
Does Graph Distillation See Like Vision Dataset
Counterpart?

Beining Yang1,2∗∗, Kai Wang3∗, Qingyun Sun1,2††, Cheng Ji1,2, Xingcheng Fu1,2,
Hao Tang4, Yang You3, Jianxin Li1,2‡‡

1School of Computer Science and Engineering, Beihang University
2Advanced Innovation Center for Big Data and Brain Computing, Beihang University

3National University of Singapore 4Carnegie Mellon University

Abstract

Training on large-scale graphs has achieved remarkable results in graph representa-
tion learning, but its cost and storage have attracted increasing concerns. Existing
graph condensation methods primarily focus on optimizing the feature matrices
of condensed graphs while overlooking the impact of the structure information
from the original graphs. To investigate the impact of the structure information,
we conduct analysis from the spectral domain and empirically identify substan-
tial Laplacian Energy Distribution (LED) shifts in previous works. Such shifts
lead to poor performance in cross-architecture generalization and specific tasks,
including anomaly detection and link prediction. In this paper, we propose a novel
Structure-broadcasting Graph Dataset Distillation (SGDD) scheme for broadcast-
ing the original structure information to the generation of the synthetic one, which
explicitly prevents overlooking the original structure information. Theoretically,
the synthetic graphs by SGDD are expected to have smaller LED shifts than pre-
vious works, leading to superior performance in both cross-architecture settings
and specific tasks. We validate the proposed SGDD across 9 datasets and achieve
state-of-the-art results on all of them: for example, on the YelpChi dataset, our ap-
proach maintains 98.6% test accuracy of training on the original graph dataset with
1,000 times saving on the scale of the graph. Moreover, we empirically evaluate
there exist 17.6% ∼ 31.4% reductions in LED shift crossing 9 datasets. Extensive
experiments and analysis verify the effectiveness and necessity of the proposed
designs. The code is available in the https://github.com/RingBDStack/SGDD.

1 Introduction

Graphs have been applied in many research areas and achieved remarkable results, including social
networks [27, 67, 73, 79], physical [16, 3, 57, 10], and chemical interactions [2, 93, 111, 80]. Graph
neural networks (GNNs), a classical and wide-studied graph representation learning method [40, 84,
98, 63], is proposed to extract information via modeling the features and structures from the given
graph. Nevertheless, the computational and memory costs are extremely heavy when training on a
large graph [48, 89, 99]. One of the most straightforward ideas is to reduce the redundancy of the
large graph. For example, graph sparsification [66, 77] and coarsening [53, 52, 46, 75] are proposed
to achieve this goal by dropping redundant edges and grouping similar nodes. These methods have
shown promising results in reducing the size and complexity of large graphs while preserving their
essential properties.

∗Equal contribution (yangbeining@buaa.edu.cn, kai.wang@comp.nus.edu.sg).
†Project lead sunqy@buaa.edu.cn
‡Corresponding author lijx@buaa.edu.cn.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/Suchun-sv/SGDD

 𝑋

 𝐴

Gradient
Matching 𝑋′

𝑓(𝑋)
 𝐴′

(a) Condense scheme of GCond

SC : 0.46

(b) A′ of GCond (c) Cross-arch. Acc. of GCond

 𝑋

 𝐴

 𝑋′ 𝐴′GEN

Broadcasting

𝑓(𝑍, 𝑋′, 𝑌′)
Gradient
Matching

(d) Condense scheme of SGDD

SC : 0.18

(e) A′ of SGDD (f) Cross-arch. Acc. of SGDD

Figure 1: (a) and (d) illustrate that the pipelines of SGDD and GCond [37]. One can find that
SGDD broadcast A from the original graph to the generation of A′ while GCond synthesizes A′

via the operation f(·) (e.g., pair-wise feature similarity [74]) on X′. We also show the condensed
graph and its shift coefficient (SC) of GCond and SGDD in (b) and (e), respectively. Note that we
introduce SC as an approximation of the LED shift. We show the cross-architecture performance
of GCond and SGDD in (c) and (f), 1, 2, 3, 4, and 5 denote APPNP [42], Cheby [13], GCN [41],
SAGE [26], and SGC [92], more cross-architecture results can be found in Tab. 2.

However, graph sparsification and coarsening heavily rely on heuristics [5] (e.g., the largest principle
eigenvalues [78], pairwise distances [66, 81]), which may lead to poor generalization on various
architectures or tasks and sub-optimal for the downstream GNNs training [37]. Most recently, as
shown in Fig. 1(a), GCond [37] follows the vision dataset distillation methods [88, 105, 24, 103]
and proposes to condense the original graph by the gradient matching strategy. The feature of the
synthetic graph dataset is optimized by minimizing the gradient differences between training on
original and synthetic graph datasets. Then, the synthetic feature is fed into the function f(X′) (e.g.,
pair-wise feature similarity [74]) to obtain the structure of the graph. The synthetic graph dataset
(including feature and structure) is expected to preserve the task-relevant information and achieve
comparable results as training on the original graph dataset at an extremely small cost.

Although the gradient matching strategy has achieved significant success in graph dataset condensa-
tion, most of these works [37, 36, 50, 109] follow the previous vision dataset distillation methods to
synthesize the condensed graphs, which results in the following limitations: 1) In Fig. 1(b), we can
find that the original graph structure information is not well preserved in the condensed graph. That’s
because they build the structure (A′) upon the learned feature (X′) (Fig. 1(a)), which may cause the
loss of original structure information. 2) In vision dataset distillation, applying the gradient matching
strategy may result in an entanglement between the synthetic dataset and the architecture that is used
for condensing [106, 104, 39]. This can detrimentally impact their performance, especially when it
comes to generalizing to unseen architectures [22]. This issue is compounded when dealing with
graph data that comprise both features and structures. As shown in Fig. 1(c) and Tab. 2, GCond [37]
explicitly displays inferior performance, demonstrating that generating structure only based on the
feature degrades the generalization of the condensed graph.

To investigate the relation between the structure of the condensed graph and the performance of
training on it, we follow previous works [82, 1, 13, 78] to analyze it from a spectral view. Specifically,
we explore the relationship between the Laplacian Energy Distribution (LED) shift [82, 25, 12] and
the generalization performance of the condensed graph. We empirically find a positive correlation
between LED shift and the performance in cross-architecture settings. To address these issues, we
introduce a novel Structure-broadcasting Graph Dataset Distillation (SGDD) scheme to condense the
original graph dataset by broadcasting the original adjacency matrix to the generation of the synthetic
one, named SGDD, which explicitly prevents overlooking the original structure information. As
shown in Fig. 1(d), we propose the graphon approximation to broadcast the original structure A as
supervision to the generation of condensed graph structure A′. Then, we optimize A′ by minimizing

2

the optimal transport distance of these two structures. For X′, we follow the [37] to synthesize
the feature of the condensed graph. The A′ and X′ are jointly optimized in a bi-level loop. Both
theoretical analysis (Sec. 3.2) and empirical studies (Fig. 1(c) and 1(f)) consistently show that our
method reduces the LED shift significantly (0.46 → 0.18).

We further evaluate the impact of LED shifts and conduct experiments in the cross-architecture
setting. Comparing Fig. 1(f), 1(c), and Tab. 2, the improvement of SGDD is up to 11.3%. To evaluate
the generalization of our method, we extend SGDD to node classification, anomaly detection, and
link prediction tasks. SGDD achieves state-of-the-art results on these tasks in most cases. Notably,
we obtain new state-of-the-art results on YelpChi and Amazon with 9.6% and 7.7% improvements,
respectively. Our main contributions can be summarized as follows:

• Based on the analysis of the difference between graph and vision dataset distillation, we introduce
SGDD, a novel framework for graph dataset distillation via broadcasting the original structure
information to the generation of a condensed graph.

• In SGDD, the graphon approximation provides a novel scheme to broadcast the original structure
information to condensed graph generation, and the optimal transport is proposed to minimize the
LED shifts between original and condensed graph structures.

• SGDD effectively reduces the LED shift between the original and the condensed graphs, consistently
surpassing the performance of current state-of-the-art methods across a variety of datasets.

2 Related Work

Dataset Distillation & Dataset Condensation. Dataset distillation (DD) [88, 106, 24, 51, 110, 23, 86,
49, 87, 6, 7] aims to distill a large dataset into a smaller but informative synthetic one. The proposed
method imposes constraints on the synthetic samples by minimizing the training loss difference,
while ensuring that the samples remain informative. This technique is useful for applications such as
continual learning [105, 106, 39, 44, 104], as well as neural architecture search [61, 62, 96]. Recently,
GCond [37] is proposed to reduce a large-scale graph to a smaller one for node classification using
the gradient matching scheme in DC [105]. Unlike GCond [37], who build the structure only through
the learned feature, we explicitly broadcast the original graph structure to the generations to prevent
the overlooking of the original graph structure information.

Graph Coarsening & Graph Sparsification. Graph Coarsening [53, 52, 14] follows the intuition
that nodes in the original graph can naturally group the similiar node to a super-nodes. Graph
Sparsification [66, 38, 78] is aimed at reducing the edges in the original graph, as there are many
redundant relations in the graphs. We can simply sum up both two methods by trying to reduce
the “useless” component in the graph. Nevertheless, these methods primarily rely on unsupervised
techniques such as the largest k eigenvalue [66] or the multilevel incomplete LU factorization [14],
which cannot guarantee the behavior of the synthetic graph in downstream tasks. Moreover, they fail
to reduce the graph size to an extremely small degree (e.g., reduce the number of nodes to 0.1% of the
original). In contrast, graph condensation can aggregate information into a smaller yet informative
graph in a supervised way, thereby overcoming the aforementioned limitations.

3 Preliminary and Analysis

3.1 Formulation of graph condensation

Consider a graph dataset G = {A,X,Y}, where A ∈ RN×N denotes the adjacency matrix,
X ∈ RN×d is the feature, and Y ∈ RN×1 represents the labels. S = {A′,X′,Y′} is defined as the
synthetic dataset, the first dimension of A′, X′, and Y′ are N ′ (N ′ ≪ N).

The goal of graph condensation is achieving comparable results as training on the original graph
dataset G via training on the synthetic one S . The optimization process can be formulated as follow,

S∗ = argmin
S

M(θ∗S , θ
∗
G) s.t θ∗t = argmin

θ
Loss(GNNθ(t)), (1)

where GNNθ(t) denotes a GNN parameterized with θ, θS and θG are the parameters that are trained
on S and G, and t ∈ {S,G}, M(·) denotes a matching function and Loss(·) is the loss function.

3

OriginalOriginal

GCN SC:0.21
Avg.:75.16GCN SC:0.21
Avg.:75.16

SGC SC:0.27
Avg.:73.32SGC SC:0.27
Avg.:73.32

APPNP SC:0.37
Avg.:70.36APPNP SC:0.37
Avg.:70.36

0.0 1.0 2.0
SAGE SC:0.42

Avg.:62.50SAGE SC:0.42
Avg.:62.50

(a) LEDs in various architectures

Original

p=2, q=2 SC:0.19
Avg.:76.30

p=3, q=1 SC:0.24
Avg.:73.30

p=1, q=3 SC:0.39
Avg.:67.40

0.0 1.0 2.0
p=0, q=4 SC:0.44

Avg.:63.30

(b) LEDs in BWGNN [82]

Figure 2: (a): Illustrations of the LEDs (use the density plotting, each peak represents the LED of
a graph), SC, and Avg. (average test performances on GCN, SGC, APPNP, and SAGE) in various
architectures. (b): Evaluation of these three metrics in frequency-adaptive BWGNN. We empirically
find that the LED shifts (i.e., SC) are high-consistent with Avg. performances, thus SC could be a
good indicator to evaluate the performance of the condensed graph.

3.2 Analysis of the structure of the condensed graph and its effects

In this section, we first introduce the definition of Laplacian Energy Distribution (LED), then analyze
the LED in previous work, and finally explore its influence on generalization performance.

Laplacian Energy Distribution. Following the previous works [25, 12, 82], we introduce Laplacian
energy distribution (LED) to analyze the structure of graph data. Given an adjacency matrix A ∈
RN×N , the Laplacian matrix L is defined as D −A, where the D is the degree matrix of A. We
utilize the normalized Lapalacian matrix L̃ = I−D−1/2AD−1/2, where I is an identity matrix. The
eigenvalues of L̃ are then defined as λ1, . . . λn, . . . λN by ascending order, i.e., λ1 ≤ · · ·λn ≤ · · · ≤
λN , with orthonormal eigenvectors U = (u1, · · · un, · · · uN) correspond to these eigenvalues.
Definition 1 (Laplacian Energy Distribution [25, 12, 82]). Let X = (x1, · · ·xn, · · ·xN)⊤ ∈ RN×d

be the feature of graph, we have X̂ = (x̂1 · · · x̂n · · · x̂N)
⊤

= U⊤X as the post-Graph-Fourier-
Transform of X. The formulation of LED is defined as:

ηn(X, L̃) =
x̂2
n∑N

i=1 x̂
2
i

= x̄n. (2)

LED analysis of previous work. First, we define ηG and ηS as the LED of the original graph and
condensed graph, respectively. Then the LED shift of the above two graphs can be formulated as:
||ηG − ηS || = ||

∑N
i=1 ηi(X, L̃) −

∑N ′

j=1 ηj(X
′, L̃′)||. In GCond [37], the matching function M

defaults as the MSE loss. Therefore, the objective of GCond can be written as ||θG − θS || ≤ ϵ, where
ϵ is a small number as expected. Incorporating such an objective in the LED shift formula, the lower
bound is shown as follows.
Proposition 1. Refer to [1, 4, 82], the GNN can be recognized as the bandpass filter. Assume the
frequency response area of GNN is (a, b), where (a, b) is architecture-specific. The lower bound of
GCond is shown in Eq. (3). Detailed proof can be found in Appendix B.1.

||ηG − ηS || ≥ ϵ+

a∑
i=1

||x̄2
i − x̄

′2
i ||+

N ′∑
j=b

||x̄2
j − x̄

′2
j ||. (3)

According to Eq. (3), we find the lower bond of LED in GCond is related to the frequency response
area (a, b) (i.e., specific GNN). For example, GCN [40] or SGC [92] (utilized in GCond) is a
low-pass filter [1], which emphasizes the lower Laplacian energy. As shown in Fig. 1(a), the A′ is
built upon the learned “low-frequency” feature X′, which may fail to generalize to cross-architectures
(i.e., high-pass filters) and specific tasks.

Exploration of the effects of LED shift on the generalization performance. Although the LED
shift phenomenon occurs in GCond, quantifying the LED shift is challenging because G and S have

4

 �

 �

Gradient
Matching

 �′

 �′
GEN

 �′

 �
 �′ LED

Matching

 �′

 �
Broadcasting

OT
Distance

�

�

Optimizing �′ Optimizing �′

Freeze parameters Laplacian pseudo-inverse
�0 2

�0 2

�: Random noise

Figure 3: The Training pipeline of the SGDD (left). We first fix A′ to optimize X′ through the
gradient matching strategy and we broadcast the supervision of A to the generation of the graph
structure A′. To mitigate the Laplacian Energy Distribution (LED) shift phenomenon, we propose the
LED Matching strategy to optimize the A′, which optimizes the learned structure with the optimal
transport (OT) distance (right).

different numbers of nodes. To enable comparison, we follow an intuitive assumption that two nodes
with similar eigenvalue distribution proportions can be aligned in comparison. Thus, we first convert
LEDs of G and S into probability distributions using the Kernel Density Estimation (KDE) method
[60]. Then we quantify the LED shifts as the distance of the probability distributions using the
Jensen-Shannon (JS) divergence [47]. We define the LED shift coefficient (SC) in Definition 2:
Definition 2 (LED shift coefficient, SC). The LED shift coefficient between G and S is:

SC = JS

 1

|VG |h
∑

x̄i∈XG

K(
x− x̄i

h
)
∣∣∣∣∣∣ 1

|VS |h
∑

x̄j∈XS

K(
x− x̄j

h
)

 , (4)

where the JS(·||·) denotes the JS-divergence, the |VG | and the |VS | is the number of the nodes to
corresponding graphs, the K(·) represents the Gaussian kernel function with bandwidth parameter
h. SC ∈ [0, 1] reflects the divergence between G and S (a smaller SC indicates more similar).

In Fig. 2, we empirically study the influences of SC in two settings: various GNNs in Fig. 2(a) and
fixed BWGNN [82] with adaptive bandpass in Fig. 2(b). Based on the results in Fig. 2, We have
several observations: (1) The entangled learning paradigm that building structure (i.e., adjacency
matrix) upon on feature matrix will significantly lead to the LED shift phenomenon. (2) The positive
correlation exists between the LED shift and the generalization performance of the condensed graph.
(3) Preserving more information about the original graph structure may alleviate the LED shift
phenomenon and improve the generalization performance of the condensed graph.

4 Structure-broadcasting Graph Dataset Distillation

In this section, we first present the pipeline and overview of SGDD in Fig. 3. Then, we introduce two
modules of SGDD. Finally, we summarize the training pipeline of our SGDD.

4.1 Learning graph structure via graphon approximation

To prevent overlooking the original structure A from G, we broadcast A as supervision for the
generation of A′. Considering the different shapes between A and A′ (N ′ ≪ N), we introduce
graphon [21, 70, 17, 33, 94] to distill the original structure information to the condensed structure A′.
Specifically, given random noise Z(N ′) ∈ RN ′×N ′

as the input coordinates, through the generative
model, we then synthesize an adjacency matrix A′ with N ′ nodes. This process can be formulated
as A′ = GEN(Z(N ′); Φ), where the GEN(·) is a generative model with parameter Φ, and the
optimization process is then defined as:

Lstructure = Distance(A,GEN(Z(N ′); Φ)), (5)

where A is supervision and Distance(·) is a metric that measure the difference of A and A′. The
details of Distance(·) can be found in Sec. 4.2. To avoid overlooking of the inherent relation [32, 73]
between A′ and the corresponding node information (i.e., X′ and Y′), we jointly input X′ and Y′

as conditions to generate A′. Therefore, the final version of the generative model can be written as
A′ = GEN(Z(N ′)⊕X′ ⊕Y′; Φ), the ⊕ denotes the concatenate operation.

5

To study the performance of SGDD in the above paradigm, we theoretically prove the upper bound of
LED shift in SGDD by invoking graphon theory. The result can be presented as follows.

Proposition 2. The upper bound of the LED shift on SGDD is shown as:

||ηG − ηS || ≤ δ□(WA,A′), (6)

where δ□ denotes the cut distance [54] and WA is the graphon of A. See details in Appendix B.2.

Note minimizing the upper bound of Eq. (6) is equal to optimizing the Lstructure on Eq. (5).
Compared to the lower bound in (Eq. (3)), our upper bound is not related to any frequency response
of specific GNN (i.e., the terms of

∑a
i=1 ||x̄2

i − x̄
′2
i ||+

∑N ′

i=b ||x̄2
i − x̄

′2
i ||). As a result, SGDD may

perform better than the previous work, especially in the cross-architecture setting and specific tasks.

4.2 Optimizing the graph structure via optimal transport

To mitigate the LED shift between A and A′, ideally, we can directly minimize the proposed SC.
However, SC requires an extremely time-consuming (O(N3)) [4, 58] eigenvalue decomposition
operation. Therefore, we propose the LED Matching strategy based on the optimal transport theory
to form an efficient optimizing process.

Recall in the Eq.(4) of calculating SC, we first decompose the eigenvalue, followed by aligning the
node through the JS divergence, which essentially compares the distribution proportions. The key
point is to decide the node mapping strategy to align such two graphs. Alternatively, assuming we
know the prior distribution of the alignment of S (i.e., we know the bijection of nodes in S to the
G) and denoting such alignment as S∗, we can directly measure the distance between G and S∗ by
employing the 2-Wasserstein metric[15, 56].

||ηG − ηS∗|| = W 2
2

(
ηG , ηS∗) (7)

Furthermore, following the assumption in previous work[56, 15], we have ηG ∼ N
(
0, L†

G

)
and

ηS ∼ N
(
0, L†

S∗

)
. Then, the Eq.(7) have a closed-form expression[15] as follows:

||ηG − ηS∗|| = N tr
(
L†
G

)
+N ′ tr

(
L†
S∗

)
− 2 tr

(√
L

‡
2

S∗L
†
GL

†
2

S∗

)
, (8)

the L†
· denotes the Laplacian pseudo-inverse operation and the tr indicates the trace operation of

matrix. Therefore, even though we could not know the actual mapping strategy S∗, we can use the
infimum of all possible strategies as a proxy solution. Formally, following the prior work [56], we
employ the function T as a transport plan in the metric space X to represent all feasible mapping
strategies. Then, we use the T#η

S to represent the pushing forward process of transferring the
distribution of ηS to the ηG . As a result, the distance can be regarded as finding the infimum.

||ηG − ηS || = inf
T#ηS=ηG

∫
X
∥x− T (x)∥2dηS(x)

= N ′ tr(L†
S)− 2 tr

((
(L†

S)
1/2PTL†

GP
(
L†
S

)1/2)1/2
)
.

(9)

Here, due to the transport plan T is impractical in optimizing, following the previous work[15], we
use P ∈ RN ′×N denotes as a free parameter serving as the direct mapping strategy between nodes.
Thus, the Distance in the Eq. (5) could be directly optimized by the Eq.(9) (i.e., use the P represents
all possible mapping strategies, the optimizing of P is equal to choosing a more optimal mapping
strategy). In the experimental setting, we use the Sinkhorn-Knopp[9] algorithm to optimize P .

The overall time complexity is reduced to the O(Nω) ≤ O(N2.373)[15]. Note that the L†
G may be

too large for computing, so we empirically sample a medium size (e.g., 2,000 nodes) sub-structure in
the experiment and ablate its influence in Appendix C.7.

6

Table 1: Comparisons to state-of-the-art methods. SGDD achieves the highest results in most cases
on node classification (NC), anomaly detection (AD), and link prediction (LP) tasks. We report test
accuracy (%) on NC datasets (including Citeseer, Cora, Ogbn-arxiv, Flickr, and Reddit), F1-macro
(%) on AD datasets (including YelpChi and Amazon), and AUC (%) on LP datasets (including
Citeseer-L and DBLP). Bold entries are best results, underline mark the runner-ups.

Dataset Ratio (r) Random Herding K-Center Coarsening GDC Gcond SGDD Whole

NC

Citeseer [41]
0.90% 54.4±4.4 57.1±1.5 52.4±2.8 52.2±0.4 66.8±1.5 70.5±1.2 69.5±0.4

71.7±0.11.80% 64.2±1.7 66.7±1.0 64.3±1.0 59.0±0.5 66.9±0.9 70.6±0.9 70.2±0.8

3.60% 69.1±0.1 69.0±0.1 69.1±0.1 65.3±0.5 66.3±1.5 69.8±1.4 70.3±1.7

Cora [41]
1.30% 63.6±3.7 67.0±1.3 64.0±2.3 31.2±0.2 67.3±1.9 79.8±1.3 80.1±0.7

81.2±0.22.60% 72.8±1.1 73.4±1.0 73.2±1.2 65.2±0.6 67.6±3.5 80.1±0.6 80.6±0.8

5.20% 76.8±0.1 76.8±0.1 76.7±0.1 70.6±0.1 67.7±2.2 79.3±0.3 80.4±1.6

Ogbn-arxiv [29]
0.05% 47.1±3.9 52.4±1.8 47.2±3.0 35.4±0.3 58.6±0.4 59.2±1.1 60.8±1.3

71.4±0.10.25% 57.3±1.1 58.6±1.2 56.8±0.8 43.5±0.2 59.9±0.3 63.2±0.3 65.8±1.2

0.50% 60.0±0.9 60.4±0.8 60.3±0.4 50.4±0.1 59.5±0.3 64.0±0.4 66.3±0.7

Flickr [100]
0.10% 41.8±2.0 42.5±1.8 42.0±0.7 41.9±0.2 46.3±0.2 46.5±0.4 46.9±0.1

47.2±0.10.50% 44.0±0.4 43.9±0.9 43.2±0.1 44.5±0.1 45.9±0.1 47.1±0.1 47.1±0.3

1.00% 44.6±0.2 44.4±0.6 44.1±0.4 44.6±0.1 45.8±0.1 47.1±0.1 47.1±0.1

Reddit [26]
0.01% 46.1±4.4 53.1±2.5 46.6±2.3 40.9±0.5 88.2±0.2 88.0±1.8 90.5±2.1

93.9±0.00.05% 58.0±2.2 62.7±1.0 53.0±3.3 42.8±0.8 89.5±0.1 89.6±0.7 91.8±1.9

0.50% 66.3±1.9 71.0±1.6 58.5±2.1 47.4±0.9 90.5±1.2 90.1±0.5 91.6±1.8

AD

YelpChi [68]
0.05% 41.8±0.3 46.1±0.9 49.3±1.1 46.2±2.1 47.9±1.1 48.6±3.7 56.2±1.8

61.1±1.80.10% 43.7±1.2 47.1±1.2 44.2±1.8 47.5±1.8 50.2±2.1 49.6±1.8 58.1±2.3

0.20% 45.9±2.2 46.4±0.8 47.5±0.4 49.1±1.2 49.7±2.0 50.1±2.8 59.7±1.8

Amazon [102]
0.02% 76.2±0.8 74.1±0.9 73.4±2.1 75.2±2.9 74.1±1.9 77.9±3.1 83.3±2.6

89.5±0.90.20% 76.4±1.6 76.5±2.3 74.2±1.1 76.8±1.0 78.2±2.1 78.1±1.9 84.8±1.7

2.00% 78.2±0.9 77.2±1.8 73.8±2.2 77.8±2.8 79.3±3.1 79.2±2.0 86.9±2.1

LP

Citeseer-L [97]
0.90% 56.8±0.8 63.1±1.3 78.3±2.6 76.9±0.8 81.5±2.5 83.4±1.9 86.4±1.6

96.8±1.81.80% 61.4±1.8 63.3±1.8 79.1±1.8 77.4±1.7 83.4±1.6 83.8±2.1 87.2±2.1

3.60% 63.5±0.9 64.7±1.7 80.6±2.7 78.4±0.4 84.2±2.1 83.1±2.7 87.1±1.2

DBLP [83]
0.05% 64.1±2.6 65.8±0.7 72.4±1.6 77.8±1.3 78.9±2.1 77.2±2.1 81.3±2.8

84.2±0.70.25% 68.3±1.4 71.2±1.7 74.9±2.8 76.9±0.9 77.5±1.9 78.6±1.2 82.1±1.9

0.50% 68.7±2.6 74.3±0.8 75.2±0.6 76.8±2.1 77.6±2.1 79.9±1.9 82.1±1.8

4.3 Training pipeline of SGDD

As illustrated in Fig. 1(d) and Fig. 3, we commence by introducing a novel graph structure learning
paradigm termed "graphon approximation". This paradigm integrates both the feature X ′ and
auxiliary information Z to generate the structure. Subsequently, the learned structure A′ is forced to
be closer to the original graph structure A in terms of Laplacian energy distribution.

Additionally, our proposed methodology, SGDD, implements a bi-loop optimization schema. Within
this framework, we concurrently optimize the parameters X ′ and A′. More specifically, the refinement
of X ′ is achieved through a gradient matching strategy, whereas the A′ is enhanced using the LED
matching technique. During each step, the other component is frozen to ensure effective refinement.

Our overall training loss function can be summarized as L = Lfeature + αLstructure + β||A||2,
where the ||A||2 is proposed as a sparsity regularization term and Lfeature denotes the gradient
matching strategy [37]. α and β are trade-off parameters, we study their sensitiveness in the Sec. 5.3.
The algorithm can be found in Appendix C.3.

5 Experiments

5.1 Datasets and implementation details

Datasets. We evaluate SGDD on five node classification datasets: Cora [41], Citeseer [41], Ogbn-
arxiv [29], Flickr [100], Reddit [26], two anomaly detection datasets: YelpChi [68], Amazon [102],
and two link prediction datasets: Citeseer-L [97], DBLP [83]. For the node classification and anomaly
detection tasks, we follow the public settings [18] of train and test. To make a fair comparison, we
also follow the previous setting [101, 83], we randomly split 80% nodes for training, 10% nodes for
validation, and the remaining 10% for testing. To avoid data leakage, we only utilize 80% training
samples for condensation. More details of each dataset can be found in Appendix C.1.

7

Ogbn-arxiv YelpChi45
50
55
60
65
70

Pe
rf

or
m

an
ce

/(%
)

64.163.7
66.067.2

50.150.1

56.7
58.1

GCond
SGDD w/o A

SGDD w/o X'
SGDD

(a) Ablation of X′ and A.

0.02 0.2 2 5 10 20
Condensing Ratio (%)

40
45
50
55
60
65

F1
-m

ac
ro

 (%
)

Original
GCond

GDC
Ours

(b) Evaluation of r(%)

0 1e 31e 2 0.1 1 1045
50
55
60
65
70
75

Pe
rfo

rm
an

ce
 (%

)

YelpChi
Ogbn-arxiv

Cora

(c) Evaluation of α

0 1e 31e 2 0.1 1 100
15
30
45
60
75

Sp
ar

si
ty

/F
1(

%
)

F1-macro Sparsity

(d) Evaluation of β

Figure 4: (a) Ablation of components in SGDD. (b) Evaluation of the scalability of SGDD. (c) and
(d): the trade-off parameters analysis on α and β.

Implementation details. Without specific designation, in the condense stage, we adopt the 2-layer
GCN with 128 hidden units as the backbone, and we adopt the settings on [94], which use 2-layer
MLP to represent the structure generative model (i.e., GEN). The learning rates for structure and
feature are set to 0.001 (0.0001 for Ogbn-arxiv and Reddit) and 0.0001, respectively. We set α to 0.1,
and β to 0.1. In the evaluation stage, we train the same network for 1,000 epochs on the condensed
graph with a learning rate of 0.001. Following the settings in [37], we repeat all experiments ten
times and report average performance and variance. More details4 can be found in Appendix C.2.

5.2 Comparison with state-of-the-art methods

We compare our proposed SGDD with six baselines: Random, which randomly selected nodes
to form the original graph, corset methods (Herding [90] and K-Center [72]), graph coarsening
methods (Corasening [30]), and the state-of-the-art graph condensation methods (GCond [37]). GDC
is proposed as a baseline in [37], where cosine similarity is added as a constraint to generate the
structure of the condensed graph. In Table 1, we present the performance metrics including accuracy,
F1-macro, and AUC. For clarity and simplicity, percentages are represented without the % symbol,
and variance values are provided. Based on the results, we have the following observations: 1)
Our proposed SGDD achieves the highest results in most settings, which shows the superiority
and generalization of our method. 2) On anomaly detection datasets, the improvements are more
significant than other tasks, i.e., improving GCond with 9.6% and 7.7% on YelpChi and Amazon
datasets, which can be explained that our method captures the structure information from the original
graph dataset more efficiently.

Table 2: Results of cross-architecture setting, we test condensed graphs in APPNP, Cheby, GCN,
GraphSAGE, and SGC. Avg. and Std. : the average performance and the standard deviation of the

results, the ∆(%) denotes the improvements upon the GDC. We mark the best performance by bold.

Architectures StatisticsDatasets Methods MLP [11] GAT [84] APPNP [42] Cheby [13] GCN [41] SAGE [26] SGC [92] Avg. Std. ∆(%)
GDC 50.3 54.8 81.2 77.5 89.5 89.7 90.5 76.2 16.9 -

GCond 42.5 60.2 87.8 75.5 89.4 89.1 89.6 76.3 18.5 ↑ 0.1Reddit [26]
Ours 56.1 74.4 89.2 78.4 89.4 89.4 89.4 80.9 12.6 ↑ 4.7
GDC 67.2 64.2 67.1 67.7 67.9 66.2 72.8 67.6 2.6 -

GCond 73.1 66.2 78.5 76 80.1 78.2 79.3 75.9 4.9 ↑ 8.3Cora [41]
Ours 76.7 75.8 78.4 78.5 79.8 80.4 78.5 78.3 1.6 ↑ 10.7
GDC 74.4 76.8 77.4 76.7 78.9 74.8 78.4 76.8 1.7 -

GCond 75.3 77.6 78.9 76.1 79.6 77.4 79.9 77.8 1.7 ↑ 1.1DBLP [83]
Ours 78.4 79.6 80.1 80.6 82.1 80.7 81.4 80.4 1.2 ↑ 3.6
GDC 30.7 36.4 43.7 41.5 49.6 47.4 50.1 42.8 7.2 -

GCond 48.9 31.8 46.7 48.6 50.1 42.5 48.7 45.3 6.5 ↑ 2.6YelpChi [68]
Ours 54.2 56.4 58.2 56.8 59.7 54.1 56.7 56.6 2.0 ↑ 13.8

5.3 Ablation Study

Cross-architecture generalization analysis. To evaluate the generalization ability of SGDD on
unseen architectures, we conduct experiments that train on the condensed graph with different

4The code is available in https://github.com/RingBDStack/SGDD, based on PyTorch[65] and MindSpore[31].

8

https://github.com/Suchun-sv/SGDD

Table 3: Comparison of the cross-architecture gener-
alization performance between GCond and SGDD on
Ogbn-arxiv. Bold entries are the best results. ↑/↓: our
method show increase or decrease performance.

C\T APPNP Cheby GCN SAGE SGC
GCond / SGDD GCond / SGDD GCond / SGDD GCond / SGDD GCond / SGDD

APPNP 60.3 / 60.2↓ 51.8 / 53.2↑ 59.9 / 62.4↑ 59.0 / 60.2↑ 61.2 / 60.4↓
Cheby 57.4 / 58.5↑ 53.5 / 55.8↑ 57.4 / 65.3↑ 57.1 / 57.0↓ 58.2 / 60.2↑
GCN 59.3 / 60.1↑ 51.8 / 53.7↑ 60.3 / 64.2↑ 60.2 / 61.2↑ 59.2 / 59.8↑
SAGE 57.6 / 58.9↑ 53.9 / 53.8↑ 58.1 / 63.8↑ 57.8 / 61.8↑ 59.0 / 61.1↑
SGC 59.7 / 60.0↑ 49.5 / 52.3↑ 59.2 / 62.2↑ 58.9 / 62.9↑ 60.5 / 61.5↑

Table 4: Neural Architecture Search.
Methods are compared in validation
accuracy correlation and test accuracy
on obtained architecture.

Pearson Correlation / Performance (%)
Dataset Random GCond SGDD

Whole
Per. (%)

Ogbn-arxiv 0.63 / 71.1 0.64 / 71.2 0.67 / 71.6 71.9
YelpChi 0.43 / 56.7 0.48 / 58.4 0.56 / 60.6 61.1
DBLP 0.58 / 81.2 0.62 / 83.8 0.68 / 84.0 84.2

architectures and report their performances in Tab. 2. Here, the condensed graph is obtained by
optimizing SGDD with SGC [92]. We test its cross-architecture generalization performances on
2-layer-MLP [11], GAT [84], APPNP [42], Cheby [13], GCN [41], and SAGE [26].

To better understand, we also show several statistics metrics, including Avg., Std., and ∆. SGDD and
GCond improves GDC significantly, which indicates there exists a large difference between graph
dataset condensation and vision dataset distillation, i.e., the structure information should be specially
considered. Compared to GCond, the improvement of our method is up to 11.3%, demonstrating
the effectiveness of broadcasting the original structure to the condensed graph structure generation.
More experiments on other datasets can be found in Appendix C.6.

Versatility of SGDD. Following the setting of GCond [37], we also study whether our proposed
SGDD is robust on various architectures. We first condense the Ogbn-arxiv graph dataset with
five architectures, including APPNP [42], Cheby [13], GCN [41], SAGE [26], and SGC [92],
respectively. Then, we evaluate these condensed graphs on the above five architectures and report their
performances in Tab. 3. The experiment results show that SGDD achieves non-trivial improvements
than GCond in most cases, which demonstrates the strong versatility of our method.

Evaluation on neural architecture search. Similar to vision dataset distillation, graph dataset
distillation is also expected to reduce the high cost of neural architecture search (NAS). In order
to make a fair comparison, we follow the experimental setting in [37]: searching architectures on
condensed Obgn-arxiv, YelpChi, and DBLP datasets with 0.25%, 0.2%, and 0.5% condensing ratios.
We report Pearson correlation [45] and performance of random, GCond, and SGDD in Tab. 4. Our
SGDD consistently achieves the highest Pearson correlations as well as performances, which indicates
the architectures searched by our method are efficient for the whole graph dataset training.

Evaluation of components in SGDD. To explore the effect of the conditions (mentioned in Sec. 4.1)
in the condensed graph generation, we design the ablation study of X′ and A. As shown in Fig
4(a), X′ and A are complementary with each other. SGDD w/o A performs poorly on Obgn-arxiv
and YelpChi datasets, which demonstrates the effect of original graph structure information. Jointly
using X′ and A achieves the highest performances on both datasets, improves GCond with 3.1% on
Ogbn-arxiv, and 8.0% on YelpChi.

Evaluation of the scalability of SGDD. To investigate the scalability of SGDD, we evaluate the
SGDD on various condensing ratios with r ∈ {0.02, 0.2, 2, 5, 10, 20}. As shown in Fig. 4(b), the
performance of our method continuously increase as the condensing ratio rises, which indicates the
strong scalability of our method. GCond obtains marginal improvements than GDC at all ratios while
our SGDD outperforms them significantly. More important, SGDD achieves lossless performance as
training on the original graph data when the condensing ratio is 10%.

Exploring the sensitivity of α and β. We conduct experiments to test such two parameters sensitivity
on YelpChi, Cora, and Ogbn-arxiv. As shown in Fig. 4(c), we empirically find that the performance
of our SGDD is not sensitive to the α. Specifically, compared to the case that α is zero, we have a
significant improvement, which proves the effectiveness of our method. Another finding is that the α
should be set higher on anomaly detection than on node classification tasks. It could be explained by
the original graph structure information being more important on the complex task (such as anomaly
detection). We define β as a regularization coefficient to control the sparsity of the condensed graph.
As shown in Fig. 4(d), we evaluate the β from 0 to 10 on the YelpChi dataset. The results illustrate
that the performance is not sensitive with β and achieve the highest result (F1-macro) when β is set
to our default value (β = 0.1). More experiments can be found in Appendix C.5.

9

SC:0.0
(a) Original Ogbn-arxiv

 SC:0.31
ACC: 64.1

(b) Condensed by GCond [37]

 SC:0.22
ACC: 67.3
(c) Condensed by SGDD

SC:0.0

(d) Original synthetic graph

 SC:0.45
 ACC: 66.5

(e) Condensed by GCond [37]

 SC:0.17
ACC: 87.6

(f) Condensed by SGDD

Figure 5: Visualizations of the real dataset (a), synthetic dataset (d), and the corresponding condensed
graph obtained by GCond (b, e) and SGDD (c, f). The condensing ratio r is set to 0.5%.

5.4 Visualizations

To better understand the effectiveness of our SGDD, we visualize the condensed graphs of GCond and
SGDD that are synthesized from real and synthetic graph datasets. For the synthetic graph dataset,
we use the Stochastic Block Model (SBM) [28] to synthesize graphs with 5 community (Fig. 5(d)).
As shown in Fig. 5, one can find that our method consistently achieves better performances and
SC. SGDD reduces 29.0% (comparing 5(b) and 5(c)) and 62.2% (comparing 5(e) and 5(f)) SC
on Ogbn-arxiv and synthetic datasets. Visually, the condensed graphs of our method preserve the
original graph structure information obviously better than GCond (see the second row of Fig. 5),
which proves SGDD is a powerful graph dataset distillation method.

6 Conclusion

We present SGDD, a novel framework for graph dataset distillation via broadcasting the original
structure information to the generation of the synthetic one. SGDD shows its robustness on various
tasks and datasets, achieving state-of-the-art results on YelpChi, Amazon, Ogbn-arxiv, and DBLP.
SGDD reduces the scale of the Yelpchi dataset by 1,000 times while maintaining 98.6% as training on
the original data. We provide sufficient experiments and theoretical analysis in this paper and hope it
can help the following research in this area. Limitations and future work: Although broadcasting the
original information to the generated graph shows remarkable success, some informative properties
(e.g., the heterogeneity) may lose during the current condense process, which results in sub-optimal
performance in the downstream tasks. We are going to explore a more general method in the future.

Acknowledgement

The corresponding author is Jianxin Li. This work was supported by the NSFC through grant
No.62225202 and No.62302023. This research is supported by the National Research Foundation,
Singapore under its AI Singapore Programme (AISG Award No: AISG2-PhD-2021-08-008). Yang
You’s research group is being sponsored by NUS startup grant (Presidential Young Professorship),
Singapore MOE Tier-1 grant, ByteDance grant, ARCTIC grant, SMI grant, and Alibaba grant.
We gratefully acknowledge the support of MindSpore, CANN(Compute Architecture for Neural
Networks) and Ascend AI Processor used for this research.

10

References
[1] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,

and Paul Honeine. Analyzing the expressive power of graph neural networks in a spectral
perspective. In 9th International Conference on Learning Representations, Virtual Event,
Austria, May 3-7, 2021, 2021.

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. ArXiv preprint,
2018.

[3] Daniel Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran Nayebi, Jeremy
Schwartz, Li Fei-Fei, Jiajun Wu, Josh Tenenbaum, and Daniel L. Yamins. Learning physical
graph representations from visual scenes. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
December 6-12, 2020, virtual, 2020.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In Yoshua Bengio and Yann LeCun, editors, 2nd International
Conference on Learning Representations, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

[5] Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In 9th
International Conference on Learning Representations, Virtual Event, Austria, May 3-7, 2021,
2021.

[6] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2022, New Orleans, LA, USA,
June 19-20, 2022, pages 4749–4758, 2022.

[7] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Generalizing dataset distillation via deep generative prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3739–3748, 2023.

[8] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Iterative deep graph learning for graph
neural networks: Better and robust node embeddings. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, December 6-12, 2020, virtual, 2020.

[9] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Christopher
J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Advances
in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 2292–2300, 2013.

[10] Évariste Daller, Sébastien Bougleux, Luc Brun, and Olivier Lézoray. Local patterns and
supergraph for chemical graph classification with convolutional networks. In Structural,
Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR
2018, Beijing, China, August 17-19, 2018, Proceedings, volume 11004, pages 97–106, 2018.

[11] Tuan Van Dao, Hiroshi Sato, and Masao Kubo. Mlp-mixer-autoencoder: A lightweight
ensemble architecture for malware classification. Inf., 14(3):167, 2023.

[12] Kinkar Ch. Das, Seyed Ahmad Mojallal, and Vilmar Trevisan. Distribution of laplacian
eigenvalues of graphs. Linear Algebra and its Applications, 508:48–61, 2016.

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Daniel D. Lee, Masashi Sugiyama, Ulrike
von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information

11

Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 3837–3845, 2016.

[14] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A
multi-level spectral approach for accurate and scalable graph embedding. In 8th International
Conference on Learning Representations, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[15] Yihe Dong and Will Sawin. COPT: coordinated optimal transport on graphs. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, December 6-12, 2020, virtual, 2020.

[16] Holger Ebel and Stefan Bornholdt. Coevolutionary games on networks. Physical Review E,
66(5):056118, 2002.

[17] Justin Eldridge, Mikhail Belkin, and Yusu Wang. Graphons, mergeons, and so on! In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
2307–2315, 2016.

[18] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
ArXiv preprint, 2019.

[19] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for graph neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 1972–1982, 2019.

[20] Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combina-
torica, 19(2):175–220, 1999.

[21] Shuang Gao and Peter E Caines. Graphon control of large-scale networks of linear systems.
IEEE Transactions on Automatic Control, 2019.

[22] Jiahui Geng, Zongxiong Chen, Yuandou Wang, Herbert Woisetschlaeger, Sonja Schimm-
ler, Ruben Mayer, Zhiming Zhao, and Chunming Rong. A survey on dataset distillation:
Approaches, applications and future directions. ArXiv preprint, abs/2305.01975, 2023.

[23] Jianyang Gu, Kai Wang, Wei Jiang, and Yang You. Summarizing stream data for memory-
restricted online continual learning. ArXiv preprint, abs/2305.16645, 2023.

[24] Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. To-
wards lossless dataset distillation via difficulty-aligned trajectory matching. ArXiv preprint,
abs/2310.05773, 2023.

[25] Ivan Gutman and Bo Zhou. Laplacian energy of a graph. Linear Algebra and its Applications,
414(1):29–37, 2006.

[26] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 1024–1034, 2017.

[27] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social
network analysis. Journal of the american Statistical association, 97(460):1090–1098, 2002.

[28] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

12

[29] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, December 6-12, 2020, virtual, 2020.

[30] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. In In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’21), 2021.

[31] Huawei. Mindspore. https://www.mindspore.cn/, 2020.

[32] Joseph J. Pfeiffer III, Sebastián Moreno, Timothy La Fond, Jennifer Neville, and Brian
Gallagher. Attributed graph models: modeling network structure with correlated attributes.
In Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd
International World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11,
2014, pages 831–842, 2014.

[33] Svante Janson. Graphons, cut norm and distance, couplings and rearrangements. New York
journal of mathematics, 2013.

[34] Svante Janson and Persi Diaconis. Graph limits and exchangeable random graphs. Rendiconti
di Matematica e delle sue Applicazioni. Serie VII, pages 33–61, 2008.

[35] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Rajesh Gupta, Yan Liu, Jiliang Tang,
and B. Aditya Prakash, editors, KDD ’20: The 26th ACM Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 66–74, 2020.

[36] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing
Yin. Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2022.

[37] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph
condensation for graph neural networks. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

[38] David R. Karger. Random sampling in cut, flow, and network design problems. Math. Oper.
Res., 24(2):383–413, 1999.

[39] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong,
Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parame-
terization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
and Sivan Sabato, editors, International Conference on Machine Learning, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages
11102–11118, 2022.

[40] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

[41] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

[42] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on
Learning Representations, New Orleans, LA, USA, May 6-9, 2019, 2019.

[43] Eric D. Kolaczyk. Statistical Analysis of Network Data: Methods and Models. IEEE, 2009.

13

https://www.mindspore.cn/

[44] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset
condensation with contrastive signals. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine
Learning, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pages 12352–12364, 2022.

[45] Guanzhi Li, Aining Zhang, Qizhi Zhang, Di Wu, and Choujun Zhan. Pearson correlation
coefficient-based performance enhancement of broad learning system for stock price prediction.
IEEE Trans. Circuits Syst. II Express Briefs, 69(5):2413–2417, 2022.

[46] Jianxin Li, Qingyun Sun, Hao Peng, Beining Yang, Jia Wu, and S Yu Phillp. Adaptive
subgraph neural network with reinforced critical structure mining. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.

[47] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory,
37(1):145–151, 1991.

[48] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pagraph: Scaling gnn
training on large graphs via computation-aware caching. In Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020.

[49] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.
In 7th International Conference on Learning Representations, New Orleans, LA, USA, May
6-9, 2019, 2019.

[50] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive
field distribution matching. ArXiv preprint, abs/2206.13697, 2022.

[51] Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient
dataset distillation by representative matching. ArXiv preprint, abs/2302.14416, 2023.

[52] Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res.,
20:116:1–116:42, 2019.

[53] Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 3243–3252, 2018.

[54] László Lovász. Large networks and graph limits, volume 60. IEEE, 2012.

[55] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang
Zhang. Learning to drop: Robust graph neural network via topological denoising. In WSDM,
pages 779–787, 2021.

[56] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. GOT:
an optimal transport framework for graph comparison. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
13876–13887, 2019.

[57] Brendan D. McKay, Mehmet Aziz Yirik, and Christoph Steinbeck. Surge: a fast open-source
chemical graph generator. J. Cheminformatics, 2022.

[58] Facundo Mémoli. Spectral Gromov-Wasserstein distances for shape matching. In ICCV
Workshops, pages 256–263, 2009.

[59] Matthew W. Morency and Geert Leus. Graphon filters: Graph signal processing in the limit.
IEEE Trans. Signal Process., 69:1740–1754, 2021.

14

[60] Bilal Nehme, Olivier Strauss, and Kevin Loquin. Estimating the variance of a kernel density
estimation. In Christian Borgelt, Gil González-Rodríguez, Wolfgang Trutschnig, María Asun-
ción Lubiano, María Ángeles Gil, Przemyslaw Grzegorzewski, and Olgierd Hryniewicz,
editors, Combining Soft Computing and Statistical Methods in Data Analysis, SMPS 2010,
Oviedo, Spain, September 29 - October 1, 2010, volume 77 of Advances in Intelligent and Soft
Computing, pages 483–490, 2010.

[61] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel
ridge-regression. In 9th International Conference on Learning Representations, Virtual Event,
Austria, May 3-7, 2021, 2021.

[62] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, December 6-14, 2021, virtual, pages 5186–5198, 2021.

[63] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In Jérôme Lang, editor, Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, pages 2609–2615, 2018.

[64] Francesca Parise and Asuman Ozdaglar. Graphon games: A statistical framework for network
games and interventions. ArXiv preprint, abs/1802.00080, 2018.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035,
2019.

[66] David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116,
1989.

[67] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social
representations. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid
Ghani, editors, The 20th ACM International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 701–710, 2014.

[68] Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review
networks and metadata. In Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I.
Webb, Dragos D. Margineantu, and Graham Williams, editors, Proceedings of the 21th ACM
International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, pages 985–994, 2015.

[69] Luana Ruiz, Luiz F. O. Chamon, and Alejandro Ribeiro. The graphon fourier transform. In
2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona,
Spain, May 4-8, 2020, pages 5660–5664, 2020.

[70] Luana Ruiz, Luiz F. O. Chamon, and Alejandro Ribeiro. Graphon neural networks and the
transferability of graph neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
December 6-12, 2020, virtual, 2020.

[71] Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Graphon signal processing. IEEE
Transactions on Signal Processing, 69:4961–4976, 2021.

15

[72] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In 6th International Conference on Learning Representations, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[73] Cosma Rohilla Shalizi and Andrew C. Thomas. Homophily and contagion are generically
confounded in observational social network studies. CoRR, abs/1004.4704, 2010.

[74] Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple
time series. In 9th International Conference on Learning Representations, Virtual Event,
Austria, May 3-7, 2021, 2021.

[75] Mingjia Shi, Yuhao Zhou, Kai Wang, Huaizheng Zhang, Shudong Huang, Qing Ye, and
Jiancheng Lv. PRIOR: Personalized prior for reactivating the information overlooked in
federated learning. In Proceedings of the 37th NeurIPS, 2023.

[76] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gor-
don Wetzstein. Implicit neural representations with periodic activation functions. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, December 6-12, 2020, virtual, 2020.

[77] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
J. Comput., 40(6):1913–1926, 2011.

[78] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput.,
40(4):981–1025, 2011.

[79] Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and Philip S. Yu. Graph
structure learning with variational information bottleneck. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, Virtual Event, February 22 - March 1, 2022, pages 4165–4174, 2022.

[80] Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S Yu, and Lifang He. Sugar:
Subgraph neural network with reinforcement pooling and self-supervised mutual information
mechanism. In The International Conference of World Wide Web 2021, pages 2081–2091,
2021.

[81] Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, and
Philip S Yu. Position-aware structure learning for graph topology-imbalance by relieving under-
reaching and over-squashing. In International Conference on Information and Knowledge
Management, pages 1848–1857, 2022.

[82] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
and Sivan Sabato, editors, International Conference on Machine Learning, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages
21076–21089, 2022.

[83] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: Extraction
and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’08, page 990–998, New
York, NY, USA, 2008.

[84] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In 6th International Conference on Learning Rep-
resentations, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[85] Renato Vizuete, Federica Garin, and Paolo Frasca. The laplacian spectrum of large graphs
sampled from graphons. IEEE Transactions on Network Science and Engineering, page
1711–1721, Mar 2021.

[86] Kai Wang, Jianyang Gu, Daquan Zhou, Zheng Zhu, Wei Jiang, and Yang You. Dim: Distilling
dataset into generative model. ArXiv preprint, abs/2303.04707, 2023.

16

[87] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In CVPR, 2022.

[88] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
ArXiv preprint, 2018.

[89] Yili Wang, Kaixiong Zhou, Rui Miao, Ninghao Liu, and Xin Wang. Adagcl: Adaptive
subgraph contrastive learning to generalize large-scale graph training.

[90] Max Welling. Herding dynamical weights to learn. In Andrea Pohoreckyj Danyluk, Léon Bot-
tou, and Michael L. Littman, editors, Proceedings of the 26th Annual International Conference
on Machine Learning, Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM
International Conference Proceeding Series, pages 1121–1128, 2009.

[91] Gert W. Wolf. Facility location: concepts, models, algorithms and case studies. series:
Contributions to management science. Int. J. Geogr. Inf. Sci., 25(2):331–333, 2011.

[92] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 6861–6871, 2019.

[93] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. ArXiv preprint, 2019.

[94] Xinyue Xia, Gal Mishne, and Yusu Wang. Implicit graphon neural representation. In Proceed-
ings of the 26th International Conference on Artificial Intelligence and Statistics,, 2023.

[95] Hongteng Xu, Dixin Luo, Lawrence Carin, and Hongyuan Zha. Learning graphons via
structured gromov-wasserstein barycenters. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, Virtual Event, February 2-9, 2021, pages 10505–10513, 2021.

[96] Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning:
Reducing training data by examining generalization influence. ArXiv preprint, abs/2205.09329,
2022.

[97] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In Maria-Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine Learning, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages
40–48, 2016.

[98] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Yike Guo and Faisal Farooq, editors, Proceedings of the 24th ACM International Conference
on Knowledge Discovery & Data Mining, London, UK, August 19-23, 2018, pages 974–983,
2018.

[99] Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. Graphfm:
Improving large-scale GNN training via feature momentum. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International
Conference on Machine Learning, 17-23 July 2022, Baltimore, Maryland, USA, volume 162
of Proceedings of Machine Learning Research, pages 25684–25701, 2022.

[100] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Conference
on Learning Representations, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[101] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, December 3-8, 2018, Montréal,
Canada, pages 5171–5181, 2018.

17

[102] Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Hung Nguyen, Zi Huang, and Lizhen Cui.
Gcn-based user representation learning for unifying robust recommendation and fraudster
detection. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong
Wen, and Yiqun Liu, editors, Proceedings of the 43rd International ACM conference on
research and development in Information Retrieval, Virtual Event, China, July 25-30, 2020,
pages 689–698, 2020.

[103] Yifan Zhang, Daquan Zhou, Bryan Hooi, Kai Wang, and Jiashi Feng. Expanding small-scale
datasets with guided imagination. ArXiv preprint, abs/2211.13976, 2022.

[104] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. ArXiv preprint,
abs/2110.04181, 2021.

[105] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient
matching. In 9th International Conference on Learning Representations, Virtual Event, Austria,
May 3-7, 2021, 2021.

[106] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient
matching. In 9th International Conference on Learning Representations, Virtual Event, Austria,
May 3-7, 2021, 2021.

[107] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil Shah.
Data augmentation for graph neural networks. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, Virtual Event, February 2-9, 2021, pages 11015–11023, 2021.

[108] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In Proceedings
of the 37th International Conference on Machine Learning, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 11458–11468, 2020.

[109] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
In Advances in Neural Information Processing Systems, 2023.

[110] Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang
You, and Jiashi Feng. Dataset quantization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 17205–17216, 2023.

[111] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. ArXiv
preprint, 2018.

18

A More Preliminary and Related Work

A.1 More preliminary

Graphon. A graphon [43, 34, 54] is a bounded, symmetric, and Lebesgue measurable function,
denote as W : Ω2 → [0, 1], where Ω is a probability measure space. By randomly selecting points
{v0, v1, . . . , vn} from Ω, we can create a graph of any size by connecting each point with an edge
weight eij = W (vi, vj). Formally, we can follow the random sampling process to get arbitrarily
sized (n) graphs :

vi ∼ Uniform(Ω), for i = 1, · · · , n,
eij ∼ Bernoulli(W (vi, vj)), for i, j = 1, · · · , n. (10)

Conventionally, we use a deterministic setting to select the node, e.g., the fixed grid vi =
i−1
n . Graphs

derived from the same graphon share several important properties for statistical analysis: such as
density [21], clustering coefficient [70], and degree distribution [71], which motivate us to broadcast
the original graph structure information to the condensed graph via the graphon approximating.

A.2 More related work

Graph structure learning. Graph structure learning [19, 35, 8, 108, 55] also aims at jointly optimiz-
ing the graph structure and the corresponding node features. Most of these methods learn the new
structure based on the certain constraints (e.g., low-rank [91], sparsity [8], feature smoothness [35],
and homophily [108]). However, these methods are unable to learn a new structure with a signif-
icantly reduced node size. In contrast, our method can synthesize a smaller graph structure while
simultaneously constructing new node features. The obtained small but informative graph can reduce
the training cost in the downstream tasks.

B Proofs

B.1 Proof of Proposition 1

Proof. First, the gradient matching objective in GCond [37] can be shown as:

Match(∇θLcls (GNNθ(A,X),Y)), ∇θLcls (GNNθ(A
′,X′),Y′)), (11)

where Match(·) is the matching function that measures the distance of the two gradients. θ represents
the parameters of the GNN, the ∇ denotes the gradient in the backpropagation process, and the Lcls

represents the loss function that is used in the supervised tasks, i.e., cross-entropy loss. Following
the discussion in the [4, 1, 82], the GNN can be viewed as a bandpass filter in the spectral domain.
Expanding the GNN in the spectral domain, we can rewrite the objective as:

∣∣∣∣∣∣ ∫ N

i=0

UA diag(Ti(λA))U⊤
AX−

∫ N ′

j=1

UA′ diag (Tj(λA′))U⊤
A′X′

∣∣∣∣∣∣ ≤ ϵ, (12)

where the T(λ) denotes the frequency response of the given GNN, the λ and the U is the eigenvalue
and eigenvector of the corresponding graph, respectively. Note we drop the ∇, the Lcls, and the Y
(Y′) terms because they can be viewed as the intermediate process [105, 107] in approximating to
Eq.(12). We use the MSE [37] as the matching function Match(·) for simplicity.

To simplify T(λ), without loss of generality, we assume the bandwidth of the specific GNN’s
frequency response is (a, b), which intuitively indicates that only the signal of frequency in (a, b) can
pass through the filter on the graph. Then the Eq. (12) can be written as:∣∣∣∣∣∣ ∫ N

i=0

∫ b

k=a

UA diag(λA
k)U⊤

AX−
∫ N ′

j=1

∫ b

k=a

UA′ diag(λA′
k)U⊤

A′X′
∣∣∣∣∣∣ ≤ ϵ, (13)

we further combine the first integration, the objective can thus be summarized as:∣∣∣∣∣∣ ∫ b

k=a

(
UA diag(λA

k)U⊤
AX−UA diag(λA′

k)U⊤
A′X′

) ∣∣∣∣∣∣ ≤ ϵ. (14)

19

Then following the transformation in the spectral domain [1], we can briefly summarized:∫ b

i=a

||x̄2
i − x̄

′2
i || ≤ ϵ. (15)

Take the Eq. (15) into the
∥∥ηG − ηS

∥∥:

||ηG − ηS || =||
N∑
i=1

x̄2
i −

N ′∑
i=j

x̄2
i ||

≥ϵ+ ||
a∑

i=1

x̄2
i −

a∑
j=1

x̄2
j ||+ ||

N∑
i=b

x̄2
i −

N ′∑
j=b

x̄2
j ||

≥ϵ+

a∑
i=1

∥∥x̄2
i − x̄′2

i

∥∥+ N ′∑
i=b

∥∥x̄2
i − x̄′2

i

∥∥ .
(16)

Note the second inequality is under the assumption: intuitively, the overall distance of ηG and ηS

should be larger than the condition that two graphs have the same size (i.e., N = N ′).

B.2 Proof of Proposition 2

To prove Proposition 2, we first introduce the following notations and theorems in graphon theory.

The cut norm [20, 54] is defined as:

∥W∥□ := sup
X ,Y⊂Ω

∣∣∣∣∫
X×Y

W (x, y)dxdy

∣∣∣∣ , (17)

where the Ω is the probability space of a graphon W , the supremum is taken over all measurable
subsets X and Y [95]. Then the cut distance between W1,W2 [54] can be defined as:

δ□ (W1,W2) := inf
ϕ∈SΩ

∥∥∥W1 −Wϕ
2

∥∥∥
□
, (18)

where the SΩ is the set of measure-preserving mappings from Ω to Ω. When two graphons W1,W2

have δ□(W1,W2) = 0, they can be seen equivalent, denoted as W1
∼= W2.

To effectively approximate W in the real world graphs, works [54, 33, 17] introduce an approximation
named step function. Let P = (P1, . . . ,PK) be a partition of Ω into K measurable sets. The step
function WP : Ω2 7→ [0, 1] is defined as:

WP(x, y) =

K∑
k,k′=1

wkk′1Pk×Pk′ (x, y), (19)

where the wkk′ ∈ [0, 1] and the indicator function 1Pk×Pk′ (x, y) is 1 if (x, y) ∈ Pk ×Pk′ , or it is 0.

To explore the relationship between step function and the W , we introduce the Weak Regularity
Lemma as follows.
Theorem 1 (Weak Regularity Lemma [54]). For every graphon W ∈ W and K ≤ 1, there always
exists a step function WP with |P| = K steps such that

∥W −WP∥□ ≤ 2√
logK

∥W∥L2
. (20)

We can further obtain the corollary that δ□ (W,WP) ≤ 2√
logK

∥W∥L2
as the δ□ (W,WP) ≤

∥W −WP∥□. Intuitively, we can use any step function to approximate the ideal W of real graphs.

Then to investigate the properties of the graphon in the spectral domain, following [71, 85, 59, 69],
we have the conclusion that:

||SW − SWP || ≤ ∥W −WP∥□ , (21)
where the S denotes the signal spectrum of the graphs [85] (i.e., the post-Graph-Fourier-Transform
U⊤X), Intuitively, the Eq. (21) shows that when the step function WP is approximated to the W ,
they have similar signal spectrum.

20

Proof. By combining the Theorem 1 and Eq.(21), the Proposition 2 replace the WP with the W ′
A,

that’s because we use the generative model (i.e., GEN(·)) to approximate the step function WP . As
we aim to learn the graphon of the original structure A, the graphon W can be rewrite as WA,∣∣∣∣SWA

− SW ′
A

∣∣∣∣ ≤ ∥W ′
A −WA∥□ . (22)

We notice that the S here is related to the Laplacian energy distribution (LED), where the LED
represents the probability distribution of the S, then we use the

∑N
i=1 x̄i and

∑N ′

j=1 x̄j to represent
the summation of the original signal spectrum and the condensed one, respectively, we have:

||ηG − ηS || = || SWA∑N
i=1 x̄i

−
SWA′∑N ′

j=1 x̄j

||

≤ max(
1∑N

i=1 x̄i

,
1∑N ′

j=1 x̄j

)
∣∣∣∣SWA

− SW ′
A

∣∣∣∣
≤ ∥W ′

A −WA∥□ ,

(23)

where in the second inequality, we drop the max(·) term since it always lower than 1. As the WA′

here represents the graphon of the synthetic A′, we can use the A′ directly in the δ□ to form a
compact upper bound.

||ηG − ηS || ≤ δ□(A
′,WA). (24)

Note that minimizing the upper bound has been proven to be equivalent to minimizing the optimal
transport distance between the two graphs [95].

B.3 Time complexity analysis and running time

Time complexity. For simplicity, let the number of MLP layers in GEN(·) be L, and all the hidden
units are d. In the forward process, we have three steps: first, we calculate the A′ by the GEN(·),
which have the complexity of O(N ′2d2). Second, the forward process of GNN on the original
graph has a complexity of O(mLNd2), where the m denotes the sampled size per node in training.
Third, the complexity of training on the condensed graph is O(LN ′d). In the backward process,
the complexity of gradient matching strategy (i.e., Lfeature) is O(|θ||X′|) [37]. For the structure
optimization term (i.e., Lstructure), the complexity is O(N ′2k +NN ′2). The overall complexity of
SGDD can be represented as O(N ′2d2)+O(mLNd2)+O(LN ′d)+O(|θ||X ′|)+O(N ′2k+N ′2N).
Note N ′ ≪ N , we can drop the terms that only involve N ′ and constants (e.g., the number of L
and m). The final complexity can be simplified as O(mLNd2) +O(N ′2N), thus the complexity of
SGDD still be linear to the number of nodes in the original graph.

Running time. We report the running time of the SGDD in the two datasets: Ogbn-arxiv, and
YelpChi. We vary the condensing ratio r in the range of {0.05%, 0.25%, 0.50%} for Ogbn-arxiv
and {0.05%, 0.10%, 0.20%} for YelpChi. All experiments are conducted five times on one single
A100-SXM4 GPU. We also compare our results to those obtained using GCond [37] under the same
settings. As shown in the Tab. 5, our approach achieves a similar running time to GCond when the
condensing ratio was low (i.e., r = 0.05% for both datasets), and is 10% faster when the condensing
ratio increased. The difference can be explained by the efficient generative model we employed for
generating structure, which prevents the consumption of time-complex operations such as calculating
the pair-wised feature similarity (O(N ′2)).

Table 5: Runing time on Ogbn-arxiv and YelpChi for 50 epochs.

Dataset r GCond SGDD Dataset r GCond SGDD

Ogbn-arxiv
0.05% 315±1.8s 308±1.6s

YelpChi
0.05% 67±2.6s 47±2.8s

0.25% 413±2.6s 374±3.2s 0.10% 96±2.8s 74±1.7s
0.50% 527±2.7s 467±2.1s 0.20% 110±0.8s 93±2.6s

21

C Experimental Details and More Experiments

C.1 Dataset statistics

We evaluate the proposed SGDD on nine datasets, including five node classification datasets:
Cora [41], Citeseer [41], Ogbn-arxiv [29], Flickr [100], and Reddit [26]; two anomaly detection
datasets: YelpChi [68] and Amazon [102]; two link prediction datasets Citeseer-L [97] and DBLP [83].
We report the dataset statistics in Tab. 6.

Table 6: Dataset statics, including five node classification datasets, two anomaly detection datasets,
and two link prediction datasets.

Datasets #Nodes #Edges #Classes #Features

ND

Cora [41] 2,708 5,429 7 1,433
Citeseer [41] 3,327 4,732 6 3,703
Ogbn-arxiv [29] 169,343 1,166,243 40 128
Flickr [100] 89,250 899,756 7 500
Reddit [26] 232,965 57,307,946 210 602

AD YelpChi [68] 45,954 3,846,979 2 32
Amazon [102] 11,944 4,398,392 2 25

LP Citeseer-L [41] 3,327 4,732 2 3,703
DBLP [83] 26,128 105,734 2 4,057

Citeseer-L: We use the Citeseer in the link prediction setting, named Citeseer-L. We randomly sample
80% nodes in training, 10% nodes in validation, and the remaining 10% nodes for testing. The classes
here denote “have edge” and “do not have edge”.

DBLP: We treat the original graph as a homogeneous graph here.

C.2 Implementation details

Structure in GDC. We utilize the DC [107] as our baseline, and to incorporate the structure
information, we add the constraint to produce a graph structure, named Graph DC (GDC). Specifically,
we use the cosine similarity function [8] (formally, A′

ij = cos(X′
i,X

′
j)) to generate structure, where

X′
i and X′

j are the learned features obtained through the vanilla gradient matching strategy.

GEN(·) in SGDD. We introduce the GEN(·) as our generative model in Sec. 4.1. Here, we show the
implementation details of this module.

To start, we aim to find a method to broadcast the original graph structure A to condensed graph A′.
Motivated by that all graphs with the same graphon W will exhibit similar properties, we can simply
calculate the graphon W of A and leverage it in the condensing process. Nevertheless, directly
calculating W of A is not feasible since conventional graphon learning methods should summarize
graphon from a set of graphs [21, 33, 64] (We only have one graph A). Recent advancements of
IGNR [94] demonstrate the potential of utilizing the generative approach to approximate the W .
Specifically, given that the graphon W is defined as Ω2 → [0, 1] (as described in Appendix A.1), we
can similarly construct the function f as follows.

f : R2 → [0, 1], (25)
the continuous space Ω2 is defined by R2. For computational convenience, the input space can
further be limited to [0, 1]2 [94], then the Eq. (25) is transformed to sample points to reconstruct data,
following IGNR[94], we use SIREN[76] as f ,

h0 = PostionalEncoding(Z(N ′)),

hi = Sin(Wi(hi−1) + bi), i = 1, · · · , l − 1,

hl = Sigmoid(Wlhl−1 + bl),

(26)

where the Z(N ′) ∈ RN ′×N ′
is a random noise that plays as the coordinates, and the learnable

weights Φ = {Wi ∈ Rli×li+1 ,bi ∈ Rli , for i = 1, · · · , l } map the pair of points to the edge
probability. GEN(Z(N ′); Φ) ∈ RN ′×N ′

is equal to represent the adjacency matrix A′ ∈ RN ′×N ′

22

after transformation, where each entry represents a probability that each node pair should be connected.
To incorporate the node information into the structure generation, we adopt them as conditional
information that leads the generation process. We can then rewrite Eq. (25) to:

f : Rd × R2 → [0, 1], (27)

where the Rd here is to present the conditional information, thus the learned model considers both the
node’s coordinates message along with the node’s specific information. The basic implements can be:

hi = MLPi(X
′ ⊕Y′) ⊕ Sin(Wihi−1 + bi), i = 1, · · · , l, (28)

where the ⊕ denotes the concatenate operation, the Y′ is treated as a one-hot vector for dimensionality
fit through a multilayer perceptron (MLP). This method allows for the incorporation of significant
node information into the resulting synthetic graph.

Condensation stage. For GCond [37], we use the 2-layer SGC [92] to serve as the condensing
architecture with 256 units, and tune the number of epochs in a range of {400, 500, 6000, 1000,
2000}. For GDC [107, 105], we tune the number of hidden layers in the range of {1, 2, 3} and the
number of hidden units in the range of {128, 256}. For SGDD, we use the GCN [40] as the default
condensing architecture and tune the number of hidden layers in a range of {1, 2, 3}. We further tune
the number of epochs in a range {400, 500, 600, 1000, 2000}, and tune the learning rate in a range of
{0.1, 0.01, 0.001, 0.0001}.

Evaluation stage. We set the training epoch to 1000 with an early stopping strategy for evaluating
GNNs and set the dropout rate to 0 with the learning rate of 0.1.

Configurations. We conduct all experiments with:

• Operating System: Ubuntu 20.04 LTS.

• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.

• GPU: NVIDIA Tesla A100 SMX4 with 40GB of Memory.

• Software: CUDA 10.1, Python 3.8.12, PyTorch [65] 1.7.0.

C.3 Objective loss function and training algorithm

In this subsection, we present the objective function and provide a detailed training algorithm. Our
objective is to jointly learn X′ and A′. We follow GCond[37] to optimize X′ as a free parameter
using the gradient matching strategy[104], the loss can be expressed by Eq. (29),

Lfeature = Match(∇θLcls (GNNθ(A,X),Y)), ∇θLcls (GNNθ(A
′,X′),Y′)). (29)

Here, Match(·) is the matching function that measures the distance of the two gradients, we use the
MSE [37] in practice. θ represents the parameters of the specific backbone GNN, the ∇ denotes the
gradient in the backpropagation process, and the Lcls represents the loss function that is used in the
supervised tasks, i.e., cross-entropy loss. Our objective loss function can be written as:

L = Lfeature + α Lstrcuture + β ||A′||2, (30)

where the α controls the contribution of the Lstrcuture term. To model the low-rank properties of
real-world graphs, we use the ||A′||2 as a regularity to control the sparsification of A′ with β.

We summarize our pipeline in Algorithm. 1.

C.4 Stochastic Block Model experments setting

In Sec. 5.4, we generate a synthetic graph dataset with different community structures using the
Stochastic Block Model (SBM) (N,C, p, q) [28]. Here, we show the parameters settings, we set
the number of nodes N to 100, while setting the number of communities C to 5. The parameter p
represents the edge probability within the same community and q represents the edge probability
between communities, we set them to 0.8 and 0.1 in practice, respectively.

23

Algorithm 1: SGDD for Graph Condensation
1 Input: Training data G = (A,X,Y), pre-defined condensed labels Y′

2 Initialize GEN as the structure learning model
3 Initialize X′ by randomly selecet node feature from each class
4 for k = 0, . . . ,K − 1 do
5 Randomly initialize GNNθ

6 for t = 0, . . . , T − 1 do
7 D′ = 0
8 for c = 0, . . . , C − 1 do
9 Initialize Z(N ′)

10 Compute A′ = GEN(Z(N ′)⊕X′ ⊕Y′; Φ) then S = {A′,X′,Y′}
11 Sample (Ac,Xc,Yc) ∼ G and (A′

c,X
′
c,Y

′
c) ∼ S

12 Compute Lstructure ▷ detailed in Eq. (9)
13 Compute Lfeature ▷ detailed in Eq. (29)
14 D′ ← D′ + Lfeature + αLstructure + β||A′||2
15 if t%(τ1 + τ2) < τ1 then
16 Update X′ ← X′ − η1∇X′D′

17 else
18 Update Φ← Φ− η2∇ΦD

′

19 Update θt+1 ← optθ(θt,S, τθ) ▷ τθ is the number of steps for updating θ

20 A′ = GEN(Z(N ′)⊕X′ ⊕Y′; Φ)
21 A′

ij = A′
ij if A′

ij > 0.5, otherwise 0
22 Return: (A′,X′,Y′)

C.5 More explorations of the sensitivity of β

In Fig. 4(d), we demonstrate that SGDD is not sensitive to the coefficient β on the YelpChi dataset.
Here, we provide more experiments on the other datasets. In Fig. 6, we can see that increasing β
leads to the more sparsity of the condensed graph, and the corresponding performance does not have
severe drop. These observations demonstrate the effectiveness of the regularity term in our objective.

0 1e 31e 2 0.1 1 1060

70

80

90

Sp
ar

si
ty

/A
C

C
 (%

)

ACC
Sparsity

(a) Cora

0 1e 31e 2 0.1 1 1050

60

70

80

90

Sp
ar

si
ty

/A
C

C
 (%

)

ACC
Sparsity

(b) Citeseer

0 1e 31e 2 0.1 1 100

20

40

60

80

Sp
ar

si
ty

/A
C

C
 (%

)

ACC
Sparsity

(c) Ogbn-arxiv

0 1e 31e 2 0.1 1 1020

40

60

80
90

Sp
ar

si
ty

/F
1-

m
ac

ro
 (%

)

F1-macro
Sparsity

(d) Amazon

0 1e 31e 2 0.1 1 1010

30

50

70

90

Sp
ar

si
ty

/A
U

C
 (%

)

AUC
Sparsity

(e) DBLP

0 1e 3 1e 2 0.1 1 1044.0

45.5

47.0

48.5

A
C

C
 (%

)

ACC

0 1e 3 1e 2 0.1 1 10 0.00

0.05

0.10

0.15

0.20

0.25

Sp
ar

si
ty

Sparsity

(f) Flickr

0 1e 3 1e 2 0.1 1 1090.0
91.5
93.0
94.5
96.0
97.5
99.0

A
C

C
 (%

)

ACC

0 1e 3 1e 2 0.1 1 10 0.00

0.05

0.10

0.15

0.20

0.25

Sp
ar

si
ty

Sparsity

(g) Reddit

Figure 6: Evaluations of β in seven datasets. For the Flickr and Reddit datasets, due to the datasets’
low sparsity, we use the shared x-axis form for the Flickr and Reddit figures.

24

Table 7: Comparison of the cross-architecture generalization performance between GCond and
SGDD on YelpChi. Bold entries are the best results. ↑/↓: our method show increase or decrease
performance.

C/T APPNP Cheby GCN SAGE SGC
GCond / SGDD GCond / SGDD GCond / SGDD GCond / SGDD GCond / SGDD

APPNP 48.1 / 55.1↑ 46.5 / 57.4↑ 50.1 / 58.6↑ 46.7 / 57.1↑ 49.6 / 57.6↑
Cheby 48.0 / 56.2↑ 45.9 / 56.8↑ 49.8 / 58.7↑ 46.8 / 58.3↑ 49.8 / 58.4↑
GCN 47.6 / 56.5↑ 46.6 / 56.8↑ 48.6 / 59.7↑ 47.4 / 57.6↑ 50.1 / 57.4↑
SAGE 46.7 / 57.6↑ 46.8 / 57.5↑ 48.9 / 58.7↑ 48.6 / 58.6↑ 48.9 / 58.6↑
SGC 47.6 / 57.6↑ 47.7 / 57.2↑ 48.6 / 57.8↑ 47.4 / 59.0↑ 48.7 / 57.6↑

C.6 More cross-architecture experiments

In this subsection, we further report the results of cross-architecture experiments on the YelpChi.
As shown in Tab. 7, our SGDD improves the performance in all cases, the average improvements
compared to the GCond [37] is 9.6%, which indicates the strong generalization performance of the
condensed graph by SGDD.

C.7 Ablation of the sampling operation in OT distance

To further reduce condensing time and memory usage, we follow GCond [37] to sample from original
graph A in the condensing stage (line 11 in the Algorithm 1). We evaluate the SGDD on various
sample sizes, i.e., {100, 500, 1000, 2000, 5000}, and report the corresponding performance and SC.
As shown in Fig. 7, with the increase in the number of nodes, the performance obtains marginal
improvements while the SC is decreasing. However, larger sample sizes are not always beneficial to
performance. In this study, the highest results are obtained when the sample size is 2000. This result
empirically demonstrates the scalability of the structure learning module. Specifically, the module
enables efficient condensing on large graphs.

100 500 1000 2000 500066.00
66.25
66.50
66.75
67.00
67.25
67.50
67.75

A
C

C
 (%

)

ACC

100 500 1000 2000 5000
Number of Nodes

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

SC

SC

(a) Ogbn-arxiv

100 500 1000 2000 500053.0
54.5
56.0
57.5
59.0
60.5
62.0

F1
-m

ar
co

 (%
) F1-marco

100 500 1000 2000 5000
Number of Nodes

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

SC

SC

(b) YelpChi

100 500 1000 2000 500080.5

81.0

81.5

82.0

82.5

A
U

C
 (%

)

AUC

100 500 1000 2000 5000
Number of Nodes

0.10

0.15

0.20

0.25

SC

SC

(c) DBLP

Figure 7: Evaluation of the number of sampled nodes to the performance.

C.8 More discussion of the condensed graphs.

We next show the comparison of condensed graphs and original graphs. As shown in Tab. 8, the
condensed graphs obviously have fewer nodes and edges, while maintaining comparable accuracy,
which shows the effectiveness of our SGDD . We also represent the visualizations of some condensed
graphs. In Fig. 8, the black lines denote that edge weights are larger than 0.5 and the gray lines
represent as smaller than 0.5. We can observe that there are some patterns in the condensed graph, e.g.,
the homophily patterns on Cora and Citeseer. However, for the remaining datasets, the visualizations
are inadequate in revealing the properties of the condensed graph, which proves the superiority of
analyzing structure in spectral view.

C.9 More discussion of the large graphs.

We conduct experiments on the Ogbn-mag datasets and show the details as follows: (note we
transform the original heterogeneous graph to the homogeneous by ignoring difference of

25

Table 8: The comparison between condensed graphs and original graphs.

Citeseer, r=0.9% Cora, r=1.3% Ogbn-arxiv, r=0.5% Flickr, r=0.1% Reddit, r=0.1%

Whole SGDD Whole SGDD Whole SGDD Whole SGDD Whole SGDD

Accuracy 70.7 69.5 81.5 79.6 71.4 65.3 47.1 47.1 94.1 90.5
#Nodes 3k3 60 2k7 70 169k 454 44k 44 153k 153
#Edges 4k7 1k 5k4 2k 1,166k 8k6 218k 331 10,753k 3k

Storage(MB) 47.1 0.8 14.9 0.4 100.4 1.0 86.8 0.1 435.5 0.7

(a) Cora (b) Citeseer (c) Ogbn-arxiv (d) Flickr

Figure 8: Visualizations of condensed graphs, the different colors on the graphs denote the classes.

26

	Introduction
	Related Work
	Preliminary and Analysis
	Formulation of graph condensation
	Analysis of the structure of the condensed graph and its effects

	Structure-broadcasting Graph Dataset Distillation
	Learning graph structure via graphon approximation
	Optimizing the graph structure via optimal transport
	Training pipeline of SGDD

	Experiments
	Datasets and implementation details
	Comparison with state-of-the-art methods
	Ablation Study
	Visualizations

	Conclusion
	More Preliminary and Related Work
	More preliminary
	More related work

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Time complexity analysis and running time

	Experimental Details and More Experiments
	Dataset statistics
	Implementation details
	Objective loss function and training algorithm
	Stochastic Block Model experments setting
	More explorations of the sensitivity of
	More cross-architecture experiments
	Ablation of the sampling operation in OT distance
	More discussion of the condensed graphs.
	More discussion of the large graphs.

