 27,715 28,035 30,595 33,795
Critic 35,971 45,955 70,915 1,195,907 10,840,323

FACMAC Agent 27,587 27,715 28,035 30,595 33,795
Critic 48,002 72,706 134,466 1,042,370 3,313,218

IQL Agent 27,587 27,715 28,035 30,595 33,795
/ 0 0 0 0 0

DQN Agent 157,979 758,003 / / /
/ 0 0 / / /

episodes. QVMix is a variant of QMIX and the parameter values are similarly specified. In particular,
QVMix contains two networks: (i) a Q network with the same architecture as QMIX, and (ii) a V
network that is a copy of the Q network, but with only one output. As for QPLEX, we try to be close
to the parameters selected for the SMAC experiments they conduct in their paper. When n increases,
we change only the attention layer size composed of a layers and b heads. In particular, we set up (i)
1L4H , (ii) 2L4H , and (iii) 2L10H . The mixer embedding is 64 for all experiments.

With respect to COMA, which is an actor-critic method, a few specific parameters should be addi-
tionally set up. The agent network, here denoted as the actor, is the same as for the other previously
described. However, the critic varies with n because the input of the critic becomes rather large,
and its architecture is fully linear: (i) [128, 128], (ii) [512, 256, 128, 128], and (iii) [2048, 1024,
512, 256, 128]. A TD-� used to update the critic is set to 0.8 and the learning rate to train the critic
is the same as the one of the actor, specified in Table 9. In terms of FACMAC, the parameters of
interest are those at the critic, as its size increases with the number of agents n. FACMAC features a
2-layer-mixing network and, therefore, we specify the size for both: (i) 64-64, (ii) 128-64, and (iii)
128-128. As in COMA, the TD-� parameter is set to 0.8. The critic has a target network, similar to
those included in value-based methods, that is also updated every 200 episodes with a soft target
update with ⌧ = 0.001. Moreover, we follow the optimiser selection made in FACMAC’s original
paper and used ADAM, with an epsilon equal to 10�8.

Regarding IQL, which is a decentralised method, the parameters are identical in all tested environ-
ments. IQL also has the double-Q feature activated and learns independently individual Q values
via DQN’s algorithm. For DQN, we only run experiments with less than five agents, i.e., n <= 5.
The main difference between tested environments is the size of their networks. Since DQN features
3n outputs, only 64 GRU cells are not enough in terms of network capacity. In our experiments,
we increase the network size and confirm that DQN manages to achieve similar results as the other
MARL methods. In DQN, the network architecture is the only parameter that is adjusted with the
number of agents n.

Finally, we list in Table 11 the number of trainable parameters of the networks. The input is slightly
different between the tested sets of IMP-MARL environments and, therefore, we show in the table
only the parameters for one of them. Note that there is an agent network taking actions for all agents
and we purposely duplicate the agent network row to emphasise that all agent’s networks are identical
across experiments.

E.2 Hardware and experiments duration

Our experiments are all run on different clusters managed by SLURM [75]. They are executed
with specific hardware requirements based on the number of agents: experiments with up to 10
agents are run on only CPUs, while we execute experiments on GPUs with 50 and 100 agents. The
efficiency does not substantially improve when running experiments with less than 10 agents on

23

Table 12: Hardware configurations for training and testing experiments.
Parameters Train only on CPUs Train on GPUs Test only on CPUs Test on GPUs

Number of CPU 4 2 8 5
RAM 5 Gb 6 Gb 5Gb 10 Gb

Figure 4: Training duration for experiments with n <= 10 performed on only CPUs.

GPUs because training a GRU layer requires forwarding the whole episode sequentially. In contrast,
the computational time can be reduced when running experiments with 50 and 100 agents on GPUs
because we train all agents as a single network and the batch size increases with n. We categorise the
computational time required for the reported experiments according to whether (i) the experiment is
(or is not) run only on CPUs, and (ii) the value reported corresponds to the training or the testing
stage. In Table 12, we additionally provide the hardware requirements demanded during the training
and testing phases. Note that we benefit from more resources during testing because 10 environments
are running in parallel. Moreover, we intentionally demand more RAM to avoid problems. These
reported RAM configurations are indicative and can be seen as requirements, yet not as exact memory
usage numbers.

We represent the computational time required for the experiments during training in Figures 4 and
5 as well as during testing in Figures 6 and 7. To avoid overloading the figures, the markers do
not explicitly indicate which experiment they correspond to, yet the experiments are all vertically
grouped based on the method and the environment. For each abscissa, 20 experiments, with and
without campaign cost, are represented. The first three sets of experiments represent QMIX in the
uncorrelated k-out-of-n setting, followed by QMIX in the correlated k-out-of-n environment which
is followed by QMIX in the offshore wind farm one. The methods are ordered as QMIX, QVMIX,
QPLEX, COMA, FACMAC, IQL, and DQN, while the environments are ordered as k-out-of-n setting,
correlated k-out-of-n, and offshore wind farm. It can be seen in Figures 4 and 6 that the two plots
with n < 10 additionally represent the three additional experiments related to DQN.

The first observation that may be addressed is the resulting high variance. The variation across runs
is logical because of the specific performance of the CPU/GPU models employed, but also due to
the additional activity of clusters at the time of our experiments. With respect to the computational
time required for training, testing episodes are not executed and we can see that, by running the
experiments on only CPUs, we manage to train the agents in less than 10 hours, except for some
occasional outliers. For experiments with 50 agents, and also relying on GPUs, the computational
time is overall very similar to those previously mentioned, requiring less than 10 hours, yet a longer
time is needed for those with 100 agents. The fastest training results correspond to COMA because
we are running four environments in parallel, instead of one during training. We can see that IQL
and QMIX follow closely, but QVMix, QPLEX, and FACMAC require additional computational
time due to their architecture complexity. Naturally, the testing stage needs more time compared

24

Figure 5: Training duration for experiments with n >= 50 performed on CPUs and GPUs.

Figure 6: Testing duration for experiments with n <= 10 performed on only CPUs.

Figure 7: Testing duration for experiments with n >= 50 performed on CPUs and GPUs.

25

Figure 8: Computational time required for executing expert-based heuristic policies as a function of
the number of components. The experiments are run on 2 AMD EPYC Rome 7542 CPUs @ 2.9GHz.

Figure 9: Variance analysis of a given set of neural networks. We report the standard deviation of
the sum of discounted rewards obtained during the test phase. Each curve represents an entire test
experiment when executing 100, 1,000, or 10,000 test episodes.

to training for all experiments because it executes 10, 000 test episodes per stored network. The
correlated k-out-of-n environment slightly requires more time than the others because the correlation
information is updated at every inspection step.

Furthermore, we represent in Figure 8 the time required for the computation of expert-based heuristic
policies. The experiments are plotted as a function of the number of components and coloured based
on their corresponding environment. In this case, all experiments are run on CPUs. We can see that
heuristic policies can be efficiently computed for environments with less than 50 components, yet the
computational time significantly increases for experiments with 50 or 100 components. This result
is logical since the combination of evaluated parameters includes the number of components to be
inspected at each inspection interval. Besides, the overall computation time is directly influenced by
the time needed to run an episode, with the k-out-of-n environments taking longer compared to the
offshore wind farm ones because the episode’s finite horizon spans over 10 additional time steps.

E.3 Statistical analysis of the variance associated with the number of test episodes

As previously explained, we conduct 10,000 test episodes to reduce the variance related to the
expected sum of discounted rewards within a given environment. The choice is motivated by the
direct relationship between the variance associated with E[R0] and the number of test episodes. In
our experiments, we average over 10,000 policy realisations, but here, we show that the standard
deviation associated with E[R0] for each trainig time step can vary significantly if an insufficient
number of test episodes is simulated. Figure 9 illustrates the standard deviations observed when
executing with 100, 1,000, and 10,000 test episodes. To produce this figure, we take the neural
networks obtained with one FACMAC training run. These networks are trained over time in the
offshore wind farm environment with 100 components. From this single set of networks, we execute
10 times the 100, 1,000, and 10,000 test episodes to observe how the variance evolves with this
number of test episodes. We observe that the standard deviations of E[R0] obtained with 100 test
episodes significantly vary over the investigated test runs. Naturally, the variation of the standard
deviation is reduced with an increasing number of test episodes, obtaining very similar standard
deviations when testing with 10,000 episodes.

26

Figure 10: Visual description of the iterative process followed to generate the boxplots showcased in
Figure 3. [Left] Learning curves corresponding to 10 QMIX training seeds in a k-out-of-n system with
50 agents. The markers highlight the policies that result in the highest expected sum of discounted
rewards during evaluation, i.e., one policy per seed. [Right] The 10 selected policies are displayed
at the top as a function of the expected sum of discounted rewards, along with the heuristic score
obtained in this environment. In the middle plot, we calculate and represent the 10 selected policies
as a function of normalised relative rewards, i.e., (x - h) / h. Finally, a boxplot is constructed at
the bottom based on the previously calculated ten normalised relative rewards, each representing a
different seed.

Moreover, one can also compute the largest difference that is observed between these 10 test runs at
a specific time step i.e., the absolute difference of the estimated E[R0] at a given time step. When
testing 100 episodes, the absolute difference is 231.89 at a time step where the maximum of the 10
provided E[R0] is �2786.1. If 1000 episodes are tested, the absolute difference is 99.8 where the
maximum is �2757.2 at this time step, whereas by testing 10,000 episodes, the difference equals
24.8 with a maximum of �2622.8. These numbers represent only a trained set of networks over 1920
training runs, and thus a final conclusion cannot be claimed, yet it motivates the need of simulating
10,000 test episodes, as with only 100 test episodes, the absolute difference can reach up to 10 %.

F Additional benchmark results

In this section, we present additional results and remarks beyond those reported in the main text. In
the first place, we provide the values of the expected sum of discounted rewards achieved by the best
runs over all experiments. We list the best policy for each conducted experiment in Tables 13, 14,
and 15. Note that the maximum values represented with markers at the right of each box in Figure 3
can be retrieved from these values by applying the normalisation (x-H)/H, with H being the value
achieved by the heuristic policies. In Figure 10, we also visually illustrate the normalisation process
that results in the boxplots presented in Figure 3.

Additionally, we represent in Figures 11 and 12 the learning curves corresponding to all our experi-
ments. The learning curves showcase the evolution of the expected sum of discounted rewards every
20,000 training time steps, computed at the testing stage with 10,000 test episodes. Since the training
is conducted with 10 different seeds for each environment and method, we also plot the corresponding
25th-75th percentiles around the median. These results confirm the variance observed between the
best results and presented in Figure 3.

Based on Tables 13 and 14, one may additionally infer that correlated environments result in lower
costs with respect to those uncorrelated. This is especially true for environments with n>=10 agents,
specified without campaign costs, and in all environments set up with campaign costs. While MARL
methods profit from the additionally provided correlation information, this is not always the case for
the heuristic policies.

One final remark is that the discrepancy between the expert-based heuristic policy and MARL
methods is more pronounced in offshore wind farm environments. This could be attributed to the
shorter decision horizon or the higher cost per inspection in this particular case (see Table 15).

27

Table 13: k-out-of-n system best policies (* = campaign cost).
n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

3 -9.7 -9.8 -9.7 -10.6 -10.4 -35.3 -9.9 -12.5
5 -20.4 -20.7 -20.4 -21.8 -22.1 -108.7 -24.0 -25.2

10 -51.0 -51.5 -51.0 -54.3 -61.3 -404.5 / -63.7
50 -229.7 -236.0 -212.8 -1190.6 -249.0 -1991.1 / -268.1
100 -222.6 -230.7 -220.6 -1770.1 -225.7 -1770.1 / -262.4

*3 -14.6 -14.7 -14.7 -15.0 -17.0 -35.3 -13.5 -15.1
*5 -27.4 -27.7 -27.4 -28.9 -33.0 -27.8 -26.6 -28.6
*10 -58.9 -63.0 -60.7 -70.0 -61.9 -404.5 / -64.5
*50 -169.5 -173.9 -168.4 -241.4 -160.7 -623.3 / -232.7

*100 -167.2 -175.8 -160.2 -1770.1 -144.8 -1770.1 / -231.5

Table 14: Correlated k-out-of-n system best policies (* = campaign cost).
n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

3 -9.7 -9.7 -9.6 -11.0 -10.6 -10.0 -10.0 -13.0
5 -20.4 -20.6 -18.4 -21.2 -21.6 -20.2 -23.4 -28.1

10 -47.6 -51.0 -45.2 -49.7 -46.1 -374.5 / -67.7
50 -214.3 -233.0 -212.3 -419.3 -143.4 -1339.9 / -240.0

100 -250.3 -289.0 -276.8 -486.9 -118.3 -1744.0 / -218.1

*3 -13.1 -12.9 -12.9 -14.8 -18.0 -34.7 -12.6 -15.2
*5 -23.5 -24.7 -23.5 -28.2 -29.2 -23.9 -26.8 -30.5

*10 -56.2 -53.4 -50.1 -52.8 -49.2 -56.0 / -68.5
*50 -132.6 -157.1 -121.2 -159.3 -106.6 -814.9 / -211.0
*100 -147.7 -147.5 -121.0 -339.1 -71.3 -723.8 / -194.0

Table 15: Offshore wind farm best policies (* = campaign cost).
n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

2 -23.3 -23.3 -23.2 -23.7 -40.5 -23.7 -23.2 -58.3
4 -47.1 -47.4 -47.1 -47.9 -122.4 -47.4 -47.7 -116.9

10 -118.4 -119.4 -118.5 -122.2 -235.2 -120.8 / -292.3
50 -604.4 -613.9 -604.6 -2805.8 -627.3 -2892.5 / -1463.8

100 -1224.1 -1238.8 -1213.2 -5785.1 -1625.2 -5785.1 / -2925.0

*2 -51.8 -52.0 -51.9 -60.1 -60.3 -52.0 -48.9 -62.2
*4 -80.5 -80.7 -80.7 -122.2 -118.6 -85.6 -76.0 -115.2

*10 -129.3 -133.3 -130.0 -314.5 -196.4 -132.0 / -267.2
*50 -432.9 -436.9 -434.5 -2892.5 -502.8 -1709.7 / -1248.2
*100 -808.1 -829.0 -852.3 -5785.1 -1280.5 -5785.1 / -2436.3

28

Figure 11: Learning curves in all environments with no campaign cost. Curves represent the sum
of discounted rewards obtained during test time. The bold line is the median while the error bands
are delimited by the 25th and 75th percentiles. Colours represent the different methods and the
parameters of each environment can be inferred from the title above its corresponding graph.

29

Figure 12: Learning curves in all environments with campaign cost. Curves represent the sum of
discounted rewards obtained during test time. The bold line is the median while the error bands
are delimited by the 25th and 75th percentiles. Colours represent the different methods and the
parameters of each environment can be inferred from the title above its corresponding graph.

30

