
A Benchmark Task Details

This section provides details on each of the benchmark tasks in TableShift. While we describe the
data source for each task, we emphasize that TableShift does not host or distribute the data; each data
source is publicly available (some require training or authorization, but all are available to the public).
Based on our review of the datasets, we believe that the datasets do not contain personally identifiable
information, offensive content, or proprietary information. For data collected from human subjects,
the conditions of collection and the ethics approval under which the data were collected are described
in the documentation associated with each dataset.

A.1 Food Stamps

Background: Food insecurity is a problem affecting more than 10% of households (13.5 million)
across the United States in 20214. Various programs exist to provide families and individuals with
supplemental income to reduce food insecurity. However, diminished social support services in
many U.S. states limit the ability of outreach providers to ensure all aligible individuals are receiving
available benefits. Low-cost, low-friction screening tools powered by machine learning models might
provide useful information whether an individual is receiving food stamps in order to identify lilely
candidates for both food security programs (“food stamps”) and as a proxy for eligibility and need
for additional support services.

Data Source: We use person-level data from the American Community Survey (ACS)5. We filter the
data for low-income adults aged 18-62 (i.e. selecting only adults below the social security eligibility
age) in households with at least one child in the household. We use an income threshold of $30000
based on the U.S. poverty threshold for a family with one child.

Distribution Shift: In the United States, food stamps programs are managed at the state level. We
apply domain shift over states, at the regional level. Specifically, we use the ACS census region as the
split. The ACS includes 10 regions, which are: Puerto Rico; New England (Northeast region); Middle
Atlantic (Northeast region); East North Central (Midwest region); West North Central (Midwest
region); South Atlantic (South region); East South Central (South region); West South Central (South
Region); Mountain (West region); Pacific (West region). We use East South Central (South region) as
the holdout domain for this task.

This split parallels the case where a system is trained on a subset of states in a specific geographic
area (perhaps in a localized study that draws participants or respondents from some geographic areas,
but excludes other areas), and then applied to another. It also parallels the case where there is an
interest in simulating the effect of a policy change. Finally, it mirrors the challenge of predicting an
effect of a policy outcome (food stamps eligibility/recipiency) where differences in the underlying
policy (different programs or eligibility across states) are a confounder.

A.2 Income

Background: Income is a widely-used measure of social stability. In addition, income is often used
as a criteria for various social support programs. For example, in the United States, income is used
to measure poverty, and can be used determine eligibility for various social services such as food
stamps and medicaid. Income prediction has obvious commercial utility. Finally, income prediction
has a rich and unique history in the machine learning community, dating back to the “adult income”
census dataset [51, 24].

Data Source: We use person-level data from the American Community Survey (ACS), as described
in Task A.1. However, for the income prediction task, we use different filtering. We use the filtering
described in [24], which filters for adults aged at least 16 years old, who report working more than
zero hours in the past month with reported income at least $100.00. We use an income threshold of
$56, 000, which is the median income, as in [33].

Distribution Shift: Income patterns can vary in many ways. Here, we focus on domain shift at
the regional level. We use the same splitting variable (US Census Region) described in Task A.1.

4
https://www.ers.usda.gov/topics/food-nutrition-assistance/food-security-in-the-u-

s/key-statistics-graphics/

5
https://www.census.gov/programs-surveys/acs/about.html
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However, for the income prediction task, we use New England (Northeast region) as the held-out
domain.

A.3 Public Coverage

Background: People use health-care services to diagnose, cure, or treat disease or injury; to improve
or maintain function; or to obtain information about their health status and prognosis [68]. In
the United States, health insurance is a critical component of individuals’ ability to access health
care. Public health insurance exists, among other reasons, to provide affordable and accessible
health insurance options for individuals not willing or able to purchase insurance through the private
insurance market. However, not all individuals have health insurance; only 88% of individuals in
the U.S had health insurance in 2019 according to the National Health Interview Survey (NHIS).
Increasing the proportion of people in the United States with health insurance is one of the four
healthcare objectives of the U.S. Department of Health and Human Services “Healthy People 2030”
initiative6. In this task, the goal is to predict whether an individual is covered by public health
insurance.

Data Source: We use person-level data from the American Community Survey (ACS), as described
in Task A.1. However, for this task, we filter the data to include only low-income individuals (those
with income less than $30, 000) who are below the age of 65 (at which age all persons in the United
States are covered by Medicare). This is the same filtering used in [24, 33].

Distribution Shift: Many factors can influence individuals’ ability to access or utilize health
insurance and healthcare services. These include spoken language skills, mobility (whether an
individual has recently relocated), education, ease of obtaining services, and discriminatory practices
among providers [68]. We focus on disability status, as this is a widely-known factor in obtaining
access to adequate health care [68]. Disability is also a particularly realistic factor in that disability
status is likely to contribute to nonresponse to certain forms of data collection for many tabular data
sources (including the four methods used to collect the ACS data: internet, mail, telephone, and
in-person interviews) that can disadvantage persons with certain disabilities and decrease likelihood
of participation or cause them to be excluded from study population.

For this task, the holdout domain Dtest consists of persons with disabilities; the training domain Dtrain

consists of persons who do not have disabilities. This simulates a situation where data collection
practices excluded disabled persons, potentially through the factors described above.

A.4 ACS Unemployment

Background: Unemployment is a key macroeconomic indicator and a measure of individual well-
being. Unemployment is also linked to a variety of adverse outcomes, including socioeconomic,
psychological, and health impacts [10, 16, 14, 64].

Data Source: We use person-level data from the American Community Survey (ACS), as described
in Task A.1. However, for this task, we filter the data to include only individuals over the age of
18 and below the age of 62 (at which age persons in the United States are eligible to receive Social
Security income).

Distribution Shift: Many factors are known to be related to unemployment. We focus on a form of
subpopulation shift, and use education level as the domain split. We use individuals with educational
attainment of GED (high school diploma equivalent) or higher as the training population Dtrain, and
individuals without high school-level education as Dtest. This simulates a survey collection with a
biased sample that systematically excludes such persons.

A.5 Diabetes

Background: Diabetes is a chronic disease that affects at least 37.7million people in the United States
(11.3% of the U.S population); it is estimated that an additional 96 million adults have prediabetes.7
Diabetes increases the risk of a variety of other health conditions, including stroke, kidney failure,

6
https://health.gov/healthypeople/objectives-and-data/browse-objectives/health-

care-access-and-quality/increase-proportion-people-health-insurance-ahs-01

7
https://www.cdc.gov/diabetes/health-equity/diabetes-by-the-numbers.html
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renal complications, peripheral vascular disease, heart disease, and death. The economic cost of
diabetes is also significant: The total estimated cost of diagnosed diabetes in 2017 is $327 billion [7].
Care for people with diagnosed diabetes accounts for 1 in 4 health care dollars in the U.S. – more
than half of that expenditure is directly attributable to diabetes [7].

Early detection of diabetes thus stands to have a significant impact, allowing for clinical intervention
and potentially reducing the prevalence of diabetes. Further, even prediabetes is ackowledged to have
significant impacts both on health outcomes and quality of life [7], and early detection if high diabetes
risk could serve to identify prediabetic individuals. There exists a considerable prior literature on
models for early diabetes prediction, e.g. [89, 67, 42]

Data Source: We use data provided by the Behavioral Risk Factors Surveillance System (BRFSS)8.
BRFSS is a large-scale telephone survey conducted by the Centers of Disease Control and Prevention.
BRFSS collects data about U.S. residents regarding their health-related risk behaviors, chronic health
conditions, and use of preventive services. BRFSS collects data in all 50 states as well as the District
of Columbia and three U.S. territories. BRFSS completes more than 400,000 adult interviews each
year, making it the largest continuously conducted health survey system in the world. BRFSS annual
survey data from 2017-2021 is currently available from the CDC.

The BRFSS is composed of three components: ’fixed core’ questions, asked every year, ’rotating
core’, asked every other year, and ’emerging core’. Since some of our features come from the rotating
core, we only use every-other-year data sources; otherwise many features would be empty for the
intervening years.

For the Diabetes prediction task, we use a set of features related to several known indicators for dia-
betes derived from [89]. These risk factors are general physical health, high cholesterol, BMI/obesity,
smoking, the presence of other chronic health conditions (stroke, coronary heart diseas), diet, alcohol
consumption, exercise, household income, marital status, time since last checkup, education level,
health care coverage, and mental health. For each risk factor, we extract a set of relevant features from
the BRFSS foxed core and rotating core questionnaires. We also use a shared set of demographic
indicators (race, sex, state, survey year, and a question related to income level). The prediction target
is a binary indicator for whether the respondent has ever been told they have diabetes.

Distribution Shift: While diabetes affects a large fraction of the overall population, diabetes risk
varies according to several demographic factors. One such factor is race/ethnicity [42, 17], with all
other race-ethnicity groups reported in the 2022 CDC National Diabetes Statistics Report displaying
higher risk than ‘White non-Hispanic’ individuals[17]. Compounding this issue, it has been widely
acknowledged that health studiy populations tend to be biased toward white European-Americans
[23, 69, 26, 44]. As a result, these studies have tended to focus on risk factors affecting white
populations at the expense of identifying risk factors for nonwhite populations [44], despite distinct
differences in how these populations are affected by various disease risk factors, differences in
individuals’ genetic factors, and differences in how they respond to medication across racial and
ethnic populations. This disparity is a contributing factor to race-based disparities in treatment for
diabetes [21].

In order to simulate the domain gap induced by these real-world differences in study vs. deployment
populations, we partition the benchmark task by race/ethnicity. We use “White non-Hispanic”-
identified individuals as the training domain, and all other race/ethnicity groups as the target domain.

A.6 Hypertension

Background: Hypertension, or systolic blood pressure (typically systolic pressure 130 mm Hg or
higher or diastolic 80 or higher) affects nearly half of Americans [3]. Hypertension is sometimes
called a “silent killer” because in most cases, there are no obvious symptoms of hypertension [3];
this would make an accurate at-risk model of hypertension useful. When left untreated, hypertension
is associated with the strongest evidence for causation of all risk factors for heart attack and other
cardiovascular disease [32]. Hypertension also increases the risk of stroke, kidney damage, vision
loss, insulin resistance, and other adverse outcomes [4]. While existing tools have attempted to
predict blood pressure without the use of a cuff (the gold-standard measurement of blood pressure),

8
https://www.cdc.gov/brfss/index.html
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these tools are still significantly less accurate (see e.g. [78, 28]), and there is an ongoing need for
effective blood pressure measurement.

Data Source: We use BRFSS as the raw data source, as described in Task A.5 above. However,
for the hypertension prediction task, we use features related to the following set of risk factors for
hypertension via [65]: Age, family history and genetics, other medical conditions (e.g. diabetes,
various forms of cancer), race/ethnicity, sex, and social and economic factors (income, employment
status). We collect all survey questions related to these risk factors and use them as the predictors
for this task, along with a shared set of demographic indicators (race, sex, state, survey year, and a
question related to income level).

Distribution Shift: We use BMI category as the domain splitting variable. Individuals with BMI
identified as “overweight” or “obese” are in the held-out domain, and those identified as “under-
weight” or “normal weight” are in the training domain. This simulates a model being deployed
under subpopulation shift, where the target population has different (higher) BMI than the training
population.

A.7 Voting

Background Understanding participation in elections is a critical task for policymakers, politicians,
and those with an interest in democracy. In the 2020 United States presidential election, for example,
voter turnout reached record levels, but it is estimated that only 66.8% of eligible individuals voted
according to the U.S. Census9. Additionally, so-called “likely voter models,” that predict which
individuals will vote in an electio, are widely acknowledged as critical to polling and campaigning in
U.S. politics. Predicting whether an individual will vote is notoriously difficult; one reason for this
challenge is that domain shift is a fundamental reality of such modeling (presidential elections only
occur every four years, after which significant political and demographic changes occur prior to the
next presidential election).

The prediction target for this dataset is to determine whether an individual will vote in the U.S
presidential election, from a detailed questionnaire.

Data Source We use data from the American National Election Studies (ANES)10. Since 1948,
ANES has conducted surveys, usually administered as in-person interviews, during most years of
national elections. This series of studies, known as the ANES “Time Series,” constitutes a pre-election
interview and a post-election interview during years of Presidential elections, along with other data
sources. Topics cover voting behavior and the elections, together with questions on public opinion
and attitudes.

We use features derived from the ANES Time Series. From the pool of over 500 questions in the
ANES Time Series, we extract a set of features related to Americans’ voting behavior, including their
social and political attitudes, opinions about elected leaders, and media consumption habits.

Domain Shift We introduce a domain split by geographic region. We use the ANES Census Region
feature, where the out-of-domain region is the region representing the southern United States (AL,
AR, DE, D.C., FL, GA, KY, LA, MD, MS, NC, OK, SC,TN, TX, VA, WV). This simulates a study in
which voter data is collected in one part of the country, and the goal is to infer voting behavior in
another geographic region; this is a common occurence with polling data, particularly during the U.S.
primaries, which occur over a period of several weeks at the state level.

A.8 Childhood Lead Exposure

In this task, the goal is to identify children 18 or younger with elevated lead blood levels.

Background: Lead is a known environmental toxin that has been shown to affect deleteriously
the nervous, hematopoietic, endocrine, renal, and reproductive systems11. In young children, lead
exposure is a particular hazard because children more readily absorb lead than adults, and children’s
developing nervous systems also make them more susceptible to the effects of lead. However, most

9
https://www.census.gov/library/stories/2021/04/record-high-turnout-in-2020-

general-election.html
10
https://electionstudies.org/

11
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_PBCD.htm
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children with any lead in their blood have no obvious immediate symptoms.12 The risk for lead
exposure is disproportionately higher for children who are poor, non-Hispanic black, living in large
metropolitan areas, or living in older housing.

The CDC sets a national standard for blood lead levels in children. This value was established
in 2012 to be 3.5 micrograms per decileter (µg/dL) of blood.13 This value, called the blood lead
reference value (BLRV) for children, corresponds to the 97.5 percentile and is intended to identify
lead exposure in order to allow parents, doctors, public health officials, and communities to act early
to reduce harmful exposure to lead in children. Thus, early prediction of childhood lead exposure,
as well as accurate just-in-time prediction for children where obtaining actual laboratory blood test
results is too costly or infeasible, is of high utility to many stakeholders.

Early detection of lead exposure can trigger many potentially impactful interventions, including:
environmental and home analysis for early identification of sources of lead; testing and treatment
for nutritional factors influencing susceptibility to lead exposure (such as calcium and iron intake);
developmental analysis and support; and additional medical diagnostic tests.14

Using the laboratory blood test results from the NHANES (see ‘Data Source’ below), the task is to
identify whether a respondents’ blood level exceeds the BLRV using only questionnaire data. We
use respondents of age 18 or younger as the target population (note that respondent data for ages
1-5 is restricted and thus not available to our benchmarking study). This simulates the prediction
of expensive and time-consuming laboratory testing using a quick and inexpensive questionnaire.
Laboratory testing is conducted by the CDC at the National Center for Environmental Health, Centers
for Disease Control and Prevention, Atlanta, GA15

Data Source: The data are drawn from the CDC National Health and Nutrition Examination Survey
(NHANES)16, a program of the National Center for Health Statistics (NCHS) within the Centers
for Disease Control and Prevention (CDC). NHANES is a program of studies designed to assess
the health and nutritional status of adults and children in the United States. The survey is unique
in that it combines extensive interviews with physical examinations and high-quality laboratory
testing. The NHANES interview includes demographic, socioeconomic, dietary, and health-related
questions. The survey examines a nationally representative sample of about 5,000 persons each year.
The examination component consists of medical, dental, and physiological measurements, as well as
laboratory tests administered by highly trained medical personnel.

Findings from NHANES are used to determine the prevalence of major diseases and risk factors for
diseases; to assess nutritional status and its association with health promotion and disease prevention;
and are the basis for national standards for such measurements as height, weight, and blood pressure.
Data from this survey are widely used in epidemiological studies and health sciences research.

We use only questionnaire-based NHANES features as the predictors, but use a prediction target from
the NHANES’ lab-based component. This simulates the development of a screening questionnaire to
predict blood lead levels.

Distribution Shift: We use poverty as a domain-splitting variable. Children from low-income
households and those who live in housing built before 1978 are at the greatest risk of lead exposure17.
However, due to factors mentioned above, impoverished populations can be less likely to be included
in medical studies, including those that may involve in-person visits for blood laboratory testing,
which is the primary method for lead exposure detection. We use the poverty-income ratio (PIR)
measurement in NHANES. The PIR is calculated by dividing total annual family (or individual)
income by the poverty guidelines specific to the survey year. The Department of Health and Human
Services (HHS) poverty guidelines are used as the poverty measure to calculate this ratio. These
guidelines are issued each year, in the Federal Register, for determining financial eligibility for certain
federal programs, such as Head Start, Supplemental Nutrition Assistance Program (SNAP), Special

12
https://www.cdc.gov/nceh/lead/prevention/blood-lead-levels.htm

13
https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm

14
https://www.cdc.gov/nceh/lead/advisory/acclpp/actions-blls.htm

15A detailed description of the methods and procedures used for laboratory testing for lead in the 2017-
2018 NHANES survey is given at https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_PBCD.htm; similar
descriptions are available for each year of data collection.

16
https://wwwn.cdc.gov/Nchs/Nhanes/

17
https://www.cdc.gov/nceh/lead/prevention/populations.htm
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Supplemental Nutrition Program for Women, Infants, and Children (WIC), and the National School
Lunch Program. The poverty guidelines vary by family size and geographic location (with different
guidelines for the 48 contiguous states and the District of Columbia; Alaska; and Hawaii).

The training domain is composed of individuals with PIR of at least 1.3; persons with PIR  1.3
are in the held-out domain. The threshold of 1.3 is selected based on the PIR categorization used in
NHANES, where PIR  1.3 is the lowest level.

A.9 Hospital Readmission

Background: Effective management and treatment of diabetic patients admitted to the hospital can
have a significant impact on their health outcomes, both short-term and long-term [84]. Several
factors can affect the quality of treatment patients receive [82]. One of the costliest and potentially
most adverse outcomes after a patient is released from the hospital is for that patient to be readmitted
soon after their initial release; this can both be a sign of a condition that is not improving, and, at
times, ineffective initial treatment. Thus, predicting the readmission of patients is a priority from
both a medical and economic perspective.

In this task, the goal is to predict whether a diabetic patient is readmitted to the hospital within 30
days of their initial release.

Data Source: We use the dataset provided by [82]18. The dataset represents 10 years (1999-2008) of
clinical care at 130 US medical facilities, including hospitals and other networks. It includes over 50
features representing patient and hospital outcomes. The dataset includes observations for records
which meet the following criteria: (1) It is an inpatient encounter (a hospital admission). (2) It is
a diabetic encounter, that is, one during which any kind of diabetes was entered to the system as a
diagnosis. (3) The length of stay was at least 1 day and at most 14 days. (4) Laboratory tests were
performed during the encounter. (5) Medications were administered during the encounter.

The data contains such attributes as patient number, race, gender, age, admission type, time in hospital,
medical specialty of admitting physician, number of lab test performed, HbA1c test result, diagnosis,
number of medication, diabetic medications, number of outpatient, inpatient, and emergency visits in
the year before the hospitalization, etc. We use the full set of features in the initial dataset, which is
described in [82].

Distribution Shift: Patients can be (re)admitted to hospitals from a variety of sources. The source
of a patient admission canbe correlated with many demographic and other risk factors known to be
related to health outcomes (e.g. race, income level, etc.).

We use the “admission source” as the domain split for TableShift. There are 21 distinct admission
sources in the dataset, including “transfer from a hospital”, “physician referral”, etc. After conducting
a sweep over various held-out values, we use “emergency room” as the held-out domain split. This
matches a potential scenario where a model is constructed using a variety of admission sources, but a
patient from a novel source is added; it is also possible e.g. that data from emergent patients could not
be collected when training a readmission model. We note that this domain split provides 20 unique
training subdomains (the other admission sources), which is the largest |Dtrain| in TableShift.

A.10 Sepsis

Background: Sepsis is a life-threatening condition that arises when the body’s response to infection
causes injury to its own tissues and organs. Sepsis is a major public health concern with significant
morbidity, mortality, and healthcare expenses; each year, 1.7 million adults in America develop sepsis,
of which at least 350, 000 die during their hospitalization or are discharged to hospice. The CDC
estimates that 1 in 3 people who dies in a hospital had sepsis during that hospitalization19.

Early detection and antibiotic treatment of sepsis improve patient outcomes. While advances have
been made in early sepsis prediction, there is a fundamental unmet clinical need for improved
prediction [75]. The goal in this task is to predict, from a set of fine-grained ICU data (including

18
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-

2008

19
https://www.cdc.gov/sepsis/what-is-sepsis.html
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laboratory measurements, sensor data, and patient demographic information), whether a patient will
experience sepsis onset within the next 6 hours.

Data Source: We use the data source from the PhysioNet/Computing in Cardiology Challenge
[75], which was designed by clinicians and other healthcare experts to facilitate the development of
automated, open-source algorithms for the early detection of sepsis from clinical data. The dataset is
derived from ICU patient records for over 60, 000 patients from two hospitals with up to 40 clinical
variables collected during each hour of the patient’s ICU stay.

Distribution Shift: We explored multiple domain shifts for this dataset; we note that, in particular,
splitting domains by hospital did not lead to a shift gap for tuned baseline models (although there
is a third, held-out hospital that was used in the original challenge for this dataset, it is not publicly
available and is not part of the TableShift benchmark). Instead, we use “length of stay” as a domain
shift variable. We bifurcate the dataset based on how long a patient has been in the ICU, with patients
having been in ICU for  47 hours in the training domain, and patients having been in ICU more
than 47 hours in the test domain. This matches a scenario where a medical model is trained only
on observed stays of a fixed duration (no more than two full days), but then used beyond its initial
observation window to predict sepsis in patients with longer stays. We note that length of stay of 47
hours corresponds to the 80th percentile of the data for that feature.

A.11 ICU Patient Length-of-Stay

Background: According to [73], length of hospital stay is, along with patient mortality, “the most
important clinical outcome” for an ICU admission. Accurately predicting the length of stay of a
patient can aid in assessment of the severity of a patient’s condition. Of particular clinical relevance,
making these predictions early and with a non-zero time gapbetween the prediction and the outcome
is of real-world importance: predictions must be made sufficiently early such that a patient’s treatment
can be adjusted to potentially avoid a negative outcome. The importance of this prediction task
for real-world clinical care is underscored by the many previous works in the medical literature
addressing this prediction topic (see e.g. [40, 73, 88].

In our benchmark, the specific task is to predict, from the first 24 hours of patient data, an ICU
patient’s stay will exceed 3 days (a binary indicator for whether length of stay > 3). We note that this
is directly adopted from MIMIC-extract.

Data Source: We use the MIMIC-extract dataset [88]. MIMIC-extract is an open-source pipeline
for transforming raw electronic health record (EHR) data from the Medical Information Mart for
Intensive Care (MIMIC-III) dataset [45].

MIMIC-III, the underlying data source, captures over a decade of intensive care unit (ICU) patient
stays at Beth Israel Deaconess Medical Center in Boston, USA. An individual patient might be
admitted to the ICU at multiple times in the dataset; however, MIMIC-extract focuses on each subject’s
first UCI visit only, since those who make repeat visits typically require additional considerations with
respect to modeling and care [88]. MIMIC-extract includes all patient ICU stays in the MIMIC-III
database that where the following criteria are met: (i) the subject is an adult (age of at least 15 at
time of admission), (ii) the stay is the first known ICU admission for the subject, and (iii) the total
duration of the stay is at least 12 hours and less than 10 days.

MIMIC-extract is designed by EHR domain experts with clinical validity (of data) and relevance
(of prediction tasks) in mind. In addition to the filtering described above, MIMIC-extract’s pipeline
includes steps to standardize units of measurement, detect and correct outliers, and select a curated set
of features that reduce data missingness in the preprocessed data; for details on the steps taken by the
original authors to achieve this, see [88]. We use the preprocessed version of MIMIC-extract made
available by the authors 20. This includes the static demographic variables, alongside the time-varying
vitals and labs described in [45]. Because event he preprocessed data contains missing values, we use
the authors’ default methods for handling missing data.

The resulting dataset contains approximately 24, 000 observations.

20The publicly-accessible dataset (which requires credentialed MIMIC-III access through PhysioNet due to
privacy restrictions) is described at https://github.com/MLforHealth/MIMIC_Extract
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Distribution Shift: We split the domains by health insurance type. We train on patients with all
insurance types except Medicare, and use patients with Medicare insurance as the target domain.

A.12 ICU Patient In-Hospital Mortality

Background: As discussed in the background of §A.11, hospital mortality is considered to be one
of the most important outcomes for ICU patients. The clinical relevance of hospital mortality is
perhaps even more clear than for length-of-stay prediction, as preventing patient mortality is one of
the primary goals for many patients. Again, as discussed in §A.11, making this prediction early is of
particular importance, as early predictions can provide a proxy for overall patient risk and can be
used to intervene to avoid mortality.

We note that in this task, we are predicting hospital morality (that the patient dies at any point
during this visit, even if they are discharged from the ICU to another unit in the hospital). Hospital
mortality events are distinct from (and a superset of) ICU mortality events. As mentioned above, the
importance of this prediction task for real-world clinical care is underscored by the many previous
works addressing this prediction topic (see e.g. [40, 73, 88].

Data Source: This task uses the same data source and feature set from MIMIC-extract described
above in §A.11.

Distribution Shift: We split the domains by health insurance type. We train on patients with
all insurance types except { Medicare, Medicaid } and use patients with { Medicare, Medicaid }
insurance as the target domain.

A.13 FICO Home Equity Line of Credit (HELOC)

Background: FICO (legal name: Fair Isaac Corporation) is a US-based company that provides credit
scoring services. The FICO score, a measure of consumer credit risk, is a widely used risk assessment
measure for consumer lending in the united states.

The Home Equity Line of Credit (HELOC) is a line of credit, secured by the applicant’s home.
A HELOC provides access to a revolving credit line to use for large expenses or to consolidate
higher-interest rate debt on other loans such as credit cards. A HELOC often has a lower interest
rate than some other common types of loans. To assess an applicant’s suitability for a HELOC, a
lender evaluates an applicants’ financial background, including credit score and financial history. The
lender’s goal is to predict, using this historical customer information, whether a given applicant is
likely to repay a line of credit and, if so, how much credit should be extended.

In addition to desiring accurate credit risk predictions for their overall utility for both lenders and
borrowers, lending institutions are incentivized (and, in some cases, legally required) to use models
which achieve some degree of robustness: institutions can face severe penalties when borrowers are
not treated equitably (e.g. [85]).

Data Source: We use the dataset from the FICO Commmunity Explainable AI Challenge21, an
open-source dataset containing features derived from anonymized credit bureau data. The binary
prediction target is an indicator for whether a consumer was 90 days past due or worse at least once
over a period of 24 months from when the credit account was opened. The features represent various
aspects of an applicant’s existing financial profile, including recent financial activity, number of
various transactions and credit inquiries, credit balance, and number of delinquent accounts.

Distribution Shift: It is widely acknowledged that the dominant approach to credit scoring using
financial profiles can unintentionally discriminate against historically marginalized groups (credit
bureau data do not include explicit information about race [59]). For example, since FICO scores are
based on payment history and credit use and many marginalized groups in the United States have
lower or less reliable incomes, these marginalized groups can suffer from systematically lower credit
scores [61, 72, 8, 59]; this has been referred to as the “credit gap” [49, 22]. In particular, debt and
savings level play a role in credit scores and can systematically disadvantage Black and Hispanic
applicants, even when demographic data are not formally used in the credit rating process [61, 59].

21
https://community.fico.com/s/explainable-machine-learning-challenge
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For this task, we partition the dataset based on the ‘External Risk Estimate’, a feature in the dataset
corresponding to the risk estimate assigned to an applicant by a third-party service. This estimate
was identified in the original FICO explanable ML challenge 22. We use individuals with a high
external risk estimate (where “high” estimate is defined as exceeding an external risk estimate of 63,
a threshold identified in the original challenge-winning model linked above) as the training domain,
and individuals with estimate  63 as the held-out domain.

A.14 College Scorecard Degree Completion Rate

Background: Higher education is increasingly critical to securing strong job and income opportu-
nities for persons in the United States. At the same time, the cost of obtaining a four-year college
degree is extremely high: The average cost of college* in the United States is $35, 551 per student
per year, including books, supplies, and daily living expenses and this cost has more than doubled in
the 21st century alone, with an annual growth rate of 7.1% [39].

However, not all institutions have similar outcomes for students. Graduation rates across institutions
in the U.S. vary widely, and failure to complete a degree can leave a student with significant debt and
a reduced ability to repay it. Understanding factors related to degree completion is an area of active
research.

For this task, our goal is to predict whether an institution has a low completion rate, based on other
characteristics of that institution. While the definition of a “low” completion rate is ultimately
subjective and context-dependent, we use a thredhold of 50%, which is approximately equivalent
to the median graduate rate across the institutions in the dataset. We use the completion rate for
first-time, full-time students at four-year institutions (150% of expected time to completion/6 years).

Data Source: We use the College Scorecard23. The College Scorecard is an institution-level dataset
compiled by the U.S. Department of Education from 1996-present. The College scorecard includes
detailed institutional factors, including information about each institutions’ student population, course
offerings, and outcomes.

Distribution Shift: Institutions vary widely in their profiles, student populations, educational
approach, and target industries or student pathways. We partition universities according to the
CCBASIC variable24, which gives the Carnegie Classification (Basic)25. This classification uses
a framework developed by the Carnegie Commission on Higher Education in the early 1970s to
support its research program. Partitioning our data according to this variable measures the robustness
over institutional subpopulations, and is thus a form of subpopulation shift. We use the following
set of institutions as the target domain (all other institutional types are in the training domain):
’Special Focus Institutions–Other special-focus institutions’, ’Special Focus Institutions–Theological
seminaries, Bible colleges, and other faith-related institutions’, "Associate’s–Private For-profit 4-year
Primarily Associate’s", ’Baccalaureate Colleges–Diverse Fields’, ’Special Focus Institutions–Schools
of art, music, and design’, "Associate’s–Private Not-for-profit", "Baccalaureate/Associate’s Colleges",
"Master’s Colleges and Universities (larger programs)". Exact definitions of each institution class are
available via the Carnegie Commission on Higher Education26.

A.15 ASSISTments Tutoring System Correct Answer Prediction

Background: Machine learning systems are increasingly being adopted in digital learning tools for
students of all ages. The ASSISTments tutoring platform27 is a free, web-based, data-driven tutoring
platform for students in grades 3-12. As of 2020, ASSISTments has been used by approximately
60,000 students with over 12 million problems solved [27]. ASSISTments also periodically releases
open-source data snapshots from their platform to support educational research.

22
https://community.fico.com/s/blog-post/a5Q2E0000001czyUAA/fico1670

23
https://collegescorecard.ed.gov

24The data dictionary for the College Scorecard is available at https://collegescorecard.ed.gov/
assets/CollegeScorecardDataDictionary.xlsx

25
https://carnegieclassifications.acenet.edu

26
https://carnegieclassifications.acenet.edu

27
https://new.assistments.org
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Data Source: We use the open-source ASSISTments 2012-2013 dataset. This is a dataset from
school year 2012-2013 which contains submission-level features (each row in the dataset represents
one submission by a student attempting to answer a problem on the ASSISTments tutoring platform).
In addition to containing student-, problem-, and school-level features, the dataset also contains affect
predictions for students based on an experimental affect detector implemented in ASSISTments.
(These affect predictions are intended to be useful in identifying affective states such as boredom,
confusion, frustration, and engaged problem-solving behavior).

Distribution Shift: We partition the datasets by school. Approximately 700 schools are in the
training set, and 10 schools are used as the target distribution. This simulates the process of deploying
ASSISTments at a new school.

B Dataset Availability

All datasets in TABLESHIFT meet the definition of “available and accessible” as described in [66];
namely, the data can be obtained without a personal request to the PI. All datasets are obtained from
reliable, high-quality sources (United States government agencies, UCI Machine Learning Repository,
Kaggle). We selected high-quality data sources which we expect to ensure keep the relevant data
available for the foreseeable future. We provide a single script that can be used to download and
preprocess TABLESHIFT data for all tasks in the git repository.

The data sources used to construct the TABLESHIFT benchmark datasets vary, and necessarily so
do the restrictions or agreements required to access this data. All data sources have an established
credentialization procedure that is open to the public, provides rapid access to the data, and is
expected to be maintained for many years. An overview of the restrictions for each dataset is given
below. A link to the data use agreement or credentialization procedure for each dataset marked “open
credentialized access” is available in the README of our github repo; we will maintain this list over
time if the access agreements change.

Table 2: Dataset availability.

Task Public
Access

Open Credentialized
Access

Source

ASSISTments X Kaggle
College Scorecard X Department of Education
ICU Hospital Mortality X MIMIC Clinical Database
Hospital Readmission X UCI Machine Learning Repository
Diabetes X Centers for Disease Control/BRFSS
ICU Length of Stay X MIMIC Clinical Database
Voting X American National Election Survey
Food Stamps X American Community Survey
Unemployment X American Community Survey
Income X American Community Survey
FICO HELOC X FICO
Public Health Ins. X American Community Survey
Sepsis X PhysioNet
Childhood Lead X Centers for Disease Control/NHANES
Hypertension X Centers for Disease Control/BRFSS

C Related Work

C.1 Distribution/Domain Shift

The (non)robustness of modern machine learning models to distribution shift has been extensively
studied, but primarily in non-tabular domains, such as vision and language [63, 62]. Through the use
of diverse and high-quality benchmarking suites, several recent works have demonstrated that many
existing robust learning or domain generalization methods do not outperform standard supervised
training such as SGD [38, 50]. Recent evidence has also suggested that in-distribution (ID) test
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performance is a very strong predictor of out-of-distribution (OOD) test performance in the domains
of image classification [63], language modeling [55], and question answering [9], but whether these
relationships hold for tabular data is unknown.

Several families of methods have been proposed to address this sensitivity to distribution shifts,
including methods for distributional robustness [77, 53] and domain generalization [1, 6, 91, 90, 54,
46] . However, these methods are largely evaluated in non-tabular domains, and several “standard”
domain generalization methods have never been applied to tabular data, to our knowledge. Formal
analyses of robustness to any kind of shift in the tabular domain have been lacking [33].

C.2 Tabular Data Modeling

Tabular data – data defined by structured, heterogeneous features – is common in many real-world
applications, including medical diagnosis, finance, social science, and recommender systems [15, 46,
79]. In many respects, tabular data is different from the other modalities where deep learning models
have had great success in the past decade. In contrast to these other modalities, where deep learning
is the undisputed state of the art, deep learning-based models have tended to underperform on tabular
data, and the state of the art is often considered to be tree-based ensemble models, such as XGBoost,
LightGBM, or CatBoost [15, 36, 79, 33].

Deep learning-based models have been proposed for tabular data modeling, including carefully-
regularized deep multilayer perceptrons (MLPs) [46], tabular variants of ResNet [36] and Transformer
architectures [43, 36, 80], and differentiable tree-inspired models [71]. However, it is unclear whether
there is any benefit from these sophisticated architectures, which are often derived from models which
were designed for non-tabular tasks. Subsequent evaluations of deep learning-based tabular data
models have often shown tree-based models to achieve superior performance [79, 15, 33]. However,
their robustness to distribution shift has not been thoroughly evaluated (a notable exception is [33],
which strictly evaluates subgroup robustness).

C.3 Benchmarking for Machine Learning

Benchmarking – the use of standardized, publicly-available, high-quality datasets to evaluate perfor-
mance on one or more tasks – is a critical practice contributing to progress the machine learning [56].
Distribution shift benchmarks in particular have been critical in assessing progress in the robustness
of vision and language models, e.g. [50, 38, 81]. Because these benchmarks often require interfacing
with many distinct data sources, successful and widely-used benchmarks also typically include a
lightweight software API for interfacing with benchmarking datasets in a consistent manner28. In
the IID setting, benchmark datasets have also been crucial to assessing and driving progress, such
as ImageNet [29] for vision, LibriSpeech [70] for speech, AudioSet [34] for audio classification, or
GLUE for NLP [87]. Critically, evaluations have shown that reuse of these high-quality benchmarks
such as CIFAR-10, ImageNet, and even widely-used Kaggle datasets has not led to “overfitting” to
performance on the benchmarks [76], and, in fact, progress on these benchmarks generalizes beyond
the benchmark tasks [74].

High-quality benchmarks for tabular data are lacking, as has been noted in many previous works
[36, 15, 33, 37, 79, 58, 35]. Existing datasets used for de facto tabular data “benchmarking” are often
of low quality. For example, the German Credit dataset contains only 1k observations; the COMPAS
and Adult datasets have data quality and bias issues [11, 12, 24]. While a small number of general
tabular benchmarks have been proposed [15, 37], they have not seen widespread adoption, do not
include the software utilities that have driven adoption of benchmarks in language and vision [50, 38],
and do not contain distribution shifts (we make more detailed comparisons between TableShift and
existing benchmarks in Section F). Critically, these tabular benchmarks also often lack feature-level
documentation, which can be critical for tabular data.

Thus, while limited individual benchmarks do exist for tabular data modeling (without distribution
shift) or for distribution shift (without tabular data), there is no existing benchmark that provides a
high-quality set of tabular datasets and associated distribution shifts.

28e.g. DomainBed https://github.com/facebookresearch/DomainBed, WILDS https://

wilds.stanford.edu/, BIG-bench https://github.com/google/BIG-bench
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(a) Out-of-Distribution Accuracy vs. Shift Gap
�Acc across all TABLESHIFT tasks.

(b) Percentage of Maximum In-Distribution Accu-
racy (PMA-ID) across all TABLESHIFT tasks.

Figure 6: Additional results.

Figure 7: Pairwise scatterplots of shifts. Each point represents one dataset. Metrics are computed
according to the domain split for each dataset (ID test vs. OOD test) according to the metric definitions
for �x, �y|x, �y in Section D. (a) left: Covariate shift �x (computed via Optimal Transport Data
Distance) vs. concept shift �y|x (computed via Frechet Dataset Distance); ⇢ = 0.99. (b) center:
Covariate shift �x vs. label shift �y; ⇢ = �0.20. (c) left: Concept shift �y|x vs. label shift �y;
⇢ = �0.20.

D Additional Dataset Details and Results

In this section we provide a brief tour of exploratory results regarding the domain shift datasets in
TableShift, and additional expeirmental results.

D.1 Domain Split Selection

For many tasks in TableShift, there exist clear motivations for selecting certain splitting variables,
and for selecting which values of these variables to use as out-of-domain value(s) for our benchmarks.
However, for oehters, there might bemultiple plausible splitting variables, or no obvious way to
choose which specific value(s) to use as out of domain (e.g., any geographic region in ACS might be
equallyplausible as a holdout domain for the Feed Stamps task).
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Figure 8: Domain shift metrics vs. (absolute) shift gap. Each point represents a tuned model on a
given dataset. Only Label shift shows a strong correlation with shift gap (⇢ = 0.73).

Figure 9: TableShift benchmark results, mean per model (left: non-domain generalization tasks,
⇢ = 0.834; right: domain generalization tasks, ⇢ = 963). In-domain and out-of-domain accuracy
show a general linear trend. Baseline models (blue) consistently match or outperform domain
robustness and domain generalization methods.

For tasks where there were known domain splits that were likely to induce performance gaps that
matches a real-world domain shift scenario, we began by selecting these. When tuned baselines
(LightGBM and XGBoost) showed a shift gap �Acc of at least 1%, we used that split. However,
for tasks without a clear domain split or where mutliple plausible splitting values exist, we do the
following. First, we identified a variable(s) that was likely to contribute to an actual shift in a real-
world production through reviewing the relevant literature. Then, for each value d 2 {d1, . . . dD} =
D, we train on {D \ d} and evaluate on d. We select the split(s) that induced the highest performance
gap in our baseline tree methods). We repeat this process for each dataset until a split that is both
real-world relevant and also leads to a shift gap is found.

D.2 Domain Shift Metrics (Covariate, Concept, and Label Shift)

As noted above, the domain shift �Acc incurred when training a classifier is comprised of three
distinct forms of shift: changes in p(x) (“covariate shift”), changes in p(y|x) (“concept shift”), and
changes in p(y) (“label shift”). It is not possible to measure the true shifts for any given dataset,
because doing so would require knowing the true (ID, OOD) distributions. As a result, in order to
still explore the influence of these various forms of shift on tabular data models, we propose metrics
to approximately measure each form of shift.
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Table 3: Summary of tasks in the TableShift benchmark and their associated distribution shifts.

Task �x (Eqn. (2)) �y|x (Eqn (3)) �y (Eqn (3))

Food Stamps 14.20 640.82 0.0008
Income 30.60 1.40 0.0060
Public Health Ins. 5.79 4.06 0.1701
Unemployment 75.47 13,389,512.51 0.0003
ANES 13.60 2.23 0.0025
Diabetes 12.28 0.10 0.0332
Hypertension 4.69 0.04 0.0022
Hospital Readmission 42.37 1.30 0.0060
Childhood Lead 1.30 0.01 0.0026
Sepsis 6609.73 8.44 0.0040
ICU Length of Stay 56,439,324,672.00 47,042,729,585.25 0.0033
ICU Hospital
Mortality

64,479,092,736.00 42,639,188,407.47 0.0015

FICO HELOC 19.35 0.73 0.0983
ASSISTments 24,054.59 1137.42 0.0670
College Scorecard 43,566.39 2116.63 0.0337

We propose these metrics while noting that each is only an approximation of the actual degree of
a certain form of shift in our dataset; measuring the actual underlying shift (e.g. the true change in
p(x) for covariate shift) is not possible from a finite sample. Thus, while these metrics can provide
exploratory evidence of the relationship between a given type of shift (covariate, comcept, label) and
model performance, they cannot provide direct evidence that any given shift type is (not) causing
changes in model performance.

Table 13 gives the exact In- and Out-of-Distribution label proportions for each task, which are used
to compute the label shift �y .

Measuring covariate shift with OTDD: We propose to use the following measure to approximate
the degree of covariate shift between the (ID, OOD) test sets of a given task:

�x = OTDD(Dtrain,Dtest) (2)

where Dtrain,Dtest are the holdout (test) sets from the source and target domains, respectively. Here
OTDD represents the Optimal Transport Dataset Distance with the Gaussian approximation as
described in [2].

Measuring concept shift with Frechet Dataset Distance (FDD): We propose a straightforward
measure of the change in p(y|x) across two distributions. Inspired by measures of distributional
difference widely used in the machine learning (Frechet Inception Distance, [41]) which leverage
changes in the intermediate representations of a reference classifier for comparing distributions, we
propose ‘Frechet dataset distance” (FDD) for comparing two distributions.

This metric is computed as follows: First, we train a classifier on the source domain using the best
tuned hyperparameters from our hyperparameter sweep to obtain a fixed classifier f✓. Then, for each
domain, we compute x̃ := f✓[i](x), for each x 2 D, where i indicates that we compute the activations
at the ith layer of the model (this is sometimes referred to as the coding vector or feature vector for an
input). Finally, we compute the Frechet dataset distance, which measures the distance between these
two distributions (also called the Wasserstein-2 distance), as:

DFD(Dtrain,Dtest) = ||µDtrain˘µDtest ||2 + Tr(⌃Dtrain + ⌃Dtest˘2 ⇤
p
⌃Dtrain ⇤ ⌃Dtest)

where µD indicates the set of feature vectors from dimain D and ⌃D indicates the covariance matrix
of µD. We refer to this measure as �y|x below. A lower FDD score indicates a smaller distance
between xi : xi 2 Dtrain and xj : xj 2 Dtest.
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We parameterize the models used for FDD as MLPs. For each dataset, we use the MLP hyperparam-
eters associated with the best validation accuracy for that model over our experiments; the model
trained using these parameters is used for computing the feature activations for FDD.

Measuring label shift: We propose a simple measure of label shift. While label shift is clearly
one factor influencing shift gaps and is perhaps the most straightforward to empirically estimate,
it receives surprisingly little attention in existing literature on domain shift. We use the following
measure to quantify the label shift between the source and target distributions:

�y = ||ȳDtrain � ȳDtest ||2 (3)

where ȳD = 1
|D|

P
i2D yi is the empirical sample mean of a given domain. Since all tasks in

TableShift are binary classification tasks, this measures the L2 difference in the base rates across the
two domains.

Using these metrics, we provide one perspective on the amount of each respective form of shift in
Table 3. Additionally, we provide scatter plots showing the pairwise relationships between these
metrics in Figure 7, and scatter plots showing the relationship between each individual metric and the
shift gap in Figure 8 (see also Figure 5 discussed in Section 5).

D.3 Detailed Results Per Task

We provide detailed task-specific results and data in this section. In particular, we list the complete
set of main results for the (In-Distribution, Out-Of-Distribution) scatter plots shown in Figures 1, 2,
3, along with the 95% Clopper-Pearson confidence intervals for these results, in Tables 4, 5, 6, 8, 9, 7,
10, 11. We also give summary metrics describing the size of each dataset split in Table 12.

Table 4: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. Note that domain generalization models can only be trained on datasets with more than one
training subdomain (see Table 1 for domain generalization datasets and Section 4.1 for a list of
domain generalization models). ?: domain generalization models cannot be trained when only one
training subdomain is present. See also Figures 1, 2,3. }: the large number of training subdomains
(over 700 for ASSISTments) makes training domain generalization models impractical. ⇤: the large
dataset size makes training adversarial label DRO models impractical (since per-example gradients
must be computed). We leave these experiments to future work.

Estimator ASSISTments Childhood Lead
ID Acc. (95% CI) OOD Acc. (95% CI) ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO ⇤ ⇤ ⇤ ⇤ 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
CatBoost 0.943 (0.942, 0.944) 0.584 (0.562, 0.607) 0.971 (0.961, 0.979) 0.92 (0.914, 0.925)
DRO 0.932 (0.931, 0.933) 0.583 (0.561, 0.606) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
FT-Transformer 0.939 (0.938, 0.94) 0.592 (0.569, 0.614) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
Label Group DRO 0.928 (0.927, 0.929) 0.574 (0.551, 0.596) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
LightGBM 0.936 (0.935, 0.937) 0.591 (0.568, 0.613) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
MLP 0.933 (0.932, 0.934) 0.583 (0.561, 0.606) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
NODE 0.935 (0.934, 0.936) 0.583 (0.561, 0.606) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
ResNet 0.933 (0.932, 0.934) 0.583 (0.561, 0.606) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
SAINT 0.935 (0.934, 0.936) 0.584 (0.562, 0.607) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
TabTransformer 0.93 (0.929, 0.93) 0.551 (0.529, 0.574) 0.971 (0.961, 0.979) 0.92 (0.915, 0.925)
XGBoost 0.93 (0.929, 0.931) 0.591 (0.568, 0.613) 0.971 (0.961, 0.979) 0.92 (0.914, 0.925)
CORAL } } } } ? ? ? ?
DANN } } } } ? ? ? ?
Group DRO } } } } ? ? ? ?
IRM } } } } ? ? ? ?
MMD } } } } ? ? ? ?
MixUp } } } } ? ? ? ?
VREX } } } } ? ? ? ?
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Table 5: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. Note that domain generalization models can only be trained on datasets with more than one
training subdomain (see Table 1 for domain generalization datasets and Section 4.1 for a list of
domain generalization models). ?: domain generalization models cannot be trained when only one
training subdomain is present. See also Figures 1, 2,3.

Estimator College Scorecard Diabetes
ID Acc. (95% CI) OOD Acc. (95% CI) ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO 0.937 (0.933, 0.942) 0.826 (0.805, 0.846) 0.877 (0.875, 0.878) 0.832 (0.83, 0.833)
CatBoost 0.957 (0.954, 0.961) 0.885 (0.866, 0.901) 0.877 (0.876, 0.879) 0.833 (0.831, 0.835)
DRO 0.95 (0.946, 0.954) 0.862 (0.842, 0.88) 0.876 (0.875, 0.878) 0.832 (0.83, 0.834)
FT-Transformer 0.948 (0.944, 0.952) 0.859 (0.839, 0.877) 0.877 (0.875, 0.879) 0.832 (0.831, 0.834)
Label Group DRO 0.928 (0.924, 0.933) 0.817 (0.796, 0.838) 0.876 (0.874, 0.878) 0.831 (0.83, 0.833)
LightGBM 0.939 (0.935, 0.943) 0.822 (0.8, 0.841) 0.876 (0.874, 0.878) 0.833 (0.831, 0.835)
MLP 0.947 (0.942, 0.95) 0.845 (0.825, 0.864) 0.877 (0.875, 0.879) 0.832 (0.83, 0.833)
NODE 0.944 (0.939, 0.948) 0.844 (0.823, 0.863) 0.877 (0.875, 0.879) 0.833 (0.832, 0.835)
ResNet 0.947 (0.943, 0.951) 0.854 (0.834, 0.872) 0.874 (0.872, 0.876) 0.829 (0.828, 0.831)
SAINT 0.936 (0.931, 0.94) 0.814 (0.792, 0.834) 0.877 (0.875, 0.879) 0.833 (0.831, 0.834)
TabTransformer 0.942 (0.938, 0.946) 0.845 (0.825, 0.864) 0.875 (0.873, 0.877) 0.83 (0.829, 0.832)
XGBoost 0.942 (0.938, 0.946) 0.83 (0.809, 0.85) 0.877 (0.875, 0.879) 0.832 (0.83, 0.834)
CORAL 0.922 (0.917, 0.926) 0.795 (0.773, 0.816) 0.874 (0.872, 0.875) 0.832 (0.83, 0.834)
DANN 0.894 (0.889, 0.9) 0.78 (0.757, 0.802) 0.873 (0.871, 0.875) 0.826 (0.824, 0.827)
Group DRO 0.944 (0.939, 0.948) 0.829 (0.808, 0.849) 0.877 (0.875, 0.879) 0.832 (0.83, 0.833)
IRM 0.879 (0.873, 0.885) 0.746 (0.721, 0.769) 0.873 (0.871, 0.875) 0.826 (0.824, 0.827)
MMD 0.925 (0.92, 0.929) 0.795 (0.773, 0.816) 0.873 (0.871, 0.875) 0.826 (0.825, 0.828)
MixUp 0.912 (0.907, 0.917) 0.746 (0.721, 0.769) 0.873 (0.871, 0.875) 0.826 (0.824, 0.827)
VREX 0.907 (0.902, 0.912) 0.754 (0.731, 0.777) 0.873 (0.871, 0.875) 0.826 (0.824, 0.827)

Table 6: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. Note that domain generalization models can only be trained on datasets with more than one
training subdomain (see Table 1 for domain generalization datasets and Section 4.1 for a list of
domain generalization models). ?: domain generalization models cannot be trained when only one
training subdomain is present. See also Figures 1, 2,3.

Estimator FICO HELOC Food Stamps
ID Acc. (95% CI) OOD Acc. (95% CI) ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.843 (0.84, 0.846) 0.812 (0.808, 0.815)
CatBoost 0.727 (0.67, 0.778) 0.582 (0.57, 0.594) 0.849 (0.847, 0.852) 0.825 (0.821, 0.828)
DRO 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.844 (0.841, 0.846) 0.819 (0.815, 0.822)
FT-Transformer 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.843 (0.841, 0.846) 0.816 (0.812, 0.819)
Label Group DRO 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.771 (0.768, 0.774) 0.752 (0.748, 0.756)
LightGBM 0.647 (0.584, 0.7) 0.421 (0.409, 0.433) 0.836 (0.833, 0.838) 0.808 (0.805, 0.812)
MLP 0.734 (0.678, 0.785) 0.538 (0.526, 0.55) 0.841 (0.838, 0.844) 0.815 (0.812, 0.819)
NODE 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.849 (0.847, 0.852) 0.822 (0.819, 0.825)
ResNet 0.748 (0.693, 0.798) 0.431 (0.42, 0.443) 0.843 (0.84, 0.845) 0.82 (0.817, 0.824)
SAINT 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.849 (0.846, 0.851) 0.821 (0.818, 0.825)
TabTransformer 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.836 (0.834, 0.839) 0.807 (0.803, 0.81)
XGBoost 0.745 (0.689, 0.795) 0.431 (0.419, 0.443) 0.844 (0.842, 0.847) 0.82 (0.817, 0.824)
CORAL ? ? ? ? 0.818 (0.815, 0.82) 0.793 (0.79, 0.797)
DANN ? ? ? ? 0.809 (0.806, 0.812) 0.78 (0.776, 0.784)
Group DRO ? ? ? ? 0.84 (0.838, 0.843) 0.817 (0.814, 0.821)
IRM ? ? ? ? 0.812 (0.81, 0.815) 0.795 (0.791, 0.798)
MMD ? ? ? ? 0.813 (0.81, 0.816) 0.786 (0.782, 0.789)
MixUp ? ? ? ? 0.819 (0.816, 0.821) 0.785 (0.782, 0.789)
VREX ? ? ? ? 0.809 (0.806, 0.812) 0.78 (0.776, 0.784)
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Table 7: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. Note that domain generalization models can only be trained on datasets with more than one
training subdomain (see Table 1 for domain generalization datasets and Section 4.1 for a list of
domain generalization models). ?: domain generalization models cannot be trained when only one
training subdomain is present. See also Figures 1, 2,3.

Estimator Hospital Readmission Hypertension
ID Acc. (95% CI) OOD Acc. (95% CI) ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO 0.655 (0.641, 0.669) 0.603 (0.599, 0.607) 0.666 (0.66, 0.672) 0.601 (0.6, 0.603)
CatBoost 0.659 (0.645, 0.674) 0.618 (0.614, 0.623) 0.67 (0.665, 0.676) 0.599 (0.597, 0.6)
DRO 0.628 (0.613, 0.642) 0.578 (0.574, 0.582) 0.598 (0.592, 0.604) 0.416 (0.414, 0.417)
FT-Transformer 0.648 (0.633, 0.662) 0.618 (0.614, 0.622) 0.666 (0.661, 0.672) 0.604 (0.603, 0.605)
Label Group DRO 0.652 (0.637, 0.666) 0.616 (0.612, 0.62) 0.665 (0.659, 0.671) 0.604 (0.603, 0.605)
LightGBM 0.658 (0.643, 0.672) 0.598 (0.594, 0.602) 0.678 (0.672, 0.683) 0.634 (0.633, 0.635)
MLP 0.648 (0.633, 0.662) 0.612 (0.608, 0.617) 0.664 (0.658, 0.67) 0.583 (0.582, 0.584)
NODE 0.659 (0.645, 0.673) 0.624 (0.62, 0.628) 0.67 (0.664, 0.676) 0.597 (0.596, 0.599)
ResNet 0.639 (0.624, 0.653) 0.581 (0.577, 0.586) 0.667 (0.661, 0.672) 0.608 (0.606, 0.609)
SAINT 0.654 (0.639, 0.668) 0.61 (0.606, 0.615) 0.669 (0.664, 0.675) 0.595 (0.594, 0.596)
TabTransformer 0.584 (0.569, 0.599) 0.507 (0.502, 0.511) 0.624 (0.618, 0.63) 0.499 (0.498, 0.501)
XGBoost 0.651 (0.636, 0.665) 0.605 (0.601, 0.61) 0.671 (0.665, 0.677) 0.588 (0.587, 0.59)
CORAL 0.622 (0.607, 0.637) 0.571 (0.567, 0.576) ? ? ? ?
DANN 0.584 (0.569, 0.599) 0.506 (0.502, 0.51) ? ? ? ?
Group DRO 0.639 (0.624, 0.653) 0.6 (0.596, 0.605) ? ? ? ?
IRM 0.595 (0.58, 0.61) 0.55 (0.546, 0.555) ? ? ? ?
MMD 0.626 (0.611, 0.64) 0.57 (0.565, 0.574) ? ? ? ?
MixUp 0.589 (0.574, 0.604) 0.567 (0.563, 0.572) ? ? ? ?
VREX 0.584 (0.569, 0.599) 0.506 (0.502, 0.51) ? ? ? ?

Table 8: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. Note that domain generalization models can only be trained on datasets with more than one
training subdomain (see Table 1 for domain generalization datasets and Section 4.1 for a list of
domain generalization models). ?: domain generalization models cannot be trained when only one
training subdomain is present. See also Figures 1, 2,3. ~: the large feature dimensionality of both
ICU datasets makes training Transformer-based models impractical (e.g. even a single-layer SAINT
model requires >13B trainable parameters on both ICU datasets)

Estimator ICU Hospital Mortality ICU Length of Stay
ID Acc. (95% CI) OOD Acc. (95% CI) ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.602 (0.572, 0.631) 0.544 (0.535, 0.553)
CatBoost 0.934 (0.914, 0.948) 0.892 (0.887, 0.897) 0.71 (0.682, 0.737) 0.674 (0.665, 0.682)
DRO 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.601 (0.571, 0.63) 0.544 (0.535, 0.553)
FT-Transformer ~ ~ ~ ~ ~ ~ ~ ~
Label Group DRO 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.59 (0.56, 0.619) 0.542 (0.533, 0.551)
LightGBM 0.946 (0.928, 0.959) 0.883 (0.877, 0.888) 0.689 (0.66, 0.716) 0.655 (0.646, 0.663)
MLP 0.912 (0.891, 0.929) 0.877 (0.871, 0.882) 0.599 (0.569, 0.628) 0.544 (0.535, 0.553)
NODE 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.661 (0.632, 0.689) 0.609 (0.6, 0.618)
ResNet 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.606 (0.576, 0.635) 0.577 (0.568, 0.586)
SAINT ~ ~ ~ ~ ~ ~ ~ ~
TabTransformer 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.604 (0.574, 0.633) 0.549 (0.54, 0.558)
XGBoost 0.927 (0.908, 0.943) 0.882 (0.876, 0.887) 0.71 (0.682, 0.737) 0.669 (0.66, 0.677)
CORAL 0.915 (0.893, 0.931) 0.875 (0.869, 0.881) 0.603 (0.573, 0.632) 0.544 (0.535, 0.553)
DANN 0.915 (0.893, 0.931) 0.876 (0.871, 0.882) 0.594 (0.564, 0.624) 0.545 (0.536, 0.554)
Group DRO 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.602 (0.572, 0.631) 0.544 (0.535, 0.553)
IRM 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.601 (0.571, 0.63) 0.544 (0.535, 0.553)
MMD 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.602 (0.572, 0.631) 0.544 (0.535, 0.553)
MixUp 0.915 (0.893, 0.931) 0.876 (0.87, 0.882) 0.602 (0.572, 0.631) 0.544 (0.535, 0.553)
VREX 0.913 (0.893, 0.931) 0.876 (0.87, 0.882) 0.597 (0.567, 0.627) 0.545 (0.536, 0.554)
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Table 9: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. Note that domain generalization models can only be trained on datasets with more than one
training subdomain (see Table 1 for domain generalization datasets and Section 4.1 for a list of
domain generalization models). ?: domain generalization models cannot be trained when only one
training subdomain is present. ⇤: the large dataset size makes training adversarial label DRO models
impractical (since per-example gradients must be computed). We leave these experiments to future
work. See also Figures 1, 2,3.

Estimator Income Public Health Ins.
ID Acc. (95% CI) OOD Acc. (95% CI) ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO 0.829 (0.827, 0.83) 0.819 (0.816, 0.822) ⇤ ⇤ ⇤ ⇤
CatBoost 0.832 (0.83, 0.834) 0.814 (0.811, 0.817) 0.814 (0.812, 0.815) 0.69 (0.689, 0.691)
DRO 0.828 (0.826, 0.83) 0.818 (0.816, 0.821) 0.809 (0.808, 0.81) 0.647 (0.646, 0.648)
FT-Transformer 0.825 (0.823, 0.827) 0.818 (0.815, 0.821) 0.807 (0.806, 0.808) 0.662 (0.661, 0.663)
Label Group DRO 0.819 (0.817, 0.821) 0.818 (0.815, 0.821) 0.776 (0.775, 0.777) 0.364 (0.363, 0.365)
LightGBM 0.822 (0.82, 0.824) 0.809 (0.806, 0.812) 0.803 (0.802, 0.804) 0.639 (0.638, 0.64)
MLP 0.828 (0.826, 0.829) 0.813 (0.81, 0.816) 0.808 (0.806, 0.809) 0.612 (0.611, 0.613)
NODE 0.831 (0.829, 0.833) 0.81 (0.807, 0.813) 0.811 (0.81, 0.812) 0.662 (0.661, 0.663)
ResNet 0.826 (0.824, 0.828) 0.815 (0.812, 0.818) 0.81 (0.809, 0.811) 0.672 (0.671, 0.673)
SAINT 0.829 (0.827, 0.831) 0.81 (0.807, 0.812) 0.811 (0.81, 0.812) 0.68 (0.679, 0.681)
TabTransformer 0.818 (0.816, 0.82) 0.801 (0.798, 0.804) 0.803 (0.802, 0.804) 0.588 (0.587, 0.589)
XGBoost 0.821 (0.819, 0.823) 0.792 (0.789, 0.795) 0.805 (0.804, 0.806) 0.661 (0.66, 0.662)
CORAL 0.817 (0.815, 0.819) 0.791 (0.788, 0.793) ? ? ? ?
DANN 0.815 (0.813, 0.817) 0.812 (0.809, 0.815) ? ? ? ?
Group DRO 0.827 (0.826, 0.829) 0.813 (0.81, 0.815) ? ? ? ?
IRM 0.756 (0.754, 0.758) 0.699 (0.696, 0.702) ? ? ? ?
MMD 0.816 (0.814, 0.818) 0.768 (0.765, 0.771) ? ? ? ?
MixUp 0.821 (0.819, 0.823) 0.794 (0.791, 0.797) ? ? ? ?
VREX 0.714 (0.712, 0.716) 0.64 (0.637, 0.644) ? ? ? ?

Table 10: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. Note that domain generalization models can only be trained on datasets with more than one
training subdomain (see Table 1 for domain generalization datasets and Section 4.1 for a list of
domain generalization models). ?: domain generalization models cannot be trained when only one
training subdomain is present. See also Figures 1, 2,3.

Estimator Sepsis Unemployment
ID Acc. (95% CI) OOD Acc. (95% CI) ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.972 (0.971, 0.973) 0.96 (0.959, 0.961)
CatBoost 0.988 (0.987, 0.989) 0.925 (0.923, 0.926) 0.973 (0.973, 0.974) 0.962 (0.961, 0.963)
DRO 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.973 (0.972, 0.973) 0.961 (0.96, 0.962)
FT-Transformer 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.973 (0.972, 0.974) 0.962 (0.961, 0.962)
Label Group DRO 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.947 (0.946, 0.948) 0.926 (0.925, 0.927)
LightGBM 0.988 (0.987, 0.989) 0.928 (0.926, 0.929) 0.973 (0.972, 0.974) 0.96 (0.96, 0.961)
MLP 0.988 (0.987, 0.989) 0.925 (0.923, 0.926) 0.973 (0.972, 0.973) 0.96 (0.959, 0.961)
NODE 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.973 (0.972, 0.974) 0.962 (0.961, 0.963)
ResNet 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.972 (0.971, 0.972) 0.959 (0.958, 0.96)
SAINT 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.973 (0.972, 0.974) 0.962 (0.961, 0.963)
TabTransformer 0.988 (0.987, 0.989) 0.925 (0.924, 0.926) 0.972 (0.971, 0.973) 0.961 (0.96, 0.962)
XGBoost 0.988 (0.987, 0.989) 0.925 (0.923, 0.926) 0.973 (0.972, 0.973) 0.961 (0.961, 0.962)
CORAL ? ? ? ? 0.964 (0.963, 0.965) 0.95 (0.949, 0.951)
DANN ? ? ? ? 0.966 (0.965, 0.967) 0.948 (0.947, 0.95)
Group DRO ? ? ? ? 0.971 (0.97, 0.972) 0.958 (0.957, 0.959)
IRM ? ? ? ? 0.966 (0.965, 0.967) 0.948 (0.947, 0.95)
MMD ? ? ? ? 0.966 (0.966, 0.967) 0.953 (0.952, 0.954)
MixUp ? ? ? ? 0.844 (0.842, 0.846) 0.776 (0.774, 0.778)
VREX ? ? ? ? 0.873 (0.871, 0.874) 0.8 (0.798, 0.802)
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Table 11: Best (In-Distribution and Out-Of-Distribution) accuracy pair observed on each benchmark
task. See also Figures 1, 2,3.

Estimator Voting
ID Acc. (95% CI) OOD Acc. (95% CI)

Adv. Label DRO 0.875 (0.843, 0.902) 0.852 (0.839, 0.865)
CatBoost 0.883 (0.852, 0.909) 0.855 (0.842, 0.868)
DRO 0.881 (0.85, 0.907) 0.853 (0.839, 0.866)
FT-Transformer 0.879 (0.848, 0.906) 0.855 (0.841, 0.868)
Label Group DRO 0.862 (0.829, 0.89) 0.839 (0.825, 0.852)
LightGBM 0.881 (0.85, 0.907) 0.855 (0.841, 0.868)
MLP 0.892 (0.862, 0.918) 0.86 (0.847, 0.873)
NODE 0.885 (0.854, 0.911) 0.851 (0.838, 0.864)
ResNet 0.887 (0.856, 0.912) 0.836 (0.822, 0.849)
SAINT 0.888 (0.858, 0.914) 0.858 (0.845, 0.871)
TabTransformer 0.877 (0.846, 0.904) 0.859 (0.845, 0.872)
XGBoost 0.898 (0.869, 0.923) 0.851 (0.838, 0.864)
CORAL 0.883 (0.852, 0.909) 0.846 (0.832, 0.859)
DANN 0.892 (0.862, 0.918) 0.852 (0.838, 0.865)
Group DRO 0.877 (0.846, 0.904) 0.852 (0.839, 0.865)
IRM 0.804 (0.767, 0.837) 0.758 (0.742, 0.774)
MMD 0.892 (0.862, 0.918) 0.849 (0.835, 0.862)
MixUp 0.892 (0.862, 0.918) 0.851 (0.837, 0.864)
VREX 0.804 (0.767, 0.837) 0.754 (0.737, 0.77)

Table 12: Sample sizes by split. In particular, large test sizes are desirable for benchmarking, as they
reduce the statistical uncertainty of comparing model performance.

Task ID Test OOD Test OOD Validation Train Validation Total
Food Stamps 78,628 48,878 5431 629,018 78,627 840,582
Income 158,016 75,911 8435 1,264,123 158,015 1,664,500
Public Coverage 500,782 817,877 90,876 4,006,249 500,781 5,916,565
Unemployment 161,365 163,611 18,180 1,290,914 161,364 1,795,434
Voting 520 2772 309 4159 520 8280
Hypertension 27,052 518,622 57,625 216,411 27,051 846,761
Diabetes 121,154 209,375 23,264 969,229 121,154 1,444,176
Readmission 4287 50,968 5664 34,288 4286 99,493
HELOC 278 6914 769 2220 278 10,459
ICU Length of Stay 1080 11,835 1316 8634 1079 23,944
ICU Hospital Mortality 890 13,544 1505 7116 889 23,944
Sepsis 140,288 134,402 14,934 1,122,299 140,287 1,552,210
Childhood Lead 1476 11,466 1274 11,807 1476 27,499
ASSISTments 266,566 1906 212 2,132,526 266,566 2,667,776
College Scorecard 12,320 1352 151 98,556 12,320 124,699
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Figure 10: Alternate version of Figure 2 with adjusted scaling for increased detail.
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Figure 11: Alternate version of Figure 3 with adjusted scaling for increased detail.

Table 13: Label summary statistics for test sets in TABLESHIFT. Ȳ gives the proportion of positive
labels for the respective split, and Var(Ȳ ) the variance of the sample proportion.

ID OOD
Task ȲID Var(ȲID) ȲOOD Var(ȲOOD)

Voting 0.804 0.017 0.754 0.008
ASSISTments 0.695 0.001 0.437 0.011
Childhood Lead 0.029 0.004 0.080 0.003
College Scorecard 0.127 0.003 0.311 0.013
Diabetes 0.127 0.001 0.174 0.001
FICO HELOC 0.255 0.026 0.569 0.006
Food Stamps 0.191 0.001 0.220 0.002
Hospital Readmission 0.416 0.008 0.494 0.002
Hypertension 0.402 0.003 0.584 0.001
ICU Hospital Mortality 0.085 0.009 0.124 0.003
ICU Length of Stay 0.398 0.015 0.456 0.005
Income 0.321 0.001 0.398 0.002
Public Health Ins. 0.224 0.001 0.636 0.001
Sepsis 0.012 0.000 0.075 0.001
Unemployment 0.034 0.000 0.052 0.001

Table 14: PMA-OOD results (cf. Figure ) and standard deviation of PMA-OOD over benchmark
tasks. (Cf. Figure 4a.)

Estimator PMA-OOD Mean PMA-OOD Std.
VREX 0.876 0.076
IRM 0.910 0.069
Label Group DRO 0.915 0.129
MixUp 0.917 0.076
TabTransformer 0.922 0.091
DANN 0.932 0.075
DRO 0.932 0.107
MMD 0.940 0.059
CORAL 0.944 0.059
Adv. Label DRO 0.950 0.080
ResNet 0.956 0.069
MLP 0.961 0.054
Group DRO 0.962 0.059
NODE 0.963 0.066
SAINT 0.964 0.070
LightGBM 0.964 0.070
XGBoost 0.964 0.065
FT-Transformer 0.968 0.069
CatBoost 0.994 0.014
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Table 15: Label summary statistics for test sets in TABLESHIFT. Ȳ gives the proportion of positive
labels for the respective split, and Var(Ȳ ) the variance of the sample proportion. (Cf. Figure 4b.)

ID OOD
Method ID Accuracy Std. OOD Accuracy Std.

Adv. Label DRO 0.834 0.125 0.792 0.132
CatBoost 0.862 0.105 0.794 0.126
DANN 0.816 0.137 0.770 0.148
CORAL 0.824 0.129 0.777 0.134
DRO 0.843 0.129 0.773 0.147
FT-Transformer 0.866 0.103 0.794 0.126
Group DRO 0.832 0.129 0.791 0.133
IRM 0.800 0.130 0.749 0.136
Label Group DRO 0.829 0.123 0.759 0.134
LightGBM 0.856 0.108 0.781 0.124
MixUp 0.807 0.125 0.752 0.118
MLP 0.845 0.126 0.774 0.141
MMD 0.825 0.130 0.774 0.135
NODE 0.853 0.110 0.781 0.129
ResNet 0.844 0.126 0.773 0.139
SAINT 0.868 0.099 0.787 0.127
TabTransformer 0.835 0.136 0.759 0.160
VREX 0.786 0.127 0.720 0.128
XGBoost 0.857 0.105 0.783 0.122
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D.4 Results with Additional Random Seeds

Our experiments on each model-dataset pair comprise a single run of 100 rounds of our hyperparame-
ter tuning protocol described in Section 4.2. Here, we provide the results of additional experiments
conducted using different random seeds, in order to evaluate the sensitivity of our results to the
random variation inherent in the training and hyperparameter tuning process.

For these experiments, we conduct an identical procedure to the experiments described in the main
text of our paper, but only change the random seed. This process affects the random initialization of
model weights, random initialization of hyperparameter tuning, and training data shuffling, among
other procedures. We note that it does not affect the train/test splitting in our datasets, as the train/test
splits are defined by distribution shifts and are fixed to ensure comparability of the benchmark across
experiments.

The results are shown in Table 16. Table 16 shows that, across the five models and three datasets
evaluated, there is minimal variation in performance due to random seeds. Of the 90 measurements
covering 45 trials represented in Table 16, the 95% Clopper-Pearson CIs for both ID and OOD
accuracy overlap in all cases, with only four exceptions (LightGBM, iteration 0, Food Stamps ID and
OOD accuracy; LightGBM, iteration 2, Hypertension OOD accuracy; MLP, Hypertension, iteration
0, OOD accuracy; FT-Transformer, iteration 0, OOD accuracy). These results provide evidence that
our results are robust to variation due to random seed.

D.5 Results with Hybrid Methods

Our main study design is focused on benchmarking existing previously-proposed methods for tabular
modeling. The methods we evlauate span models, which prescribe the functional form of a predictor
f✓, and also objective functions, which describe the loss L to be minimized while learning the
parameters ✓ of a fixed predictor f . Concretely, for example, FT-Transformer or MLP specify the
form of f , while some robustness interventions, such as Group DRO, specify an objective that can be
monimized over any smooth continuous function.

Our study does not explore potential combinations of different models and objective functions from
the preexisting literature. In this section, we conduct an exploratory investigation into whether
“hybrid methods” – combinations of different models and objective functions explored in our study –
might improve robustness, for the best-performing compatible combinations of models and objective
functions in our study.

In particular, our hybrid model study explores the use of the Group DRO objective function, in
combination with three models from our study: FT-Transformer, NODE, and ResNet. Group DRO
was selected as it is the highest-performing objective-based technique in our study (see Figure 4a),
and the three models were selected as they are the highest-performing Transformer-based model,
tree-based model, and baseline supervised model, repsectively, in our study. We note that Group
DRO cannot be easily combined with CatBoost, XGBoost, or LightGBM, as these are not smooth
differentiable continuous functions, which is a requirement for the use of the Group DRO objective.

Our methodology in this section is as follows: for each estimator (FT-Transformer, NODE, ResNet),
we train the model with both ERM (the standard procedure used in our main experiments above) and
Group DRO. We follow the same hyperparameter tuning procedure as described in Section 4.2) above.
We use the same hyperparameter grid defined in Section H for each model, but also include a full
sweep over the Group DRO step size parameter, using the Group DRO grid described in Section H
(thus, for model X, we take the union of the two hyperparameter grids: { grid(X) [ grid(Group DRO)
} ). We conduct this procedure for five benchmark datasets: Childhood Lead, College Scorecard,
Food Stamps, Hypertension, and Voting.

The results of our hybrid model experiments are shown in Table 17. The results show little or no
evidence that Group DRO reduces shift gaps for the models evaluated, as indicated by the fact that
OOD test accuracy intervals tend to be overlapping, or higher, for ERM relative to Group DRO.
Keeping in mind that Group DRO was parameterized over MLP models in our main experiments (as
all prior works only use Group DRO with MLP), the results in Table 17 suggest that Group DRO
may primarily improve weak (MLP) models but does not improve robustness for stronger models,
explaining the improvements for Group DRO over vanilla MLP models in the main text.
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Table 16: Results with additional random seeds. Varying random seeds has a minimal impact on
the final results of our hyperparameter tuning procedure, indicating that our findings are robust to
variation due to random seeds. See Section D.4 for details on experimental design.

ID Test Accuracy OOD Test Accuracy
Task Base Estimator Iteration Value 95% CI Value 95% CI

College Scorecard

CatBoost
0 0.957 (0.954, 0.961) 0.885 (0.866, 0.901)
1 0.959 (0.955, 0.962) 0.879 (0.861, 0.896)
2 0.959 (0.956, 0.963) 0.882 (0.863, 0.898)

FT-Transformer
0 0.948 (0.944, 0.952) 0.859 (0.839, 0.877)
1 0.946 (0.942, 0.95) 0.850 (0.83, 0.868)
2 0.940 (0.936, 0.945) 0.830 (0.809, 0.85)

LightGBM
0 0.939 (0.935, 0.943) 0.822 (0.8, 0.841)
1 0.943 (0.938, 0.947) 0.839 (0.819, 0.859)
2 0.943 (0.939, 0.947) 0.837 (0.816, 0.856)

MLP
0 0.947 (0.942, 0.95) 0.845 (0.825, 0.864)
1 0.949 (0.944, 0.952) 0.859 (0.84, 0.878)
2 0.945 (0.941, 0.949) 0.859 (0.839, 0.877)

XGBoost
0 0.942 (0.938, 0.946) 0.830 (0.809, 0.85)
1 0.946 (0.942, 0.95) 0.842 (0.821, 0.861)
2 0.947 (0.943, 0.951) 0.845 (0.824, 0.864)

Food Stamps

CatBoost
0 0.849 (0.847, 0.852) 0.825 (0.821, 0.828)
1 0.850 (0.847, 0.852) 0.824 (0.821, 0.827)
2 0.849 (0.847, 0.852) 0.824 (0.82, 0.827)

FT-Transformer
0 0.843 (0.841, 0.846) 0.816 (0.812, 0.819)
1 0.848 (0.846, 0.851) 0.824 (0.82, 0.827)
2 0.844 (0.842, 0.847) 0.817 (0.814, 0.82)

LightGBM
0 0.836 (0.833, 0.838) 0.808 (0.805, 0.812)
1 0.844 (0.841, 0.846) 0.818 (0.814, 0.821)
2 0.843 (0.84, 0.846) 0.817 (0.814, 0.821)

MLP
0 0.841 (0.838, 0.844) 0.815 (0.812, 0.819)
1 0.845 (0.842, 0.847) 0.817 (0.814, 0.821)
2 0.844 (0.841, 0.846) 0.811 (0.808, 0.815)

XGBoost
0 0.844 (0.842, 0.847) 0.820 (0.817, 0.824)
1 0.843 (0.84, 0.845) 0.819 (0.815, 0.822)
2 0.845 (0.842, 0.847) 0.820 (0.816, 0.823)

Hypertension

CatBoost
0 0.670 (0.665, 0.676) 0.599 (0.597, 0.6)
1 0.671 (0.665, 0.676) 0.599 (0.597, 0.6)
2 0.671 (0.666, 0.677) 0.600 (0.598, 0.601)

FT-Transformer
0 0.666 (0.661, 0.672) 0.604 (0.603, 0.605)
1 0.670 (0.665, 0.676) 0.594 (0.593, 0.596)
2 0.672 (0.666, 0.677) 0.595 (0.594, 0.596)

LightGBM
0 0.678 (0.672, 0.683) 0.634 (0.633, 0.635)
1 0.672 (0.666, 0.677) 0.636 (0.635, 0.637)
2 0.672 (0.667, 0.678) 0.628 (0.627, 0.629)

MLP
0 0.664 (0.658, 0.67) 0.583 (0.582, 0.584)
1 0.669 (0.663, 0.674) 0.597 (0.596, 0.599)
2 0.668 (0.662, 0.673) 0.598 (0.597, 0.599)

XGBoost
0 0.671 (0.665, 0.677) 0.588 (0.587, 0.59)
1 0.669 (0.664, 0.675) 0.586 (0.584, 0.587)
2 0.669 (0.664, 0.675) 0.586 (0.584, 0.587)
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Table 17: Hybrid method results. We compare Group DRO to standard ERM for the highest-
performing Transformer, tree-based, and baseline models in our study (FT-Transformer, NODE, and
ResNet, respectively) over five TABLESHIFT tasks, following our hyperparameter tuning procedure.
There is little or no evidence that Group DRO reduces shift gaps for these models, indicating that
Group DRO may primarily improve weak (MLP) models but does not improve robustness for stronger
models. See Section D.5 for details on experimental design.

ID Test Accuracy OOD Test Accuracy
Task Base Estimator Method Value 95% CI Value 95% CI

Childhood Lead

FT-Transformer ERM 0.971 (0.961, 0.979) 0.920 (0.915, 0.925)
Group DRO 0.971 (0.961, 0.979) 0.920 (0.915, 0.925)

NODE ERM 0.971 (0.961, 0.979) 0.920 (0.915, 0.925)
Group DRO 0.971 (0.961, 0.979) 0.920 (0.915, 0.925)

ResNet ERM 0.971 (0.961, 0.979) 0.920 (0.915, 0.925)
Group DRO 0.971 (0.961, 0.979) 0.920 (0.915, 0.925)

College Scorecard

FT-Transformer ERM 0.948 (0.944, 0.952) 0.859 (0.839, 0.877)
Group DRO 0.935 (0.93, 0.939) 0.815 (0.793, 0.835)

NODE ERM 0.944 (0.939, 0.948) 0.844 (0.823, 0.863)
Group DRO 0.946 (0.942, 0.95) 0.835 (0.814, 0.854)

ResNet ERM 0.947 (0.943, 0.951) 0.854 (0.834, 0.872)
Group DRO 0.947 (0.942, 0.95) 0.824 (0.803, 0.844)

Food Stamps

FT-Transformer ERM 0.843 (0.841, 0.846) 0.816 (0.812, 0.819)
Group DRO 0.826 (0.823, 0.829) 0.795 (0.792, 0.799)

NODE ERM 0.849 (0.847, 0.852) 0.822 (0.819, 0.825)
Group DRO 0.845 (0.842, 0.847) 0.822 (0.819, 0.825)

ResNet ERM 0.843 (0.84, 0.845) 0.820 (0.817, 0.824)
Group DRO 0.848 (0.846, 0.851) 0.818 (0.815, 0.822)

Hypertension

FT-Transformer ERM 0.666 (0.661, 0.672) 0.604 (0.603, 0.605)
Group DRO 0.665 (0.659, 0.67) 0.608 (0.607, 0.609)

NODE ERM 0.670 (0.664, 0.676) 0.597 (0.596, 0.599)
Group DRO 0.671 (0.665, 0.676) 0.592 (0.591, 0.593)

ResNet ERM 0.667 (0.661, 0.672) 0.608 (0.606, 0.609)
Group DRO 0.663 (0.658, 0.669) 0.590 (0.589, 0.592)

Voting

FT-Transformer ERM 0.879 (0.848, 0.906) 0.855 (0.841, 0.868)
Group DRO 0.894 (0.865, 0.919) 0.858 (0.844, 0.87)

NODE ERM 0.885 (0.854, 0.911) 0.851 (0.838, 0.864)
Group DRO 0.898 (0.869, 0.923) 0.860 (0.847, 0.873)

ResNet ERM 0.887 (0.856, 0.912) 0.836 (0.822, 0.849)
Group DRO 0.898 (0.869, 0.923) 0.847 (0.833, 0.861)
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E Model Details

This section describes the models used in our study. For the hyperparameters used in our experiments,
see Section H.

Our implementations of these models, along with associated code to train models with fixed
hyperparameters or to tune hyperparameters at scale via the Ray framework, are available at
https://github.com/mlfoundations/tableshift.

E.1 Baseline Models

XGBoost: XGBoost is a popular library for learning gradient-boosted trees. We use the original
XGBoost implementation [20]. XGBoost introduced column subsampling, weight regularization,
and introduced major improvements in efficiency for training gradient boosted models on large or
out-of-core datasets.

LightGBM: LightGBM is a library for learning gradient-boosted trees which extends the success
of XGBoost in working fast and with large datasets [48]. LightGBM introduces novel techniques
such as converting continuous features to histograms (for computational efficiency and for to reduce
overfitting), combining certain features using Exclusive Feature Bundling (EFB), and through the use
of Gradient-based One-Side Sampling (GOSS).

CatBoost: CatBoost [25] is a library for learning gradient-boosted trees which includes novel
techniques for leveraging categorical features. This includes heuristics to replace numeric or one-hot
encoding of categorical features with label-derived heuristics; "appearance" (count) features for
categorical features; and efficient greedy feature recombination techniques.

MLP: We use standard multilayer perceptrons, via the implementation in RTDL29. MLPs have been
shown to be highly effective models for tabuilar data, particularly when a large model search space is
used and regularization is carefully tuned [46].

E.2 Tabular Neural Networks

FT-Transformer: FT-Transformer is a transformer-based model that learns separate feature tok-
enizers for numeric and categorical data, and applies a transformer model [86] to the tokenized
features.

Tabular ResNet: We use the version of Tabular ResNet proposed in [36]. We note that, despite the
fact that this approach is shown to have competitive performance with many existing tabular data
models in [36], it has not been widely used in the literature.

NODE Neural Oblivious Decision Ensembles (NODE) [71] is a method that leverages oblivious
ensembling methods to train “tree-like” neural networks.

TabTransformer: TabTransformers [43] is a model that uses learned embeddings of categorical
features, which are then passed through standard Transformer layers, alongside layer normalization
of continuous features.

SAINT: SAINT [80] uses an enhanced embedding method for categorical features, alongside (op-
tional) attention over both rows and columns, in a Transformer architecture. We note that, due to its
use of featurewise feedforward layers, SAINT was impractical to use for our datasets with the largest
numbers of features (ICU Hospital Mortality, ICU Length of Stay; both contain over 1000 features
which resulted in over 13B parameters for even a single-layer SAINT model).

E.3 Robustness Models

Distributionally Robust Optimization (DRO): We use two variants of DRO, both via [53]. For
both methods, the model attempts to optimize a worst-care risk within a bounded distribution of the
training data via a projected gradient descent procedure.

Group DRO: Originally introduced as a subgroup robustness method in [77], Group DRO is a DRO
method which attempts to optimize the worst-group loss during training. Group DRO can also,

29
https://github.com/Yura52/rtdl
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however, be used as a domain robustness method by treating the domains as “group labels”, which is
how we use it in our study. We note that this use of Group DRO has been applied previously; e.g.
[38].

E.4 Domain Generalization Models

Invariant Risk Minimization (IRM): IRM [6] uses a modified training objective to learn models
which a feature representation such that the optimal linear classifier on top of that representation
matches across domains.

MixUp: Inter-Domain MixUp [91, 90] uses combinations of data points from random pairs of
domains and their labels during training.

Domain-Adversarial Neural Networks (DANN): DANN [1] uses adversarial training to achieve
domain robustness, where a discriminator attempts to predict the domain of a training example in
order to match feature distributions across domains.

Risk Extrapolation (REx): REx [52] attempts to reduce differences in risk across training domains,
in order to reduce a model’s sensitivity to distributional shifts.

CORAL: CORAL (CORrelation ALignment) [83] attempts to ensure that feature activations are
similar across domains; this can be used as either a domain generalization method or a domain
adaptation method.

MMD: Similar to CORAL using a different kernel, MMD attempts to minimize the Maximum Mean
Discrepancy (MMD) between domains.

E.5 Label Shift Robustness Models

Group DRO: here, we use Group DRO [77] with class labels as the grouping attribute.

Adversarial Label DRO: This method, proposed in [93], uses a distributionally robust objective
to optimize for the worst-case weighting over label groupings. We note that this approach is
computationally expensive, requiring sample-level gradients even following the authors’ original
implementation, and so was not practical for our datasets with very large n (ASSISTments, Public
Health Insurance).

F Comparison To Other Benchmarking Toolkits

In this section, we provide a brief comparison of TableShift to other relevant benchmarking toolkits.
We note that our goal in this section is not to fully characterize the functionality of other benchmarking
platforms; it is only to compare and contrast their relevant attributes with TableShift and to motivate
the creation of a novel benchmark and API for TableShift (as opposed to incorporating TableShift
into an existing toolkit).

As noted above, there is no existing benchmark for domain shift in tabular data. However, in this
section we compare to three main categories of relevant related toolkits: (1) domain shift benchmarks
for non-tabular data (DomainBed, WILDS); (2) IID (non-domain-shift) benchmarks for tabular data
([37], OpenML); and (3) generic data-hosting platforms (Huggingface Datasets, TensorFlow Datasets.
We briefly introduce and compare to each of these below.

F.1 Domain Shift Benchmarks for Non-Tabular Data

WILDS: WILDS30 is perhaps the closest benchmark to TableShift, but only uses non-tabular data.
WILDS demonstrates a lightweight, useful set of programming abstractions for benchmarking models
and sharing results across a diverse set of datasets for domain shift. WILDS interfaces with image
and text datasets, and includes a rich variety of datasets with real-world sensitive attributes, carefully
selected domain shifts, and has wide adoption in the robustness community. WILDS includes a
high-quality Python API, which has led to wide integration with researchers’ open-source code and
widespread adoption. However, WILDS is currently not compatible with tabular datasets and does not

30See https://wilds.stanford.edu/ and [50].

43

https://wilds.stanford.edu/


include any tabular datasets in its benchmark suite. The needs for tabular datasets are different than
the datasets currently used in WILDS (i.e. non-Torch models must be supported by the benchmark;
subgroup and domain-shift information are handled differently for our use cases; data preprocessing
is also different for tabular data as noted above).

DomainBed: DomainBed31 is a benchmark that contains several reference implementations, includ-
ing some that have been adapted for use in TableShift. In addition to these model implementations,
DomainBed serves as an interface to several existing datasets through a Python API. However,
DomainBed is specifically adapted to image data. It only supports image datasets with a specific
folder structure (which would make extending to tabular datasets nontrivial) and includes many
image-specific augmentation components of its pipelines. It also uses ResNet50/ResNet18 networks
designed specifically for image classification, and therefore does not currently support either deep
learning models suited to image data, nor (more importantly) the effective non-DL baselines described
above such as XGBoost and LightGBM.

Shift Happens: The “shift happens” benchmark32 is a community-built benchmark suite for image
models. It specifically aims to feature datasets with domain shift, for tasks including image classifica-
tion under domain shift, and out-of-distribution detection. The benchmark includes a Python API.
This benchmark does not support tabular datasets, and is much less widely used, perhaps due to the
community-driven effort (as opposed to benchmarks such as WILDS and DomainBed, which come
packaged with preselected datasets and domain splits).

Shifts 2.0: Shifts ([58], recently upgraded to Shifts 2.0 [57]) is a collection of multimodal tasks with
domain shifts. The Shifts benchmark is a part of the Shifts Project, an international collaboration
of academic and industrial researchers dedicated to studying distributional shift.33 Shifts 2.0, the
current version, includes five tasks: tabular weather prediction, tabular marine cargo vessel power
consumption prediction, machine translation, self-driving car vehicle motion prediction, and seg-
mentation of white matter Multiple Sclerosis lesions in 3D magnetic resonance brain images. While
shifts does contain two tabular data tasks, its relatively small number of tasks makes it a less reliable
benchmark compared to the rich set of tabular datasets comprising TableShift. Shifts also does not
include any tasks with real-world sensitive subgroups (such as age, race, or gender) which are of
particular interest in many tabular classification tasks. Additionally, the domains represented in the
tabular tasks of Shifts do not cover many critical domains widely recognized as using tabular data
(e.g. finance, medicine, etc.; see Section C.2).

F.2 IID Benchmarks for Tabular Data

Benchmark of [37]: The unnamed benchmark proposed in this work is intended to provide a
consistent benchmarking suite for tabular dataset classification tasks, and was motivated by some of
the same gaps described in this work. However, the datasets comprising the benchmark of [37] do
not meet our specifications, for several reasons. First, the datasets are limited to be of maximum size
10k observations; this is too small for reliable and repeated benchmarking comparisons. Additionally,
the datasets are label-balanced; in contrast, we use the naturaly-occurring label distributions for
all datasets (and we show that these label distributions are importantly related to shift gap). Most
critically, the benchmark datasets in [37] do not contain domain shifts; for most or all of the datasets,
it is does not appear that a domain shift could be induced from splitting the existing data on an
existing feature.

OpenML: OpenML has some overlap with the proposed functionality. However, OpenML both
lacks functionality we seek to provide (subgroup robustness and domain shift utilities; a curated
set of benchmarking datasets; lightweight and standardized control over common tabular prepro-
cessing methods) and also provides extraneous functionality not needed for a lightweight tabular
benchmarking library (tools for OpenML-hosted model/pipeline/evaluation sharing and collaboration;
API/utilities for model training) . Additionally, OpenML is not yet widely used in the tabular data
community, as demonstrated by the wide calls for effective tabular data benchmarking tools ([15],
[37], [79]) and the lack of usage of OpenML in most robustness works, even recent works (e.g. [92]),
which largely focus on canonical tabular datasets such as COMPAS and Adult.

31See https://github.com/facebookresearch/DomainBed and [38].
32
https://shift-happens-benchmark.github.io/index.html

33
https://shifts.ai/
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Table 18: Comparison of relevant benchmarks. DB: DomainBed. OML: OpenML. GOV22: [37].
SH: Shift Happens. HFDS: Hugging Face Datasets. TFDS: TensorFlow Datasets.

DB OML GOV22 WILDS SH Shifts 2.0 HFDS TFDS TableShift
Output Supports tabular data

input formats (e.g. .csv)
X X X X X

Supports tabular output
formats (e.g.
pd.DataFrame)

X X X X

Support for
large/out-of-core
datasets

X X X X X X

Preprocessing Supports tabular
preprocessing:
categorical encoding;
missing value handling

X

Provides shared utilities
for user-defined
preprocessing per
dataset

X X X X X X

Metadata Feature-level metadata X
Dataset-level metadata X X X

Benchmark
Tasks

Includes domain shift
(non-IID) splits

X X X X some X

Meets criteria in §3.1 X X X
Large test sets (� 10k) X X
Includes
label-imbalanced
datasets

X X X X X X X X

Includes real-world
sensitive attributes

some X some some all

DataPerf: DataPerf is “a benchmark package for evaluating ML datasets and dataset working
algorithms” [60]. Similar to WILDS and DomainBed, DataPerf covers many domains, not only
tabular data. DataPerf has a much broader set of goals relative to TableShift, and includes a collection
of tasks, metrics and rules that are intended to benchmark all stages of an ML pipeline, from raw data
to test set selection amd model selection. However, DataPerf does not offer domain shifts, and while
it is possible domain shifts could be integrated into DataPerf, it does not natively support the kind of
benchmarking that we intend to support with TableShift.

F.3 Other Data Hosting Platforms

Hugging Face Datasets (HFDS): HFDS is a generic dataset hosting utility provided by the company
Hugging Face. It serves as a large, open dataset repository; however, these datasets are not curated
for size, featurization, or quality. HFDS is a public platform where datasets can be contributed openly.
However, of the tabular datasets on HFDS, few if any meet the specifications described in §3.1; in
particular, most are not domain shift datasets.

TensorFlow Datasets (TFDS): TFDS is similar in many ways to HFDS. It is a public, open
repository of datasets, and new datasets can be contributed via git. However, TFDS also has the same
shortcomings as HFDS; in particular, its open format leads to a collection of datasets mostly not
useful for tabular data benchmarking and almost no datasets with meaningful distribution shifts.

G Training Details

Neural network-based models were trained on GPU, either NVIDIA RTX 2080 Ti GPUs with 11GB
of RAM, or NVIDIA Tesla M60 GPUs with 48 GB of RAM. We used a batch size of 4096 for training
all models, except where this was not possible due to memory limitations (see code for details).
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Where possible, gradient boosted tree models were trained using CPU (not GPU).

H Hyperparameter Grids

The hyperparameter tuning grid for each model is shown in Table 19. We make the full hyperparameter
tuning code available as part of the release of this work, at https://github.com/mlfoundations/
tableshift.

We made an effort to ensure our hyperparameter grids always included at least the full grid described
in the original work(s) cited for each learning method used in our study. For some methods, our grid
is a superset of the hyperparameter grid in the original study. This is to ensure, where possible, that
we tune a similar range of certain parameters (i.e. learning rate) across all methods. For domain
generalization methods, since we are not aware of any prior application to these methods to tabular
data, we use the hyperparameter grids from [38].
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Table 19: Hyperparameter grids used in all experiments. |: all MLP parameters also tuned. Continued
in Table 20.

Model Hyperparameter Values
Baseline Methods

| MLP

Learning Rate LogUniform(1e�5, 1e�1)
Weight Decay LogUniform(1e�6, 1)
Num. Layers {1, 2, . . . , 8}
Hidden Units {64, 128, 256, 512, 1024}
Num Epochs QRandInt(5, 100, 5)
Dropout Unif(0, 0.5)
Batch Size {4096}

XGBoost

Learning Rate LogUniform{1e� 5, 1}
Max. Depth {3, . . . , 10}
Min Child Weight LogUniform{1e� 8, 1e5}
Row Subsample Uniform{0.5, 1.}
Column Subsample (Tree) Uniform{0.5, 1.}
Column Subsample (Level) Uniform{0.5, 1.}
� LogUniform{1e� 8, 1e2}
� LogUniform{1e� 8, 1e2}
↵ LogUniform{1e� 8, 1e2}
Max. Bins {128, 256, 512}

LightGBM

Learning Rate LogUniform{1e� 5, 1}
Min. Child Samples {1, 2, 4, 8, 16, 32, 64}
Min. Child Weight LogUniform (1e� 8, 1e5)
Row Subsample Uniform{0.5, 1.}
Max. Depth {None, 1, 2, . . . , 31}
Column Subsample (Tree) Uniform{0.5, 1.}
Column Subsample (Level) Uniform{0.5, 1.}
� LogUniform{1e� 8, 1e2}
↵ LogUniform{1e� 8, 1e2}

CatBoost

Learning Rate LogUniform{1e� 3, 1}
Depth QRandInt{3, 10}
Bagging Temp. LogUniform (1e� 6, 1)
L2 Leaf Reg. LogUniform (1, 100)
Leaf Estimation Iterations QRandInt{1, 10}

Domain Generalization Methods

DANN |

LRG LogUniform{1e� 5, 1e� 1}
WeightDecayG LogUniform{1e� 6, 1}
LRd LogUniform{1e� 5, 1e� 1}
WeightDecayD LogUniform{1e� 6, 1}
D steps per G step LogUniform{2, 23}
Grad Penalty LogUniform{1e� 2, 1e1}
Loss � LogUniform{1e� 2, 1e2}

IRM | IRM � LogUniform{1e� 1, 1e5}
IRM Penalty Anneal Iters LogUniform{1, 1e4}

MixUp | MixUp ↵ Uniform{1e� 1, 1e1}

VReX | VReX � LogUniform{1e� 1, 1e5}
VReX Penalty Anneal Iters LogUniform{1, 1e4}

CORAL | MMD � LogUniform{1e� 1, 1e1}
MMD | MMD � Uniform{1e� 1, 1e1}
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Model Hyperparameter Values
Tabular Neural Networks

ResNet |

Num. Blocks {1, 2, 3, 4}
d main RandInt(64, 1024)
Hidden Factor RandInt(1, 4)
Dropout First Uniform(0, 0.5)
Dropout Second Uniform(0, 0.5)

FT-Transformer |

Num. Blocks {1, 2, 3, 4}
Residual Dropout Uniform(0, 0.2)
Attention Dropout Uniform(0, 0.5)
FFN Dropout Uniform(0, 0.5)
FFN Factor Uniform(2/3, 8/3)
FFN Factor {64, 128, 256, 512}

TabTransformer

Num. Blocks {1, 2, 3, 4}
Learning Rate LogUniform(1e�5, 1e�1)
Weight Decay LogUniform(1e�6, 1)
Num Epochs QRandInt(5, 100, 5)
FFN Dropout Uniform(0, 0.5)
Attention Dropout Uniform(0, 0.5)
Model Dimension 32, 64, 128, 256
Depth 3, 4, 5, 6
Num. Heads 2, 4, 8

NODE

Num. Epochs {1, 2, 3, 4, 5}
Num. Layers 2, 4, 8
Total Tree Count 1024, 2048
Tree Depth 6, 8
Tree Output Dim. 2, 3
FFN Factor {64, 128, 256, 512}
Learning Rate LogUniform(1e�5, 1e�1)
Weight Decay LogUniform(1e�6, 1)

SAINT

Num. Epochs {1, 2, 3, 4, 5}
Depth 4, 6
Model Dimension 4, 8, 12, 16, 32
Learning Rate LogUniform(1e�5, 1e�1)
Weight Decay LogUniform(1e�6, 1)
FFN Dropout Uniform(0.1, 0.8)
Heads 4, 8
Attention Type Row, Col, RowCol

Domain Robustness Methods

DRO | Uncertainty set size LogUniform{1e� 4, 1.}
Geometry { CVaR, �2}

Group DRO | Group weights step size LogUniform(1e�4, 1}
Label Shift Robustness Methods

Label Group DRO | Group weights step size LogUniform(1e�4, 1}

Adversarial Label DRO | Adv. Learning Rate ⌘⇡ LogUniform{1e� 4, 1e� 1}
Adv. radius r LogUniform{1e� 5, 0.5}
Clip max r LogUniform{1e� 1, 10}
✏ LogUniform{1e� 4, 1e� 1}

Table 20: Hyperparameter grids used in all experiments. |: all MLP parameters also tuned. Continued
from Table 19.

48


	Introduction
	Setup, Task, and Notation
	Task and Setting
	Related Work

	Tableshift: A Distribution Shift Benchmark for Tabular Data
	TableShift Benchmark Tasks
	TableShift API

	Experiment Setup
	Tabular Data Classification Techniques in our Comparison
	Methods

	Empirical Results
	Limitations
	Conclusion
	Benchmark Task Details
	Food Stamps
	Income
	Public Coverage
	ACS Unemployment
	Diabetes
	Hypertension
	Voting
	Childhood Lead Exposure
	Hospital Readmission
	Sepsis
	ICU Patient Length-of-Stay
	ICU Patient In-Hospital Mortality
	FICO Home Equity Line of Credit (HELOC)
	College Scorecard Degree Completion Rate
	ASSISTments Tutoring System Correct Answer Prediction

	Dataset Availability
	Related Work
	Distribution/Domain Shift
	Tabular Data Modeling
	Benchmarking for Machine Learning

	Additional Dataset Details and Results
	Domain Split Selection
	Domain Shift Metrics (Covariate, Concept, and Label Shift)
	Detailed Results Per Task
	Results with Additional Random Seeds
	Results with Hybrid Methods

	Model Details
	Baseline Models
	Tabular Neural Networks
	Robustness Models
	Domain Generalization Models
	Label Shift Robustness Models

	Comparison To Other Benchmarking Toolkits
	Domain Shift Benchmarks for Non-Tabular Data
	IID Benchmarks for Tabular Data
	Other Data Hosting Platforms

	Training Details
	Hyperparameter Grids

