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Abstract

We study online adaptive policy selection in systems with time-varying costs and
dynamics. We develop the Gradient-based Adaptive Policy Selection (GAPS)
algorithm together with a general analytical framework for online policy selection
via online optimization. Under our proposed notion of contractive policy classes,
we show that GAPS approximates the behavior of an ideal online gradient descent
algorithm on the policy parameters while requiring less information and compu-
tation. When convexity holds, our algorithm is the first to achieve optimal policy
regret. When convexity does not hold, we provide the first local regret bound for
online policy selection. Our numerical experiments show that GAPS can adapt to
changing environments more quickly than existing benchmarks.

1 Introduction

We study the problem of online adaptive policy selection for nonlinear time-varying discrete-time
dynamical systems. The dynamics are given by xt+1 = gt(xt, ut), where xt is the state and ut is
the control input at time t. The policy class is a time-varying mapping ⇡t from the state xt and a
policy parameter ✓t to a control input ut. At every time step t, the online policy incurs a stage cost
ct = ft(xt, ut) that depends on the current state and control input. The goal of policy selection is to
pick the parameter ✓t online to minimize the total stage costs over a finite horizon T .

Online adaptive policy selection and general online control have received significant attention recently
[1–8] because many control tasks require running the policy on a single trajectory, as opposed to
restarting the episode to evaluate a different policy from the same initial state. Adaptivity is also
important when the dynamics and cost functions are time-varying. For example, in robotics, time-
varying dynamics arise when we control an aircraft under changing wind conditions [9].

†This work is supported by NSF Grants CNS-2146814, CPS-2136197, CNS-2106403, NGSDI-2105648, CCF-
1918865, and Gift from Latitude AI, with additional support for Yiheng Lin provided by Amazon AI4Science
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In this paper, we are interested in developing a unified framework that can leverage a broad suite
of theoretical results from online optimization and efficiently translate them to online policy selec-
tion, where efficiency includes both preserving the tightness of the guarantees and computational
considerations. A central issue is that, in online policy selection, the stage cost ct depends on all
previously selected parameters (✓0, . . . , ✓t�1) via the state xt. Many prior works along this direction
have addressed this issue by finite-memory reductions. This approach led to the first regret bound
on online policy selection, but the bounds are not tight, the computational cost can be large, and the
dynamics and policy classes studied are restrictive [1, 3, 6–8].

Contributions. We propose and analyze the algorithm Gradient-based Adaptive Policy Selection
(GAPS, Algorithm 1) to address three limitations of existing results on online policy selection. First,
under the assumption that ct is a convex function of (✓0, . . . , ✓t), prior work left a log T regret
gap between OCO and online policy selection. We close this gap by showing that GAPS achieves
the optimal regret of O(

p
T ) (Theorem 3.3) 1. Second, many previous approaches require oracle

access to the dynamics/costs and expensive resimulation from imaginary previous states. In contrast,
GAPS only requires partial derivatives of the dynamics and costs along the visited trajectory, and
computes O(log T ) matrix multiplications at each step. Third, the application of existing regret
analysis frameworks is limited to specific policy classes and systems because they require ct to be
convex in (✓0, . . . , ✓t). We address this limitation by showing the first local regret bound for online
policy selection when the convexity does not hold. Specifically, GAPS achieves the local regret of
O(

p
(1 + V )T ), where V is a measure of how much (gt, ft,⇡t) changes over the entire horizon.

To derive these performance guarantees, we develop a novel proof framework based on a general
exponentially decaying, or “contractive”, perturbation property (Definition 2.6) on the policy-induced
closed-loop dynamics. This generalizes a key property of disturbance-action controllers [e.g. 1, 8]
and includes other important policy classes such as model predictive control (MPC) [e.g. 11] and
linear feedback controllers [e.g. 12]. Under this property, we prove an approximation error bound
(Theorem 3.2), which shows that GAPS can mimic the update of an ideal online gradient descent
(OGD) algorithm [13] that has oracle knowledge of how the current policy parameter ✓t would have
performed if used exclusively over the whole trajectory. This error bound bridges online policy
selection and online optimization, which means regret guarantees on OGD for online optimization
can be transferred to GAPS for online policy selection.

In numerical experiments, we demonstrate that GAPS can adapt faster than an existing follow-the-
leader-type baseline in MPC with imperfect disturbance predictions, and outperforms a strong optimal
control baseline in a nonlinear system with non-i.i.d. disturbances. The source code for all experi-
ments is published at https://www.github.com/jpreiss/adaptive_policy_selection.

Related Work. Our work is related to online control and adaptive-learning-based control [2, 14–19],
especially online control with adversarial disturbances and regret guarantees [1, 6–8, 20, 21]. For
example, there is a rich literature on policy regret bounds for time-invariant dynamics [1, 6, 8, 15, 20,
22]. There is also a growing interest in algorithms for time-varying systems with small adaptive regret
[7, 21], dynamic regret [23–25], and competitive ratio [26–29]. Many prior works study a specific
policy class called disturbance-action controller (DAC) [1, 3, 6–8]. When applied to linear dynamics
gt with convex cost functions ft, DAC renders the stage cost ct a convex function in past policy
parameters (✓0, . . . , ✓t). Our work contributes to the literature by proposing a general contractive
perturbation property that includes DAC as a special case, and showing local regret bounds that do
not require ct to be convex in (✓0, . . . , ✓t). A recent work also handles nonconvex ct, but it studies
an episodic setting and requires ct to be “nearly convex”, which holds under its policy class [30].

In addition to online control, this work is also related to online learning/optimization [13, 31, 32],
especially online optimization with memory and/or switching costs, where the cost at each time step
depends on past decisions. Specifically, our online adaptive policy selection problem is related to
online optimization with memory [29, 33–39]. Our analysis for GAPS provides insight on how to
handle indefinite memory when the impact of a past decision decays exponentially with time.

Our contractive perturbation property and the analytical framework based on this property are closely
related to prior works on discrete-time incremental stability and contraction theory in nonlinear
systems [40–46], as well as works that leverage such properties to derive guarantees for (online)
controllers [47–49]. In complicated systems, it may be hard to design policies that provably satisfy

1A concurrent work [10] also closes this gap in a less general setting. See Section 3.2 for a discussion.
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Figure 1: Diagram of the
causal relationships between
states, policy parameters, con-
trol inputs, and costs.

these properties. This motivates some recent works to study neural-based approaches that can learn
a controller together with its certificate for contraction properties simultaneously [50, 51]. Our
work contributes to this field by showing that, when the system satisfies the contractive perturbation
property, one can leverage this property to bridge online policy selection with online optimization.

Notation. We use [t1 : t2] to denote the sequence (t1, . . . , t2), at1:t2 to denote (at1 , at1+1, . . . , at2)
for t1  t2, and a⇥⌧ for (a, . . . , a) with a repeated ⌧ � 0 times. We define q(x,Q) = x>Qx.
Symbols 1 and 0 denote the all-one and all-zero vectors/matrices respectively, with dimension
implied by context. The Euclidean ball with center 0 and radius R in Rn is denoted by Bn(0, R).
We let k·k denote the (induced) Euclidean norm for vectors (matrices). The diameter of a set ⇥ is
diam(⇥) := sup

x,y2⇥ kx � yk. The projection onto the set ⇥ is ⇧⇥(x) = argmin
y2⇥ky � xk.

2 Preliminaries

We consider online policy selection on a single trajectory. The setting is a discrete-time dynamical
system with state xt 2 Rn for time index t 2 T := [0 : T � 1]. At time step t 2 T , the policy picks
a control action ut 2 Rm, and the next state and the incurred cost are given by:

Dynamics: xt+1 = gt(xt, ut), Cost: ct := ft(xt, ut),

respectively, where gt(·, ·) is a time-varying dynamics function and ft(·, ·) is a time-varying stage
cost. The goal is to minimize the total cost

P
T�1
t=0 ct.

We consider parameterized time-varying policies of the form of ut = ⇡t(xt, ✓t), where xt is the
current state at time step t and ✓t 2 ⇥ is the current policy parameter. ⇥ is a closed convex subset
of Rd. We assume the dynamics, cost, and policy functions {gt, ft,⇡t}t2T are oblivious, meaning
they are fixed before the game begins. The online policy selection algorithm optimizes the total
cost by selecting ✓t sequentially. We illustrate how the policy parameter sequence ✓0:T�1 affects the
trajectory {xt, ut}t2T and per-step costs c0:T�1 in Figure 1. The online algorithm has access to the
partial derivatives of the dynamics ft and cost gt along the visited trajectory, but does not have oracle
access to the ft, gt for arbitrary states and actions.

We provide two motivating examples for our setting. Appendix H contains more details and a third
example. The first example is MPC with confidence coefficients, a generalization of [38].
Example 2.1 (MPC with Confidence Coefficients). Consider a linear time-varying (LTV) system
gt(xt, ut) = Atxt + Btut + wt, with time-varying costs ft(xt, ut) = q(xt, Qt) + q(ut, Rt). At
time t, the policy observes {At:t+k�1, Bt:t+k�1, Qt:t+k�1, Rt:t+k�1, wt:t+k�1|t}, where w⌧ |t is a
(noisy) prediction of the future disturbance w⌧ . Then, ⇡t(xt, ✓t) commits the first entry of

argmin
ut:t+k�1|t

t+k�1X

⌧=t

f⌧ (x⌧ |t, u⌧ |t) + q(xt+k|t, Q̃)

s. t. xt|t = xt, x⌧+1|t = A⌧x⌧ |t +B⌧u⌧ |t + �[⌧�t]
t

w⌧ |t : t  ⌧ < t+k,

(1)

where ✓t =
�
�[0]
t
,�[1]

t
, . . . ,�[k�1]

t

�
,⇥ = [0, 1]k and Q̃ is a fixed positive-definite matrix. Intuitively,

�[i]
t

represents our level of confidence in the disturbance prediction i steps into the future at time
step t, with entry 1 being fully confident and 0 being not confident at all.

The second example studies a nonlinear control model motivated by [12, 47].
Example 2.2 (Linear Feedback Control in Nonlinear Systems). Consider a time-varying nonlinear
control problem with dynamics gt(xt, ut) = Axt+But+�t(xt, ut) and costs ft(xt, ut) = q(xt, Q)+
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q(ut, R). Here, the nonlinear residual �t comes from linearization and is assumed to be sufficiently
small and Lipschitz. Inspired by [12], we construct an online policy based on the optimal controller
ut = �K̄xt for the linear-quadratic regulator LQR(A,B,Q,R). Specifically, we let ⇡t(xt, ✓t) =
�K(✓t)xt where K is a mapping from ⇥ to Rn⇥m such that

��K(✓t) � K̄
�� is uniformly bounded.

2.1 Policy Class and Performance Metrics

In our setting, the state xt at time t is uniquely determined by the combination of 1) a state x⌧ at a
previous time ⌧ < t, and 2) the parameter sequence ✓⌧ :t�1. Similarly, the cost at time t is uniquely
determined by x⌧ and ✓⌧ :t. Since we use these properties often, we introduce the following notation.
Definition 2.3 (Multi-Step Dynamics and Cost). The multi-step dynamics gt|⌧ between two time steps
⌧  t specifies the state xt as a function of the previous state x⌧ and previous policy parameters
✓⌧ :t�1. It is defined recursively, with the base case g⌧ |⌧ (x⌧ ) := x⌧ and the recursive case

gt+1|⌧ (x⌧ , ✓⌧ :t) = gt(zt,⇡t(zt, ✓t)), 8 t � ⌧,

in which zt := gt|⌧ (x⌧ , ✓⌧ :t�1).2 The multi-step cost ft|⌧ specifies the cost ct as function of x⌧ and
✓⌧ :t. It is defined as ft|⌧ (x⌧ , ✓⌧ :t) := ft(zt,⇡t(zt, ✓t)).

In this paper, we frequently compare the trajectory of our algorithm against the trajectory that would
arise from applying a fixed parameter ✓ since time step 0, which we denote as x̂t(✓) := gt|0(x0, ✓⇥t)
and ût(✓) := ⇡t(x̂t(✓), ✓). A related concept that is heavily used is the surrogate cost Ft, which
maps a single policy parameter to a real number.
Definition 2.4 (Surrogate Cost). The surrogate cost function is defined as Ft(✓) := ft(x̂t(✓), ût(✓)).

Figure 1 shows the overall causal structure, from which these concepts follow.

To measure the performance of an online algorithm, we adopt the objective of adaptive policy regret,
which has been used by [7, 52]. It is a stronger benchmark than the static policy regret [1, 6] and
is more suited to time-varying environments. We use {xt, ut, ✓t}t2T to denote the trajectory of the
online algorithm throughout the paper. The adaptive policy regret RA(T ) is defined as the maximum
difference between the cost of the online policy and the cost of the optimal fixed-parameter policy
over any sub-interval of the whole horizon T , i.e.,

RA(T ) := maxI=[t1:t2]✓T
�P

t2I
ft(xt, ut) � inf✓2⇥

P
t2I

Ft(✓)
�
. (2)

In contrast, the (static) policy regret defined in [1, 6] restricts the time interval I to be the whole
horizon T . Thus, a bound on adaptive regret is strictly stronger than the same bound on static regret.
Adaptive regret is particularly useful in time-varying environments like Examples 2.1 and 2.2 because
an online algorithm must adapt quickly to compete against a comparator policy parameter that can
change indefinitely with every time interval [32, Section 10.2].

In the general case when surrogate costs F0:T�1 are nonconvex, it is difficult (if not impossible) for
online algorithms to achieve meaningful guarantees on classic regret metrics like RA(T ) or static
policy regret because they do not have oracle optimization solvers or even the exact knowledge of the
surrogate costs. Therefore, we introduce the metric of local regret, which bounds the sum of squared
gradient norms over the whole horizon:

RL(T ) :=
P

T�1
t=0 krFt(✓t)k2. (3)

Similar metrics have been adopted by previous works on online nonconvex optimization [53]. In-
tuitively, RL(T ) measures how well the online agent chases the (changing) stationary point of the
surrogate cost sequence F0:T�1. Since the surrogate cost functions are changing over time, the bound
on RL(T ) will depend on how much the system {gt, ft,⇡t}t2T changes over the whole horizon T .
We defer the details to Section 3.3.

2.2 Contractive Perturbation and Stability

In this section, we introduce two key properties needed for our sub-linear regret guarantees in adaptive
online policy selection. We define both with respect to trajectories generated by “slowly” time-varying
parameters, which are easier to analyze than arbitrary parameter sequences.

2zt is an auxiliary variable to denote the state at t under initial state x⌧ and parameters ✓⌧ :t.
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Definition 2.5. We denote the set of policy parameter sequences with "-constrained step size by

S"(t1 : t2) := {✓t1:t2 2 ⇥t2�t1+1 | k✓⌧+1 � ✓⌧k  ", 8⌧ 2 [t1 : t2 � 1]}.

The first property we require is an exponentially decaying, or “contractive”, perturbation property of
the closed-loop dynamics of the system with the policy class. We now formalize this property.
Definition 2.6 ("-Time-varying Contractive Perturbation). The "-time-varying contractive perturba-
tion property holds for RC > 0, C > 0, ⇢ 2 (0, 1), and " � 0 if, for any ✓⌧ :t�1 2 S"(⌧ : t � 1),

��gt|⌧ (x⌧ , ✓⌧ :t�1) � gt|⌧ (x
0
⌧
, ✓⌧ :t�1)

��  C⇢t�⌧kx⌧ � x0
⌧
k

holds for arbitrary x⌧ , x0
⌧

2 Bn(0, RC) and time steps ⌧  t.

Intuitively, "-time-varying contractive perturbation requires two trajectories starting from different
states (in a bounded ball) to converge towards each other if they adopt the same slowly time-varying
policy parameter sequence. We call the special case of " = 0 time-invariant contractive perturbation,
meaning the policy parameter is fixed. Although it may be difficult to verify the time-varying property
directly since it allows the policy parameters to change, we show in Lemma 2.8 that time-invariant
contractive perturbation implies that the time-varying version also holds for some small " > 0.

The time-invariant contractive perturbation property is closely related to discrete-time incremental
stability [e.g. 45] and contraction theory [e.g. 46], which have been studied in control theory. While
some specific policies including DAC and MPC satisfy "-time-varying contractive perturbation
globally in linear systems, in other cases it is hard to verify. Our property is local and thus is easier to
establish for broader applications in nonlinear systems (e.g., Example 2.2).

Besides contractive perturbation, another important property we need is the stability of the policy
class, which requires ⇡0:T�1 can stabilize the system starting from the zero state as long as the policy
parameter varies slowly. This property is stated formally below:
Definition 2.7 ("-Time-varying Stability). The "-time-varying stability property holds for RS > 0
and " � 0 if, for any ✓⌧ :t�1 2 S"(⌧ : t � 1),

��gt|⌧ (0, ✓⌧ :t�1)
��  RS holds for any time steps t � ⌧ .

Intuitively, "-time-varying stability guarantees that the policy class ⇡0:T�1 can achieve stability if
the policy parameters ✓0:T�1 vary slowly.3 Similarly to contractive perturbation, one only needs to
verify time-invariant stability (i.e., " = 0 and the policy parameter is fixed) to claim time-varying
stability holds for some strictly positive " (see Lemma 2.8). The reason we still use the time-varying
contractive perturbation and stability in our assumptions is that they hold for " = +1 in some cases,
including DAC and MPC with confidence coefficients. Applying Lemma 2.8 for those systems will
lead to a small, overly pessimistic ".

2.3 Key Assumptions

We make two assumptions about the online policy selection problem to achieve regret guarantees.
Assumption 2.1. The dynamics g0:T�1, policies ⇡0:T�1, and costs f0:T�1 are differentiable at
every time step and satisfy that, for any convex compact sets X ✓ Rn,U ✓ Rm, one can find
Lipschitzness/smoothness constants (can depend on X and U ) such that:

1. The dynamics gt(x, u) is (Lg,x, Lg,u)-Lipschitz and (`g,x, `g,u)-smooth in (x, u) on X ⇥ U .
2. The policy function ⇡t(x, ✓) is (L⇡,x, L⇡,✓)-Lipschitz and (`⇡,x, `⇡,✓)-smooth in (x, ✓) on X ⇥ ⇥.
3. The stage cost function ft(x, u) is (Lf , Lf )-Lipschitz and (`f,x, `f,u)-smooth in (x, u) on X ⇥ U .

Assumption 2.1 is general because we only require the Lipschitzness/smoothness of gt and ft to hold
for bounded states/actions within X and U , where the coefficients may depend on X and U . Similar
assumptions are common in the literature of online control/optimization [25, 29, 47].

Our second assumption is on the contractive perturbation and the stability of the closed-loop dynamics
induced by a slowly time-varying policy parameter sequence.
Assumption 2.2. Let G denote the set of all possible dynamics/policy sequences {gt,⇡t}t2T the
environment/policy class may provide. For a fixed " 2 R�0, the "-time-varying contractive pertur-
bation (Definition 2.6) holds with (RC , C, ⇢) for any sequence in G. The "-time-varying stability

3This property is standard in online control and is satisfied by DAC [1, 3, 6–8] as well as Examples 2.1 & 2.2.
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(Definition 2.7) holds with RS < RC for any sequence in G. We assume that the initial state satisfies
kx0k < (RC � RS)/C. Further, we assume that if {g,⇡} is the dynamics/policy at an intermediate
time step of a sequence in G, then the time-invariant sequence {g,⇡}⇥T is also in G.4

Note that Assumption 2.2 is on the joint properties of both the dynamical system and the policy
class when composed together in a closed loop. The motivation is to generalize two key properties
of linear systems under typical reasonable controllers: 1) the effect of past decisions on the current
state decays exponentially fast, and 2) if the system is initialized near the origin, it remains near the
origin. We generalize these properties via "-time-varying contractive perturbation (Definition 2.6)
and "-time-varying stability (Definition 2.7) respectively. Although Assumption 2.2 may seem
complicated to understand, it is less restrictive than the assumptions in the most closely related work
(e.g., [1, 3, 7]) that focus on linear dynamics.

Compared to other settings where contractive perturbation holds globally [1, 8, 54], Assumption 2.2
only requires it to hold locally in a bounded ball B(0, RC), which becomes important in nonlinear
settings. This brings a new challenge because we need to guarantee that the starting state stays
within B(0, RC) whenever we apply this property in the proof. Therefore, in Assumption 2.2, we
assume RC > RS+Ckx0k. Similarly, to leverage the Lipschitzness/smoothness property, we require
X ◆ B(0, Rx) where Rx � C(RS + Ckx0k) + RS and U = {⇡(x, ✓) | x 2 X , ✓ 2 ⇥,⇡ 2 G}.
Since the coefficients in Assumption 2.1 depend on X and U , we will set X = B(0, Rx) and
Rx = C(RS + Ckx0k) +RS by default when presenting these constants. The goal is to ensure that
the controller never leaves the region where contractive perturbation applies, which is critical for our
analysis and again generalizes properties found in the literature (e.g., Examples 2.1, 2.2, and H.1).

For some systems, verifying Assumption 2.2 is straightforward (e.g., Example 2.1). In other cases,
we can rely on the following lemma, which can convert a time-invariant version of the property to
general time-varying one. We defer its proof to Appendix C.
Lemma 2.8. Suppose Assumption 2.2 holds for " = 0 and (RC , C, ⇢, RS), which satisfies RC >
(C + 1)RS . Suppose Assumption 2.1 also holds and let X := B(0, Rx), where Rx = (C + 1)2RS .
Then, Assumption 2.2 also holds for "̂ > 0, (R̂C , Ĉ, ⇢̂, R̂S), and x0 that satisfies (R̂C�R̂S)/C. Here,
R̂S , R̂C , ⇢̂ are arbitrary constants that satisfies RS < R̂S < R̂C < RC/(C + 1) and ⇢ < ⇢̂ < 1.
The positive constants "̂ and Ĉ are given detailed expressions in Appendix C.
Remark 2.9. Lemma 2.8 can also be useful when applied to some parameterized controllers for
time-invariant nonlinear systems. For example, the well-known “computed torque control” feedback
linearization controllers for robotic manipulators (see, e.g., [55]) renders the closed-loop dynamics
exponentially stable about an equilibrium, and the feedback gains can be parameterized. Thus,
it satisfies Assumption 2.2 in a neighborhood about the equilibrium, via Lemma 2.8. Even with
time-invariant dynamics, the time-varying costs (such as tracking a trajectory determined online)
provide a setting where selecting the policy parameters online can be beneficial.

3 Method and Theoretical Results

Our algorithm, Gradient-Based Adaptive Policy Selection (GAPS), is inspired by the classic online
gradient descent (OGD) algorithm [32, 56], with a novel approach for approximating the gradient of
the surrogate stage cost Ft. In the context of online optimization, OGD works as follows. At each
time t, the current stage cost describes how good the learner’s current decision ✓t is. The learner
updates its decision by taking a gradient step with respect to this cost. Mapping this intuition to
online policy selection, the ideal OGD update rule would be the following.
Definition 3.1 (Ideal OGD Update). At time step t, update ✓t+1 =

Q
⇥(✓t � ⌘rFt(✓t)).

This is because the surrogate cost Ft (Definition 2.4) characterizes how good ✓t is for time t if we
had applied ✓t from the start, i.e., without the impact of other historical policy parameters ✓0:t�1.
However, since the complexity of computing rFt exactly grows proportionally to t, the ideal OGD
becomes intractable when the horizon T is large.

4For {g,⇡}⇥T to be in G, it must satisfy other assumptions about contractive perturbation and stability that
we impose on G but does not need to occur in real problem instances. We only use this assumption in the proof
of Theorem 3.6, and it can be made without the loss of generality for time-invariant dynamics and policy classes.
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As outlined in Algorithm 1, GAPS uses Gt to approximate rFt(✓t) efficiently. To see this, we
compare the decompositions, with key differences highlighted in colored text:

rFt(✓t) =
tX

b=0

@ft|0
@✓t�b

����
x0,(✓t)⇥(t+1)

and Gt =

min{B�1,t}X

b=0

@ft|0
@✓t�b

����
x0,✓0:t

. (4)

GAPS uses two techniques to efficiently approximate rFt(✓t). First, we replace the ideal sequence
(✓t)⇥(t+1) by the actual sequence ✓0:t. This enables computing gradients along the actual trajectory
experienced by the online policy without re-simulating the trajectory under ✓t. Second, we truncate
the whole historical dependence to at most B steps. This bounds the memory used by GAPS. "-
time-varying contractive perturbation is the key to bound the bias of Gt: Intuitively, in the first step,
although ✓⌧ becomes more different with ✓t as ⌧ decreases, its impact on ft|0 decays more quickly
(exponentially); In the second step, the terms that we discard are exponentially small with respect
to B. We provide a rigorous bound of the bias in Theorem 3.2 and a proof outline in Appendix D.

Algorithm 1 Gradient-based Adaptive Policy Selection (GAPS)
Require: Learning rate ⌘, buffer length B, initial ✓0.

1: for t = 0, . . . , T � 1 do
2: Observe the current state xt.
3: Pick the control action ut = ⇡t(xt, ✓t).
4: Incur the stage cost ct = ft(xt, ut).

5: Compute the approximated gradient: Gt =

min{B�1,t}X

b=0

@ft|0
@✓t�b

����
x0,✓0:t

.

6: Perform the update ✓t+1 =
Q

⇥(✓t � ⌘Gt).
7: end for

Algorithm 1 presents GAPS in its simplest form. Although the expression of the partial derivatives
contains ✓0:t, the time- and space-efficient implementation of GAPS only requires to store B partial
derivatives for B previous time steps. Details are given in Algorithm 2 in Appendix B.

Compared to many previous online control algorithms that take a reduction approach based on OCO
with Memory, our algorithm can be much more computationally efficient (see Appendix I.4 for an
empirical comparison). Specifically, these works [1, 3, 6] take a different finite-memory reduction
approach toward reducing the online control problem to OCO with Memory [33] by completely
removing the dependence on policy parameters before time step t � B for a fixed memory length B.
In the finite-memory reduction, one must “imaginarily” reset the state at time t � B to be 0 and
then use the B-step truncated multi-step cost function ft|t�B(0, ✓t�B:t) in the OGD with Memory
algorithm [1]. When applied to our setting, this is equivalent to replacing Gt in line 1 of Algorithm
1 by G0

t
=

P
B�1
b=0

@ft|t�B

@✓t�b
|0,(✓t)⇥(B+1)

. However, the estimator G0
t

has limitations compared with
Gt in GAPS. First, computing G0

t
requires oracle access to the partial derivatives of the dynamics

and cost functions for arbitrary state and actions. Second, even if those are available, G0
t

is less
computationally efficient than Gt in GAPS, especially when the policy is expensive to execute.
Taking MPC (Example 2.1) as an example, computing G0

t
at every time step requires solving B MPC

optimization problems when re-simulating the system, where B = ⌦(log T ). In contrast, computing
Gt in GAPS only requires solving one MPC optimization problem and O(B) matrix multiplications
to update the partial derivatives. One may wonder how significant this improvement is, and if it affects
the regret. To address this concern, we compare GAPS with Ideal OGD and OGD with Memory in
the setting of MPC with confidence coefficients for a 2D double integrator. The simulation results
show that GAPS achieve very similar regret with the two benchmarks, while the improvement on
computation efficiency is significant (see Appendix I.4).

3.1 Bounds on Truncation Error

We now present the first part of our main result, which states that the actual stage cost ft(xt, ut)
incurred by GAPS is close to the ideal surrogate cost Ft(✓t), and the approximated gradient Gt is close
to the ideal gradient rFt(✓t). In other words, GAPS mimics the ideal OGD update (Definition 3.1).
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Theorem 3.2. Suppose Assumptions 2.1 and 2.2 hold. Let {(xt, ut, ✓t)}t2T denote the trajectory of
GAPS (Algorithm 1) with buffer size B and learning rate ⌘  ⌦((1 � ⇢)"). Then, we have
|ft(xt, ut) � Ft(✓t)| = O

�
(1 � ⇢)�3⌘

�
and kGt � rFt(✓t)k = O

�
(1 � ⇢)�5⌘ + (1 � ⇢)�1⇢B

�
,

where ⌦(·) and O(·) hide the dependence on the Lipschitz/smoothness constants defined in Assump-
tion 2.1 and C in contractive perturbation — see details in Appendix D.1.

We defer the proof of Theorem 3.2 to Appendix D.1. Note that this result does not require any
convexity assumptions on the surrogate cost Ft.

3.2 Regret Bounds for GAPS: Convex Surrogate Cost

The second part of our main result studies the case when the surrogate cost Ft is a convex function.
This assumption is explicitly required or satisfied by the policy classes and dynamical systems in
many prior works on online control and online policy selection [1, 3, 6, 54].

The error bounds in Theorem 3.2 can reduce the problem of GAPS’ regret bound in control to the
problem of OGD’s regret bound in online optimization, where the following result is well known:
When the surrogate cost functions Ft are convex, the ideal OGD update (Definition 3.1) achieves the
regret bound

P
T�1
t=0 Ft(✓t) � min✓2⇥

P
T�1
t=0 Ft(✓) = O(

p
T ), when the step size ⌘ is of the order

1/
p
T [32]. By taking the biases on the stage costs and the gradients into consideration, we derive

the adaptive regret bound in Theorem 3.3. Besides the adaptive regret, one can use a similar reduction
approach to “transfer” other regret guarantees for OGD in online optimization to GAPS in control.
We include the derivation of a dynamic regret bound as an example in Appendix E.
Theorem 3.3. Under the same assumptions as Theorem 3.2, if we additionally assume Ft is convex
for every time t and diam(⇥) is bounded by a constant D, then GAPS achieves adaptive regret

RA(T ) = O
�
⌘�1 + (1 � ⇢)�5⌘T + (1 � ⇢)�1⇢BT + (1 � ⇢)�10⌘3T + (1 � ⇢)�2⇢2B⌘T

�
,

where O(·) hides the same constants as in Theorem 3.2 and D — see details in Appendix D.1.

We discuss how to choose the learning rate and the regret it achieves in the following corollary.
Corollary 3.4. Under the same assumptions as Theorem 3.3, suppose the horizon length T � 1

1�⇢

and the buffer length B � 1
2 log(T )/ log(1/⇢). If we set ⌘ = (1 � ⇢)

5
2T� 1

2 , then GAPS achieves
adaptive regret RA(T ) = O((1 � ⇢)�

5
2T

1
2 ).

We defer the proof of Theorem 3.3 to Appendix D.1. Compared to the (static) policy regret bounds of
[1, 3], our bound is tighter by a factor of log T . The key observation is that the impact of a past policy
parameter ✓t�b on the current stage cost ct decays exponentially with respect to b (see Appendix D
for details). In comparison, the reduction-based approach first approximates ct with ĉt that depends
on ✓t�B+1:t, and then applies general OCO with memory results on ĉt [1, 3]. General OCO with
memory cannot distinguish the different magnitudes of the contributions that ✓t�B+1:t make to ĉt,
which leads to the regret gap of B = O(log T ).

In the more restrictive setting of linear time-invariant dynamics with the DAC policy class, the results
of a concurrent work [10] can also be used to close the log T gap on static regret of online policy
selection. In comparison, Theorem 3.3 considers more general time-varying dynamics and adopts the
stronger metric of adaptive regret. As a practical matter, the follow-the-regularized-leader type of
algorithm used by [10] is often (much) less computationally efficient than a gradient-based algorithm
like GAPS. Nevertheless, [10] made distinct contributions by allowing the state space to be a general
Banach space and providing a lower bound for OCO with unbounded memory.

3.3 Regret Bounds for GAPS: Nonconvex Surrogate Cost

The third part of our main result studies the case when the surrogate cost Ft is nonconvex. Before
presenting the result, we formally define the variation intensity that measures how much the system
changes over the whole horizon.
Definition 3.5 (Variation Intensity). Let {gt,⇡t, ft}t2T be a sequence of dynamics/policy/cost
functions that the environment provides. The variation intensity V of this sequence is defined as
T�1X

t=1

sup
x2X ,u2U

kgt(x, u)� gt�1(x, u)k+ sup
x2X ,✓2⇥

k⇡t(x, ✓)� ⇡t�1(x, ✓)k+ sup
x2X ,u2U

|ft(x, u)� ft�1(x, u)|.
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Variation intensity is used as a measure of hardness for changing environments in the literature of
online optimization that often appear in regret upper bounds (see [57] for an overview). Definition 3.5
generalizes one of the standard definitions to online policy selection. Using this definition, we present
our main result for GAPS applied to nonconvex surrogate costs using the metric of local regret (3).
Theorem 3.6. Under the same assumptions as Theorem 3.2, if we additionally assume that ⇥ = Rd

for some integer d, then GAPS satisfies local regret

RL(T ) = O

✓
1 + V

(1 � ⇢)3⌘
+

⌘T

(1 � ⇢)6
+

⇢BT

(1 � ⇢)2
+

⌘3T

(1 � ⇢)13
+

⇢2B⌘T

(1 � ⇢)5

◆
,

where O(·) hides the same constants as in Theorem 3.2 — see details in Appendix F.

We discuss how to choose the learning rate and the regret it achieves in the following corollary.
Corollary 3.7. Under the same assumptions as Theorem 3.6, suppose the horizon length T � 1

1�⇢

and the buffer length B � 1
2 log(T )/ log(1/⇢). If we set ⌘ = (1�⇢)

3
2 (1+V )

1
2T� 1

2 , GAPS achieves
local regret RL(T ) = O((1 � ⇢)�

9
2 (1 + V )

1
2T

1
2 ).

We defer the proof of Theorem 3.6 to Appendix F. Note that the local regret will be sublinear in T if
the variation intensity V = o(T ). To derive the local regret guarantee in Theorem 3.6, we address
additional challenges compared to the convex case. First, we derive a local regret guarantee for OGD
in online nonconvex optimization. We cannot directly apply results from the literature because they
do not use ordinary OGD, and it is difficult to apply algorithms like Follow-the-Perturbed-Leader
[e.g. 58] to online policy selection due to constraints on information and step size. Then, to transfer
the regret bound from online optimization to online policy selection, we show how to convert the
measure of variation defined on F0:T�1 to our variation intensity V defined on {gt,⇡t, ft}t2T .

A limitation of Theorem 3.6 is that we need to assume ⇥ is a whole Euclidean space so that GAPS
will not converge to a point at the boundary of ⇥ that is not a stationary point. Example 2.2 and
Appendix H.3 show that one can re-parameterize the policy class to satisfy this assumption in some
cases. Relaxing this assumption is our future work.

4 Numerical Experiments

In this section we compare GAPS to strong baseline algorithms in settings based on Examples 2.1
and 2.2. Details are deferred to Appendix I due to space limitations. Appendix I also includes a third
experiment comparing GAPS to a bandit-based algorithm for selecting the planning horizon in MPC,
and a computation time comparison between GAPS and the alternative gradient approximation of [1].
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Figure 2: Comparing GAPS and baseline [11] for online adaptation of a confidence parameter for
MPC with disturbance predictions. Left: Confidence parameter. Right: Per-step cost. Shaded bands
show 10%-90% quantile range over randomized disturbance properties. See body for details.

MPC confidence parameter. We compare GAPS to the follow-the-leader-type method of [11] for
tuning a scalar confidence parameter in model-predictive control with noisy disturbance predictions.
The setting is close to Example 2.1 but restricted to satisfy the conditions of the theoretical guarantees
in [11]. We consider the scalar system xt+1 = 2xt + ut + wt under non-stochastic disturbances wt

with the cost ft(xt, ut) = x2
t
+ u2

t
. For t = 0 to 100, the predictions of wt are corrupted by a large

amount of noise. After t > 100, the prediction noise is instantly reduced by a factor of 100. In this
setup, an ideal algorithm should learn to decrease confidence level at first to account for the noise,
but then increase to � ⇡ 1 when the predictions become accurate.
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Figure 2 shows the values of the confidence parameter � and the per-timestep cost generated by
each algorithm. Both methods are initialized to � = 1. The method of [11] rapidly adjusts to an
appropriate confidence level at first, while GAPS adjusts more slowly but eventually reaches the
same value. However, when the accuracy changes, GAPS adapts more quickly and obtains lower
costs towards the end of the simulation. In other words, we see that GAPS behaves essentially like
an instance of Ideal OGD with constant step size, which is consistent with our theoretical results
(Theorem 3.2).
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(a) Linear gains kp, kd tuned by GAPS compared to LQR optimal.
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(b) Cumulative cost difference.

Figure 3: Comparing GAPS and LQR baseline in nonlinear inverted pendulum system. Shaded bands
show ±1 standard deviation over the randomness of the disturbances. See body for details.

Linear controller of nonlinear time-varying system. We apply GAPS to tune the gain parameters
of a linear feedback controller in a nonlinear inverted pendulum system. Every 100 seconds, the
pendulum mass changes. The system reflects the smooth nonlinear dynamics and nonconvex surrogate
costs in Example 2.2, although it differs in other details (see Appendices H.3 and I.2). We compare
GAPS to a strong and dynamic baseline that deploys the infinite-horizon linear-quadratic regulator
(LQR) optimal controller for the linearized dynamics at each mass. We simulate two disturbances:
1) i.i.d. Gaussian, and 2) Ornstein-Uhlenbeck random walk.

Figure 3a shows the controller parameters tuned by GAPS, along with the baseline LQR-optimal
gains, for each disturbance type. The derivative gain kd closely follows LQR for i.i.d. disturbances
but diverges for random-walk disturbances, where LQR is no longer optimal. This is reflected in the
cumulative cost difference between GAPS and LQR, shown in Figure 3b. GAPS nearly matches LQR
under i.i.d. disturbances, but significantly outperforms it when the disturbance is a random walk. The
results show that GAPS can both 1) adapt to step changes in dynamics on a single trajectory almost
as quickly as the comparator that benefits from knowledge of the near-optimal analytic solution, and
2) outperform the comparator in more general settings where the analytic solution no longer applies.

5 Conclusion and Future Directions

In this paper, we study the problem of online adaptive policy selection under a general contractive
perturbation property. We propose GAPS, which can be implemented more efficiently and with less
information than existing algorithms. Under convexity assumptions, we show that GAPS achieves
adaptive policy regret of O(

p
T ), which closes the log T gap between online control and OCO left

open by previous results. When convexity does not hold, we show that GAPS achieves local regret of
O(

p
(1 + V )T ), where V is the variation intensity of the time-varying system. This is the first local

regret bound on online policy selection attained without any convexity assumptions on the surrogate
cost functions. Our numerical simulations demonstrate the effectiveness of GAPS, especially for fast
adaptation in time-varying settings.

Our work motivates interesting future research directions. For example, a limitation is that GAPS
assumes all policy parameters can stabilize the system and satisfy contractive perturbation. A recent
work on online policy selection relaxed this assumption by a bandit-based algorithm but requires ⇥ to
be a finite set [59]. An interesting future direction to study is what regret guarantees can be achieved
when ⇥ is a continuous parameter set and not all of the candidate policies satisfy these assumptions.
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[34] Chloé Rouyer, Yevgeny Seldin, and Nicolò Cesa-Bianchi. An algorithm for stochastic and
adversarial bandits with switching costs. In International Conference on Machine Learning,
pages 9127–9135. PMLR, 2021.

[35] Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent:
An optimal algorithm for smoothed online optimization. In Advances in Neural Information
Processing Systems, volume 32, 2019.

[36] Yiheng Lin, Gautam Goel, and Adam Wierman. Online optimization with predictions and
non-convex losses. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 4(1):1–32, 2020.

[37] Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex optimization
in high dimensions via online balanced descent. In Conference On Learning Theory, pages
1574–1594. PMLR, 2018.

12



[38] Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and switching
costs: Fast algorithms and the fundamental limit. IEEE Transactions on Automatic Control,
66(10):4761–4768, 2020.

[39] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive
adversary: from regret to policy regret. In International Conference on Machine Learning,
pages 1747–1754, 2012.

[40] Nicholas M Boffi, Stephen Tu, and Jean-Jacques E Slotine. Regret bounds for adaptive nonlinear
control. In Learning for Dynamics and Control, pages 471–483. PMLR, 2021.

[41] Guanya Shi, Kamyar Azizzadenesheli, Michael O’Connell, Soon-Jo Chung, and Yisong Yue.
Meta-adaptive nonlinear control: Theory and algorithms. In Advances in Neural Information
Processing Systems, volume 34, pages 10013–10025, 2021.

[42] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for non-linear systems.
Automatica, 34(6):683–696, 1998.

[43] David Angeli. A Lyapunov approach to incremental stability properties. IEEE Transactions on
Automatic Control, 47(3):410–421, 2002.
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