
Appendix1

A Additional explanations to the guess target object2

Our guessed target object is not a real object or a future detected object. The real target object3

will be included in one of the later sub-state-vector so0 to son . In our problem, initially, we do4

not know the objects in the environment, neither the number of objects nor their positions,5

which means the whereabouts of the target object are also initially unknown. To capture6

uncertainty about the target object compactly, we propose to “guess” the target object. It can7

be considered as an additional visible object, related to the target object, in transition and8

visual observation functions of the POMDP framework, but not detectable in the real world.9

It uses the same structure as the structure used to represent an object in the system, which10

includes an 8-cell occupancy grid map where each cell maintains a probability of whether11

the cell intersects with the target object. Under the POMDP framework, a belief over the12

guessed target object variable represents multiple guesses with different probabilities about13

the target object. Initially, the uncertainty about the target object can be quite large, but over14

time the belief in the position of the guess target object tends to converge to a probability15

mass whose mode is at the true target object. The basic proof of this convergency is shown16

as follows:17

Proof. Assuming all grids are updated at least N times in the whole action sequence with18

N1 ≥ N observations and, in each observation zt, any t ∈ [0, N1], the values log Odd(gi|zt), i =19

1, 2, 3, 4, gi ∈ G f corresponding to different cases (a. the grid g1 in field of view (FOV)20

where no objects are detected, b. g2 in the FOV area where non-target objects are detected,21

c. g3 in FOV where the target object is detected, d. g4 outside the FOV area) are accurate22

enough to satisfy:23

log Odd(gi|zt)

< −△ < 0 i = 1, 2
> △ > 0 i = 3
= 0 i = 4

(1)

We have:24

log Odd(gi|z1:N1)

≤ log Odd(gi|z1:N) < −N△ i = 1, 2
≥ log Odd(gi|z1:N) > N△ i = 3
= 0 i = 4

(2)

When N→ +∞, we have:25

Odd(gi|z1:N1)

< exp−N△

→ 0 i = 1, 2
> expN△

→ +∞ i = 3
= 1 i = 4

(3)

Introducing the relationship of Odd and probablity values Odd(gi|z1:N1) =
P(gi |z1:N1)

1−P(gi |z1:N1) , we26

have:27

P(gi|z1:N1) =
Odd(gi|z1:N1)

1 +Odd(gi|z1:N1)

→ 0 i = 1, 2
→ 1 i = 3
= 0.5 i = 4

(4)

Normalized probabilities (0-1 range) across the grid world lead to convergence towards28

actual target object grid cells. □29

The distribution of the guess target object (grid world) saves the belief about the target30

object. Intuitively, the whole grid world can be used for prediction directly. But, in POMDP31

problems, we need to predict the future probability of all girds in MCTS by going through32

the transition functions and observation functions, which will be time-consuming and33

1

memory-consuming based on the whole grid world. The application of the guess target34

object becomes meaningful to involve the useful information (represent grid world), is35

very computational (fast for transition functions and observation functions) and memory (a36

low-dimension vector) cheap in exploration and rollout, and is friendly for coding (use the37

same transition and visual observation function as the other detected real objects).38

Figure 1: Role of the guess target object

The way to use the guessed target object is shown in Fig. 1. Its grid world is updated based39

on the real-world observation from the camera and its position will be sampled and the40

other terms of the guess target object will be re-initialized to use in the transition function41

and observation function of the Monte Carlo tree search. Then, this iterative process persists42

until the task is completed.43

B Additional details to perform the measurement from point cloud before object44

detection45

The main process has been stated in the article. Here, we would like to show a visible process46

to further explain the main process, including ICP-based scan matching, point cloud filter,47

point cloud segmentation, and object-oriented bounding box generation, as shown in Fig. 2.48

Figure 2: Measurement from point cloud

C Object detector49

State-of-the-art real-time object detection systems, like YOLO, are commonly designed to50

divide the object into different classes and they are not matched with the target images.51

Meanwhile, we have the 3D point clouds of the objects, which are helpful to divide the52

2

objects in the image. So as to complete the given object detection task using several given53

images and some semantic words (optional), we fuse the traditional feature-matching54

method and YOLO toolbox to complete the object detection task.55

Based on the previous point cloud segmentation, we perform it on the current visual local56

frame and the separated point clouds in the local frame are re-projected to the image to57

bound the objects in the RGB camera image forming a set of sub-images {Ip
i , i = 1, 2, · · · , n}58

using the camera configuration and the perspective projection. Similar sub-images of this59

image {Iy
i , i = 1, 2, · · · , m} and their corresponding semantic scores {sy

i , i = 1, 2, · · · , m}60

can also be bounded and generated using the YOLOv5 model with pre-trained parameters.61

Commonly, we have m , n. A simple data association method with the nearest images and62

enough common areas is presented to match these two sets of sub-images. For the successful63

data association pair, we use the sub-image in the local frame as the image corresponding64

to this object. These sub-images in the detected and associated 2D boxes corresponding to65

different objects are matched with the target object using SIFT descriptor. The rate between66

the number of matched scale-invariant features and the number of all features is defined67

as the probability of object detection, denoted {sd
i , i = 1, 2, · · · , n}. If this task offers the68

target type, like cup and laptop, we use the mean values between the semantic scores69

{sy
i , i = 1, 2, · · · , n} and the probability of object detection {sd

i , i = 1, 2, · · · , n}. The main70

process of the object detector is given in Fig. 3.71

Figure 3: Object detector

D Move-ability estimation72

It is easy to know that, in the real-world environment, some objects in the workspace are not73

moveable for the robot with a manipulator due to some physical limitations, such as the size74

limitation of the object, the manipulator workspace limitation, and the mobile base motion75

limitation. In our framework, we would like to manipulate the objects in the workspace to76

free some FOV, so it is better to estimate the probability of the move-ability and then update77

their beliefs for POMDP planning.78

Based on the point cloud segmentation for the fused global point cloud, we can obtain79

many separated point clouds for different objects. Then, facing each point cloud in the80

detected frame, many candidate grasp poses are predicted by the learning-based Grasp81

Pose Detection (GPD) toolbox. So as to reduce the computational complexity, we select82

k representative grasp poses p
g
i , i = 1, 2, · · · , k for each object using k-means clustering83

algorithm. These k grasp poses are diverse with high scores in picking success rates. The84

point clouds of the obstacles in the surrounding environment and these k representative85

grasp poses p
g
i are transformed to the local frames Tg

r (pg
i) based on the pre-visited robot86

poses pr
i during the task process. Here, it is noted that only the pre-visited robot poses are87

considered because the poses generated by other methods may not be reachable based on the88

used move-base toolbox because of the error of the AMCL localization and the complexity89

of the occupancy grid map. These pre-visited robot poses pr
i are safer for implementation.90

Following, these transformed local poses Tg
r (pg

i) will be set as the plan target to the robot91

manipulator using moveit toolbox without execution in a given time limitation tm. The92

3

planned moveit feedback will decide the probability of this detection about the move-ability93

0 < rmove ≤ 1 based on distance. When some objects are near the given poses within a small94

distance, it will be set as 1 (definitely moveable). When no solution for moveit toolbox,95

the move-ability rmove will get close to 0. In the planning stage, for each particle, we will96

randomly sample a random value for this object and compare it with the move-ability rmove97

to identify the move-ability in this step. Objects with too large sizes will be considered to98

be non-moveable rmove = 0, which is definitely not movable. An example of the candidate99

grasp poses is shown in Fig. 4.100

Figure 4: Candidate grasp poses

E Theorem 1101

Theorem 1. We are considering the unweighted particles for approximating the extended full-correct102

belief b(s′new : s′ ⇄ s′add) = 1
N
∑N

i=1 I(s
′
new = si

new
′ : s′ ⇄ s′add) and the reused approximated belief103

b(s′new : s′ → s′add) = 1
N
∑N

i=1 I(s
′
new = si

new
′ : s′ → s′add). Assuming the reward function is Borel104

measurable and bounded, denoted Rmax = ∥R∥∞, the belief L1 distance is limited in ∥b(s′new : s′ ⇄105

s′add) − b(s′new : s′ → s′add)∥1 ≤ δ, and the optimal action selected by building the whole tree is106

same as the one selected by approximated value maxa V(b(snew),a) = maxa V̂(b(snew),a) = a∗, the107

optimal value function of POMDP problem using our method V∗(b(snew)) and the optimal value108

function using the direct resampling way V̂∗(b(snew)) will satisfy the following bounding equation:109

∥V∗(b(snew)) − V̂∗(b(snew))∥1 ≤
γRmax

1 − γ
δ (5)

Proof. Let’s consider one of the new extended beliefs b(s′new : s′ ⇄ s′add). Based on the110

well-known α-vector, we have the optimal value of belief b(s′new : s′ ⇄ s′add) can be written111

as:112

V∗(b(s′new : s′ ⇄ s′add))
=max

a
Q∗(b(s′new : s′ ⇄ s′add), a)

=
∑
s′new∈S

α(s′new)b(s′new : s′ ⇄ s′add)
(6)

where α(s′new) = R(s′new, a
∗)+γV∗(s′new, b(s′new : s′ ⇄ s′add), a∗) and a∗ is the optimal action. It113

is noted that the α-vector α(s′new) is bounded by Rmax
1−γ , introducing the particle representation114

4

for the belief b(s′new : s′ ⇄ s′add) = 1
N
∑N

i=1 I(s
′
new = si

new
′ : s′ ⇄ s′add), so we have:115

∥V∗(b(s′new : s′ ⇄ s′add)) − V∗(b(s′new : s′ → s′add))∥1

=∥
1
N

N∑
i=1

α(s′new)I(s′new = si
new
′

: s′ ⇄ s′add) −
1
N

N∑
i=1

α(s′new)I(s′new = si
new
′

: s′ → s′add)∥1

≤∥
1
N

N∑
i=1

Rmax

1 − γ
I(s′new = si

new
′

: s′ ⇄ s′add) −
1
N

N∑
i=1

Rmax

1 − γ
I(s′new = si

new
′

: s′ → s′add)∥1

=
Rmax

1 − γ
∥b(s′new : s′ ⇄ s′add) − b(s′new : s′ → s′add)∥1

≤
Rmax

1 − γ
δ

(7)

Based on116

max
a∈A

 ∑
snew∈S

R(snew,a, s
′

new)b(snew) + γ
∑
o∈O

∑
s′new∈S

Z(s′new,a,o
′)T(snew,a, s

′

new)V∗(b(s′new : s′ ⇄ s′add))

(8)

and the optimal action a∗, we have:117

∥V∗(b(snew)) − V̂∗(b(snew))∥1

=

∥∥∥∥∥∥∥ ∑
snew∈S

R(snew,a
∗, s′new)b(snew) + γ

∑
o∈O

∑
s′new∈S

Z(s′new,a
∗,o′) T(snew,a

∗, s′new)V∗(b(s′new : s′ ⇄ s′add))

−

∑
snew∈S

R(snew,a
∗, s′new)b(snew) − γ

∑
o∈O

∑
s′new∈S

Z(s′new,a
∗,o′) T(snew,a

∗, s′new)V∗(b(s′new : s′ → s′add))
∥∥∥

1

=

∥∥∥∥∥∥∥γ∑o∈O
∑
s′new∈S

Z(s′new,a
∗,o′)T(snew,a

∗, s′new) V∗(b(s′new : s′ ⇄ s′add)) − γ
∑
o∈O

∑
s′new∈S

Z(s′new,a
∗,o′)

T(snew,a
∗, s′new)V∗(b(s′new : s′ → s′add))

∥∥∥
1

≤γ
∑
o∈O

∑
s′new∈S

Z(s′new,a
∗,o′)T(snew,a

∗, s′new)
Rmax

1 − γ
δ

=
γRmax

1 − γ
δ

(9)

The proof is completed. □118

F Corollary 2119

Corollary 1. If the distance between the value function for the optimal action V(b(snew),a∗) and the120

value function for any sub-optimal action V(b(snew),a∗sub) is larger than 2γRmax

1−γ δ, the optimal action121

obtained by the tree reuse approximation way will be same as the optimal action using the direct122

resampling way maxa V(b(snew),a) = maxa V̂(b(snew),a) = a∗.123

Proof. Based on Corollary 1, we have:124

V̂(b(snew),a∗sub) ≤ V(b(snew),a∗sub) +
γRmax

1 − γ
δ (10)

and125

5

V(b(snew),a∗) −
γRmax

1 − γ
δ ≤ V̂(b(snew),a∗) (11)

The solution does not change, which means that the approximated value function using126

sub-optimal action asub is smaller than the one with optimal action, satisfying V̂(b(snew),a∗) >127

V̂(b(snew),a∗sub). Here, considering Eq. (13) and Eq. (12), if the upper bound of V̂(b(snew),a∗sub)128

is smaller than the lower bound of V̂(b(snew),a∗), satisfying:129

V(b(snew),a∗sub) +
γRmax

1 − γ
δ < V(b(snew),a∗) −

γRmax

1 − γ
δ

⇒ V(b(snew),a∗) − V(b(snew),a∗sub) >
2γRmax

1 − γ
δ,

(12)

We have:130

V̂(b(snew),a∗sub) < V̂(b(snew),a∗) (13)

The proof is completed. □131

G Solver summary132

The whole online GPOMDP solver for our object search is shown in the following pseudocode133

Algorithms 1 to 7. Our proposed method follows the common procedure with four alternating134

stages, planning, execution, obtaining observation, and filtering shown in Algorithms 1.135

The optimal action for the current belief is selected based on my solver proposed in Section 5136

with belief tree reuse shown in Algorithms 2. Two key points should be pointed out. The137

first one is that, because of the observation introduced by added objects, after the state138

update in Section 5 Step 2, some observation nodes will be decoupled into multiple new139

observation nodes. Hence, the observation identification needs to be performed in line 14140

Algorithm 3. The other point is that we save the observation in two hash tables, one from141

observation to identification ID and the other one from identification ID to observation.142

143

Algorithm 1 Proposed GPOMDP method with growing state space

Input: POMDP 8-tuple < S, A, O, T, Z, R, b0, γ >: state space S, action spaceA, observation space
O, transition function T(s, a, s′), observation function O(s′, a, o), reward function R(s, a, s′),
initial belief b0, and discount factor γ; and Communicable Robot.

Output: Optimal action sequence for this POMDP problem.
1: Sampling initial state {si}i=1, 2,··· , N based on initial belief b0, where is generated based on grid world

of the fake object.
2: while True do
3: a∗ ← PLANNING(b)
4: Communicate with the robot, execute a∗, and reach an unknown state sunknown
5: o ← OBSERVATION(sunknown)
6: Update the belief b with a∗ and o using Filters
7: if The object searching task is completed then
8: break
9: end if

10: end while

144

145

146

147

148

149

6

Algorithm 2 PLANNING(b)
Input: Current belief b
Output: Optimal action a∗ in this step
1: if New objects s′add are detected and old tree T exists then
2: Cut some history from history List H based on previous optimal action a∗ and obtained

observation o
3: Extend the action space aadd for the newly detected objects including removing and declaring

actions
4: for all particles in parallel do
5: s′add ← T(sadd,a)
6: oadd ← Z(s′add,a)
7: H′ ← H′ ∪ {(s′, s′add),a,oadd}
8: end for ▷ Update the state vector and observations of the particles considering the newly

detected objects. Here we need to consider the effect from the old object to the newly detected
object but do not consider the reverse effect. b(s′new : s′ → s′add)

9: for all particles within updated history list {h′} ∈ H′ do ▷ Generate the belief tree T ′(s) using
the updated history List H′.

10: SIMULATE_NEW_OBJECTS(H′, ∅, particle, depth)
11: end for
12: end if
13: while time permitting or particle number limitation do ▷ Sampling more particles for MCTS if the

reuse tree operation does not spend too much planning time.
14: Sampling a state snew based on belief b
15: SIMULATE(snew, ∅, depth)
16: end while
17: return arg maxa∈A Q̂(b, a)

Algorithm 3 SIMULATE_NEW_OBJECTS(H′, h, i, j)
Input: The record of all history H′ with saved states, actions, observations, and reward; The particle

id i; The depth j
Output: Discounted total reward r
1: h′ ← H′(i, 0 : j) ▷ Follow the old history.
2: if j == |h′|rollout then
3: if Not Action node T(h′ + {a}) then
4: for all a ∈ A do
5: Action node T(h′ + {a})← (N(h′ + {a}), V(h′ + {a}), ∅)
6: end for
7: end if
8: return ROLLOUT_NEW_OBJECTS(h′, j + 1)
9: else

10: if not T(h′ + {a}) then
11: for all a ∈ A do
12: Action node Node(h′ + {a})← (N(h′ + {a}), V(h′ + {a}), ∅)
13: end for
14: Action node Node(h′ + {a})← (N(h′ + {a}), V(h′ + {a}), ∅)
15: end if
16: {snew, s′new, a, oadd, R(snew, a, s′new)} ← H′(i, j)
17: if j < |h′|rollout then
18: r← γSIMULATE_NEW_OBJECTS(H′, h + {a, oadd}, i, j + 1) + R(snew, a, s′new)
19: B(h′)← B(h′) ∪ {snew}

20: N(h′)← N(h′) + 1
21: N(h′ + {a})← N(h′ + {a}) + 1
22: Q̂(h′ + {a})← Q̂(h′ + {a}) + r−Q̂(h′+{a})

N(h′+{a}) ▷Monte Carlo update.
23: end if
24: end if

H Discussion about different resolution for grid world150

The grid world’s finer resolution offers a unique advantage in enhancing the reliability of151

probability updating within the grid. This advantage becomes particularly pronounced152

when dealing with smaller target objects. It’s important to acknowledge that opting for this153

finer resolution does entail a slightly higher computational complexity (odds updating is154

7

Algorithm 4 SIMULATE(s, h, depth)

Input: A given state snew, the previous history h, the node depth depth
Output: Discounted total reward r
1: Observation node Node(h)← (N(h), V(h), depth)
2: if Not Node(ha) then
3: for all a ∈ A do
4: Action node Node(h + {a})← (N(h + {a}), V(h + {a}), depth)
5: end for
6: return ROLLOUT(h′, j + 1)
7: else
8: a← argmaxaCb

∑
o∈O Z(s′new,a,o

′)∥b((s′, s′add) : s′ → s′add)−b((s′, s′add) : s′ ⇄ s′add)∥1+V∗(b,a)+

CN

√
logN(b)
N(b,a) ▷ Novel UCB strategy.

9: s′new ← T(snew,a)
10: o′ ← Z(s′new,a)
11: if s′new is not terminal state then
12: r← γSIMULATE(snew, h + {a, oadd}, depth + 1) + R(snew, a, s′new)
13: B(h′)← B(h′) ∪ {snew}

14: N(h′)← N(h′) + 1
15: N(h′ + {a})← N(h′ + {a}) + 1
16: Q̂(h′ + {a})← Q̂(h′ + {a}) + r−Q̂(h′+{a})

N(h′+{a}) ▷Monte Carlo update.
17: end if
18: end if

Algorithm 5 ROLLOUT_NEW_OBJECTS(h′, j)
Input: The history h, the depth j
Output: Discounted total roll-out reward
1: if j > |h′| then
2: return 0
3: end if
4: {snew, s′new, a, oadd, R(snew, a, s′new)} ← h′(j)
5: if j == |h′| then
6: return R(snew, a, s′new)
7: end if
8: return r + γROLLOUT_NEW_OBJECTS(h′ + {a, oadd}, j + 1)

Algorithm 6 ROLLOUT(s, h, j)
Input: The history h, the depth j, the current state s
Output: Discounted total roll-out reward
1: if γ j < Cr or j > Cmax then ▷ Update the state vector and observations of the particles considering

the newly detected objects. Here we need to
2: return 0
3: end if
4: a← random(A)
5: s′ ← T(s,a)
6: o← Z(s′,a)
7: r← R(s, a, s′)
8: return r + γROLLOUT(s, h + {a, o}, j + 1)

very cheap for large datasets). Upon conducting tests, it becomes evident that the good155

grid resolution should be smaller than the minimum dimensions of the target object along156

both x and y axes. We are here to correct a typo in our previous version. All the experi-157

ments are implemented in 2 cm resolution instead of 5 cm. For comparison, we present158

statistical results for the scenario using 10 cm resolution: 24803.5±3792.3|39.9±6.9|60%.159

The result is poorer than the POMCP method without using fake objects in success160

rate. To dissect this phenomenon, we manually executed a designated sequence of ac-161

tions: ımove_head_5−move_base0 −move_base_1−move_base_2−move_base_3−move_li f t_2−162

move_base_0 −move_base_1 −move_base_2 −move_base_3 − remove_object_4 −move_head_8 −163

move_base_0−move_base_1−move_base_2−move_base_3ȷ for our method with 2 cm and 10 cm164

resolution, and the resulting changes in probability distributions across the grid world are165

visually depicted in Fig. 5. The salient observation is that when the resolution is relatively166

8

Algorithm 7 o ← OBSERVATION(sunknown)
Input: Current configuration including robot and environment
Output: Obtained observation for pose and objects
1: ICP-based scan matching to get the rigid transformation Tr between AMCL pose estimation and

3D point cloud map
2: Point cloud fusion P j =M

⋃
F0
⋃
· · ·
⋃
F j

3: Point cloud filter to remove the point cloud outside the workspace
4: Point cloud segmentation to divide the point cloud into multiple point clouds {o0, o1, · · · , on} ∈ M

′

j
5: Minimal oriented bounding box estimation for the poses {po

0, po
1, · · · , po

n} ∈ M
′

j of different point
clouds

6: SIFT and YOLO-based object detector with detected scores {(sy
i + sd

i)/2, i = 1, 2, · · · , n}
7: Move ability estimation based on GPD toolbox
8: Data association and summarize all measurements, including robot pose estimation, object pose

and size estimation, probability of object detection (most important, only used in the belief tree),
and move-ability estimation

large, grid probability updates lose precision, particularly when the target object is situated167

close to an obstacle. The use of a larger resolution not only fails to enhance our method’s168

performance but also introduces potential distortions in the information of the fake object.169

In short, we recommend the used resolution had better be smaller than the object sizes to170

improve the accuracy of updating odds values.171

Figure 5: Candidate grasp poses

I More simulation results with different object numbers, reward settings, and172

thresholds173

Indeed, the computational complexity of our framework will mainly increase with the174

number of updating objects. These objects play a crucial role in both transition and visual175

observation functions, causing fewer sampled particles. Consequently, the computational176

expenditure associated with these declared objects becomes relatively economical, as it no177

longer necessitates exhaustive testing of occlusion relationships among all other objects. The178

good news is that commonly the number of the updating objects is limited by the declaring179

action. To facilitate a clearer understanding of how our method performs under varying180

object counts, we have conducted an ablation study. This study includes a comprehensive181

set of experiments, encompassing an increasing number of objects ranging from 2 to 10, with182

increments of 2. The scenarios, as depicted in Fig. 6, comprise 20 trials each, all adhering to183

a consistent planning time limit of 60 seconds per step. The statistical results are reported in184

Fig. 7. Our method will perform obviously better, if the object number is relatively large185

(blue box areas), because we reuse the useful belief tree and avoid branch-cutting caused by186

the newly detected objects, which is more common in scenarios with more objects.187

While some parameters of our framework require manual configuration, it’s worth noting188

that the majority of these parameters do not significantly impact the final performance of189

the framework. Most of them are not sensitive to the final performance. As an example, the190

performance does not change too much, if orders of magnitude between Rmax and Rmin satisfy191

Rmax >> Rmin. For instance, Rmin varying from -1 to -20 does not exert a substantial influence192

9

Figure 6: Scenarios with different object numbers from 2 to 10.

(a) Average discounted cumu-
lative rewards (larger is better)

(b) Average steps (fewer is bet-
ter)

(c) Successful rate (higher is
better)

Figure 7: The comparisons between Ours_m with POMCP_f.

on performance outcomes. To elucidate this phenomenon, we present a comparison between193

the results using Rmin = −20 (the case in our paper) and for the Hidden1 case in Table 1.194

Table 1: 95% confidence interval of discounted cumulative reward, steps, and successful
rate (within 50 steps)

Scenarios Rmin = −1 Rmin = −20

Hidden1 55574.8 ± 6225.3 | 15.3 ± 2.0 | 100% 54351.1 ± 7180.3 | 15.9 ± 2.2 | 100%

Few parameters may affect the performance a lot. For example, before successfully declaring,195

we need to update the belief of the log-odds of 8 grid values and then complete the declaring196

action by comparing the mean value of the minimal nodds = 2 log-odds with the thresholds197

Co
d for the obstacle object and Co

t for the target object. The smaller nodds means that this198

condition is hard to be satisfied and we need to observe more directions of the objects. As199

nodds decreases, the removing and declaration actions become more dependable, owing200

to the augmented array of diverse observations derived from different orientations. Our201

method retains more useful branches after receiving observations and it will show obvious202

advantages when the target belief is harder to reach. With this goal, we increase nodds to 4203

and 6 and show the statistical results of the scenario with 6 objects (Fig. 6) in Table 2 with 20204

trials.205

Table 2: 95% confidence interval of discounted cumulative reward, steps, and successful
rate (within 50 steps)

Scenarios Oursb POMCP f

2 35038.7± 4604.5 | 22.9± 2.5 | 100% 25192.4 ± 3045.1 | 32.9 ± 3.5 | 85%
4 45327.6 ± 4491.9 | 19.3± 1.8 | 100% 47258.1± 6185.9 | 20.2 ± 3.8 | 90%
6 72967.1± 10896.3 | 12.1 ± 2.8 | 100% 72081.7 ± 9524.8 | 12.0± 2.7 | 100%

10

	Additional explanations to the guess target object
	Additional details to perform the measurement from point cloud before object detection
	Object detector
	Move-ability estimation
	Theorem 1
	Corollary 2
	Solver summary
	Discussion about different resolution for grid world
	More simulation results with different object numbers, reward settings, and thresholds

