
Appendix
This document provides supplementary materials for Weakly Supervised 3D Open-vocabulary Seg-
mentation in implementation details (Appendix A), more ablations (Appendix B), more evaluations
(Appendix C), and more results (Appendix D).

A Implementation Details

A.1 Model Architecture
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Figure 1: Model architecture.

We use TensoRF [1] as our base NeRF architecture for efficiency, the plane size is also the same as
the default setting of TensoRF. The RGB and CLIP feature branches share the same volume and use
the same intermediate features. The selection volume and density volume are two other independent
volumes. We directly use the features extracted from the selection volume and density volume as
the selection vector and the density value, as they have low dimensions and are view-independent.
We use the original MLP architecture in TensoRF to extract the view-dependent RGB value and
use another MLP which discards view direction input to extract the rendered CLIP feature. The
architecture is illustrated in Fig. 1.

A.2 Hyperparameters

We set τ = 0.2 to get the shaper segmentation probability distribution Ṕ . The offset b is set to 0.7
to measure the similarities of the DINO features, meaning that two DINO features are considered
similar if their cosine similarity is larger than 0.7, and different if less than 0.7. We use 3 scales
of CLIP features, and the patch sizes of each scale are set as s/5, s/7, and s/10, where s is the
smaller value in the width and height of the input image I . In the ablation studies, we use s/7 as the
patch size of the single-scale CLIP feature input. The weights associated with similar and dissimilar
DINO features in LFDA are set as λpos = 200 and λneg = 0.2 by default. In certain scenes, we
find that setting λneg to 0.22 or 0.18 can produce better results. We use ViT-B/16 CLIP model to
extract the image and text features and use version 1 dino_vitb8 model to extract the DINO features
because it employs the smallest downsampling factor of 8 which is advantageous for high-precision
segmentation.

A.3 Training

To reconstruct a NeRF from multiview images of a scene, we follow the same training settings as
TensoRF. For segmentation training, we train the model for 15k iterations. In the first 5k iterations,
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Table 1: Dataset. We list the collected 10 scenes and the corresponding text labels. The background
labels are in Italic font.

Scene Text Labels

bed red bag, black leather shoe, banana,
hand, camera, white sheet

sofa a stack of UNO cards, a red Nintendo Switch joy-con controller,
Pikachu, Gundam, Xbox wireless controller, grey sofa

lawn red apple, New York Yankees cap, stapler,
black headphone, hand soap, green lawn

room shrilling chicken, weaving basket, rabbit,
dinosaur, baseball, wood wall

bench Portuguese egg tart, orange cat, green grape,
mini offroad car, dressing doll, pebbled concrete wall, wood

table a wooden ukulele, a beige mug, a GPU card with fans,
a black Nike shoe, a Hatsune Miku statue, lime wall

office desk the book of The Unbearable Lightness of Being, a can of red bull drink,
a white keyboard, a pack of pocket tissues, desktop, blue partition

blue sofa a bottle of perfume, sunglasses, a squirrel pig doll,
a JBL bluetooth speaker, an aircon controller, blue-grey sofa

snacks Coke Cola, orange juice drink, calculator,
pitaya, Glico Pocky chocolate, biscuits sticks box, desktop

covered desk Winnie-the-Pooh, Dove body wash, gerbera,
electric shaver, canned chili sauce, desktop

we freeze the shared volume and density volume, and train the selection volume and the CLIP feature
branch. For the rest 10k iterations, we further finetune the shared volume and the RGB branch. We
use Adam optimizer with betas = (0.9, 0.99). The learning rates for training the volume and MLP
branch are respectively set to 0.02 and 1e− 4. For finetuning the volume and the MLP, the learning
rates are set to 5e− 3 and 5e− 5. We also employ a learning rate decay with a factor of 0.1.

The multi-scale pixel-level CLIP features of training views are pre-computed before training and
the DINO features are computed with sampled patches on the fly during training. When computing
Lsupervision and LRDA, we randomly sample rays with a batch size of 4096. When computing
LFDA we randomly sample patches of size 256×256 with a batch size of 8. We use a downsampling
factor of 8 when sampling rays and a factor of 5 when sampling patches. The model is trained on an
NVIDIA A5000 GPU with 24G memory for ∼1h30min for each scene.

A.4 Dataset

We capture 10 scenes using smartphones and use Colmap [2] to extract camera parameters for each
image. We capture 20 ∼ 30 images for each scene and the resolution of each image is 4032× 3024.
We follow the data structure of LLFF [3]. We manually annotate the segmentation maps of 5 views
for each scene as the ground truth for evaluation.

We list the text labels used in our experiments in Tab. 1. Note that we sometimes choose to add a
general word to describe the whole background, such as wall, desktop, following LERF [4]. The
text labels in our dataset contain many long-tail classes, which can be used to fully assess the
open-vocabulary capability.
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Figure 2: More ablations.
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Figure 3: Evaluation on human body dataset (left). Evaluation on human head dataset (right).

B More Ablations

Table 2: More Ablations.

mIoU mAP

w/o neg_F 76.9 92.4
w/o Selection 84.8 95.3

full model 86.2 95.8

We perform two more ablation studies on the Selection Volume and
the FDA loss, as shown in Tab. 2 and Fig. 2. Without the Selection
Volume, we simply average the multi-scale CLIP features rather
than learning the appropriate scale. We can see that both the mIoU
score and the mAP score are inferior to the full model. We could
discard the dissimilar part neg_F since dissimilar DINO features
often impair the stability of the correlation loss. However, neg_F
encourages different segmentation probabilities for different seman-
tic regions and it plays a crucial role for precise object boundary
extraction.

C More Evaluations

We additionally perform evaluations on human body, human head, indoor datasets with low-quality
images [5, 6], and a complex scene from LERF datasets [4]. We compare with the concurrent work
LERF qualitatively due to the lack of labels or the defective annotations as pointed out in [7]. We
also perform experiments with different text prompts. We use the same scale level number and patch
sizes in all comparisons.

Human body and head. As shown in Fig. 3, our method segments more precise parts than LERF.
Specifically, LERF fails to segment the "head" in the human body and the "black T-shirt" in the
human head. In contrast, our method can recognize and segment these parts correctly because our
designed RDA loss addresses the ambiguity of the CLIP features effectively.

Indoor scenes with low-quality images. Fig. 4 shows experiments on the indoor datasets [5, 6],
where many images are unrealistically rendered with less photorealistic appearances (as indicated
in [7]) and have limited spatial resolution (640× 480 or 1024× 768). Due to these data constraints,
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Figure 4: Evaluation on indoor datasets with lower quality images.
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Figure 5: Evaluation on a complex scene from LERF datasets (left). Evaluation on a scene with
multiple instances of a same class (right).

our method sometimes confuses labels with similar appearances. However, we can see that our
method still outperforms LERF by successfully segmenting more labels.

Complex scenes. Fig. 5 (left) shows the segmentation of one challenging sample from the LERF
dataset, where the scene has complex geometry as well as many objects of varying sizes. It can be
observed that LERF cannot segment most objects due to the ambiguities of CLIP features while our
method can segment more objects correctly with more precise boundaries. Fig. 5 (right) shows a
scene with multiple instances of a same class. Since instances of the same class often share similar
appearance, texture, etc., they also have similar DINO features. As a result, FDA will not mistakenly
segment them into different classes. The RDA loss will further help by assigning all these instances
to the same text label. In the experiment, we observed that our method successfully segments all
three apples into the same class with accurate boundaries.
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Figure 6: Evaluation on rephrased texts.
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Segmentation with different text prompts. We conduct experiments to segment scenes with
different text prompts. In the experiments, we replaced the original texts with different languages
(e.g., Portuguese egg tart -> Pastel de Nata), names (e.g., dressing doll -> Barbie), and actions (e.g.,
hand soap -> wash hand, black headphone -> listen to music). As Fig. 6 shows, with the rephrased
text prompts, our method can still segment the scenes reliably. The experiments are well aligned with
the quantitative experiments as shown in Tab. 3.

Table 3: Evaluation on rephrased texts.
mIoU mAP mIoU mAP

original 88.2 97.3 89.3 96.3
rephrased 89.3 97.2 88.4 96.6

D More Results

We show more segmentation visualizations of our method in Fig. 7 (bed), Fig. 8 (sofa), Fig. 9 (lawn),
Fig. 10 (room), Fig. 11 (bench), Fig. 12 (table), Fig. 13 (office desk), Fig. 14 (blue sofa), Fig. 15
(snacks), and Fig. 16 (covered desk). The quantitative results are listed in Tab. 4.

Table 4: Quantitative results.
bed sofa lawn room bench

mIoU mAP mIoU mAP mIoU mAP mIoU mAP mIoU mAP

89.5 96.7 74.0 91.6 88.2 97.3 92.8 98.9 89.3 96.3

table office desk blue sofa snacks covered desk
mIoU mAP mIoU mAP mIoU mAP mIoU mAP mIoU mAP

88.8 96.5 91.7 96.2 82.8 97.7 95.8 99.1 88.6 97.2
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Figure 7: bed.
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Figure 8: sofa.
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Figure 9: lawn.
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Figure 10: room.
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Figure 11: bench.
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Figure 12: table.
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Figure 13: office desk.
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Figure 14: blue sofa.
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Figure 15: snacks.
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Figure 16: covered desk.
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