
A Appendix530

A.1 Parameters531

Table 9. LWE, preprocessing, and training parameters. For the adaptive increase of preprocessing parameters,
we start with blocksize �1 and LLL-delta �LLL1, and upgrade to �2 and �LLL2 at a later stage. Parameters base
B and bucket size r are used to tokenize the numbers for transformer training.

n log2 q q �1 �LLL1 �2 �LLL2 base B bucket size r

256

12 3329 35 0.99 40 1 417 1
14 11197 35 0.99 40 1 1400 1
16 42899 35 0.99 40 1 5363 4
18 222553 35 0.99 40 0.99 27820 16
20 842779 35 0.99 40 0.99 105348 64

350 21 1489513 30 0.96 40 0.99 186190 128
27 94056013 30 0.96 40 0.99 5878501 4096

512 41 2199023255531 18 0.93 22 0.96 137438953471 134217728

VERDE runs data preprocessing with the parameters shown in Table 9, in parallel using multiple532

CPUs. We fully parallelize when the time to process one matrix is greater than 24 hours, e.g., for533

n = 350, log2 q = 27, we used 5000 CPUs. Otherwise, we parallelize on fewer CPUs depending534

on the attack time allowed, e.g., preprocessing is completed on 270 CPUs in less than 4 days for535

n = 256, log2 q = 14, and on 990 CPUs in less than 3 days for n = 256, log2 q = 18.536

In VERDE, the tokenization used by the transformer mirrors the strategy in §4 of [42], but uses537

smaller bases B and larger bucket sizes r for better performance (Table 9, 10 of [42]). Decreasing B538

is further supported by Table 10, evaluated on a low modulus data using VERDE’s preprocessing539

(n = 256, log2 q = 16). Full ternary secret recovery and partial Gaussian secret recovery both540

improve with smaller B = 5363.541

Table 10. Secret recovery for different bases. n = 256, log2 q = 16. We show full ternary secret recovery
and partial Gaussian secret recovery when using B = 7150 and 5363 on the same datasets and secrets.

ternary Gaussian
h 8 9 10 11 12 3 4 5 6

B = 7150 2/10 0/10 1/10 0/10 1/10 5/10 6/10 1/10 1/10
B = 5363 2/10 0/10 2/10 0/10 2/10 5/10 6/10 1/10 3/10

A.2 More seeds for initialization542

The ML attacks benefit from running multiple times with different seeds, or initializations, as was543

demonstrated in PICANTE [42, Section 6.4]. More seeds improve both the success probability and the544

number of epochs required. Table 11 shows how binary secret recovery improves with more seeds,545

for different Hamming weights h when n = 256 and log2 q = 12.546

Table 11. Secret recovery with 1 vs 5 seeds. n = 256, log2 q = 12, binary secrets. For 1 seed, epoch is the
epoch of secret recovery; For 5 seeds (ran on the same secrets as the 1 seed experiments), epoch is the lowest
epoch of secret recovery among the 5 initializations for each secret.

h 3 4 5 6

recovery, 1 seed 5/10 1/10 1/10 1/10
epoch 0,0,0,8,17 0 17 13

recovery, 5 seeds 7/10 3/10 1/10 2/10
epoch 0,0,0,7,7,8,17 0,5,5 7 4,7

Table 12 shows the results for ternary secrets on n = 512, log2 q = 41, where we run 5 initializations547

for each secret. While most initializations partially recovered the secret, only a few got full recovery548

within 20 epochs. Full recovery benefits from more initializations, especially for high h.549

14

 



Table 12. Ternary secret recovery with 5 initializations. n = 512. ‘-’: recovery did not occur in  20 epochs.

h 45 46 50 55 58 60

epoch of partial recovery 4,4,6,6,7 1,1,1,1,1 3,4,5,7,- 5,6,6,6,7 6,6,8,10 5,8,8,8,12
epoch of full recovery 10,-,-,-,- 5,7,-,-,- 4,10,14,17,- 16,-,-,-,- 11,11,-,-,- -,-,-,-,-

A.3 Comparison with PICANTE550

To demonstrate the power of the new preprocessing in SALSA VERDE, we run a set of experiments551

on n = 256, log2 q = 23, where PICANTE also showed success. Using blocksize � = 40, each552

matrix is processed by VERDE in about 1.5 days; PICANTE took 2.2 days/matrix. VERDE achieves a553

reduction factor of 0.25, compared to 0.33 in PICANTE. As shown in Table 1, the difference in the554

preprocessing step is even more striking for lower q.555

The highest h recovered by PICANTE was h = 31 in 4 out of 20 experiments; VERDE recovered556

h = 43. In Table 13, we see that for h = 26 � 31, VERDE significantly outperforms PICANTE in557

both the success rate and the number of epochs required. In other words, better preprocessing results558

in lower training time and better secret recovery.

Table 13. Epochs of secret recovery for PICANTE vs. VERDE. n = 256 and log2 q = 23. ‘-’ means secret
not recovered. 5 secrets per h, except for PICANTE h = 31 (20 secrets).

h 26 27 28 29 30 31

PICANTE 2,3,4,7,- 10,-,-,-,- 5,-,-,-,- 5,9,11,-,- 17,20,32,-,- 6,12,26,27 (out of 20 secrets)
VERDE 0,0,2,2,7 2,6,-,-,- 0,0,0,1,2 0,1,1,1,- 0,1,2,3,- 1,2,3,4,-

559

A.4 Distinguisher tested on reduced data outperforms random data560

We compare the performance of running the distinguisher on the preprocessed data that were held561

out from the training set (DistBKZ) with running on random vectors (Distrand). We run both set of562

experiments with the same model initialization seeds, and record a success for the method(s) that563

recovers the secret at the earliest epoch. Table 14 indicates that DistBKZ performs better.564

Table 14. Secret recovery by running the distinguisher on the random vectors and bkz preprocessed data.
n = 256, log2 q = 23, on data processed using PICANTE’s approach.

h 27 28 29 30 31

DistBKZ 2/5 1/5 1/5 0/5 0/5
Distrand 1/5 0/5 0/5 0/5 0/5

A.5 Dimension reduction techniques565

Most of the entries in a sparse secret are zero, so prior work [5] has suggested the idea of randomly566

assuming a subset of the entries to be zero and removing them to reduce the dimension of the lattice567

problem. The assumption will be correct with some probability depending on the secret’s sparsity.568

Here we explore an improvement on this strategy: we use the partially trained model to glean signal569

on which entries should be kicked out. We can either try to kick out zeros, which we call dimension570

reduction, or in the binary case, kick out 1s, which we call Hamming reduction, or combined.571

This technique will be better than random when the model has begun to learn information about572

the bits, reflected in their relative rankings. Specifically, the ranking strategies described in [42,573

Section 4.3] are used to compute scores which estimate the likelihood of secret bits being 1. Once the574

model has started to learn, we can assume that the highest ranked bits will correspond to secret bits575

which are equal to 1, and the lowest ranked bits will correspond to zeros. So we use this information576

to reduce the dimension of the problem by kicking out low-ranked bits which we guess to be zero577

or high-ranked bits which we guess to be 1. Then, we retrain a model on the smaller dimensional578

samples and hope to recover the secret. If the original kicked out bits were correct and the model579

recovers the secret of the smaller dimensional problem, then we find the original secret.580

15



Dimension reduction. Since there are many more zeros than 1s in sparse secrets, we can potentially581

reduce the dimension significantly. Once we remove the bits with low scores, we can simply re-run582

training on the dataset with (a0, b) where a0 are the samples with the corresponding bits removed. If583

the indices have been identified incorrectly, then the reduction will fail. For n = 256, log2 q = 14,584

VERDE attempted 10 binary secrets with h = 10 and did not recover the secret. Then we tried585

dimension reduction on these experiments and recovered one secret.586

Hamming reduction. Kicking out 1s from the secret is particularly valuable, given the theoretical587

analysis of the VERDE in Section 6. If nonzero bits are indeed ranked at the top by the model, a588

straightforward approach of kicking out the top-ranked bits and retraining on the smaller dimension589

and Hamming weight will likely yield improved secret recovery.590

But in case some of the top-ranked bits are not equal to 1, we propose the following strategy. Suppose
S is a small set of indices for bits with the highest scores. We construct the following problem: let s0
be s with bits in S flipped, and a0 be a with ai negated for i 2 S. Equivalently, for i 2 S, a0i = �ai
and s0i = 1� si. Then, the corresponding

b0 = a0 · s0 =
X

i 62S

aisi +
X

i2S

a0is
0
i =

X

i 62S

aisi +
X

i2S

�ai(1� si) = b�
X

i2S

ai.

If more than half of the indices in S are 1, then s0 has a smaller Hamming weight, hence the instance591

(a0, b0 = b�
P

i2S ai) is likely easier. If exactly half of the indices in S are 1, then s0 has the same h592

as s, but the new instance (a0, b0) will have a different NoMod and may be recoverable. This strategy593

can be applied to the top-ranked bits, and will succeed in reducing the Hamming weight if more than594

half of those bits are 1.595

A.6 Attacking sparse secrets on larger dimensions596

For sparse secrets on even larger dimensions, we can apply our attack after using combinatorial597

techniques to exploit the sparsity of the secret. The approach would be to combine VERDE with the598

techniques from [5, 20] as follows: Randomly kick out k entries of the secret, assuming they are zero,599

which will be true with some probability. This reduces the LWE problem to a smaller dimension where600

VERDE can recover the secret. The expected cost of the attack would be VERDE’s cost multiplied by601

1/p, where p = (n�h
n )k is the probability that the assumption that the k entries are 0 is correct.602

A.7 Comparison with lattice reduction/uSVP attacks603

In this section we compare VERDE with state-of-the-art classical lattice reduction attacks in two604

ways. The LWE Estimator [6] gives heuristic predicted running times for the best known lattice605

reduction attacks. But even the authors of the LWE Estimator claim that the estimates are often wrong606

and unreliable. So we compare VERDE to the Estimator results but we also compare to concrete607

running times achieved by running lattice attacks ourselves, on the same machines where we run our608

ML-based attacks. High-level comparison for binary secrets, n = 256, is in Table 15.609

Table 15. Comparison of VERDE’s and uSVP attack performance on LWE problems with n = 256, binary
secrets, varying q and h. VERDE’s total attack time is the sum of preprocessing and training time (with recovery
included). Preprocessing time assumes full parallelization, and training time is the number of epochs to recovery
multiplied by epoch time (1.5 hours/epoch). N/A means no successful secret recovery.

LWE parameters VERDE attack time uSVP attack time (hrs)
log2 q h Preprocessing (hrs) Training Total (hrs)

12 8 1.5 2 epochs 4.5 N/A
14 12 2.5 2-5 epochs 5.5-10 N/A
16 14 8.0 2 epochs 11 N/A
18 18 7.0 3 epochs 11.5 558
18 20 7.0 1-8 epochs 8.5-19 259
20 22 7.5 5 epochs 15 135-459
20 23 7.5 3-4 epochs 12-15 167-330
20 24 7.5 4 epochs 13.5 567
20 25 7.5 5 epochs 15 76 - 401

16



To summarize the comparison, VERDE outperforms existing classical attacks in two senses: 1)610

VERDE fully recovers sparse binary and ternary secrets for n and q where existing classical attacks611

do not succeed in several weeks or months using fplll BKZ 2.0 [19] with the required block size; and612

2) in cases where we improve the implementation enough to run them with the required large block613

size, we find that in all cases, VERDE recovers the secrets much faster (see Table 15).614

Summarizing classical lattice reduction attacks. Table 16 gives the estimated heuristic cost and615

specifies the block size for attacking sparse binary and ternary secrets for n = 256, 350, 512 and616

various q with the best known classical lattice reduction attack.617

Table 16. Best classical attack from the LWE Estimator. On binary and ternary secrets. For VERDE’s highest
h, we run the estimator and report the best attack and their cost. � is the estimated block size of the attack.

n log2 q
binary secret ternary secret

h best attack rop � h best attack rop �

256

12 8 dual_mitm_hybrid 243.0 40 9 dual_mitm_hybrid 243.8 40
14 12 dual_hybrid 247.2 40 13 dual_hybrid 247.7 41
16 14 dual_hybrid 246.8 40 16 dual_hybrid 247.4 41
18 23 bdd_hybrid 247.1 45 23 dual_hybrid 247.4 41
20 36 bdd 244.0 45 33 bdd 244.2 46

350 21 12 dual_mitm_hybrid,
bdd_mitm_hybrid 246.4 40 13 dual_mitm_hybrid 246.9 54

27 36 bdd 244.9 47 38 bdd, bdd_hybrid 244.1 43

512 41 63 usvp/bdd 242.9 40 60 usvp/bdd 242.9 40

Table 17 gives the same information for the uSVP classical lattice reduction attack, focusing on618

n = 256 for some of the larger q and h where VERDE succeeds.

Table 17. Estimated cost and block sizes of uSVP. n = 256, log2 q = 16, 18, 20, for binary, ternary, and
Gaussian secrets with h nonzero entries.

log2 q
binary ternary Gaussian

h rop � h rop � h rop �

16 12 254.7 86 12 254.9 87 6 269.3 138
18 18 249.5 67 19 249.8 68 7 259.5 102
20 25 245.4 52 24 245.4 52 7 253.5 80

619

uSVP attack performance, binary secrets. For n = 256 and log2 q = 20, we run the concrete620

uSVP attack using fplll BKZ 2.0 with Kannan’s embedding and parameters ([37], [16]). With block621

size 50 and 55, secrets are not recovered in 25 days, and block size 60 or larger cannot finish the first622

BKZ loop in 3 days. We propose two improvements to get these attacks to run faster and better: 1)623

we rearrange the rows of the uSVP matrix as in VERDE; 2) we use the adaptive float type upgrade624

as in VERDE. In addition, after each BKZ loop, we also run the secret validation obtained from the625

shortest vector found so far, and terminate if we get a secret match.626

With rearranging the rows but without the adaptive float type upgrade, we have to use higher precision627

because otherwise the attack fails due to low precision after running for 23 hours. The attacks run628

quite slowly with high precision and did not recover secrets after 25 days, except in one case where a629

binary secret with h = 22 was recovered with block size 55 in 414 hours, roughly 17 days.630

With rearranging the rows and the adaptive float type upgrade, we ran n = 256 and log2 q = 20 with631

block size 50� 55 for binary/ternary secrets, and n = 256 and log2 q = 18 with block size 65 for632

binary/ternary secrets. See Table 18 for running times and h. For example, for log2 q = 20, a ternary633

secret with h = 25 was recovered in 280 hours, roughly 12 days, and for log2 q = 18, a binary secret634

with h = 20 was found in ⇡ 11 days. When the block size used is lower than predicted by the635

estimator (50 instead of 52 for log2 q = 20 and 65 instead of 67 for log2 q = 18, see Table 17, 18),636

the uSVP attack succeeds in recovering only a few secrets out of many which were tried.637

17



Table 18. uSVP concrete attack time, n = 256. Upper: log2 q = 20, lower: log2 q = 18. For each h, block
size and secret distribution, we run 5 experiments on different secrets and show the secret recovery time (in
hours). ‘-’ means no success in 25 days.

n = 256, log2 q = 20

blocksize secret h = 22 h = 23 h = 24 h = 25

50 binary - - - 451, 531
ternary 261, 367 - - -

55 binary 135, 161, 459 167, 323, 330 567 76, 280, 401
ternary 43, 241, 432 234, 296 226, 257, 337 280

n = 256, log2 q = 18

blocksize secret h = 11 h = 12 h = 17 h = 18 h = 19 h = 20

65 binary 32 - - 558 - 259
ternary 324, 553 109 594 - - -

The concrete experiments allow us to validate to some extent the predictions of the Estimator in many638

cases, giving confidence in the comparison with VERDE. Running the uSVP attack with block size639

70 or larger didn’t finish the first BKZ loop in 3 days, so we expect longer attack time for Gaussian640

secrets and for binary and ternary secrets with lower q.641

Gaussian secrets. VERDE achieves partial Gaussian secret recovery for small h, reducing the secret642

recovery to a lattice problem in tiny dimension (h). Because the preprocessing time and per epoch643

time does not vary with secret distribution, VERDE’s attack time on Gaussian secrets is comparable644

to on binary secrets (see Table 15, 19). We note that preprocessing takes longer for n = 350 and645

log2 q = 27 due to precision issues. This is an important observation because lattice problems646

are supposed to be harder for smaller q. In contrast, with classical attacks, the Estimator predicts647

significantly larger block sizes required, and longer running times (Table 20), than for binary secrets.648

VERDE compares favorably to classical attacks on Gaussian secrets, especially on small q (where649

the problem is harder), e.g., VERDE recovers Gaussian secrets with h = 5� 6 in 4.5� 15 hours for650

n = 256, log2 q = 12, where the cost of best classical attacks is predicted to be 291 rop.651

Table 19. VERDE’s performance on LWE problems with n = 256 and 350, Gaussian secrets, varying q and
h. Preprocessing time: hours to process one matrix. Total attack time: sum of preprocessing time (assuming full
parallelization) and training time (number of epochs multiplied by hours per epoch, see §2).

LWE parameters VERDE attack time
n log2 q h Preprocessing (hrs) Training hrs/epoch Total (hrs)

256

12 5-6 1.5 2-9 epochs

1.5

4.5-15
14 5-6 2.5 2-21 epochs 5.5-34
16 9 8.0 2 epochs 11
18 9 7.0 3 epochs 11.5
20 10 7.5 5 epochs 15

350 21 5 16 1-5 epochs 1.6 18-24
27 10 216 2-13 epochs 219-237

Table 20. LWE Estimator: best classical attack on Gaussian secrets on various q. n = 256 and 350. For
VERDE’s highest h, we show the best classical attack, the attack cost (rop), and predicted block size � from the
LWE Estimator.

n log2 q h best attack rop �

256

12 6 bdd / bdd_hybrid 291.0 214
14 6 bdd / bdd_hybrid 277.7 166
16 9 bdd / bdd_hybrid 267.1 128
18 9 bdd 257.7 93
20 10 bdd / bdd_hybrid 251.9 72

350 21 5 bdd 265.2 120
27 10 bdd / bdd_hybrid 250.2 68

18


