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Abstract

Efficiently searching for target objects in complex environments that contain
various types of furniture, such as shelves, tables, and beds, is crucial for
mobile robots, but it poses significant challenges due to various factors
such as localization errors, limited field of view, and visual occlusion. To
address this problem, we propose a Partially Observable Markov Decision
Process (POMDP) formulation with a growing state space for object search
in a 3D region. We solve this POMDP by carefully designing a perception
module and developing a planning algorithm, called Growing Partially
Observable Monte-Carlo Planning (GPOMCP), based on online Monte-
Carlo tree search and belief tree reuse with a novel upper confidence bound.
We have demonstrated that belief tree reuse is reasonable and achieves
good performance when the belief differences are limited. Additionally, we
introduce a guessed target object with an updating grid world to guide the
search in the information-less and reward-less cases, like the absence of any
detected objects. We tested our approach using Gazebo simulations on four
scenarios of target finding in a realistic indoor living environment with the
Fetch robot simulator. Compared to the baseline approaches, which are
based on POMCP, our results indicate that our approach enables the robot
to find the target object with a higher success rate faster while using the
same computational requirements.

1 Introduction

Finding an object in a partially known and cluttered environment is critical for many robotics
tasks. For instance, a robot operating in human environments, such as our homes may need
to find mugs, glasses, or books that may be placed on top of various furniture like beds,
tables, or chairs and partially occluded by other objects. While the positions of the furniture
are commonly known, the positions of the smaller objects, such as the mugs and glasses,
are not generally known and move very often. Humans can typically find those smaller
objects by relying on prior knowledge, assuming the object they are searching for has been
seen before[1] and removing occlusions as necessary. This kind of target objects-oriented
problems is also called "Mechanical Search" problem [7].

This paper proposes a planning method based on a novel solver, called Growing Partially
Observable Monte-Carlo Planning (GPOMCP), that enables mobile manipulators to do just
that: Finding a target object that might be occluded by other objects in a partially unknown
environment by moving to positions with better visibility or by removing occlusion when
necessary.
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We assume the robot is operating in a home environment that consists of multiple rooms
and is provided with 3D point cloud and 2D occupancy grid maps of the environment and
a set of the target object’s photos. These maps contain the furniture but do not contain
information about the objects on top of the furniture. GPOMCP computes an efficient search
policy that utilizes onboard sensors and its ability to remove objects within a designated
search region to find the target object even if it is partially or completely occluded while
accounting for localization and perception errors. To handle the partial observability nature
of the problem, GPOMCP is based on the Partially Observable Markov Decision Process
(POMDP). A unique feature of GPOMCP is it can efficiently modify policies when the
number of state variables increases. This feature allows GPOMCP to model the environment
incrementally, starting from an environment map with no objects on top of the furniture to a
more faithful map where all the objects on top of the furniture have been included in the
map and everything in-between, as needed until the target object is found.

In addition to the above solver, we propose a POMDP model for the object-finding problem
that exploits GPOMCP’s ability to modify policies as the number of state variables increases.
To this end, the model maintains a set of state variables that represents information about
the robot’s guess of the target object, which we refer to as a guessed target object. A belief
over this set of state variables represents the robot’s uncertainty over the characteristics of
the target object, such as the pose, whether the object can be moved or not, etc. As new
observations are perceived, the robot refines its belief about the guessed target object, and
eventually, the belief has a high chance to converge to the correct target object positions
based on suitable parameter settings. Experimental results on four different scenarios using
a Fetch robot simulator in Gazebo indicate that the above model and GPOMCP significantly
outperforms POMCP[20].

2 Background

A POMDP is a general mathematical formulation for a sequential decision-making problem
where the state is not fully observable by the agent. Formally, it is defined as an 8-tuple
< S, A, O, T, Z, R, b0, γ >, where the state space S denotes the set of all possible states of
the robot and the environment; the action spaceA denotes the set of all actions the robot can
perform; the observation space Omeans the set of all observations the robot can perceive.
At each time step, a POMDP agent is at a state s ∈ S, but this state is generally not known
exactly by the agent and therefore the POMDP agent uses a belief b —a distribution over
the state space— to represent this state uncertainty. The set of all beliefs is referred to as
the belief space and denoted as B. At each time step, the agent performs an action a ∈ A,
which may result in the agent arriving at a new state. However, the effect of actions is
uncertain and is represented by a conditional probability function, namely the transition
function T(s, a, s′) = Pr(s′|s, a). Once the agent arrives at a new state (which may not
be fully known), the agent perceives perceives an observation o ∈ O, governed by the
observation function Z(s′, a, o) = Pr(o|s′, a), which is a conditional probability function
that represents the observation the robot may perceive after performing action a ∈ A in
state s′ ∈ S. Together with perceiving an observation, the agent also receives an immediate
reward, governed by the reward function R(s, a, s′) ∈ R, which can be parameterized by a
state, an action, a state–action pair, or a tuple of state, action, and subsequent state. The
estimate on the initial state is called the initial belief and denoted as b0. Last but not least,
γ is a discount factor following 0 < γ < 1 [13]. The goal of solving a POMDP problem is
to find an optimal policy Π∗(b) = argmaxa∈AQ(b, a) for belief b ∈ B, where the Q(b, a)-value
is the value of executing action a when the agent is at belief b and continuing optimally
afterwards.

POMDP solvers can be broadly classified into two main classes based on their real-time
performance: offline and online solvers. While offline solvers can achieve optimal solutions
for small-scale problems, such as the point-based POMDP algorithm [19, 14], they require too
much memory for real-world applications. Most online POMDP solvers commonly explore
the sparse belief sampling with a collection of particles and perform a Monte-Carlo tree
search (MCTS) to grow the belief tree within the limited planning time. State-of-the-art online
methods include Partially Observable Monte Carlo Planning (POMCP) [20], Adaptive Belief
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Tree (ABT) [15], Determinized Sparse Partially Observable Tree (DESPOT) [21], Partially
Observable Monte Carlo Planning with Observation Widening (POMCPOW) [22], and
Adaptive Discretization using Voronoi Trees (ADVT) [9] methods. Among them, POMCP
and POMCPOW methods rely on the Monte Carlo backup, while others use the Bellman
backup. Although most of these methods are designed to explore belief nodes more deeply in
continuous or large action and observation spaces, continuous state, action, and observation
spaces continue to pose a significant challenge.

A substantial category of mechanical search methodologies is closely intertwined with ad-
vancements in learning technologies, including deep reinforcement learning (RL) [12], deep
Q-learning [25], receding horizon planning guided by neural network-based distribution [2],
deep-geometric inference systems [7, 10]. For example, in [12], the authors use a deep RL
procedure that combines teacher-aided exploration, a critic with privileged information,
and mid-level representations to uncover a target object occluded by a heap of unknown
objects. Except for the learning-based methods, some other methods exploit the classical
technologies, like the adaptive horizon exploration algorithm [8] and mixed-integer program
(MIP) [3]. A shared characteristic among these methods is their specialized application in
specific environments, primarily centered around scenarios involving shelves and boxes.

Some other works on object search are solved using POMDP planning approaches, such as
a recent MCTS-based mechanical search method that relies on a 1D occupancy distribution
for the current camera observation in cluttered shelves. [11]. The Object-Oriented POMDP
(OO-POMDP) [24], which is very popular, considers the state and observation spaces to
be factored by a set of n objects, where each belongs to a class with a set of attributes,
and the beliefs about different objects are independent for the small computational reason.
Many previous works also limit the workspace to a 2D plane with simple transition and
observation models. For example, Aydemir et al. proposed a 2D POMDP formulation for
the object search in a room by calculating candidate viewpoints [1]; The object search task
has been extended to 3D with an object size-friendly property using a multi-resolution
planning algorithm [28]. We follow the same Object-Oriented idea because of the good
applicability of the real-world application but go forward one step to consider the occlusion
relationship for the belief update between different objects in a complicated 3D environment,
including some challenging cases with partial and fully occluded objects.

3 POMDP formulation for object search

Our focused object search task is to find a movable target object {objtar} in several clustered
workspaces that contain an unknown number n > 1 of obstacle objects {objobs}with unknown
locations. To facilitate robot navigation, we have access to point cloud and occupancy grid
maps representing the planning environment, including furniture. However, we do not
possess the point clouds of the obstacle objects {objobs} or the target object objtar. Therefore,
during the execution process, we rely on on-board sensors to detect and identify these objects
(objobs ∪ objtar). Since we gather information about the objects using real-world sensors, they
are not mutually independent in our scenario and may influence each other. This differs
from the assumption made in OO-POMDP.

State space S. A state s = {sr, so0 , so1 , · · · , son } ∈ S is represented as two parts including
robot configuration and object-oriented factors, where sr is the robot state and soi denote
the object state of the i-th object. A robot state is written as sr = (p, lh, lp, lt), where p is
the 6D robot base pose, lh is the lift height, lp and lt are the pan and tilt angles of the robot
head. At the beginning stage, the robot may not get into the workspace, so no detected
object is available. In order to guide the robot toward meaningful actions, we introduce
a guessed target object so0 = (po0 , sx

o0 , sy
o0 , sz

o0 , go0 , mo0 , uo0 ) ∈ R1×20, where po0 = (pp
o0 , p

o
o0 )

is the 6D object pose (3D position p
p
o0 and 3D rotations represented by quaternion po

o0 ); sx
o0 ,

sy
o0 , and sz

o0 mean the sizes along the principal 3D axis of the object; go0 ∈ R1×8 denotes 8
grid odds values to identify whether this object is a target or obstacle object, which will
be updated using the scores obtained from image matching. mo0 ∈ R is the odds value to
evaluate the move-ability of the guessed target object; uo0 ∈ {−2, − 1, 0, 1} is the int front
value to claim whether this object is updating or not. Specifically, −2 means this object is
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Figure 1: Grid update in one frame Figure 2: Main steps for GPOMCP

removed after performing the removing action; -1 denotes that the object is still updating
without performing declaring and removing actions, 0 and 1 means this object has been
declared as an obstacle object and a target object. The belief of the position p

p
o0 of the guessed

target object is saved in a grid world G f generated by all workspacesW using many odds
values Odd(G f ) with a given resolution. Inside each grid, the position is sampled uniformly
and its probability is obtained by its odds value. The odds values are updated based on the
field of view (FOV) of the camera using real-world measurement in the excursion process,
which is similar to the update of the occupancy grid map in Simultaneous Localization and
Mapping (SLAM) [4], following:

log Odd(G f |z1:t) = log Odd(G f |zt) + log Odd(G f |z1:t−1)
Odd(G f |z1:t) = P(G f |z1:t)/P(¬G f |z1:t)

(1)

where P(G f |z1:t) and P(¬G f |z1:t) means the probability of the object belonging to and not
belonging to this grid based on multiple observations z1:t; Odd(G f |z1:t) is the corresponding
odd value. In the belief tree search, we do not update the odds values Odd(G f ) and it will be
updated after the real-world excursion. In the planning stage, this grid world is just used
to sample the potential position of the guessed target object in the root node. The guessed
target object is special with a constant orientation (set as (0, 0, 0, 1)), size (0.1, 0.1, 0.1), and
move-ability value (set as 100, movable). The grid values go0 and the declared value uo0

are update-able in the belief tree search but need to be reinitialized as the given value after
each excursion. Fig.1 shows the scenario about the grid world for the guessed target object.
In fact, the guessed target object variable within the state vector saves the belief about the
position of the target object. It not only encodes the probability information derived from the
grid world with odds values but also facilitates efficient planning within Monte Carlo tree
search with low computational complexity, acceptable memory cost, and coding friendliness.
More explanations to the guessed target object are shown in the supplementary materials.
The other object soi , i , 0 ∈ R1×20 follows the same format and all parameters should be
updated both in belief tree search and real-world excursion. It is noted that the pose of the
other objects soi is estimated based on the point cloud which is independent of the grid
world G f . The newly detected objects after each real-world excursion will be appended to
the state vector and form a growing state space (s, sadd) ∈ S × Sadd.

Action spaceA. Our method is task-level planning with many primitive actions instead of
control-level planning. The key purpose of setting these actions is to change the FOV of the
robot camera to cover the workspace and further operate objects. The action space consists
of 5 types of primitives: Move(pt, ωm) means to move the robot base to a given target pose
pt; Head(lp, lt) denotes the actions to change the angles of the robot head pan (left/right) and
tilt (up/down) to lp for the pan and lt for the tilt; Li f t(lh) represents to move the robot height
to lh; Declaring(uoi ) means to declare the updating object (uoi = −1) to be the target object
(uoi = 1) or the obstacle object (uoi = 0); Removing(i, ωr) is the action to remove i-th object
using robot manipulator. All actions are assumed to have a 100% success rate for simplicity2.

2Even in the gazebo Fetch simulator, it is hard to ensure that each action is successfully performed,
especially for removing actions. In order to guarantee the 100% success rate, after the robot’s common
control level operation, we call the gazebo server “set_model_state" to physically set the model state
with some Gaussian noises, which will be improved in future work.
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Observation space O. The main focused observation is a FOV viewing frustum V projected
from the robot head camera. Because we view each object by an oriented box with 8 grids,
for each observation, we assume to update at most the 4-nearest grids with a noise negative
log-odds value −co + η, a noise positive log-odds value co + η, a noise near-zero log-odds
value η, where η follows the Gaussian distribution. Following the blind spot caused by the
other objects, sometimes, the robot camera can not detect all 4-nearest grids. We set the
observation space to be discrete. By fusing all no detected objects, we can get the observation
to be {{i, · · · , j}, {o(i), · · · ,o( j)}}, |{i, · · · , j}| = no, where {i, · · · , j} records the observed object
with at least one updated grid and {o(i), · · · ,o( j)} are their updated log-odds value.

Transition function T. If the actions Move(pt, ωm), Head(lp, lt), and Li f t(lh) are applied to the
robot, the camera location and orientation will change with some noises. The camera motion
follows the rigid transformation and the static structure information of the applied robot is
read from tf message. The declaring action Declaring(uoi ) will change the robot status uoi

based on the comparison between the mean value of the minimal 2 log-odds of 8 grid values
and the thresholds Co

d for the obstacle object and Co
t for the target object. If no removing

action is performed to the i-th object, the i-th object is static and rigid. The removing action
Removing(i, ωr) on i-th object will move the i-th object outside the workspace and set the
status uoi to -2, which means they will not block the observation of the other objects.

Observation function Z. The coordinates of 8 grids of the i-th object can be computed using
center point pp

oi and the orientation po
oi of the object pose and its size sx

o0 , sy
o0 , sz

o0 estimated by
point cloud. After performing one action, the visible grids of different objects belonging to
the 4 nearest grids will be updated. The updated value will be decided based on the mean
log-odds value of all grids. If the original mean log-odds value is larger than a positive
threshold νp > 0, the updated value will be set to be positive c0 + η. If it is smaller than a
negative threshold νn < 0, the updated value will be set to be negative −c0 + η. Otherwise,
the value between the positive and negative thresholds will generate a near-zero η. So as
to encourage the exploration of the robot, the initial grid values go0 of the guessed target
object are reinitialized to be larger than the positive threshold νp > 0 after each real-world
excursion.

Reward function R. Our expected sequential actions involve the robot moving to the
workspace for observation, continuously changing its viewpoints to gather more measure-
ments, updating odds values in 8 grids, then declaring the updating object to be the obstacle
or target object, and finally removing the obstacle objects for the more visible area or directly
the target object to complete the whole task. Hence, if the whole task is completed success-
fully with the removal of the target object, the robot will receive a large positive reward
Rmax ≫ 0. As the prerequisite action, correctly identifying the obstacle and target objects
yields relatively large rewards (Rco and Rct , respectively), where Rmax ≫ Rct > Rco ≫ 0. All
actions incur a negative step cost (Rmin < 0). The cost of the removal action Removing(i, ωr)
is set as 2Rmin due to its complexity. Illegal actions incur a large negative penalty (Rill ≪ 0),
including collisions with occupied grids in the occupancy grid map, attempting to remove
immovable objects, declaring an object that doesn’t meet the condition, removing updating
objects without declaration, and trying to remove objects that have already been removed.

4 Action execution and perception with on-board sensors

Our perception part is carefully explored with many useful outputs, like estimated object
pose, estimated object size, object move-ability, and object detector, fusing both point cloud
data and the image data without using manual quick response (QR) codes. Our framework
is suitable for all mobile robots with 2D Lidar and RGBD cameras, but specifically, we mainly
consider the Fetch robot here. Move base actions are implemented using a ROS interface
move_base and the interaction with the AMCL-based navigation stack [18]. The robot lift
height and head joints are controlled by following the joint-space trajectories on a group of
joints based on a ROS interface ros_control [5]. Removing action is to pick up the object and
place it in some given areas outside the workspace using the ROS tool moveit [6].

To simplify the scenario and reduce the navigation effort, we assume the availability of a
pre-built point cloud mapM of the robot’s environment, including furniture and known
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objects, which can be created beforehand through environment mapping and reused during
planning. Then, the 3D point cloud F j in j-th frame from the depth camera is matched
with the mapM by iterative closest point (ICP) [26]. The 3D ICP is initialized by matching
2D Lidar points with the 2D occupancy grid map. As the frame number increases, the
point clouds of objects and environment P j =M

⋃
F0
⋃
· · ·
⋃
F j are becoming more and

more complete. After removing the original mapM′

j = P j/M, the point clouds for n newly
detected objects {o0, · · · , on−1} ∈ M

′

j are extracted by point cloud segmentation using the
Euclidean cluster extraction method. For estimating object pose and size, we obtain the
minimum oriented bounding box for each object using principal component analysis. The
point cloud segmentation is applied followed by data association based on the Mahalanobis
distance of centroid points and point-wise mean distance. Additional details can be found
in the supplementary materials.

So as to complete the given object detection task using several given images and some
semantic words (optional), based on the previous point cloud segmentation, we perform the
point cloud re-projection, sub-image fusion, YOLO detection, and SIFT matching [17] to
compute the probability of object detection. We also would like to manipulate the objects
in the workspace to free some FOV, so we estimate the move-ability rmove of each object
by the learning-based Grasp Pose Detection (GPD) toolbox [23], the k-means clustering
algorithm, and the ROS moveit toolbox. The details of the implementation are presented in
supplementary materials. In the planning stage, for each particle, we will randomly sample
a value for this object and compare it with the move-ability rmove to identify its move-ability.

5 Belief tree reuse for online POMDP solver with growing state space

Here, we present a POMDP solver, GPOMCP, reusing the previous belief tree when the state
space of the problem is growing. In this kind of POMDP problem, the observation obtained
by real measurement causes the unpredicted new state, which means that the whole belief
tree should be cut and a totally new belief tree should be computed by sampling. It is
time-consuming. As shown in Fig. 2, we solve the problem by following steps:

• Step 1: When state space grows from s ∈ S to (s, sadd) ∈ S × Sadd, in the old belief
tree T , we can pick out the branches corresponding to old sub-state s and set it as
the root of new tree T ′(s).

• Step 2: This new tree T ′(s) has many particles with history h. For each particle,
we can update the future state s′ by the added state vector s′add corresponding to
new objects based on the transition function T(sadd,a, s′add) and observation function
Z(s′add,a,oadd) 3. It is noted that, in the state updating, we should consider the effect
s′ → s′add from the old state vector s corresponding to the old object. So we can get
the updated histories about some or all particles within the given time limitation.

• Step 3: Then, starting from the root, we can grow the belief tree T ′(s) using these
updated particles 4. It is noted that, in building the new belief tree T ′(s), the new
observation nodes with newly detected objects may be introduced, which means
that the generated belief tree T ′(s) may be not a sub-tree of the old belief tree T .

• Step 4: Then, we perform the Monte Carlo tree search (MCTS) for all
branches including the new actions and new observations. The action selec-
tion strategy follows the upper confidence bound (UCB) and the belief distance
Cb
∑

o∈O Z(s′new,a,o
′)∥b((s′, s′add) : s′ → s′add) − b((s′, s′add) : s′ ⇄ s′add)∥1 + V∗(b,a) +

CN

√
logN(b)
N(b,a) , where Cb and CN are coefficients set by users.

We know that the current optimal action should be selected following equation Eq. (2).
maxa∈A

(∑
snew∈S R(snew,a, s′new)b(snew) + γ

∑
o∈O
∑

s′new∈S′ Z(s′new,a,o
′)T(snew,a, s′new)V∗(b(s′new : s′ ⇄ s′add))

)
(2)

3It is noted that because our considered actions a1 and a2 just perform on the old objects, the
reward function does not need to be updated. Our reward function follows R((s, sadd),a1, (s′, s′add)) =
R(s,a1, s′), because the old action a1 and a2 just operate one object each step.

4Here, the belief of the old state does not consider the effect from the new object s′add ↛ s′.
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where snew = (s, ∅) and s′new = (s′, s′add). Considering two ways (GPOMCP and the direct
resampling way), in the sub-tree of the new belief tree, the only difference is from the last
terms V∗(b(s′new : s′ ⇄ s′add)) (correct by building tree) and V∗(b(s′new : s′ → s′add)) (GPOMCP,
without considering partial effect). Then, we have the following Theorems:
Theorem 1. We are considering the unweighted particles for approximating the extended full-correct
belief b(s′new : s′ ⇄ s′add) = 1

N
∑N

i=1 I(s
′
new = si

new
′ : s′ ⇄ s′add) and the reused approximated belief

b(s′new : s′ → s′add) = 1
N
∑N

i=1 I(s
′
new = si

new
′ : s′ → s′add). Assuming the reward function is Borel

measurable and bounded, denoted Rmax = ∥R∥∞, the belief L1 distance is limited in ∥b(s′new : s′ ⇄
s′add) − b(s′new : s′ → s′add)∥1 ≤ δ, and the optimal action selected by building the whole tree is
same as the one selected by approximated value maxa V(b(snew),a) = maxa V̂(b(snew),a) = a∗, the
optimal value function of POMDP problem using our method V∗(b(snew)) and the optimal value
function using the direct resampling way V̂∗(b(snew)) will satisfy the following bounding equation:

∥V∗(b(snew)) − V̂∗(b(snew))∥1 ≤
γRmax

1 − γ
δ (3)

Proof. Please refer to the supplementary material. □

This theorem indicates that the reuse technology works well with a performance bound
when the reused belief tree shows good approximations to the exact accurate belief tree. To
enhance the estimation of the upper bound, we introduce a term Cb

∑
o∈O Z(s′new,a,o

′)∥b(s′new :
s′ → s′add) − b(s′new : s′ ⇄ s′add)∥1 to the UCB strategy when reusing the previous belief tree.

It is noted that Theorem 1 is correct only under the assumption maxa V(b(snew),a) =
maxa V̂(b(snew),a) = a∗, which means that there are some bounds for the performance
guarantee shown in Theorem 1 using the reuse approximation.
Discussion 1. In fact, our belief tree reuse can be considered as the wrong estimation △ of the
action and measurement node values in the correct belief tree. When the distance between the value
function for the optimal action V(b(snew),a∗) and the value function for any sub-optimal action
V(b(snew),a∗sub) is relatively large satisfying V(b(snew),a∗) − V(b(snew),a∗sub) >> △, which means
that the estimation error △ will not affect the final solution and the convergence of our solver follows
the method directly rebuilding the whole tree.

Following Discussion 1, we would like to get the exact performance bound to ensure that
the obtained solution remains the same as the optimal solution using the fully-rebuilt belief
tree. Firstly, we have the following corollary:
Corollary 1. With the same assumption as Theorem 1, given the action a, the optimal action-value
function of POMDP problem using our method V∗(b(snew), a) and the optimal value function using
the direct resampling way V̂∗(b(snew), a) will satisfy the following bounding equation:

∥V∗(b(snew), a) − V̂∗(b(snew), a)∥1 ≤
γRmax

1 − γ
δ (4)

Proof. Just follows the similar proof process shown in Theorem 1, so we ignore it here. □

Corollary 2. With the same assumption as Theorem 1, if the distance between the value function for
the optimal action V(b(snew),a∗) and the value function for any sub-optimal action V(b(snew),a∗sub)
is larger than 2γRmax

1−γ δ, the optimal action obtained by the tree reuse approximation way will be same as
the optimal action using the direct resampling way maxa V(b(snew),a) = maxa V̂(b(snew),a) = a∗.

Proof. Please refer to the supplementary material. □

The pseudocode Algorithms of the GPOMCP solver are shown in supplementary materials.
Our proposed method follows the common procedure with four alternating stages, planning,
execution, obtaining observation, and filtering. The optimal action for the current belief
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is selected based on GPOMCP. Inside the POMDP solver, the Monte Carlo update 5 and a
revised UCB strategy considering the belief error proposed in Section 5 are applied.

6 Simulations

In this section, we showcase our method’s effectiveness via simulations conducted using
C++ and Python codes within the Fetch robot simulator. The project operates on multiple
Ubuntu 18.04 desktops equipped with an Intel Core i7-13700k processor, running exclusively
on CPU. We evaluate our method using various object settings in different scenarios.

Problem settings We implement our approach in a realistic gazebo living environment
(Fig. 3a). The 3D point cloud map and 2D occupancy grid map, generated using [16], of this
environment with furniture are available before the object searching task (Fig. 3b). There are
multiple workspaces on the surfaces of the large furniture, like tables, beds, and desks, in
this planning environment. Some unknown objects including a target object are set inside
the different workspaces sometimes with an occlusion relationship. Four photos of the
target object from different viewing directions are available for the object detector.

(a) Gazebo environment (b) Corresponding point cloud and occupancy grid maps
Figure 3: The planning environment

We manually set several candidate poses that can observe partial workspace for the
move base action Move(pt, ωm). The candidate robot head motion (lp, lt) are set within
lp ∈ {− 1

12π, 0, 1
12π}, lt ∈ {−0.5, 0, 0.5}, and the lift motion lh is limited in lh ∈ {0.0, 0.2, 0.4}. The

FOV of the Fetch camera has a 60-degree horizontal view angle with a 480/600 height-width
ratio. In the transition and observation function, using these actions, we add the nearest
(0.5 meters to the camera center) and farthest planes (1.7 meters to the camera center) to the
FOV and form a hexahedron. This hexahedron-shaped FOV will move based on the robot’s
motion and configuration change. As mentioned in Section 3, each object is represented as 8
grids based on its optimal oriented box, and the occlusion is computed using perspective
projection of the cube vertices. The grid size of the grid world is set as 2 cm. A discussion
about different grid sizes is shown in the supplementary materials. The log-odds value of
these grids is initially set as unknown satisfying log 0.5

1−0.5 = 0. These odds values will be
updated after each real-world observation and then used to sample the potential position
of the guessed target object. The planning time is limited to 60 s/step, the discounted
factor γ = 0.9, the threshold to the object declaration Ct

d = log(8/2) and Co
d = log(2/8), the

thresholds for grid updating νp = 0.1 and νn = −0.1, the re-initialized grid values of the
guessed target object are set as 0.2, the reward values Rmax = 105, Rct = 5 × 104, Rco = 104,
Rmin = −1, and Rill = −103.

Comparison results Because a lot of existing object search approaches are based on the
pure POMCP method with different problem settings, eg. [27, 24], we compare our approach
using Bellman (Ours_b) or Monte Carlo update (Ours_m) with the POMCP method without
using/using the guessed target object (denoted as POMCP, POMCP_f). The comparison
is implemented based on 4 different scenarios with different object numbers, including
LOOSE1 (4 objects in 1 workspace), LOOSE2 (6 objects in 2 workspaces), Hidden1 (7 objects

5Here, we use the Monte Carlo update because the visual measurement model in object search is
not well predictable. The robot will frequently receive unexpected measurements, which are not in the
belief tree. It breaks the advantage of the Bellman update (explore deeper) of Adaptive Belief Tree
(ABT) solver [15]. We think that, in other applications, the Bellman update should be better.
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in 1 workspace), and Covered1 (7 objects in 1 workspace), as shown in Fig. 4. The target
object is the blue snack box shown in the blue circle. Only the black headset box and the
dish rack are not movable, and the others are all movable. Green arrows show the candidate
robot poses. "Tick" means the target objects can be observed easily without changing the
robot configuration. "Half tick" means the target can be observed if we change the robot
configuration. "Cross" means the target object is fully hidden by the obstacle objects and
cannot be seen from that pose even changing the robot configuration, including the lift of
the robot, if the obstacle objects are not removed before. For each scenario, 20 trials are
conducted and statistical results are reported. More resuls with different problem settings
are shown in the supplementary materials.

(a) LOOSE1 (b) LOOSE2 (c) Hidden1 (d) Covered1

Figure 4: The planning environment

The obtained 95% confidence interval of the discounted cumulative reward, the steps,
and the success rate are reported in Table 1. For clarity, we present one sequence of
POMDP-generated actions (Fig. 5), of which the discounted cumulative reward is 57691.7,
to complete the Covered1 scenario by moving its pose, changing its configuration, declaring,
and removing the target object within 14 steps. The robot removes the obstacles (objects
3 and 4) to free the visual occlusion and finally declares and removes the target objects.
The sub-images in the red boxes show the probability of the grid world for the guessed
target objects, which is updated using Eq. 1, and the ones in yellow boxes show the detected
camera images. We can find that, with the growth of the robot’s actions, the probability of
most grids far away from the target object decreases quickly and the ones near the target
object increase a lot, which guides the robot to make more effort to observe the area with the
target object.

Figure 5: Actions to complete the Covered1 scenario with 7 objects in 14 steps.

Our method, utilizing Monte Carlo update, demonstrates superior performance in complex
object search scenarios such as cases like Hidden1 and Covered1, where predicting camera
observations is challenging. In simpler cases like Loose1, our method performs comparably
to the POMCP method when using our introduced guessed target object. The guessed target
object proves to be beneficial in activating the robot in situations with limited information.
By incorporating our approximated belief tree reuse, we retain more useful branches after
receiving observations, leading to further improvement in overall performance. The concept
of the guessed target object aligns with our natural tendency to assume the presence of
certain objects in specific locations and adjust our estimations based on visual observations.

Limitation Our main limitations mainly stem from the errors and failures from perception
and navigation components, not our focused planning part. The first limitation is the
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Table 1: Discounted cumulative reward, steps, and successful rate (within 50 steps)
Scenarios Loose1 Loose2

POMCP 66003.7 ± 16269.5 | 13.5 ± 6.8 | 90% 26175.8 ± 8220.3 | 29.2 ± 7.7 | 65%
POMCP f 78629.6 ± 8472.1 ± | 7.2 ± 0.7 | 100% 38462.6 ± 11221.2 | 23.2 ± 6.6 | 95%

Oursb 84701.5± 5546.8 | 6.9± 0.6 | 100% 33265.5 ± 10085.3 | 22.2 ± 4.2 | 100%
Oursm 79788.0 ± 4787.4 | 7.4 ± 0.6 | 100% 51574.1± 17930.9 | 17.4± 2.9 | 100%
Scenarios Hidden1 Covered1

POMCP 40958.7 ± 8070.9 | 20.1 ± 2.7 | 100% 17700.2 ± 3616.6 | 38.3 ± 5.1 | 65%
POMCP f 45815.2 ± 7260.9 | 19.4 ± 2.8 | 100% 31506.9 ± 6249.7 | 32.3 ± 6.0 | 80%

Oursb 45038.6 ± 7631.0 | 18.2 ± 2.7 | 100% 26130.6 ± 3368.7 | 30.2 ± 4.6 | 90%
Oursm 55574.8± 6225.3 | 15.3± 2.0 | 100% 34397.8± 7381.6 | 26.7± 4.8 | 95%

pre-existing map M which may not be available for a real robot but can be solved by
introducing advanced sementic SLAM method. Achieving 100% primitive action success
in reality is impractical, affecting our method’s success rate. Another limitation is that our
framework is based on point cloud segmentation to identify different objects. It may generate
incorrect bounding boxes for objects with extensive contact areas. This misinterpretation
can result in erroneous data association, impacting belief updates and removing actions.
Furthermore, YOLO and SIFT object detection techniques may struggle in scenarios with
limited SIFT features and YOLOv5 toolbox coverage, especially in low-light environments.
However, we believe that addressing these limitations is possible by incorporating more
advanced perception and navigation methods.

7 Conclusion and future work

We propose a novel object-level POMDP formulation with growing state space, a guessed
target object, and its grid world for object search in 3D with real-world sensors and solve
it using a novel GPOMCP method based on Monte-Carlo tree search and belief tree reuse.
We demonstrate the effectiveness of our approximation in cases with similar beliefs. Our
method achieves object search with only maps, photos, and onboard sensors without relying
on additional object information, like geometric models, making it highly practical for real-
world robot applications. By utilizing the guessed target object, our method can successfully
locate fully hidden objects even without prior information, by removing obstacles—a
challenge for existing approaches. Our future directions involve dropping prior information,
such as pre-built point cloud mapM, and exploring continuous action domains. Through
our experiments, we showcase the efficiency of our method, and we anticipate that our
results will inspire further advancements in this field.
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