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Abstract

In many applications, learning systems are required to process continuous non-
stationary data streams. We study this problem in an online learning framework
and propose an algorithm that can deal with adversarial time-varying and nonlinear
constraints. As we show in our work, the algorithm called Constraint Violation
Velocity Projection (CVV-Pro) achieves

√
T regret and converges to the feasible

set at a rate of 1/
√
T , despite the fact that the feasible set is slowly time-varying

and a priori unknown to the learner. CVV-Pro only relies on local sparse linear
approximations of the feasible set and therefore avoids optimizing over the entire
set at each iteration, which is in sharp contrast to projected gradients or Frank-
Wolfe methods. We also empirically evaluate our algorithm on two-player games,
where the players are subjected to a shared constraint.

1 Introduction

Today’s machine learning systems are able to combine computation, data, and algorithms at unprece-
dented scales, which opens up new and exciting avenues in many domains, such as computer vision,
computer graphics, speech and text recognition, and robotics [Jordan and Mitchell, 2015]. One of the
leading principles that has enabled this progress is the focus on relatively simple pattern recognition
and empirical risk minimization approaches, which mostly rely on offline gradient-based optimization
and stipulate that the training, validation, and test data are independent and identically distributed.

Somewhat overlooked in these developments is the role of non-stationarity and constraints [Jordan,
2019]. Indeed, emerging machine learning problems involve decision-making in the real world, which
typically includes interactions with physical, social, or biological systems. These systems are not only
time varying and affected by past interactions, but their behavior is often characterized via fundamental
constraints. Examples include cyber-physical systems where constraints are imposed by the laws of
physics, multi-agent systems that are subjected to a shared resource constraint, or a reinforcement
learning agent that is subjected to safety and reliability constraints. In particular, in their seminal
work Auer et al. [2002] gave a reduction for the multi-arm bandit setting to the full information online
optimization setting, by employing the multiplicative weights framework [Littlestone and Warmuth,
1994]. This classical reduction was recently extended by Sun et al. [2017] to the contextual bandit
setting with sequential (time-varying) risk constraints.

This motivates our work, which is in line with a recent trend in the machine learning community
towards online learning, adaptive decision-making, and online optimization. More precisely, we
study an online problem with slowly time-varying constraints, governed by the following interaction
protocol (see Assumption 1.2). In each time step t, the learner commits a decision xt and then
in addition to a loss value ft(xt) with its gradient ∇ft(xt) receives partial information about the
current feasible set Ct := {x ∈ Rn | gt(x) ≥ 0}, where the constraint function gt(x) is defined as
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[gt,1(x), . . . , gt,m(x)]. The quality of the learner’s decision making is measured, for every T ≥ 1, by
comparing to the best decision in hindsight x⋆

T ∈ argminx∈CT

∑T
t=1 ft(x), that is,

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
⋆
T ) subject to gT (xT ) ≥ − c√

T
, (1)

which will be shown to be bounded by O(
√
T ) for our algorithm. The functions ft and gt are

restricted to ft ∈ F and gt ∈ G (as defined in Assumption 1.1) and c > 0 is an explicit constant.

It is important to note that our performance objective (1) is symmetric in the sense that the constraint
x ∈ CT applies to both the learner’s decision xT and the benchmark x⋆

T . This contrasts prior work
by Neely and Yu [2017], Yu et al. [2017], Sun et al. [2017], Chen et al. [2017], Cao and Liu [2019]
and Liu et al. [2022], where a different notion of constraint violation

∑T
t=1 gt(xt) ≥ −c0

√
T is used

for the learner, while either a single benchmark x⋆
1:T satisfies gt(x⋆

1:T ) ≥ 0 for all t ∈ {1, . . . , T}
or multiple benchmarks {x′

t}Tt=1 satisfy x′
t ∈ argminx∈Ct

ft(x). Unlike (1), different requirements
are imposed on the learner and the benchmark(s), which leads to asymmetric regret formulations:∑T

t=1 ft(xt)−
∑T

t=1 ft(x
⋆
1:T ) and

∑T
t=1 ft(xt)−

∑T
t=1 ft(x

′
t), respectively. Furthermore, as our

bound gT (xT ) ≥ −c/
√
T applies for all T ≥ 1, it implies the cumulative constraint violation bound

in Neely and Yu [2017] up to a constant factor
∑T

t=1 gt(xt) ≥ −c
∑T

t=1 1/
√
t ≥ −2c

√
T .

Even more intriguing is the fact that our algorithm is unaware of the feasible sets a-priori, and obtains,
at each iteration, only a local sparse approximation of Ct based on the first-order information of the
violated constraints. The indices of all violated constraints at xt will be captured by the index set
I(xt) := {i ∈ {1, . . . ,m} | gt,i(xt) ≤ 0}, while G(xt) := [∇gt,i(xt)]i∈I(xt) denotes the matrix
whose columns store the corresponding gradients. In order to guarantee a regret of O(

√
T ) in (1) we

require the following assumptions.
Assumption 1.1. There exist R,LF , LG > 0: 1) F is a class of convex functions, where every
f ∈ F satisfies ||∇f(x)|| ≤ LF ,∀x ∈ B4R, with || · || the ℓ2 norm and BR the hypersphere of radius
R centered at the origin; 2) G is a class of concave βG-smooth functions, where every g satisfies
||∇g(x)|| ≤ LG ,∀x ∈ B4R; 3) The feasible set Ct is non-empty and contained in BR for all t.

We note that these assumptions are standard in online optimization [Hazan, 2016, Ch. 3]. The
learner’s task is nontrivial even in the case where the feasible set is time invariant. If the feasible set
is time varying, additional assumptions are required that restrict the amount that the feasible set is
allowed to change. These two assumptions, see Part 2 i) and ii) below, are described by the following
interaction protocol between the learner and the environment:
Assumption 1.2. (Interaction protocol) At each time step t ∈ {1, . . . , T}:
1) the learner chooses xt;
2) the environment chooses ft ∈ F and gt ∈ G such that i) ||gt(x) − gt−1(x)||∞ = O(1/t),
uniformly for all x ∈ B4R, with || · ||∞ the ℓ∞ norm, and ii) Ct is contained in Qt := ∩t−1

ℓ=0Sℓ, where
St := {x ∈ Rn |G(xt)

⊤(x−xt) ≥ 0} is a cone centered at xt for t ≥ 1 and S0 = Rn (the situation
is illustrated in Figure 1, more details are presented in Appendix A);
3) the environment reveals to the learner partial information on cost ft(xt), ∇ft(xt) and all violated
constraints gt,i(xt), ∇gt,i(xt) for i ∈ I(xt).

Figure 1: At each time step,
the feasible set Ct contained
in a polyhedral intersection
Qt changes slightly and is
only partially revealed.

The requirements i) ||gt − gt−1||∞ = O(1/t); and ii) Ct ⊂ Qt restrict
the feasible sets that the environment can choose. We note that despite
the fact that ||gt − gt−1||∞ = O(1/t), ||g1 − gt||∞ = Θ(ln(t)), which
means that the sequence of functions gt that defines Ct does not converge
in general. As a result, Ct may evolve in such a way that the initial iterates
x1, x2, . . . , xt0 achieve a large cost compared to minx∈CT

∑T
t=1 ft(x),

as these are constrained by the sets C1, C2, . . . , Ct0 , which may be far
away from CT . The second requirement ii) Ct ⊂ Qt avoids this situation
and is therefore key for obtaining an O(

√
T ) regret.

Our setup differs from traditional online convex optimization [Zinkevich,
2003] in the following two important ways:
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i) The environment chooses not only the functions ft but also the nonlinear constraint functions gt,
ii) even if gt is time-invariant, i.e., gt = g for all t the learner has only access to local information
about the feasible set.

That is, the information about the feasible set is only revealed piece-by-piece and needs to be acquired
by the agent through repeated queries of a constraint violation oracle.

We propose an online algorithm that despite the lack of information about the feasible set, achieves
O(

√
T ) regret, and will derive explicit non-asymptotic bounds for the regret and the convergence to

CT . We thus conclude that our algorithm matches the performance of traditional online projected
gradients or Frank-Wolfe schemes, while requiring substantially less information about the feasible
set and allowing it to be time-varying. Perhaps equally important is the fact that instead of per-
forming projections onto the full feasible set at each iteration, our algorithm only optimizes over a
local sparse linear approximation. If constraints are nonlinear, which includes norm-constraints or
constraints on the eigenvalues of a matrix, optimizing over the full feasible set at each iteration can
be computationally challenging.

1.1 Related Work

Online learning has its roots in online or recursive implementations of algorithms, where due to the
piece-by-piece availability of data, algorithms are often analyzed in a non i.i.d. setting. A central
algorithm is the multiplicative weights scheme [Freud and Schapire, 1997], where a decider repeatedly
chooses between a finite or countable number of options with the aim of minimizing regret. This
online learning model not only offers a unifying framework for many classical algorithms [Blum,
1998], but represents a starting point for online convex optimization Hazan [2016], and adversarial
bandits [Lattimore and Szepesvári, 2020]. Our approach extends this line of work by allowing the
environment to not only choose the objective functions ft, but also the constraints gt. Due to the fact
that our learner only obtains local information about the feasible set, our work is somewhat related to
Levy and Krause [2019], Lu et al. [2023], Garber and Kretzu [2022], Mhammedi [2022], where the
aim is to reduce the computational effort of performing online projected gradient steps or Frank-Wolfe
updates. More precisely, Levy and Krause [2019] propose an algorithm that directly approximates
projections, while requiring multiple queries of the constraint functions and their gradients. A slightly
different constraint violation oracle is assumed in Garber and Kretzu [2022], where the learner can
query separating hyperplanes between a given infeasible point and the feasible set. Algorithmically,
both Garber and Kretzu [2022] and Levy and Krause [2019] depart from online gradient descent,
where the latter computes projections via an approximate Frank-Wolf-type scheme. An alternative is
provided by Mhammedi [2022] and Lu et al. [2023], where optimizations over the entire feasible set
are simplified by querying only a set membership oracle based on the Minkowski functional. While
our approach also avoids projections or optimizations over the entire feasible set, we introduce a
different constraint violation oracle that returns a local sparse linear approximation of the feasible
set. We call the constraint violation oracle only once every iteration and do not require a two-step
procedure that involves multiple oracle calls. In addition, we also allow for adversarial time-varying
constraints.

In addition, there has been important recent work that developed online optimization algorithms
with constraints. In contrast to the primal formulation of our algorithm, these works are based on
primal-dual formulations, where the algorithm is required to satisfy constraints on average, so called
long-term constraints. The research can be divided into two lines of work Mahdavi et al. [2012],
Jenatton et al. [2016], Yu and Neely [2020] and Yuan and Lamperski [2018], Yi et al. [2021] that
use a set of weaker and stricter definitions for constraint violations and investigate time-invariant
constraints, which contrasts our formulation that includes time-varying constraints. A third line of
work by Mannor et al. [2009], Chen et al. [2017], Neely and Yu [2017], Yu et al. [2017], Sun et al.
[2017], Cao and Liu [2019], Liu et al. [2022] focuses on time-varying constraints, where, however, the
following weaker notion of constraint violation is used:

∑T
t=1 gt(xt) ≥ −c

√
T , where t refers to time

and xt to the learner’s decision. This metric allows constraint violations for many iterations, as long
as these are compensated by strictly feasible constraints (in the worst case even with a single feasible
constraint with a large margin). In contrast, our algorithm satisfies gt(xt) ≥ −c/

√
t for all iterations

t ∈ {1, . . . , T}, where c is an explicit constant independent of the dimension of the decision variable
and the number of constraints. This means that we can explicitly bound the constraint violation at
every iteration, whereas infeasible and strictly feasible iterates cannot compensate each other.
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An important distinction to Neely and Yu [2017] is given by our performance metric (see also the
discussion in Neely and Yu [2017] and Liu et al. [2022]). On the one hand, the work by Chen et al.
[2017], Cao and Liu [2019], Liu et al. [2022] use

∑T
t=1 ft(xt) −

∑T
t=1 ft(x

′
t) as a performance

measure, where the iterates xt are required to satisfy
∑T

t=1 gt(xt) ≥ −c
√
T and the optimal solutions

x′
t satisfy x′

t ∈ argminx∈Ct
ft(x). On the other hand, the work by Neely and Yu [2017], Yu et al.

[2017], Sun et al. [2017] use
∑T

t=1 ft(xt)−
∑T

t=1 ft(x
⋆
1:T ) as a performance measure, where the

iterates xt are required to satisfy
∑T

t=1 gt(xt) ≥ −c
√
T and the optimal solution x⋆

1:T satisfies
gt(x

⋆
1:T ) ≥ 0 for all t ∈ {1, . . . , T}. This leads to a major asymmetry in the way regret is measured:

while the iterates of the online algorithm only need to satisfy a cumulative measure of constraint
violation, the benchmark x⋆

1:T , which represents the best fixed decision in hindsight, is required
to satisfy all constraints gt(x

⋆
1:T ) ≥ 0 for t = {1, . . . , T}. In contrast, the performance metric

introduced in (1) is symmetric and imposes the same constraint x ∈ CT (approximately) on the
learner’s decision xT and (exactly) on the benchmark x∗

T . These features make our algorithm a
valuable addition to the algorithmic toolkit of online constrained optimization.

Castiglioni et al. [2022] studied the following asymmetric setting with adversarial environment,
benchmark x⋆

T belonging to argminx∈X
∑T

t=1 ft(x) subject to 1
T

∑T
t=1 gt(x) ≥ 0, online iterates

xt satisfying 1
T

∑T
t=1 gt(xt) ≥ −O(1/

√
T ), and regret

∑T
t=1 ft(xt) −

∑T
t=1 ft(x

⋆
T ) ≤ O(

√
T ).

Their benchmark and regret formulation can be obtained as a special case of our formulation
with time-averaged constraints, that is, when our gT (x) is chosen as 1

T

∑T
t=1 gt(x). In contrast,

our iterate xT satisfies 1
T

∑T
t=1 gt(xT ) ≥ −O(1/

√
T ), a constraint that is asymptotically the

same as the one satisfied by the benchmark x⋆
T . We further note that they introduced a parameter

ρ = supx∈X mint∈[T ] mini∈[m] gt,i(x), which is required to be positive and known to the algorithm
for achieving O(

√
T ) regret. Notably ρ > 0 implies that the intersection of all feasible sets is

non-empty, which is a strong assumption (as is knowledge about the parameter ρ). In our formulation
with time-averaged constraints, Assumption 1.2 reduces to the requirement that the feasible set Ct
belongs to a polyhedral intersection Qt, which does not require a non-emtpy intersection of all Ct (has
a geometrical interpretation and the assumption ||gt − gt−1||∞ = O(1/t) is automatically satisfied).
Thus, there are situations, where the regret bound from Castiglioni et al. [2022] becomes vacuous
(for ρ = 0), while our method still provably achieves O(

√
T ) regret. Additional differences are that

Castiglioni et al. [2022] considers primal-dual methods and assumes that all constraints are revealed
after every iteration, whereas our method is primal-only and has only partial information about all
violated constraints. The latter point reduces computation and simplifies projections onto the velocity
polyhedron, but requires a nontrivial inductive argument for establishing O(

√
T ) regret.

Other relevant related studies have investigated online learning problems with supply/budget con-
straints. In these settings, the decision maker must choose a sequence of actions that maximizes
their expected reward while ensuring that a set of resource constraints are not violated. The process
terminates either after a pre-specified time horizon has been reached or when the total consumption of
some resource exceeds its budget. Badanidiyuru et al. [2018] introduced the bandits with knapsacks
framework, which considers bandit feedback, stochastic objective and constraint functions. They
proposed an optimal algorithm for this problem, which was later improved by Agrawal and Devanur
[2014, 2019] and Immorlica et al. [2022]. Immorlica et al. [2022] introduced the adversarial bandits
with knapsacks setting and showed that an appropriate benchmark for this setting is the best fixed
distribution over arms. Since no-regret is no longer possible under this benchmark, they provide
no-α-regret guarantees for their algorithm.

An important special case of our online learning model arises when the environment is represented
by an adversarial player that competes with the learner. This corresponds to a repeated generalized
Nash game due to the constraint that couples the decisions of the learner and its adversary. If
the adversary plays best response, the resulting equilibria are characterized by quasi-variational
inequalities [Facchinei and Kanzow, 2007] and there has been important recent work, for example by
Jordan et al. [2023], Kim [2021], Facchinei and Kanzow [2010] that proposes different gradient and
penalty methods for solving these inequalities. Our approach adopts a different perspective, rooted
in online learning, which allows us to derive non-asymptotic convergence results for a first-order
gradient-based algorithm that can be implemented in a straightforward manner. Our approach is also
inspired by the recent work of Muehlebach and Jordan [2022], who propose a similar algorithm for
the offline setting.
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1.2 Main Contributions

We give an online optimization scheme under unknown non-linear constraints that achieves an optimal
O(

√
T ) regret and converges to the latest feasible set at a rate of O(1/

√
T ). There are two variants

of our problem formulation: The first deals with situations where constraints are unknown but fixed,
the second allows constraints to be chosen in a time-varying and adversarial manner.

Our algorithm, named Constraint Violation Velocity Projection (CVV-Pro), has the following features:

1. It assumes access to a new type of oracle, which on input xt, returns partial information on all
currently violated constraints. Namely, the value gt,i(xt) and the gradient ∇gt,i(xt) for all i ∈ I(xt).

2. It projects an adversarially generated negative cost gradient −∇ft(xt) onto a velocity polyhedron
Vα(xt) :=

{
v ∈ Rn | [∇gi(xt)]

⊤v ≥ −αgi(xt), ∀i ∈ I(xt)
}

. Due to the linear and local structure
of Vα(xt), the projection can be computed efficiently.

3. In contrast to standard online methods that project in each round a candidate decision onto the
feasible set, our method trades off feasibility for efficiency. In particular, it produces a sequence of
decisions that converges at a rate of O(1/

√
T ) to the latest feasible set.

4. Our method handles time-varying adversarial constraints gt, provided a decreasing rate of change
||gt+1 − gt||∞ ≤ O(1/t) and that each feasible set Ct belongs to Qt (see Assumption 1.2). As we
show in Section 3.1, an important special case where the assumption of decreasing rate of change is
satisfied is given by gt =

1
t

∑t
j=1 g̃j , i.e., when gt represents an average of constraints g̃t over time.

1.3 Outline

Section 2 describes our algorithm and considers the situation where gt is time invariant. This sets
the stage for our main results in Section 3 that provide regret guarantees for our new online convex
optimization setting with non-stationary, nonlinear, and unknown constraints. An important and
interesting application of our algorithm are generalized Nash equilibrium problems, as will be
illustrated with a numerical experiment in Section 4. The experiment will also highlight that the
numerical results agree with the theoretical predictions.

2 Online learning under unknown, time-invariant, and nonlinear constraints

2.1 Online Gradient Descent

Online gradient descent [Hazan, 2016, Ch. 3.1] is a classical and perhaps the simplest algorithm that
achieves optimal O(

√
T ) regret for the setting of a compact, convex, time-invariant, and a priori

known feasible set. It consists of the following two operations: i) yt+1 = xt− ηt∇ft(xt) takes a step
from the previous point in the direction of the previous cost gradient; and ii) xt+1 = ProjC(yt+1)
projects yt+1 back to the feasible set C, as yt+1 may be infeasible.

In this section, we generalize the online gradient descent algorithm to the setting where the feasible
set is unknown a priori and has to be learned through repeated queries of a constraint violation oracle
that only reveals local information.

2.2 Overview

In Section 2.3, we present the pseudo code of our algorithm. In Section 2.4, we give a structural
result showing that Algorithm 1 under Assumption 1.1 and a bounded iterate assumption guarantees
an optimal O(

√
T ) regret and converges to the feasible set at a rate of O(1/

√
T ). In Appendix E,

we show that the bounded iterate assumption can be enforced algorithmically, by introducing an
additional hypersphere constraint that attracts the sequence {xt}t≥1 to a fixed compact set.

2.3 Constraint Violation Velocity Projection (CVV-Pro)

We present below the pseudocode of Algorithm 1 for a fixed horizon length T , as it is standard in the
literature [Hazan, 2016]. However, we note that our algorithm is oblivious to the horizon length T ,
i.e., it can run for any number of iterations without knowing T a priori.
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Figure 2: Illustration of the proposed (CVV-Pro) algorithm. Left: the constraint gt,j is violated by the current
solution xt. The cost gradient −∇ft(xt) is projected onto the hyperplane (moved by −αgt,j(xt)) with normal
vector ∇gt,j(xt). This yields rt (see Section 2.5), and results in the velocity projection vt (η = 1 for clarity).
Right: next iteration with updated x, where both f and g are changed. Then the procedure is applied recursively.

Algorithm 1 Constraint Violation Velocity Projection (CVV-Pro)
1: Requirements: See Assumption 1.1
2: Input: α > 0
3: Initialization: Step sizes

{
ηt =

1
α
√
t

}
t≥1

4: for t = 1 to T do
5: Play xt and observe:
6: cost information ft(xt),∇ft(xt) and constraint information

{(
gi(xt),∇gi(xt)

)
}i∈I(xt)

7: Construct the velocity polyhedron as follows:

Vα(xt) :=
{
v ∈ Rn | [∇gi(xt)]

⊤v ≥ −αgi(xt), ∀i ∈ I(xt)
}
,

8: Solve the velocity projection problem: vt = argminv∈Vα(xt)
1
2∥v +∇ft(xt)∥2

9: Update: xt+1 = xt + ηtvt
10: end for

Let x ∈ C be an arbitrary decision. We show in Claim 2.2 that α(x − xt) ∈ Vα(xt). Hence, the
velocity polyhedron Vα(xt) is always non-empty and well defined.

2.4 Structural Result

Here, we show that Algorithm 1 under Assumption 1.1 and a bounded iterate assumption, guarantees
an optimal O(

√
T ) regret and converges to the feasible set at a rate O(1/

√
T ). The bounded iterate

assumption will be removed subsequently, which however, will require a more complex analysis.

Theorem 2.1 (Structural). Suppose Assumption 1.1 holds and in addition xt ∈ BR for all t ∈
{1, . . . , T}. Then, on input α = LF/R, Algorithm 1 with step sizes ηt = 1

α
√
t

guarantees the
following for all T ≥ 1:

(regret)
∑T

t=1 ft(xt)−minx∈C
∑T

t=1 ft(x) ≤ 18LFR
√
T ;

(feasibility) gi(xt) ≥ −8
[
LG
R + 2βG

]
R2
√
t
, for all t ∈ {1, . . . , T} and i ∈ {1, . . . ,m}.

2.5 Proof Sketch of Theorem 2.1

Our analysis establishes, in two steps, an important geometric property that connects the convex costs
and the concave constraints via the velocity polyhedron Vα(xt). More precisely, we show that the
inner product −r⊤t (x

⋆
T − xt) ≤ 0 for all t ∈ {1, . . . , T}. This property will be crucial for deriving

the regret and feasibility bounds.

In the first step, we leverage the constraints’ concavity and show that the vector α(x⋆
T − xt) belongs

to the velocity polyhedron Vα(xt).

Claim 2.2. Suppose gi is concave for every i ∈ {1, . . . ,m}. Then α(x− xt) ∈ Vα(xt) for all x ∈ C.
In addition, xt ̸∈ int(C) implies [∇gi(xt)]

⊤[x− xt] ≥ 0 for all x ∈ C.
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Proof. Let x ∈ C be an arbitrary feasible decision, satisfying gi(x) ≥ 0 for all i ∈ {1, . . . ,m}. Since
gi is concave, we have gi(xt) + [∇gi(xt)]

⊤[x − xt] ≥ gi(x) ≥ 0 and thus [∇gi(xt)]
⊤[x − xt] ≥

−gi(xt). The second conclusion follows by xt ̸∈ int(C), which implies gi(xt) ≤ 0.

In the second step, we show that r⊤t (xt−x⋆) ≤ 0, where rt = vt+∇ft(xt) is such that −rt belongs
to the normal cone NVα(xt)(vt) of the velocity polyhedron Vα(xt) evaluated at the projection vt.

Lemma 2.3 (Main). Let vt be the projection of −∇ft(xt) onto the polyhedron Vα(xt) such that
vt = rt −∇ft(xt) ∈ Vα(xt), where −rt ∈ NVα(xt)(vt). Then, −r⊤t (x− xt) ≤ 0 for all x ∈ C.

Proof. By definition, the normal cone NVα(xt)(vt) is given by {u ∈ Rn | u⊤(v − vt) ≤ 0, ∀v ∈
Vα(xt)}. Then, by construction −rt ∈ NVα(xt)(vt) and thus it holds for every v ∈ Vα(xt) that
−r⊤t [v − vt] ≤ 0. The proof proceeds by case distinction:

Case 1. Suppose xt is in the interior of C. Then, I(xt) = ∅, which implies −∇ft(xt) ∈ Vα(xt) = Rn

and thus rt = 0.

Case 2. Suppose xt is on the boundary or outside of C, i.e., I(xt) ̸= ∅. By Claim 2.2, we have
[∇gi(xt)]

⊤[x− xt] ≥ 0 for all x ∈ C. By construction, vt ∈ Vα(xt) and thus v(x) = vt + x− xt ∈
Vα(xt). The statement follows by applying v = v(x) to −r⊤t [v − vt] ≤ 0.

Regret. To establish the first conclusion of Theorem 2.1 (regret), we combine the preceding geomet-
ric property with the analysis of online gradient descent. Since ft ∈ F is convex, we upper bound the
regret in terms of the gradient of ft, namely

∑T
t=1 ft(xt)− ft(x

⋆
T ) ≤

∑T
t=1[∇ft(xt)]

⊤(xt − x⋆
T )

and then we show that the following inequality holds

[∇ft(xt)]
⊤(xt − x⋆

T )−
ηt
2
∥vt∥2 = r⊤t (xt − x⋆

T ) +
∥xt − x⋆

T ∥2 − ∥xt+1 − x⋆
T ∥2

2ηt

≤ ∥xt − x⋆
T ∥2 − ∥xt+1 − x⋆

T ∥2

2ηt
. (2)

Moreover, in Appendix D (see Lemma D.2), we upper bound the velocity ∥vt∥ ≤ α∥x⋆
T − xt∥ +

2∥∇ft(xt)∥. Combining Assumption 1.1 and xt ∈ BR yields a uniform bound ∥vt∥ ≤ Vα, where
for α = LF/R we set Vα := 4LF . The desired regret follows by a telescoping argument and by
convexity of the cost functions ft ∈ F .

Feasibility. For the second conclusion of Theorem 2.1 (convergence to the feasible set at a rate of
1/

√
T ), we develop a non-trivial inductive argument that proceeds in two steps. In Appendix D (see

Claim D.6), we give a structural result that bounds the constraint functions from below. In particular,
for every i ∈ I(xt) we have gi(xt+1) ≥ (1− αηt)gi(xt)− η2tV2

αβG and for every i ̸∈ I(xt) it holds
that gi(xt+1) ≥ −ηt+1Vα[2LG + VαβG/α].

Using an inductive argument, we establish in Appendix D (see Lemma D.5) the following lower bound:
gi(xt) ≥ −cηt where c = 2Vα(LG + VαβG/α). Choosing α = LF/R implies that Vα = 4LF .
Then, the desired convergence rate to the feasible set follows for the step size ηt =

1
α
√
t
, since

−cηt = − 2Vα

α
√
t

[
LG +

βGVα

α

]
= −8

[LG

R
+ 4βG

]R2

√
t
.

3 Online Learning under Adversarial Nonlinear Constraints

3.1 Problem Formulation

In this section, we consider an online optimization problem with adversarially generated time-varying
constraints. More precisely, at each time step t, the learner receives partial information on the current
cost ft and feasible set Ct, and seeks to minimize (1). To make this problem well posed, we restrict
the environment such that each feasible set Ct is contained in Qt (see Section 1) and the rate of
change between consecutive time-varying constraints decreases over time. We quantify a sufficient
rate of decay with the following assumption.
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Assumption 3.1 (TVC Decay Rate). We assume that the adversarially generated sequence {gt}t≥1

of time-varying constraints is such that for every x ∈ B4R and all t ≥ 1, the following holds
∥gt+1(x)− gt(x)∥∞ ≤ 98

t+16

[
LG
R + 3βG

]
R2.

We note that Assumption 3.1 essentially only requires ∥gt+1(x) − gt(x)∥∞ ≤ O(1/t), as R can
be chosen large enough such that the bound is satisfied. Of course, R will appear in our regret and
feasibility bounds, but it will not affect the dependence on t or T (up to constant factors).

An important special case where Assumption 3.1 is satisfied, is summarized in the following Lemma.
The proof is included in Appendix F (see Lemma F.7 and Lemma F.8).
Lemma 3.2. Suppose the functions g̃t,i satisfy Assumption 1.1 and in addition there is a decision
xt,i ∈ BR such that g̃t,i(xt,i) = 0 for every t ≥ 1 and i ∈ {1, . . . ,m}. Then the time-averaged
constraints gt,i(x) := 1

t

∑t
ℓ=1 g̃ℓ,i(x) satisfy Assumption 1.1 and Assumption 3.1.

3.2 Velocity Projection with Attractive Hypersphere Constraint

We show in Appendix E that the second assumption in Theorem 2.1, namely, “xt ∈ BR for all t ≥ 1”
can be enforced algorithmically. We achieve this in two steps.

1) Algorithmically, we introduce an additional hypersphere constraint gm+1(xt) =
1
2 [R

2 − ∥xt∥2]
that attracts the decision sequence {xt}t≥1 to a hypersphere BR and guarantees that it always stays
inside a hypersphere B4R with a slightly larger radius.

More precisely, we augment the velocity polyhedron in Step 3 of Algorithm 1 as follows: V ′
α(xt) =

Vα(xt) if ∥x∥ ≤ R, otherwise

V ′
α(xt) = {v ∈ Vα(xt) | [∇gm+1(xt)]

⊤v ≥ −αgm+1(xt)}.
2) Analytically, we give a refined inductive argument in Appendix F (see Lemma E.5), showing that
gm+1(xt) ≥ −27R2/

√
t+ 15, ∥xt∥ ≤ 4R and ∥vt∥ ≤ 7LF , for all t ≥ 1.

3.3 Main Contribution

Our main contribution is to show that Algorithm 1 with the augmented velocity polyhedron V ′
α(xt),

achieves optimal O(
√
T ) regret and satisfies gT (xT ) ≥ −O(1/

√
T ) convergence feasibility rate.

Due to space limitations, we defer the proof to Appendix F.
Theorem 3.3 (Time-Varying Constraints). Suppose the functions {ft, gt}t≥1 satisfy Assump-
tions 1.1, 1.2 and 3.1. Then, on input R,LF > 0 and x1 ∈ BR, Algorithm 1 applied with α = LF/R,
augmented velocity polyhedron V ′

α(·) and step sizes ηt = 1
α
√
t+15

guarantees the following for all
T ≥ 1:

(regret)
∑T

t=1 ft(xt)−minx∈CT

∑T
t=1 ft(x) ≤ 246LFR

√
T ;

(feasibility) gt,i(xt) ≥ −265
[
LG
R + 4βG

]
R2

√
t+15

, for all t ∈ {1, . . . , T} and i ∈ {1, . . . ,m};

(attraction) gm+1(xt) ≥ −27 R2
√
t+15

, for all t ∈ {1, . . . , T}.

Our regret analysis in Theorem 3.3 builds upon the following key structural result that generalizes
Lemma 2.3 to time-varying constraints. In particular, in Appendix F (see Lemma F.3), we show
that given the feasible set CT ⊂ QT , it holds for every x ∈ CT that −r⊤t (x − xt) ≤ 0 for all
t ∈ {1, . . . , T}. As a result, a similar argument as in (2) shows that the regret is bounded by O(

√
T ).

Moreover, we note that the linear and quadratic dependence on R in Theorem 3.3 is consistent in
length units. Let the radius R be of length units ℓ, then the Lipschitz constant LF , which can be
viewed as the supremum over the ℓ2 norm of the gradient is of 1/ℓ units, and the βG smoothness
constant (associated with Hessian) is of 1/ℓ2 units. This means that the regret bound in Theorem 3.3
has the same units as ft, while the feasibility bound has the same units as gt.

4 Simulation examples

Two-player games with shared resources are an excellent example for demonstrating the effectiveness
and importance of our online learning framework. We apply our algorithm and show numerical
experiments that support our theoretical findings.
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We choose random instances of a two player game with linear utility and constraints. In particular,
we consider the following optimization problem

min
x∈△n

max
y∈△n

x⊤Ay subject to Cxx+ Cyy ≤ 1, (3)

where △n = {x ∈ Rn |
∑n

i=1 xi = 1, x ≥ 0} is the probability simplex. Each component of
the utility matrix A ∈ Rn×n is sampled from the normal distribution and the constraint matrices
Cx, Cy ∈ [0, 1]m×n have each of their components sampled uniformly at random from [0, 1].

(a) (b)
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Figure 3: (Setup) The CVV-Pro algorithm is executed on five random instances of the two-player game with
shared resources (Section 4.1). The thick line is the mean and the thin lines indicate the minimum and the
maximum over the five runs. (a) The regret follows the predicted O(

√
T ) slope. (b) The CVV-Pro algorithm

achieves a convergence rate of O(1/
√
t) for the averaged decisions xt := 1

t

∑t
ℓ=1 xℓ towards x∞. In our

experiment, we set x∞ := x10000. Similar behavior is reported for the averaged decisions yt of the adversary.
(c) The maximal constraint violation expressed by −mini∈I(xt) gt,i(xt) converges at a rate of O(1/

√
t), as

predicted by our theoretical results. (Compute) For the implementation of CVV-Pro we have used the MATLAB
R2019a numerical computing software. The computation of the experiment takes about 4 hours on a machine
with CPU: Intel(R) i7-6800K 3.40 GHz with 6 cores, GPU: NVIDIA GeForce GTX 1080, and RAM: 32 GB.

4.1 Online Formulation

The problem in (3) can be modeled with our online learning framework (1) by choosing costs
ft(x) := x⊤Ayt and time-averaged resource constraints gT (x) := 1

T

∑T
t=1 g̃t(x), where the function

g̃t(x) := 1−Cxx−Cyyt. Thus, the constraint in (3) is included as an average over the past iterations
of yt. The strategy for choosing yt will be described below and, as we will see, the average of yt
over the past iterations converges. This ensures that the feasible set Ct (defined in (1)) is slowly
time-varying, while the averages of xt and yt over past iterates converge to equilibria in (3). Further,
by a refined version of Lemma 3.2 (see Lemma F.6 in Appendix F), the time-averaged constraints
gT (x) satisfy Assumption 3.1.

In each iteration, Algorithm 1 seeks to minimize the online problem and commits to a decision
xt. The adversary computes the best response ŷt with respect to the decision xt by solving
argmaxy∈△n

x⊤
t Ay. To make the dynamics more interesting, the adversary then commits with

probability 0.8 to ŷt and with probability 0.2 to a random decision ξt, i.e., yt = 0.8ŷt + 0.2ξt where
the random variable ξt is sampled uniformly at random from the probability simplex △n.

As both players optimize over the probability simplex (x, y ∈ △n), the sequence of decisions {xt}t≥1

is automatically bounded. Thus, we can apply Theorem 3.3 with the original velocity polyhedron, as
discussed in Appendix E. We implemented our algorithm with ηt = 1/(α

√
t) and α = 100.
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4.2 Experimental Results

We report results from numerical simulations with decision dimension n = 100, m = 10
shared resource constraints, T = 4000 iterations, and five independently sampled instances of
the two-player game. The learner’s regret, depicted in Figure 3a, shows a clear correspondence
with the theoretical prediction of O(

√
T ). Figure 3b presents the maximal constraint violation

−mini∈I(xT )
1
T

∑T
t=1 g̃t,i(xT ), which follows the predicted O(1/

√
T ) convergence rate. We also

conclude from Figure 3c that the learner’s averaged decisions xT = 1
T

∑T
t=1 xt converge at a rate of

O(1/
√
T ). Similarly, the averaged decisions yT of the adversary also converge at a rate of O(1/

√
T ).

We note that there is little variability in the results despite the different realizations of the matrices
A,Cx, Cy .

Contrasting CVV-Pro and Online Gradient Descent In Appendix C, we show that our (CVV-Pro)
algorithm outperforms the standard Online Gradient Descent algorithm in the two-player game from
above. In particular, our algorithm achieves a lower regret and a runtime improvement of about 60%.
Further, the percentage of violated constraints decreases rapidly and plateaus at 20%.

The amount of improvement in execution time is likely to be greater for higher-dimensional problems,
where fewer constraints tend to be active at each iteration. Moreover, when the constraints are
nonlinear, which includes ℓp norm or spectral constraints, optimizing over the full feasible set can be
computationally challenging. In contrast, the velocity projection step in CCV-Pro is always a convex
quadratic program with linear constraints, regardless of the underlying feasible set.

5 Broader Impact

It is important to emphasize that our work is theoretical, and the main contribution is to design and
analyze a novel algorithm that combines techniques from the seemingly distant fields of online convex
optimization (online gradient descent) and non-smooth mechanics (velocity space, see Muehlebach
and Jordan [2022]). Nevertheless, the list of potential applications includes, but is not limited to:
adversarial contextual bandits with sequential risk constraints Sun et al. [2017], network resource
allocation Chen et al. [2017], logistic regression Cao and Liu [2019], Liu et al. [2022], ridge regression
and job scheduling Liu et al. [2022], two-player games with resource constraints (Section 4), system
identification and optimal control (Appendix B).

6 Conclusion

We propose an online algorithm that, despite the lack of information about the feasible set, achieves
O(

√
T ) regret. We further ensure convergence of violated constraint −min{gT (xT ), 0} at a rate of

O(1/
√
T ) and derive explicit constants for all our bounds that hold for all T ≥ 1. We thus conclude

that our algorithm matches the performance of traditional online projected gradients or Frank-Wolfe
schemes, while requiring substantially less information about the feasible set and allowing the
feasible set to be time-varying. Perhaps equally important is the fact that instead of performing
projections onto the full feasible set at each iteration, our algorithm only optimizes over a local sparse
linear approximation. We show the applicability of our algorithm in numeric simulations of random
two-player games with shared resources.
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