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Abstract

We consider the problem of generating periodic materials with deep models. While
symmetry-aware molecule generation has been studied extensively, periodic mate-
rials possess different symmetries, which have not been completely captured by
existing methods. In this work, we propose SyMat, a novel material generation ap-
proach that can capture physical symmetries of periodic material structures. SyMat
generates atom types and lattices of materials through generating atom type sets,
lattice lengths and lattice angles with a variational auto-encoder model. In addition,
SyMat employs a score-based diffusion model to generate atom coordinates of mate-
rials, in which a novel symmetry-aware probabilistic model is used in the coordinate
diffusion process. We show that SyMat is theoretically invariant to all symme-
try transformations on materials and demonstrate that SyMat achieves promising
performance on random generation and property optimization tasks. Our code is
publicly available as part of the AIRS library (https://github.com/divelab/AIRS).

1 Introduction

Designing or synthesizing novel periodic materials with target properties is a fundamental problem in
many real-world applications, such as designing new periodic materials for solar cells and batteries [1].
For a long time, this challenging task heavily relies on either manually designing material structures
based on the experience of chemical experts, or running very expensive and time-consuming density
functional theory (DFT) based simulation. Recently, thanks to the progress of deep learning tech-
niques, many studies have applied advanced deep generative models [22, 13] to generate or discover
novel chemical compounds, such as molecules [10, 39, 50] and proteins [48, 16]. However, while
deep learning has been widely used in periodic material representation learning [51, 5, 40, 4, 57, 25],
generating novel periodic materials with deep generative models remains largely under-explored.

The major challenge of employing deep generative models to the generation of periodic materials is
capturing physical symmetries of periodic material structures. Ideally, deep generative models for
periodic materials should maintain invariance to symmetry transformations of periodic materials,
including permutation, rotation, translation, and periodic transformations [59, 9, 60]. To achieve this
target, we propose SyMat, a novel symmetry-aware periodic material generation method. SyMat
transforms the atom types and lattices of materials to symmetry-aware generation targets, which are
generated by a variational auto-encoder model [22]. Besides, SyMat adopts novel symmetry-aware
probabilistic diffusion process to generate atom coordinates with a score-based diffusion model [44].
Experiments show that SyMat can achieve promising performance on random generation and property
optimization tasks.
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Relations with Prior Methods. We note that several existing studies are related to our proposed
SyMat, such as CDVAE [52]. Generally, the major difference of SyMat between them lies in the
capture of symmetries. We will discuss the detailed differences in Section 3.5.

2 Background and Related Work

2.1 Molecule Generation
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Molecule Material

Figure 1: An illustration of molecule (left) and
periodic material (right) structures. Different from
molecules, atoms in materials periodically repeat
themselves infinitely in 3D space (we use a 2D
visualization here for simplicity).

Designing or discovering novel molecules with
target properties has long been a challenging
problem in many chemical applications. Re-
cently, motivated from the significant progress
in deep generative learning [22, 12, 44, 13], a
lot of studies have applied advanced deep gener-
ative models to this problem. Some early stud-
ies [19, 58, 41, 32, 27] consider molecules as
2D topology graphs and design graph genera-
tion models to discover novel molecules. More
recently, considering the importance of 3D struc-
tures in many molecular properties, many stud-
ies have also proposed advanced generative mod-
els that can generate 3D molecular conformations either from scratch [10, 39, 31, 15, 50], or from
input conditional information [33, 56, 43, 53, 54, 42, 55, 20, 28]. However, all these existing studies
are designed for non-periodic molecules while materials have periodic structures, in which atoms
periodically repeat themselves in 3D space (see Figure 1 for an illustration of differences between
molecules and periodic materials). Hence, they cannot be directly applied to the periodic material
generation problem that we study in this work.

2.2 Periodic Material Generation

While molecule generation has been extensively studied, currently the periodic material design or
generation problem remains largely under-explored. Early periodic material design methods [34, 7]
only generate compositions of chemical elements in periodic materials but do not generate 3D
structures. More recent studies have proposed to use variational auto-encoders (VAEs) [22] or
generative adversarial networks (GANs) [12] to generate 3D structures of periodic materials. However,
these methods use coordinate matrices [36, 21, 61] or voxel images [14, 6] of materials as the direct
generation targets, which results in the violation of physical symmetries of periodic material structures
in their captured probabilistic distributions. Also, the VAE and GAN models used by them are not
powerful enough to capture the distribution of complicated 3D periodic material structures. Different
from them, our method employs a more powerful score-based diffusion model [44] to generate 3D
periodic material structures, and the model is designed to capture physical symmetries in materials.

2.3 Score-Based Diffusion Models for 3D Structure Generation

Diffusion models are a family of deep generative models that have achieved outstanding generation
performance in a variety of data modalities, such as images [38, 37], audios [24], and molecular
conformations [55, 15, 20]. Currently, score-based diffusion models [44] and denoising diffusion
probabilistic models [13] are two most commonly used diffusion models, and our method employs
score-based diffusion models for 3D periodic material generation. For a given data distribution p(x)
in the high-dimensional data space, the score-based diffusion model trains a parameterized score
model sθ(·) with parameters θ to accurately approximate the score function ∇x log p(x) from x. To
improve the score approximation accuracy in the regions where the training data is sparse, denoising
score matching [46, 44] is proposed to more effectively train sθ(·). Specifically, let {σt}Tt=1 be a set
of positive scalars satisfying σ1 > σ2 > ... > σT , the denoising score matching method first perturbs
the data point x sampled from p(x) by a sequence of Gaussian noises with noise magnitude levels
{σt}Tt=1, i.e., sampling x̃ from pσt(x̃|x) = N (x̃|x, σ2

t I) for every noise level σt. The score model
sθ(·) is optimized to predict the denoising score function ∇x̃ log pσt

(x̃|x) from x̃ at each noise level,
where the ground truth of ∇x̃ log pσt

(x̃|x) can be easily computed from the mathematical formula
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of N (x̃|x, σ2
t I). Formally, sθ(·) is optimized to minimize the following training objective L:

L =
1

2T

T∑
t=1

σ2
tEx̃,x

[∣∣∣∣∣∣∣∣sθ(x̃)σt
+

x̃− x

σ2
t

∣∣∣∣∣∣∣∣2
2

]
. (1)

As shown in Vincent [46], when σt is small enough, after sθ(·) is well trained with the objective in
Equation (1), the output sθ(x) can accurately approximate the exact score function for any input x.
New data samples can be generated by running multiple steps of the Langevin dynamics sampling
algorithm [49] with the score functions approximated by the score model.

Several existing studies have applied score-based diffusion models to 3D molecular and material
structure generation. ConfGF [42] is the first score-based diffusion model for 3D molecular confor-
mation generation. It proposes a novel theoretic framework to achieve roto-translational equivariance
in score functions. Based on the theoretic framework of ConfGF, DGSM [30] further improves
the performance of ConfGF by dynamic graph score matching. Though they have achieved good
performance in 3D molecules, they do not consider periodic invariance so they cannot be applied to
3D periodic materials. Recently, a novel approach CDVAE [52] is proposed for periodic material
generation, and score-based diffusion models are used in CDVAE to generate atom coordinates in
materials. However, as we discussed in Section 3.5, CDVAE fails to achieve translational invariance
in calculating the denoising score function, so it does not capture all physical symmetries.

3 SyMat: Symmetry-Aware Generation of Periodic Materials

While a variety of deep generative models have been proposed to capture all physical symmetries
in 3D molecular conformations, it remains challenging to do it for periodic materials as they have
more complicated 3D periodic structures. In this section, we present SyMat, a novel periodic material
generation method. In the following subsections, we will first introduce the problem of symmetry-
aware material generation, then elaborate how our proposed SyMat approach achieves invariance to
all symmetry transformations of periodic materials.

3.1 Symmetry-Aware Generation

For any periodic material structure, we can consider it as periodic repetitions of one unit cell in 3D
space, where any unit cell is the smallest repeatable structure of the material. Hence, for any periodic
material M , we can describe its complete structure information with one of its unit cells and the
three lattice vectors describing its periodic repeating directions. Specifically, assuming there are
n atoms in any unit cell of M , we represent M as M = (A,P ,L), where A ∈ Zn, P ∈ R3×n,
and L ∈ R3×3 are the atom type vector, coordinate matrix, and lattice matrix, respectively. Here,
the i-th element ai of A = [a1, ..., an] and the i-th column vector pi of P = [p1, ...,pn] denote
the atom type, i.e., atomic number and the 3D Cartesian coordinate of the i-th atom in the unit cell,
respectively. The lattice matrix L = [ℓ1, ℓ2, ℓ3] is formed by three lattice vectors ℓ1, ℓ2, ℓ3 indicating
how the atoms in a unit cell periodically repeat themselves in 3D space.

In this work, we consider the problem of generating periodic material structures with generative
models. Formally, we are given a dataset M = {Mj}mj=1 where each periodic material data Mj is
assumed to be sampled from the distribution p(·). Because of the physical symmetry properties in
periodic materials [59, 9], p(·) is restricted to be invariant to the following symmetry transformations.

• Permutation. For any M = (A,P ,L), if we permute A, i.e., exchange elements in A to obtain
A′, and use the same permutation order to permute the column vectors of P to obtain P ′, we
actually change nothing but atom orders in unit cell representations. Hence, let M ′ = (A′,P ′,L),
the probability densities of M and M ′ are actually the same, i.e., p(M) = p(M ′).

• Rotation and translation. For any M = (A,P ,L), we can rotate and translate its atom positions
in 3D space to obtain a new material M ′ = (A,P ′,L′), where P ′ = QP + b1T and L′ = QL.
Here Q ∈ R3×3 is the rotation matrix satisfying QTQ = I , b ∈ R3 is the translation vector, and 1
is an n-dimensional vector whose elements are all 1. It can be intuitively understood that rotation
and translation do not change any internal structures of periodic materials, so M and M ′ are
actually different representations of the same material, so p(M) = p(M ′) should hold.
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(a) The overall process of training the SyMat model on a data sample M = (A,P ,L) from the dataset.
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(b) The overall process of generating a new material with the SyMat model.

Figure 2: Illustrations of training and generation process in our proposed SyMat method.

• Periodic transformation. Because every atom from a unit cell periodically repeats itself along
lattice vectors in 3D space, any coordinate matrix P ∈ R3×n has infinite number of periodically
equivalent coordinate matrices. Formally, a periodically equivalent coordinate matrix PK of P
can be obtained by periodic transformation as PK = P +LK, where K ∈ Z3×n is an arbitrary
integer matrix. Since PK and P are equivalent and the periodic transformations between them
are invertible, we consider M = (A,P ,L) and MK = (A,PK ,L) as the same material so
p(M) = p(MK) should hold.

In the periodic material generation problem, our target is to learn a generative model pθ(·) with
parameters θ from the given dataset M so that the model can capture the real data distribution p(·),
and the learned generation model can generate a valid material structure M with a high probability
pθ(M). In addition, we require the distribution pθ(·) captured by the generation model to have the
same symmetry-related restrictions as the real data distribution p(·). The main motivation of modeling
symmetries comes from property optimization. A significant target of developing generative models
for periodic materials is to generate novel periodic materials with desirable chemical properties (e.g.,
low energies). Notably, chemical properties are invariant to physical symmetry transformations.
For instance, rotating a material structure in 3D space does not change its energy. In other words,
chemical properties only depend on the 3D geometric information that is invariant to symmetry
transformations (e.g., interatomic distances). Using symmetry-aware modeling forces generative
models to only capture the distribution of these 3D geometric information, which facilitates searching
materials with desirable properties in the latent space.

3.2 An Overview of SyMat

Generally, to generate a new material M = (A,P ,L), our proposed SyMat method first generates
the atom type vector A and lattice matrix L, then generates the coordinate matrix P conditioned on
A and L. The probability of generating M = (A,P ,L) can then be described as

pθ(M) = pθ(A)pθ(L)pθ(P |A,L). (2)

Since the structures of atom types and lattices are relatively simple, we find that a VAE [22] model
already has adequate capability to capture their distributions. Hence, we use a VAE model to generate
A and L. However, the structures of coordinates are much more complicated, so we use a powerful
score-based diffusion model [44] for their generation. Next, we will elaborate the details of generating
atom types and lattices in Section 3.3 and the details of generating coordinates in Section 3.4. An
overview of the proposed SyMat method is illustrated in Figure 2.
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3.3 Atom Type and Lattice Generation

For the generation of atom types and lattices, a natural idea is using the VAE model to directly
generate and capture the distribution of A and L. However, this fails to capture the invariance to
symmetry transformations described in Section 3.1, including the permutation invariance of A and
rotation invariance of L. To tackle this issue, we transform A and L to items that are invariant to
symmetry transformations, and make these items be the direct generation targets of the VAE model.
Specifically, for A = [a1, ..., an], we can count the number of atoms for every atom type existed in
A, and represent A with an unordered k-element atom type set c = {(e1, n1), ..., (ek, nk)}, which
indicates that for i = 1, ..., k, there exist ni atoms with the atom type ei in A. We can easily find
that c is invariant to any permutations on A so we use c as the direct generation targets. Besides,
for the lattice matrix L = [ℓ1, ℓ2, ℓ3], we do not generate the three lattice vectors ℓ1, ℓ2, ℓ3 directly.
Instead, we use six rotation-invariant items as the generation targets, including three lattice lengths
ℓ = [ℓ1, ℓ2, ℓ2], where ℓi = ||ℓi||2, and three lattice angles ϕ = [ϕ12, ϕ13, ϕ23], where ϕij is the
angle between ℓi and ℓj . Overall, we transform A and L to generation targets c, ℓ, ϕ so that the
generation process and captured distributions pθ(A), pθ(L) are ensured to be symmetry-aware.

The VAE model used for generating c, ℓ, and ϕ consists of an encoder model and a decoder
model. The encoder model is based on a 3D graph neural network (GNN) that takes a material
M = (A,P ,L) as inputs and outputs a d-dimensional latent variable zA ∈ Rd and an f -dimensional
latent variable zL ∈ Rf . This 3D GNN employs the symmetry-aware SphereNet [29] architecture
so zA, zL will not change if applying any transformations described in Section 3.1 to the input
material. We will introduce more details of this 3D GNN model in Appendix B. The decoder model
is composed of four multi-layer perceptrons (MLPs) including MLPe, MLPk, MLPn, MLPL, which
are used to predict c = {(e1, n1), ..., (ek, nk)}, ℓ = [ℓ1, ℓ2, ℓ3], and ϕ = [ϕ12, ϕ13, ϕ23] from the
latent variables zA and zL. Specifically, let E be the number of all considered atom types and N be
the largest possible number of atoms that can exist in a material, MLPe predicts a vector pe ∈ [0, 1]E

which contains the existing probability for each of the E atom type from the input zA, and MLPk

predicts the size k of the set c from the input zA. The k atom types e1, ..., ek with top-k probabilities
in pe are chosen as the atom types in c, and MLPn predicts the number of atoms n1, ..., nk for
them, where each ni is predicted from ei and zA. Here, the prediction of pe is considered as
E binary classification tasks for each of E atom types, and the prediction of k and n1, ..., nk are
both considered as N -category classification tasks. Besides, MLPL is used to predict lattice items
[ℓ,ϕ] = [ℓ1, ℓ2, ℓ3, ϕ12, ϕ13, ϕ23] from zL, which is considered as a regression task.

We now describe the training and generation process of the VAE model. When training the VAE
model on a material dataset M, for any material M = (A,P ,L) in M, the encoder model first maps
it to latent variable zA and zL. Afterwards, the decoder model uses zA and zL to reconstruct the
exact c, ℓ, and ϕ obtained from A and L. The VAE model is optimized to minimize the reconstruction
error of c, ℓ, ϕ together with the KL-distance between zA, zL and the standard Gaussian distribution
N (0, I). The reconstruction error losses are defined as cross entropy loss and minimum squared
error loss for classification and regression tasks, respectively. After the model is trained, we can
generate A and L by first sampling latent variables zA, zL from N (0, I), then using the decoder to
map zA, zL to c, ℓ, ϕ. Finally, we can produce A from c = {(e1, n1), ..., (ek, nk)} as

A = [e1, ..., e1︸ ︷︷ ︸
n1

, e2, ..., e2︸ ︷︷ ︸
n2

, ..., ek, ..., ek︸ ︷︷ ︸
nk

],

and produce L from ℓ, ϕ by constructing three lattice vectors with lengths in ℓ and pairwise angles
in ϕ. The detailed procedure of producing three lattice vectors is described in Appendix B.

3.4 Coordinate Generation

After the atom type vector A and lattice matrix L are generated, our method will generate the
coordinate matrix P conditioned on A and L. We use a score-based diffusion model for coordinate
generation. However, because the original score-based diffusion model proposed by Song and Ermon
[44] does not consider any invariance to symmetry transformations in data distributions, we cannot
directly apply its theoretic framework to coordinate generation. To overcome this limitation, we
propose a novel probabilistic modeling process to calculate the score function of P , i.e., the score
matrix ∇P log p(P |A,L), and design the architecture and training framework of the score model to
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achieve invariance to all symmetry transformations of crystal materials. We will elaborate the details
of our proposed coordinate generation framework in the next paragraphs.

We first elaborate the restrictions of the score matrix ∇P log p(P |A,L) that is supposed to be
captured by the score model. By the following Proposition 3.1 (see its proof in Appendix A.1),
we can show that if the material distribution p(M) is invariant to all symmetry transformations
described in Section 3.1, the score matrix ∇P log p(P |A,L) will be invariant to translation and
periodic transformations, and equivariant to permutation and rotation transformations.

Proposition 3.1. If the material distribution p(M) is invariant to permutation, rotation, transla-
tion, and periodic transformations described in Section 3.1, ∇P log p(P |A,L) will satisfy the
following properties: (1) ∇P log p(P |A,L) is equivariant to permutations on A and P ; (2)
∇QP+b1T log p(QP + b1T |A,QL) = Q∇P log p(P |A,L) holds for any Q ∈ R3×3,QTQ = I
and b ∈ R3; (3) ∇P+LK log p(P +LK|A,L) = ∇P log p(P |A,L) holds for any K ∈ Z3×n.

To satisfy all properties in Proposition 3.1, we formulate ∇P log p(P |A,L) as a function of score
functions of edge distances in a graph created by multi-graph method [51]. For a periodic material
M with coordinate matrix P = [p1, ...,pn] and lattice matrix L, multi-graph method produces an
n-node undirected graph on M . In this graph, the node i corresponds to the i-th atom in the unit
cell, and an edge is added between any two nodes i, j if one of the interatomic distances between
them is smaller than a pre-defined cutoff r. Here, the interatomic distances between i, j are the
distances between their corresponding atoms in the complete infinite structure of M , including both
the distance within the unit cell and the distances crossing the unit cell boundary. Formally, the set of
all edges in the graph constructed on M can be written as E(M) = {(i, j,k) : ||pi +Lk− pj ||2 ≤
r,k ∈ Z3, 1 ≤ i, j ≤ n}. Note that there may exist more than one edges connecting the nodes i, j if
more than one interatomic distances between them is smaller than r. Let di,j,k = ||pi +Lk − pj ||2
be the distance of the edge (i, j,k), we consider log p(P |A,L) as a function of the distances of all
edges in E(M). Denoting si as the score function of pi, then ∇P log p(P |A,L) = [s1, ..., sn].
From the chain rule of derivatives, we can calculate si as

si =
∑

(j,k)∈N (i)

∇di,j,k
log p(P |A,L) · ∇pi

di,j,k =
∑

(j,k)∈N (i)

si,j,k · pi +Lk − pj

di,j,k
, (3)

where the scalar si,j,k = ∇di,j,k
log p(P |A,L) is the score function of the distance di,j,k and

N (i) = {(j,k) : (i, j,k) ∈ E(M)}. With this probabilistic modeling process, ∇P log p(P |A,L)
can be approximated by first approximating si,j,k for every edge in the multi-graph representation of
M , then calculating each column vector of ∇P log p(P |A,L) by Equation (3). By the following
Proposition 3.2 (see its proof in Appendix A.2), we can show that if si,j,k is invariant to all symmetry
transformations described in Section 3.1 for every edge (i, j,k), the score matrix ∇P log p(P |A,L)
will satisfy all properties in Proposition 3.1.

Proposition 3.2. For ∇P log p(P |A,L) = [s1, ..., sn] where each si is calculated by Equation (3)
on a multi-graph representation of M = (A,P ,L), if si,j,k is invariant to permutation, rotation,
translation, and periodic transformations described in Section 3.1 for any edge (i, j,k), then the
calculated ∇P log p(P |A,L) will always satisfy the properties in Proposition 3.1.

In our method, we use a 3D GNN model as the score model sθ(·) to approximate ∇P log p(P |A,L).
sθ(·) takes the multi-graph representation of M as input and outputs oi,j,k as the approximated si,j,k
at every edge (i, j,k) in the input graph. We use SphereNet [29] as the backbone architecture of
sθ(·), which ensures that the output oi,j,k is always invariant to any symmetry transformation. More
details about SphereNet will be introduced in Appendix B. To train the score model, we follow the
most common operations in denoising score matching framework [44]. Specifically, for a material
M = (A,P ,L) in the dataset, we will perturb it to multiple noisy materials by a sequence of
Gaussian noises with different noise magnitude levels {σt}Tt=1, in which σ1 > σ2 > ... > σT .
Let the noisy material at the t-th noise level be M̃ =

(
A, P̃ ,L

)
, the noisy coordinate matrix

P̃ = [p̃1, ..., p̃n] is obtained by adding Gaussian noise N (0, σ2
t I) to P . The score model sθ(·)

is trained to predict the denoising score matrix ∇P̃ log pσt

(
P̃ |P ,A,L

)
= [s̃1, ..., s̃n] from M̃ .

Here, each s̃i is calculated in a similar way as in Equation (3) with the approximated distance
score s̃i,j,k = ∇d̃i,j,k

log pσt

(
P̃ |P ,A,L

)
, where d̃i,j,k = ||p̃i + Lk − p̃j ||2. Motivated from
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Algorithm 1: Langevin Dynamics Sampling Algorithm for Coordinate Generation

Input: A, L, atom number n, noise magnitudes {σt}Tt=1, step size ϵ, step number q, score
model sθ(·)
Sample F0 ∈ R3×n from uniform distribution U(0, 1) and set P0 = LF0

for t = 1 to T do
Pt = Pt−1

αt = ϵ · σ2
t /σ

2
T

for j = 1 to q do
Mt = (A,Pt,L)
Sample Z ∈ R3×n from N (0, I)
Obtain the approximated edge distance score from sθ(·) which takes Mt−1 as inputs
Obtain sθ(Mt−1) = [s1, ..., sn] where each si is computed by Equation (3) with edge
distance scores.
Pt = Pt + αtsθ(Mt) +

√
2αtZ

end for
end for
Output PT as the finally generated coordinate matrix

the strategies of existing methods [30, 42, 55], we model the distribution of d̃i,j,k as a Gaussian

distribution N
(
d̂i,j,k, σ̂

2
t

)
, where the computation process of the mean d̂i,j,k and the variance σ̂2

t is
described in Appendix B. We can calculate s̃i,j,k directly by taking the derivative of the mathematical
formula of this Gaussian distribution. The score model sθ(·) is trained to minimize the difference
between the output oi,j,k from sθ(·) and s̃i,j,k for every edge (i, j,k) in M̃ with the loss L:

L =
1

2T

T∑
t=1

σ̂2
tEM̃ ,M

 ∑
(i,j,k)∈E(M̃)

∣∣∣∣∣
∣∣∣∣∣oi,j,kσ̂t

+
d̃i,j,k − d̂i,j,k

σ̂2
t

∣∣∣∣∣
∣∣∣∣∣
2

2

 .

After the score model is trained, we can use it to generate coordinate matrix P from given A
and L with annealed Langevin dynamics sampling algorithm [49]. Specifically, we first randomly
initializes a coordinate matrix P0, then starting from M0 = (A,P0,L), we iteratively update
Mt−1 = (A,Pt−1,L) to Mt = (A,Pt,L) (t = 1, ..., T ) with the approximated score matrix
sθ(Mt−1) by running multiple Langevin dynamics sampling steps. See Algorithm 1 for the detailed
coordinate generation algorithm pseudocodes.

3.5 Discussions and Relations with Prior Methods

Advantages and limitations. In our method, the atom type vector and lattice matrix are first
transformed to items that are invariant to symmetry transformations, then a VAE model is used
to capture the distributions of these items. In addition, our method adopts powerful score-based
diffusion models to generate atom coordinates, and a novel probabilistic modeling framework for
score approximation is employed to satisfy all symmetry-related restrictions. With all these strategies,
our method successfully incorporates physical symmetries of periodic materials into generative
models, thereby capturing the underlying distributions of material structures more effectively. We
will show these advantages through experiments in Section 4. The major limitations of our method lie
in that the speed of generating atom coordinates with score-based diffusion models is slow because
running thousands of Langevin dynamics sampling steps is needed, and our method cannot be applied
to non-periodic materials. We leave more discussions about limitations and broader impacts in
Appendix C.

Motivations in Model Design. The model design of our SyMat method has the following three moti-
vations. (1) First, the structures of atom types and lattices are relatively simple and their symmetry-
invariant representations (i.e., atom type sets, lattice lengths and angles) are low-dimensional vectors.
Their distributions are simple enough to be captured by VAE models. Also, VAE models are faster
than diffusion models in generation speed. Hence, we use VAE models for atom type and lattice
generation. (2) Second, the structure of atom coordinates is much more complicated than atom
types or lattices, so we use more powerful score-based diffusion models to generate them. More
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importantly, using score-based diffusion models for atom coordinates enables us to trickily convert the
prediction of coordinate scores to that of interatomic distance scores by the chain rule of derivatives.
This strategy maintains invariance to rotation, translation and periodic transformations. We think it is
hard to develop such a symmetry-aware probabilistic modeling for other generative models. Hence,
we use score-based diffusion models for coordinate generation. (3) Third, SphereNet is chosen as the
backbone network of our model. SphereNet is a 3D graph neural network for 3D graph representation
learning. It has powerful capacities in 3D structure feature extraction because it considers complete
3D geometric information contained in pairwise distances, line angles and plane angles (torsion
angles). Also, the features extracted by SphereNet are invariant to rotation, translation and periodic
transformations when input 3D graphs are created by multi-graph method. Because of its powerful
capacity and symmetry-aware feature extraction, we use SphereNet as the backbone network.

Relations with prior methods. Here we will discuss several studies that are related to our work.
Some studies [42, 30] have also applied score-based diffusion models to generate atom coordinates
from molecular graphs, but there are not periodic structures in 3D molecules. Differently, keeping
invariant to periodic transformations is significant in periodic material generation, and our score-based
diffusion model uses periodic invariant multi-graph representations of materials as inputs to satisfy
this property. Besides, compared with a recently proposed periodic material generation method
CDVAE [52], our SyMat has two major differences. (1) First, to generate the atom type vector,
CDVAE generates total atom numbers and compositions (the proportion of atom numbers for every
atom type to the total atom number) by a VAE model, in which compositions are vectors composed of
continuous numbers. While compositions have complicated structures and are hard to predict, SyMat
uses relatively simpler atom type sets as generation targets and the prediction of them can be easily
converted to integer prediction or classification problems (see Section 3.3). (2) Second, in coordinate
generation, CDVAE also uses the denoising score matching framework, but the denoising score
matrix ∇P̃ log pσt

(P̃ |P ,A,L) is calculated as the direct difference between P̃ and a coordinate
matrix obtained by aligning P , which makes ∇P̃ log pσt

(P̃ |P ,A,L) not invariant to translations
on P̃ . However, SyMat calculates it from the edge distance score functions to ensure invariance to
all symmetry transformations (see Section 3.4). In addition, another two studies, PGD-VAE [47]
and DiffCSP [18], are also related to our SyMat approach. PGD-VAE proposes a VAE model for
periodic graph generation. However, PGD-VAE is fundamentally different from SyMat in that it
only generates 2D periodic topology graphs without 3D structures, while SyMat is developed for
3D periodic material structures. PGD-VAE cannot be applied to 3D periodic materials so we do not
compare SyMat with PGD-VAE in our experiments. DiffCSP proposes a novel method for generating
3D periodic material structures from their atom types. Different from SyMat, DiffCSP uses denoising
diffusion models to jointly generate lattices and atom coordinates. In addition, DiffCSP does not
generate atom types of periodic materials, but lattices and atom coordinates from the input atom
types, so DiffCSP cannot be applied to design novel periodic materials from scratch. Hence, we do
not compare SyMat with DiffCSP in our experiments as all our experiments evaluate the performance
of different methods in generating novel periodic materials.

4 Experiments

In this section, we evaluate our proposed SyMat method in two periodic material generation tasks,
including random generation and property optimization. We show that our proposed SyMat can
achieve promising performance in both tasks.

4.1 Experimental Setup

Data. We evaluate SyMat on three benchmark datasets curated by Xie et al. [52], including Perov-
5 [3, 2], Carbon-24 [35], and MP-20 [17]. Perov-5 is a dataset with a collection of 18,928 perovskite
materials. The chemical element compositions of all materials in Perov-5 can be denoted by a general
chemical formula ABX3, which means that there are 3 different atom types and 5 atoms in each
unit cell. The Carbon-24 dataset we used has 10,153 materials. All these material structures consist
of only carbon elements and have 6 - 24 atoms in each unit cell, and the 3D structures of them
are obtained by DFT simulation. MP-20 is a dataset curated from Materials Project [17] library. It
includes 45,231 materials with various structures and compositions, and in all materials, there exist at
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Table 1: Random generation performance on Perov-5, Carbon-24, and MP-20 datasets. Here ↑
means higher metric values lead to better performance, while ↓ means the opposite. Because all
materials in the Carbon-24 dataset are composed of only carbon atoms, all methods easily achieve
100% in composition validity and 0.0 in # element EMD so we do not use these two metrics. Also,
Cond-DFC-VAE can only be used to Perov-5 dataset in which materials have cubic structures. Bold
and underline numbers highlight the best and second best performance, respectively.

Dataset Method
Composition

validity↑
Structure
validity↑

# Element
EMD↓

Density
EMD↓

Energy
EMD↓ COV-R↑ COV-P↑

Perov-5

FTCP 54.24% 0.24% 0.6297 10.27 156.0 0.00% 0.00%
Cond-DFC-VAE 82.95% 73.60% 0.8373 2.268 4.111 77.80% 12.38%
G-SchNet 98.79% 99.92% 0.0368 1.625 4.746 0.25% 0.37%
P-G-SchNet 99.13% 79.63% 0.4552 0.2755 1.388 0.56% 0.41%
CDVAE 98.59% 100.00% 0.0628 0.1258 0.0264 99.50% 98.93%
SyMat (ours) 97.40 % 100.00% 0.0177 0.1893 0.2364 99.68% 98.64%

Carbon-24

FTCP – 0.08% – 5.206 19.05 0.00% 0.00%
G-SchNet – 99.94% – 0.9427 1.320 0.00% 0.00%
P-G-SchNet – 48.39% – 1.533 134.7 0.00% 0.00%
CDVAE – 100.00% – 0.1407 0.2850 100.00% 99.98%
SyMat (ours) – 100.00% – 0.1195 3.9576 100.00% 97.59%

MP-20

FTCP 48.37% 1.55% 0.7363 23.71 160.9 5.26% 0.23%
G-SchNet 75.96% 99.65% 0.6411 3.034 42.09 41.68% 99.65%
P-G-SchNet 76.40% 77.51% 0.6234 4.04 2.448 44.89% 99.76%
CDVAE 86.70% 100.00% 1.432 0.6875 0.2778 99.17% 99.64%
SyMat (ours) 88.26% 100.00% 0.5067 0.3805 0.3506 98.97% 99.97%

most 20 atoms in each unit cell. For all three datasets, we split them with a ratio of 3:1:1 as training,
validation, and test sets in our experiments.

Tasks. We evaluate the performance of SyMat in random generation and property optimization tasks.
In the random generation task, SyMat generates novel periodic materials from randomly sampled
latent variables and we employ a variety of validity and statistic metrics to evaluate the quality of the
generated periodic materials. In the property optimization task, SyMat is evaluated by the ability of
discovering novel periodic materials with good properties. Besides, to show that latent representations
are informative enough to reconstruct periodic materials, we also evaluate the performance by the
material reconstruction task. See Appendix D.2 for experiment results of this task.

Baselines. We compare SyMat with two early periodic material generation methods FTCP [36] and
Cond-DFC-VAE [6], which generate material structures through generating Fourier-transformed
crystal property matrices and 3D voxel images with VAE models, respectively. Note that Cond-
DFC-VAE can only be used to generate cubic systems, so it is only used for Perov-5 dataset in
which materials have cubic structures. In addition, we compare with an autoregressive 3D molecule
generation method G-SchNet [10], and its variant P-G-SchNet that incorporates periodicity in G-
SchNet. The latest periodic material generation method CDVAE [52] is also compared with our
method. Note that all these baseline methods are compared with SyMat in the random generation
task, but G-SchNet and P-G-SchNet are not compared in the property optimization task because they
cannot produce latent representations with fixed dimensions for different periodic materials.

4.2 Random Generation

Metrics. In the random generation task, we adopt seven metrics to evaluate physical and statistic
properties of materials generated by our method and baseline methods. We evaluate the composition
validity and structure validity, which are the percentages of generated materials with valid atom type
vectors and 3D structures, respectively. Here, an atom type vector is considered as valid if its overall
charge computed by SMACT package [8] is neutral, and following Court et al. [6], a 3D structure is
considered as valid if the distances between any pairwise atoms is larger than 0.5Å. In addition, we
evaluate the similarity between the generated materials and the materials in the test set by five statistic
metrics, including the earth mover’s distance (EMD) between the distributions in chemical element
number, density (g/cm3), and energy predicted by a GNN model. Also, we evaluate the percentage of
the test set materials that cover at least one of the generated materials (COV-R), and the percentage of
generated materials that cover at least one of the test set materials (COV-P). All seven metrics are
evaluated on 10,000 generated periodic materials. See Appendix D.1 for more information about
evaluation metrics and experimental settings in the random generation task.
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Table 2: Property optimization performance on Perov-5, Carbon-24, and MP-20 datasets. We report
the success rate (SR), i.e., the rate of periodic materials that can achieve top 5%, 10%, and 15% of
the property distribution in the dataset after being optimized. Cond-DFC-VAE can only be used to
Perov-5 dataset in which materials have cubic structures. Bold and underline numbers highlight the
best and second best performance, respectively.

Method Perov-5 Carbon-24 MP-20

SR5 SR10 SR15 SR5 SR10 SR15 SR5 SR10 SR15

FTCP 0.06 0.11 0.16 0.00 0.00 0.00 0.02 0.04 0.05
Cond-DFC-VAE 0.55 0.64 0.69 – – – – – –
CDVAE 0.52 0.65 0.79 0.00 0.06 0.06 0.78 0.86 0.90
SyMat (ours) 0.73 0.80 0.87 0.06 0.13 0.13 0.92 0.97 0.97

Results. The random generation performance results of all methods on three datasets are presented in
Table 1. Among the total 19 metrics over three datasets in the table, our SyMat method achieves top-1
performance in 11 metrics and top-2 performance in 17 metrics. Particularly, SyMat can achieve
excellent performance in composition and structure validity, which demonstrates that SyMat can
accurately learn the rules of forming chemically valid and stable periodic materials so it generates
chemically valid periodic materials with high chances. Overall, SyMat achieves promising perfor-
mance in the random generation task, showing that SyMat is an effective approach to capture the
distribution of complicated periodic material structures.

We visualize some generated periodic materials in Figure 3 of Appendix E, and use additional metrics
to evaluate the diversity of the generated periodic materials in Appendix D.3. To demonstrate the
effectiveness of coordinate generation module in SyMat, we conduct an ablation study using several
evaluation metrics in the random generation task and present this part in Appendix D.4.

4.3 Property Optimization

Metrics. In the property optimization task, we evaluate the ability of SyMat in discovering novel
periodic materials with low energies. We jointly train the SyMat model with an energy prediction
model that predicts the energies from the latent representations. Afterwards, we follow the evaluation
procedure in [52] to optimize the latent representations of testing materials with 5000 gradient descent
steps, decode 100 periodic materials from the optimized latent representations to periodic materials,
and report the success rates (SR), i.e., the rate of decoded materials whose properties are in the top
5%, 10%, and 15% of the energy distribution in the dataset. We use the same evaluation procedure to
baseline methods and compare them with SyMat in optimization success rates.

Results. The property optimization performance results of all methods on three datasets are summa-
rized in Table 2. On three datasets, SyMat outperforms all baseline methods in optimization success
rates, showing that SyMat has the highest chances to generate periodic materials with low energies.
This demonstrates that SyMat models have strong capacities in discovering novel periodic materials
with good properties. The good performance of SyMat in the property optimization method shows
that it can be an effective tool for designing novel periodic materials with desired properties.

We visualize the changes of material structures and energies of some periodic materials after property
optimization in Figure 4 of Appendix E. We also visualize the material energy distribution before and
after property optimization by SyMat models in Figure 5 of Appendix E.

5 Conclusion

We propose SyMat, a novel deep generative model for periodic material generation. SyMat achieves
invariance to physical symmetry transformations of periodic materials, including permutation, ro-
tation, translation, and periodic transformations. In SyMat, atom types and lattices of materials
are generated in the form of atom type sets, lattice lengths and lattice angles with a VAE model.
Additionally, SyMat uses a score-based diffusion model based on a symmetry-aware coordinate
diffusion process to generate atom coordinates. Experiments on random generation and property
optimization tasks show that SyMat is a promising approach for discovering novel materials. In the
future, we will study the problem of accelerating atom coordinate generation in SyMat.
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A Proof of Propositions

A.1 Proof of Proposition 3.1

We first prove Proposition 3.1, i.e., if the material distribution p(M) is invariant to permuta-
tion, rotation, translation, and periodic transformations described in Section 3.1, the score matrix
∇P log p(P |A,L) will be invariant to translation and periodic transformations, and equivariant to
permutation and rotation transformations.

(1) For M ′ = (A′,P ′,L) where A′ and P ′ are obtained by permuting the elements of A and column
vectors of P with the same order, from p(M) = p(M ′), we know that p(P ′|A′,L) = p(P |A,L)
holds, so ∇P ′ log p(P ′|A′,L) actually equals to the matrix obtained by permuting the column
vectors of ∇P log p(P |A,L) with the same permutation order. In other words, ∇P log p(P |A,L)
is permutation-equivariant.

(2) For M ′ = (A,P ′,L′) obtained by rotating M = (A,P ,L) with the rotation matrix Q and
translating it with the translation vector b, because p(M ′) = p(M) and P ′ = QP + b1T , we
have p(P ′|A,L′) = p(P |A,L) and ∇P ′ log p(P ′|A,L′) = Q∇P log p(P |A,L). In other words,
∇P log p(P |A,L) is translation-invariant and rotation-equivariant.

(3) For MK = (A,PK ,L) where PK = P + LK is obtained by periodic transfor-
mation, since p(M) = p(MK), we can easily find that p(PK |A,L) = p(P |A,L) and
∇PK log p(PK |A,L) = ∇P log p(P |A,L) hold. In other words, ∇P log p(P |A,L) is invari-
ant to periodic transformations.

A.2 Proof of Proposition 3.2

We next prove Proposition 3.2, i.e., if si,j,k is always invariant to permutation, rotation, translation,
and periodic transformations described in Section 3.1, the score matrix ∇P log p(P |A,L) computed
by Equation (3) will always be invariant to translation and periodic transformations, and equivariant
to permutation and rotation transformations.

(1) The score matrix ∇P log p(P |A,L) = [s1, ..., sn] is formed by stacking coordinate score vector
si according to the atom order, and this stacking operation is clearly equivariant to permutations.
Also, from Equation (3), we can easily find that if si,j,k is always invariant to permutation, the
computed coordinate score vector si for each coordinate pi will also be invariant to permutations.
Hence, ∇P log p(P |A,L) from s1, ..., sn is equivariant to permutations.

(2) For any Q ∈ R3×3,QTQ = I and b ∈ R3, let P ′ = [p′
1, ...,p

′
n] = QP + b1T where

p′
i = Qpi + b, i = 1, ..., n, L′ = QL, and M ′ = (A,P ′,L′). We can calculate the score vector s′i

for p′
i in the way similar to Equation (3) as

s′i = ∇p′
i
log p(P ′|A,L′)

=
∑

(j,k)∈N ′(i)

∇d′
i,j,k

log p(P ′|A,L′) · ∇p′
i
d′i,j,k

=
∑

(j,k)∈N ′(i)

s′i,j,k ·
p′
i +L′k − p′

j

||p′
i +L′k − p′

j ||2
,

=
∑

(j,k)∈N ′(i)

s′i,j,k · Qpi + b+QLk −Qpj − b

||Qpi + b+QLk −Qpj − b||2
,

=
∑

(j,k)∈N (i)

si,j,k · Q(pi +Lk − pj)

||pi +Lk − pj ||2
,

= Qsi,

where N ′(i) = {(j,k) : (i, j,k) ∈ E(M ′)},N (i) = {(j,k) : (i, j,k) ∈ E(M)}. Note that the
second to the last equation holds because ||Qx||2 = ||x||2 holds for any x ∈ R3 if QTQ = I ,
and the edge set of multi-graph representation and si,j,k is invariant to any rotation and transla-
tion transformations, hence E(M ′) = E(M) and s′i,j,k = si,j,k. So far, we have shown that
∇P log p(P |A,L) is invariant to translations and equivariant to rotations.

16



(3) For any K ∈ Z3×3, let PK = [p′
1, ...,p

′
n]P+LK and MK =

(
A,PK ,L

)
. Because the multi-

graph method is strictly invariant to periodic transformations, there must exist a bijective mapping
f : E(M) → E

(
MK

)
such that for any (i, j,k) ∈ E(M), (i, j,k′) = f(i, j,k) satisfies that

pi + Lk − pj = p′
i + Lk′ − p′

j . Also, because si,j,k is invariant to periodic transformations, we
can easily find that calculating the score vectors for pi and p′

i by Equation (3) are actually summing
up the same set of vectors, so these two score vectors equal and then ∇P log p(P |A,L) is invariant
to periodic transformations.
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B Additional Implementation Details

SphereNet Model. In SyMat, we use SphereNet model [29] as the backbone GNN architecture
for both the encoder model in the VAE for atom type and lattice generation and the score model
in the score-based diffusion model for atom coordinate generation. SphereNet is a powerful 3D
GNN model proposed for 3D molecular property prediction, but in our method, we will use the
multi-graph representations of materials as inputs to SphereNet models. Generally, SphereNet model
first initializes the embedding vectors of nodes and edges with a look-up atom type embedding vectors
and spherical basis functions, then employ multiple message passing [11] layers to iteratively update
the node and edge embeddings. Note that this overall process of initializing and updating embeddings
is always invariant to all symmetry transformations described in Section 3.1. The encoder model of
VAE model will use a sum pooling over the final node embeddings to obtain a global representation
vector, which is passed into an MLP to obtain zA and zL. The score model will use another MLP
to predict the edge distance score scalar from the final edge embeddings. Note that we use two
independent SphereNet models whose parameters are not shared for the VAE encoder model and
score model. We use the implementations of SphereNet in DIG package [26].

Obtaining lattice matrix from lattice lengths and angles. From the lattice lengths ℓ = [ℓ1, ℓ2, ℓ3]

and lattice angles ϕ = [ϕ12, ϕ23, ϕ13], let γ = arccos cosϕ23 cosϕ13−cosϕ12

sinϕ23 sinϕ13
, one lattice matrix

L = [ℓ1, ℓ2, ℓ3] can be computed as

ℓ1 = [ℓ1 sinϕ13, 0, ℓ1 cosϕ13]
T ,

ℓ2 = [−ℓ2 sinϕ23 cos γ, ℓ2 sinϕ23 sin γ, ℓ2 cosϕ23]
T ,

ℓ3 = [0, 0, ℓ3]
T .

Calculating the denoising score matrix. In the training of score-based diffusion model in SyMat, we
add Gaussian noise with noise magnitude σt to the coordinate matrix of a material M = (A,P ,L)

in the dataset to obtain a noisy material M̃ =
(
A, P̃ ,L

)
, and the score model sθ(·) is optimized

to predict the denoising score matrix ∇P̃ log pσt

(
P̃ |P ,A,L

)
. Then the score model sθ(·) tries

to predict the edge distance score s̃i,j,k = ∇d̃i,j,k
log pσt

(
P̃ |P ,A,L

)
for every edge (i, j,k) in

the multi-graph representation of M̃ . Motivated from existing methods [30, 42, 55] in molecule
generation, we can assume that the distribution of edge distance d̃i,j,k in M̃ is a Gaussian distribution
centered around the edge distance of the same edge in M . Practically, we find that using a new
coordinate matrix P̂ = [p̂1, ..., p̂n] obtained by aligning P = [p1, ...,pn] w.r.t. P̃ = [p̃1, ..., p̃n]
to calculate the corresponding edge distance in M can achieve the best performance. Specifically,
we follow alignment procedure as in CDVAE [52] and calculate each p̂i as p̂i = pi + Lu, where
u = argminv∈Z3 ||pi+Lv− p̃i||2. The mean d̂i,j,k of the Gaussian distribution of the edge distance
d̃i,j,k is calculated as d̂i,j,k = ||p̂i + Lk − p̂j ||2. Besides, we assume the Gaussian distributions
of d̂i,j,k for every edge have the same standard deviations σt, which is pre-computed by manually
perturbing all materials in the dataset to noisy materials, collecting the edge distances in all noisy
materials, and calculating the empirical standard deviation as σt.
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C More Discussions

Limitations. Generally, there are three major limitations in our proposed SyMat approach. (1)
First, SyMat may take as long as an hour to generate atom coordinates of periodic materials with
score-based diffusion models, since this process requires to run thousands of Langevin dynamics
sampling steps. Actually, this is a common limitation for many other molecule or material generation
methods [42, 30, 52] using score-based diffusion models. Nonetheless, we argue that compared
with the huge time cost of laborious lab experiments or DFT based calculation, the time cost of
SyMat is relatively lower and acceptable. We will explore accelerating SyMat with SDE based
diffusion models [45, 23] in the future. (2) Second, SyMat is designed to maintain invariance to
periodic transformations, so it cannot be applied to non-periodic materials as this will lead to incorrect
probabilistic modeling. Though some materials are non-periodic, such as amorphous solids and
polymers, we focus on periodic materials because they occupy a large part of materials used in
real-world applications. We believe that developing non-periodic material generation method need
to rely on effective periodic material generation methods, but the problem of generating relatively
simpler periodic materials still remains challenging and largely unsolved. Hence, we will focus on
generating periodic materials in this work and leaves the problem of generating non-periodic materials
to the future. (3) Third, our work follows previous material generation studies [52] to evaluate the
quality of the generated materials by some basic metrics, such as composition and structure validity.
However, they do not use metrics to evaluate the synthesizability of the generated materials, though
these metrics are useful for practical applications. In the future, we will collaborate with experts in
material science to come up with metrics for evaluating synthesizability of the materials generated by
our method.

Broader impacts. In this work, we propose a novel method for periodic material generation. Our
work can be used to design novel materials with desired properties for many real-world applications,
such as batteries or solar cells. Nonetheless, our method may unexpectedly generate materials that
produce negative impacts to human life. For example, manufacturing some materials generated by
our model may cause environmental pollution. Hence, we believe strict evaluation or validation
process need to be done to estimate the related environmental or other social impacts before using the
materials generated by our model to real-world scenarios.
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D Additional Experiment Details and Results

D.1 Additional Details in Experimental Settings

In our SyMat model, the SphereNet model is composed of 4 message passing layers and the hidden
size is set to 128. Also, all MLP models in the VAE decoder is composed of 2 linear layers with a
ReLU function between them, and the hidden size is set to 256. During training, we set the learning
rate to 0.001, the batch size to 128, and the epoch number to 1,000. The total training needs around 3,
5, and 10 hours on a GTX 2080 GPU for Perov-5, Carbon-24, and MP-20 datasets, separately. We
use different weights for different loss terms. Specifically, we set the weights of the reconstruction
losses for atom type set size, atom types, atom numbers of each atom type, lattice items as 1.0,
30.0, 1.0, 10.0, respectively, and use a weight of 0.01 for KL-distance loss and a weight of 10.0 for
denoising score matching loss. In the generation of atom coordinates with Algorithm 1, we set step
size ϵ as 0.0001 and step number q as 100. In addition, we use a geometrically decreasing series
between 10 and 0.01 as {σt}Tt=1 and set T = 50. In the random generation task, for COV-R and
COV-P metrics, we consider one material cover another material if the distances of their chemical
element composition fingerprints and 3D structure fingerprints are smaller than the thresholds δc and
δs, respectively. For Perov-5 dataset, we use δc = 6, δs = 0.8; for Carbon-24 dataset, we use δc = 4,
δs = 1.0; for MP-24 dataset, we use δc = 12, δs = 0.6.

D.2 Material Reconstruction

In the material reconstruction task, we reconstruct materials in the test sets of Perov-5, Carbon-24 and
MP-20 datasets from the encoded latent representations zA and zL. We evaluate the reconstruction
performance by several metrics. First, we evaluate the percentage of materials whose atom types can
be exactly reconstructed (Atom Type Match Rate), and the root mean square error in lattice lengths
and angles between the target and reconstructed materials (Lattice RMSE). Second, to show the
score-based diffusion model has the capacity to approximately reconstruct 3D structures, we evaluate
the root mean square error in interatomic distances between the target and reconstructed materials
(Distance RMSE). We present the experimental results of SyMat together with baseline methods in
Table 3. Results show that our method performs well in atom types, lattices and interatomic distances
reconstruction.

Table 3: Reconstruction performance on Perov-5, Carbon-24, and MP-20 datasets. Here ↑ means
higher metric values lead to better performance, while ↓ means the opposite. Note that Cond-DFC-
VAE can only be used to Perov-5 dataset in which materials have cubic structures. Bold and underline
numbers highlight the best and second best performance, respectively.

Dataset Method
Atom type
match rate↑ Lattice RMSE↓ Distance RMSE↓

Perov-5

FTCP 99.67% 0.0786 0.2953
Cond-DFC-VAE 58.92% 0.0765 0.2281
CDVAE 98.16% 0.0231 0.1072
SyMat (ours) 98.30% 0.0224 0.0723

Carbon-24
FTCP 100.00% 0.1349 0.3759
CDVAE 100.00% 0.0624 0.1745
SyMat (ours) 100.00% 0.0632 0.1186

MP-20
FTCP 71.46% 0.1057 0.2062
CDVAE 68.32% 0.0532 0.0975
SyMat (ours) 72.10% 0.0510 0.0876

D.3 Diversity Evaluation

We evaluate the diversity of the randomly generated atom types by uniqueness percentage, i.e., the
percentage of unique atom types among all the generated atom types. We present the uniqueness
percentages of SyMat and baseline methods on Perov-5 and MP-20 datasets in Table 4. Note that
Cond-DFC-VAE can only be used to Perov-5 dataset in which materials have cubic structures, and
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Carbon-24 is not used here because all materials in Carbon-24 are composed of only carbon atoms,
so the uniqueness is expected to be low. Results show that our method performs well in generating
materials with diverse atom types.

Table 4: Uniqueness percentages on Perov-5 and MP-20 datasets.

Dataset FTCP Cond-DFC-VAE G-SchNet P-G-SchNet CDVAE SyMat

Perov-5 72.33% 80.36% 98.74% 98.57% 98.61% 99.43%
MP-20 79.04% – 99.23% 99.03% 99.84% 99.98%

D.4 Ablation Study

We conduct an ablation study experiment to show that the use of distance score matching in our
coordinate generation module is significant. We implement a variant of SyMat in which the score
model in coordinate generation module is trained by applying the denoising score matching loss
directly to coordinates, instead of using our proposed distance score matching loss. We evaluate its
performance in the random generation task by the structural validity, COV-R, and COV-P metrics as
these metrics evaluate the quality of the generated atom coordinates. We summarize the results in
Table 5. From the results, we can clearly find that using coordinate score matching always achieves
lower COV-R and COV-P than using distance score matching. This demonstrates that distance score
matching can more accurately capture the distribution of material structures, so the generated periodic
materials are more similar to periodic materials in datasets, thereby achieving higher COV-R and
COV-P.

Table 5: Comparison of SyMat with coordinate score matching and distance score matching. Here
↑ means higher metric values lead to better performance. Bold numbers highlight the best best
performance.

Dataset Method
Structure
validity↑ COV-R↑ COV-P↑

Perov-5 SyMat with coordinate score matching 100.00% 97.46% 95.32%
SyMat with distance score matching 100.00% 99.68% 98.64%

Carbon-24 SyMat with coordinate score matching 100.00% 96.72% 93.44%
SyMat with distance score matching 100.00% 100.00% 97.59%

MP-20 SyMat with coordinate score matching 100.00% 94.25% 95.61%
SyMat with distance score matching 100.00% 98.97% 99.97%
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E Visualization Results

Perov-5

Carbon-24

MP-20

Figure 3: Illustrations of some periodic materials generated by SyMat models trained on Perov-5,
Carbon-24, and MP-20 datasets.
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Figure 4: Illustrations of some periodic materials before and after being optimized by SyMat models
in the property optimization task. Numbers show how energies (eV/atom) changes in optimization.
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(a) Perov-5 Dataset.
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(b) Carbon-24 Dataset.
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(c) MP-20 Dataset.

Figure 5: Illustrations of material energy (eV/atom) distribution before and after being optimized by
SyMat models in the property optimization task.
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