
Supplementary Material of “Designing Robust Transformers557

using Robust Kernel Density Estimation”558

A The Non-parametric Regression Perspective of Self-Attention559

Given an input sequence X = [x1, . . . ,xN ]> 2 RN⇥Dx of N feature vectors, the self-attention560

mechanism transforms it into another sequence H := [h1, · · · ,hN ]> 2 RN⇥Dv as follows:561

hi =
X

j2[N ]

softmax
⇣q>

i kjp
D

⌘
vj , for i = 1, . . . , N. (13)

The vectors qi, kj and vj are the query, key and value vectors, respectively. They are computed as562

follows:563

[q1, q2, . . . , qN ]> := Q = XW>
Q 2 RN⇥D,

[k1,k2, . . . ,kN ]> := K = XW>
K 2 RN⇥D,

[v1,v2, . . . ,vN ]> := V = XW>
V 2 RN⇥Dv ,

(14)

where WQ,WK 2 RD⇥Dx , WV 2 RDv⇥Dx are the weight matrices. Equation (13) can be written564

in the following equivalent matrix form:565

H = softmax
⇣QK>

p
D

⌘
V , (15)

where the softmax function is applied to each row of the matrix (QK>)/
p
D. Equation (15) is566

also called the “softmax attention”. Assume we have the key and value vectors {kj ,vj}j2[N ] that567

is collected from the data generating process568

v = f(k) + ", (16)
where " is some noise vectors with E["] = 0, and f is the function that we want to estimate. If569

{kj}j2[N ] are i.i.d. samples from the distribution p(k), and p(v,k) is the joint distribution of (v,k)570

defined by equation (16), we have571

f(k) = E[v|k] =
Z

RD

v · p(v|k)dv =

Z

RD

v · p(v,k)
p(k)

dv, (17)

We need to obtain estimations for both the joint density function p(v,k) and the marginal density572

function p(k) to obtain function f , one popular approach is the kernel density estimation:573

p̂�(v,k) =
1

N

X

j2[N ]

k� ([v,k]� [vj ,kj ]) (18)

p̂�(k) =
1

N

X

j2[N ]

k�(k � kj), (19)

where [v,k] denotes the concatenation of v and k. k� could be isotropic Gaussian kernel: k�(x �574

x0) = exp
�
�kx� x0k2/(2�2)

�
, we have575

p̂�(v,k) =
1

N

X

j2[N ]

k�(v � vj)k�(k � kj). (20)

Combining equations (19), (20), and (17), we obtain the NW estimator of the function f as576

bf�(k) =
Z

RD

v · p̂�(v,k)
p̂�(k)

dv (21)

=

Z

RD

v ·
P

j2[N ] k�(v � vj)k�(k � kj)P
j2[N ] k�(k � kj)

dv

=

P
j2[N ] k�(k � kj)

R
v · k�(v � vj)dvP

j2[N ] k�(k � kj)

=

P
j2[N ] vjk�(k � kj)P
j2[N ] k�(k � kj)

. (22)
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Now we show how the self-attention mechanism is related to the NW estimator. If the keys577

{kj}j2[N ] are normalized578

bf�(q) =
P

j2[N ] vj exp
�
�kq � kjk2/2�2

�
P

j2[N ] exp (�kq � kjk2/2�2)

=

P
j2[N ] vj exp

⇥
�
�
kqk2 + kkjk2

�
/2�2

⇤
exp

�
q>kj/�2

�
P

j2[N ] exp [� (kqk2 + kkjk2) /2�2] exp (q>kj/�2)

=
X

j2[N ]

exp
�
q>kj/�2

�
P

j2[N ] exp(q>kj/�2)

vj

=
X

j2[N ]

softmax
�
q>kj/�

2
�
vj . (23)

Then estimating the softmax attention is equivalent to estimating bf�(q).579

B Details on Leveraging Robust KDE on Transformers580

For simplicity, we use the Huber loss function as the demonstrating example, which is defined as581

follows:582

⇢(x) :=

⇢
x2/2, 0  x  a

ax� a2/2, a < x,
(24)

where a is a constant. The solution to this robust regression problem has the following form:583

Proposition 1. Assume the robust loss function ⇢ is non-decreasing in [0,1], ⇢(0) = 0 and584

limx!0
⇢(x)
x = 0. Define  (x) := ⇢0(x)

x and assume  (0) = limx!0
⇢0(x)
x exists and finite. Then585

the optimal p̂robust can be written as586

p̂robust =
X

j2[N ]

!jk�(xj , ·),

where ! = (!1, · · · ,!N ) 2 �N , with each !j /  
�
kk�(xj , ·)� p̂robustkHk�

�
. Here �n denotes587

the n-dimensional probability simplex.588

Proof. The proof of Proposition 1 is mainly adapted from the proof in Kim & Scott (2012). Here,589

we provide proof of completeness. For any p 2 Hk� , we denote590

J(p) =
1

N

X

j2[N ]

⇢
�
kk�(xj , ·)� pkHk�

�
.

Then we have the following lemma regarding the Gateaux differential of J and a necessary condition591

for p̂robust to be optimal solution of the robust loss objective function in equation (5).592

Lemma 1. Given the assumptions on the robust loss function ⇢ in Proposition 1, the Gateaux dif-593

ferential of J at p 2 Hk� with incremental h 2 Hk� , defined as �J(p;h), is594

�J(p;h) := lim
⌧!0

J(p+ ⌧h)� J(p)

⌧
= �hV (p), hiHk�

,

where the function V : Hk� ! Hk� is defined as:

V (p) =
1

N

X

j2[N ]

 
�
kk�(xj , ·)� pkHk�

�
(k�(xj , ·)� p).

A necessary condition for p̂robust is V (p̂robust) = 0.595
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The proof of Lemma 1 can be found in Lemma 1 of Kim & Scott (2012). Based on the necessary596

condition for p̂robust in Lemma 1, i.e., V (p̂robust) = 0, we have597

1

N

X

j2[N ]

 
�
kk�(xj , ·)� p̂robustkHk�

�
(k�(xj , ·)� p̂robust) = 0.

Direct algebra indicates that p̂robust =
P

j2[N ] !jk�(xj , ·) where ! = (!1, · · · ,!N ) 2 �N , and598

!j /  
�
kk�(xj , ·)� p̂robustkHk�

�
. As a consequence, we obtain the conclusion of the proposition.599

600

For the Huber loss function, we have that601

 (x) :=

⇢
1, 0  x  a

a/x, a < x.

Hence, when the error kk�(xj , ·), · � p̂robustkHk�
is over the threshold a, the final estimator will602

down-weight the importance of k�(xj , ·). This is in sharp contrast with the standard KDE method,603

which will assign uniform weights to all of the k�(xj , ·). As we mentioned in the main paper, the604

estimator provided in Proposition 1 is circularly defined, as p̂robust is defined via !, and ! depends on605

p̂robust. Such an issue can be addressed by estimating ! with an iterative algorithm termed as kernel-606

ized iteratively re-weighted least-squares (KIRWLS). The algorithm starts with randomly initialized607

!(0) 2 �n, and perform the following iterative updates between two steps:608

p̂(k)robust =
X

j2[N ]

!(k�1)
i k�(xj , ·), !(k)

j =

 

✓���k�(xj , ·)� p̂(k)robust

���
Hk�

◆

P
j2[N ]  

✓���k�(xj , ·)� p̂(k)robust

���
Hk�

◆ . (25)

Note that, the optimal p̂robust is the fixed point of this iterative update, and the KIRWLS algorithm609

converges under standard regularity conditions. Furthermore, one can directly compute the term610 ���k�(xj , ·)� p̂(k)robust

���
Hk�

via the reproducing property:611

���k�(xj , ·)� p̂(k)robust

���
2

Hk�

= �2
X

m2[N ]

!(k�1)
m k�(xm,xj) + k�(xj ,xj)

+
X

m2[N ],n2[N ]

!(k�1)
m !(k�1)

n k�(xm,xn). (26)

Therefore, the weights can be updated without mapping the data to the Hilbert space.612

C Fourier Attention with Median of Means613

We introduce the Fourier Attention coupled with the Median of Means (MoM) principle and show614

how this is robust to outliers. For any given function � : R ! R and radius R, we randomly divide615

the keys {ki}i2[N ] into B subsets I1, . . . , IB of equal size where |I1| = |I2| = · · · = |IB | = S .616

Define p̂R,Im(ql) =
1
S
P

i2Im

QD
j=1 �(

sin(R(qlj�kij))
R(qlj�kij)

), then the MoM Fourier attention is defined617

as618

ĥl =

1
S
P

i2Im
vi

QD
j=1 �(

sin(R(qlj�kij))
R(qij�klj)

)

median{p̂R,I1(ql), . . . , p̂R,IB (ql)}
, (27)

where Im is the block such that p̂R(ql,k) achieves its median value. To shed light into the robustness619

of Transformers that use Eq. (27) as the attention mechanism, we demonstrate that the estimator620

p̂R(q) = median{p̂R,I1(q), . . . , p̂R,IB (q)} is a robust estimator of the density function p(q) of the621

keys. We first introduce a few notations that are useful for stating this result. Denote C = {1 622

i  N : ki is clean} and O = {1  i  N : ki is outlier}. Then, we have C \ O = ; and623

C [ O = {1, 2, . . . , N}. The following result establishes a high probability upper bound on the624

sup-norm between bpR(q) and p(q).625
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Theorem 1. Assume that the function � satisfies
R
�(sin(z)/z)zjdz = 0 for all 1  j  m626

and
R
|�(sin(z)/z)||z|m+1dz < 1 for some m 2 N. Furthermore, the density function p(q)627

satisfies supq |p(q)| < 1. The number of blocks B and the number of outliers |O| are such that628

B > (2 + �)|O| where � is the failure probability. Then, with � = 1
2+� � |O|

B for the radius R629

sufficiently large and � sufficiently small, with probability at least 1� exp(�2�2B) we find that630

kp̂R � pk1  C(
1

Rm+1
+

r
BRD logR log(2/�)

N
)

where C is some universal constant.631

Remark 1. The result of Theorem 1 indicates by choosing R = O(N� 1
2(m+1)+D ), the rate of p̂R to p632

under the supremum norm is O(N� m+1
2(m+1)+D ). With that choice of R, when N approaches infinity,633

the MoM estimator p̂R is a consistent estimator of the clean distribution p of the keys. This confirms634

the validity of using p̂R to robustify p and similarly the usage of MoM Fourier attention Eq. (27) as635

a robust attention for Transformers.636

Proof. From the formulation of the MoM estimator bpR(q), we obtain the following inequality637

{sup
q

|p̂R(q)� p(q)| � ✏} ⇢ {sup
q

BX

b=1

1{|p̂R,Ib
(q)�p(q)|�✏} � B

2
}

This bound indicates that to bound P(kp̂R(q) � p(q)k1 � ✏), it is sufficient to bound638

P({supq
PB

b=1 1{|p̂R,Ib
(q)�p(q)|�✏} � B

2 }). Indeed, for each 1  b  B, we find that639

1{|p̂R,Ib
(q)�p(q)|�✏}  1{supq{|p̂R,Ib

(q)�p(q)|�✏}.

Therefore, we have640

BX

b=1

1{|p̂R,Ib
(q)�p(q)|�✏} 

BX

b=1

1{supq{|p̂R,Ib
(q)�p(q)|�✏},

which leads to supq
PB

b=1 1{|p̂R,Ib
(q)�p(q)|�✏} 

PB
b=1 1{supq{|p̂R,Ib

(q)�p(q)|�✏}. This inequality641

shows that642

P({sup
q

BX

b=1

1{|p̂R,Ib
(q)�p(q)|�✏} � B

2
})  P(

BX

b=1

1{supq{|p̂R,Ib
(q)�p(q)|�✏}).

To ease the presentation, we denote Wb = 1{supq{|p̂R,Ib
(q)�p(q)|�✏} and B = {1  b  B :643

Ib \O = ;}. Then, the following inequalities hold644

BX

b=1

1{supq{|p̂R,Ib
(q)�p(q)|�✏} =

X

b2B
Wb +

X

b2Bc

Wb


X

b2B
Wb + |O|


X

b2B
(Wb � E[Wb]) +B · P(sup

q
|p̂R,I1(q)� p(q)| > ✏) + |O|,

where we assume without loss of generality that 1 2 B, which is possible due to the assumption that645

B > (2 + �)|O|. By adapting Lemma 1 in Nguyen et al. (2022c) to uniform concentration bound,646

we have647

P(sup
q

|p̂R,I1(q)� p(q)| � C(
1

Rm+1
+

s
RD logR log(2/�)

|I1|
))  �.

By choose ✏ = C( 1
Rm+1 +

q
RD logR log(2/�)

|I1| )), then we find that648

P(sup
q

|p̂R,I1(q)� p(q)| > ✏)  �

2(2 + �)
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Collecting the above inequalities leads to649

P({sup
q

BX

b=1

1{|p̂R,Ib
(q)�p(q)|�✏} � B

2
})  exp(�2B�2),

where � = 1
2+� � |O|

B . As a consequence, we obtain the conclusion of the theorem.650

D Dataset Information651

WikiText-103 The dataset1 contains around 268K words and its training set consists of about 28K652

articles with 103M tokens, this corresponds to text blocks of about 3600 words. The validation set653

and test sets consist of 60 articles with 218K and 246K tokens respectively.654

ImageNet We use the full ImageNet dataset that contains 1.28M training images and 50K vali-655

dation images. The model learns to predict the class of the input image among 1000 categories. We656

report the top-1 and top-5 accuracy on all experiments. The following ImageNet variants are test657

sets that are used to evaluate model performance.658

ImageNet-C For robustness on common image corruptions, we use ImageNet-C (Hendrycks &659

Dietterich, 2019) which consists of 15 types of algorithmically generated corruptions with five levels660

of severity. ImageNet-C uses the mean corruption error (mCE) as a metric: the smaller mCE means661

the more robust the model under corruption.662

ImageNet-A This dataset contains real-world adversarially filtered images that fool current Ima-663

geNet classifiers. A 200-class subset of the original ImageNet-1K’s 1000 classes is selected so that664

errors among these 200 classes would be considered egregious, which cover most broad categories665

spanned by ImageNet-1K.666

ImageNet-O This dataset contains adversarially filtered examples for ImageNet out-of-667

distribution detectors. The dataset contains samples from ImageNet-22K but not from ImageNet-668

1K, where samples that are wrongly classified as an ImageNet-1K class with high confidence by a669

ResNet-50 are selected. We use AUPR (area under precision-recall) as the evaluation metric.670

ImageNet-R This dataset contains various artistic renditions of object classes from the original671

ImageNet dataset, which is discouraged by the original ImageNet. ImageNet-R contains 30,000672

image renditions for 200 ImageNet classes, where a subset of the ImageNet-1K classes is chosen.673

ImageNet-Sketch This dataset contains 50,000 images, 50 images for each of the 1000 ImageNet674

classes. The dataset is constructed with Google Image queries “sketch of xxx”, where xxx is the675

standard class name. The search is only performed within the “black and white” color scheme.676

E Ablation Studies677

In this section, we provide additional results and ablation studies that focus on different design678

choices for the proposed robust KDE attention mechanisms. The detailed experimental settings can679

be found in the caption of each table.680

1www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
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Table 5: Perplexity (PPL) and negative likelihood loss (NLL) of our methods (lower part) and baselines
(upper part) on WikiText-103 using a medium version of Transformer. The best results are highlighted in bold
font and the second best are highlighted in underline. On clean data, Transformer-SPKDE achieves better PPL
and NLL than other baselines. Under random swap with outlier words, Transformers with MoM self-attention
show much better performance.

Method (median version) Clean Data Word Swap
Valid PPL/Loss Test PPL/Loss Valid PPL/Loss Test PPL/Loss

Transformer (Vaswani et al., 2017b) 27.90/3.32 29.60/3.37 65.36/4.31 68.12/4.36
Performer (Choromanski et al., 2021) 27.34/3.31 29.51/3.36 64.72/4.30 67.43/4.34

Transformer-MGK (Nguyen et al., 2022b) 27.28/3.31 29.24/3.36 64.46/4.30 67.31/4.33
FourierFormer (Nguyen et al., 2022c) 26.51/3.29 28.01/3.33 63.74/4.28 65.27/4.31

Transformer-RKDE (Huber) 26.12/3.28 27.89/3.32 49.37/3.85 51.22/3.89
Transformer-RKDE (Hampel) 25.87/3.27 27.44/3.31 48.62/3.83 51.03/3.88

Transformer-SPKDE 25.76/3.27 27.35/3.31 46.91/3.79 49.14/3.84
Transformer-MoM 28.26/3.34 29.98/3.38 45.35/3.75 47.92/3.81

FourierFormer-MoM 27.13/3.31 29.02/3.36 43.23/3.71 44.97/3.74

Table 6: Test PPL/NLL loss versus the parameter a of Huber loss function defined in Eq. (24)
(upper) and Hampel loss function (Kim & Scott, 2012) (lower; we use 2⇥a and 3⇥a as parameters
b and c) on original and word-swapped Wiki-103 dataset. The best results are highlighted in bold
font and the second best are highlighted in underline. We choose a = 0.4 in rest of the experiments.

Robust Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 32.92/3.48 32.87/3.48 32.29/3.47 32.38/3.48 32.46/3.48 32.48/3.48

Word Swap 55.82/3.99 55.97/3.99 55.68/3.99 56.89/4.01 57.26/4.01 57.37/4.01

Clean Data 32.67/3.48 32.32/3.48 32.35/3.48 32.47/3.48 32.53/3.48 32.58/3.48

Word Swap 58.02/4.03 57.86/4.03 57.92/4.03 58.24/4.04 58.37/4.04 58.43/4.04

Table 7: Top-1 classification accuracy on ImageNet versus the parameter a of Huber loss function
defined in Eq. (24) under different settings. The best results are highlighted in bold font and the
second best are highlighted in underline. We choose a = 0.2 in rest of the experiments.

Huber Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 71.45 72.83 71.62 71.07 70.65 70.34

FGSM 56.72 55.83 55.34 54.87 54.02 52.98

PGD 46.37 44.15 43.87 43.25 42.69 41.96

SPSA 52.38 52.42 51.69 51.34 50.97 48.22

Imagenet-C 45.37 45.58 45.63 45.26 44.63 43.76

Table 8: Top-1 classification accuracy on ImageNet versus the parameter a of Hampel loss function
defined in Kim & Scott (2012) under different settings. We use 2⇥ a and 3⇥ a as parameters b and
c. The best results are highlighted in bold font and the second best are highlighted in underline. We
choose a = 0.2 in rest of the experiments.

Hampel Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 71.63 72.94 71.84 71.23 70.87 70.41

FGSM 56.42 55.92 55.83 55.66 54.97 53.68

PGD 45.18 44.23 43.89 43.62 43.01 42.34

SPSA 52.96 52.48 52.13 51.46 50.92 50.23

Imagenet-C 44.76 45.61 46.04 46.13 45.82 45.31
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Table 9: Top-1 classification accuracy on ImageNet versus the parameter � of SPKDE defined in
Eq. (6) under different settings. � = 1

1�" > 1, where " is the percentage of anomalous samples. A
larger � indicates a more robust model. The best results are highlighted in bold font and the second
best are highlighted in underline. We choose � = 1.4 in rest of the experiments.

� 1.05 1.2 1.4 1.6 1.8 2

Clean Data 74.25 73.56 73.22 73.01 72.86 72.64

FGSM 53.69 55.08 56.03 55.37 54.21 53.86

PGD 42.31 43.68 44.51 44.32 44.17 43.71

SPSA 51.29 52.02 52.64 52.84 52.16 51.39

Imagenet-C 44.68 45.49 44.76 44.21 43.96 43.33

Table 10: Top-1 classification accuracy on ImageNet versus the number of iterations of the KIRWLS
algorithm in Eq. (25) employed in Transformer-RKDE. Since the increased number of iterations
does not lead to significant improvements of performance while the computational cost is much
higher, we use the single-step iteration of the KIRWLS algorithm in Transformer-RKDE.

Huber Loss Hampel Loss

Iteration # 1 2 3 5 1 2 3 5

Clean Data 72.83 72.91 72.95 72.98 72.94 72.99 73.01 73.02

FGSM 55.83 55.89 55.92 55.94 55.92 55.96 55.97 55.99

PGD 44.15 44.17 44.17 44.18 44.23 44.26 44.28 44.31

SPSA 52.42 52.44 52.45 52.45 52.48 52.53 52.55 52.56

Imagenet-C 45.58 45.61 45.62 45.62 45.61 45.66 45.68 45.71

Table 11: Computation time (measured by seconds per iteration) of baseline methods, Transformer-
SPKDE, Transformer-MoM and Transformer-RKDE with different number of KIRWLS iterations.
Transformer-SPKDE requires longer time since it directly obtains the optimal set of weights via the
QP solver.

Iterations of KIRWLS
DeiT RVT SPKDE MoM-KDE

1 2 3 5

Time (s/it) 0.43 0.51 0.68 0.84 0.35 0.41 1.45 0.37

(a) (b) (c) (d)

Figure 5: Contour plots of density estimation of the 2-dimensional query vector embedding in an
attention layer of the transformer when using (b) KDE (Eq. (4)) and (c) RKDE after one iteration
of Eq. (25) with Huber loss (Eq. (24)), (d) KDE with median-of-means principle (Eq. (10)), where
(a) is the true density function. We draw 1000 samples (gray circles) from a multivariate normal
density and 100 outliers (red cross) from a gamma distribution as the contaminating density. RKDE
and KDE with the median-of-means principle can be less affected by contaminated samples when
computing self-attention as nonparametric regression.
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