
Module-wise Training of Neural Networks via the
Minimizing Movement Scheme

Anonymous Author(s)
Affiliation
Address
email

Abstract

Greedy layer-wise or module-wise training of neural networks is compelling in1

constrained and on-device settings where memory is limited, as it circumvents a2

number of problems of end-to-end back-propagation. However, it suffers from a3

stagnation problem, whereby early layers overfit and deeper layers stop increasing4

the test accuracy after a certain depth. We propose to solve this issue by introducing5

a module-wise regularization inspired by the minimizing movement scheme for6

gradient flows in distribution space. We call the method TRGL for Transport Regu-7

larized Greedy Learning and study it theoretically, proving that it leads to greedy8

modules that are regular and that progressively solve the task. Experimentally, we9

show improved accuracy of module-wise training of various architectures such as10

ResNets, Transformers and VGG, when our regularization is added, superior to11

that of other module-wise training methods and often to end-to-end training, with12

as much as 60% less memory usage.13

1 Introduction14

End-to-end backpropagation is the standard training method of neural networks. However, it requires15

storing the whole model and computational graph during training, which requires large memory16

consumption. It also prohibits training the layers in parallel. Dividing the network into modules,17

a module being made up of one or more layers, accompanied by auxiliary classifiers, and greedily18

solving module-wise optimization problems sequentially (i.e. one after the other fully) or in parallel19

(i.e. at the same time batch-wise), consumes much less memory than end-to-end training as it does20

not need to store as many activations, and when done sequentially, only requires loading and training21

one module (so possibly one layer) at a time. Module-wise training has therefore been used in22

constrained settings in which end-to-end training can be impossible such as training on mobile23

devices [51, 50] and dealing with very large whole slide images [59]. When combined with batch24

buffers, parallel module-wise training also allows for parallel training of the modules [6]. Despite its25

simplicity, module-wise training has been recently shown to scale well [6, 40, 53, 38], outperforming26

more complicated alternatives to end-to-end training such as synthetic [27, 11] and delayed [26, 25]27

gradients, while having superior memory savings.28

In a classification task, module-wise training splits the network into successive modules, a module29

being made up of one or more layers. Each module takes as input the output of the previous module,30

and each module has an auxiliary classifier so that a local loss can be computed, with backpropagation31

happening only inside the modules and not between them (see Figure 1 below).32

The main drawback of module-wise training is the well-documented stagnation problem observed in33

[36, 5, 53, 40], whereby early modules overfit and learn more discriminative features than end-to-end34

training, destroying task-relevant information, and deeper modules don’t improve the test accuracy35

significantly, or even degrade it, which limits the deployment of module-wise training. We further36
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highlight this phenomenon in Figures 2 and 3 in Section 4.3. To tackle this issue, InfoPro [53] propose37

to maximize the mutual information that each module keeps with the input, in addition to minimizing38

the loss. [5] make the auxiliary classifier deeper and Sedona [40] make the first module deeper. These39

last two methods lack a theoretical grounding, while InfoPro requires a second auxiliary network40

for each module besides the classifier. We propose a different perspective, leveraging the analogy41

between residual connections and the Euler scheme for ODEs [54]. To preserve input information,42

we minimize the kinetic energy of the modules along with the training loss. Intuitively, this forces43

the modules to change their input as little as possible. We leverage connections with the theories of44

gradient flows in distribution space and optimal transport to analyze our method theoretically.45

Figure 1: Module-wise training.

Our approach is particularly well-adapted to networks that use residual connections such as ResNets46

[22, 23], their variants (e.g. ResNeXt [55], Wide ResNet [57], EfficientNet [49] and MobileNetV247

[41]) and vision transformers that are made up essentially of residual connections [32, 14], but is48

immediately usable on any network where many layers have the same input and output dimension49

such as VGG [45]. Our contributions are the following:50

• We propose a new method for module-wise training. Being a regularization, it is lighter51

than many recent state-of-the-art methods (PredSim [38], InfoPro [53]) that train another52

auxiliary network besides the auxiliary classifier for each module.53

• We theoretically justify our method, proving that it is a transport regularization that forces54

the module to be an optimal transport map making it more regular and stable. We also show55

that it amounts to a discretization of the gradient flow of the loss in probability space, which56

means that the modules progressively minimize the loss and explains why the method avoids57

the accuracy collapse observed in module-wise training.58

• Experimentally, we consistently improve the test accuracy of module-wise trained networks59

(ResNets, VGG and Swin-Transformer) beating 8 other methods, in sequential and parallel60

module-wise training, and also in multi-lap sequential training, a variant of sequential61

module-wise training that we introduce and that performs better in many cases. In particular,62

our regularization makes parallel module-wise training superior or comparable in accuracy63

to end-to-end training, while consuming 10% to 60% less memory.64

2 Transport-regularized module-wise training65

The typical setting of (sequential) module-wise training for minimizing a loss L, is, given a dataset66

D, to solve one after the other, for 1≤k≤K, Problems67

(Tk, Fk) ∈ arg min
T,F

∑
x∈D

L(F, T (Gk−1(x)) (1)

where Gk = Tk ◦ ... ◦ T1 for 1≤k≤K, G0=id, Tk is the module (one or many layers) and Fk is68

an auxiliary classifier. Module Tk receives the output of module Tk−1, and auxiliary classifier Fk69
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computes the prediction from the output of Tk so the loss can be computed. The features are x and L70

has access to their label to calculate the loss (see Figure 1). The final network trained this way is71

FK ◦GK . But, at inference, we can stop at any depth k and use Fk ◦Gk if it performs better. Indeed,72

an intermediate module often performs as well or better than the last module because of the early73

overfitting and subsequent stagnation or collapse problem of module-wise training [36, 5, 53, 40].74

We propose below in (2) a regularization that avoids the destruction of task-relevant information75

by the early modules by forcing them to minimally modify their input. Proposition 2.2 proves76

that by using our regularization (2), we are indeed making the modules build upon each other to77

solve the task, which is the property we desire in module-wise training, as the modules now act as78

successive proximal optimization steps in the minimizing movement scheme optimization algorithm79

for maximizing the separability of the data representation. The background on optimal transport80

(OT), gradient flows and the minimizing movement scheme is in Appendices A and B.81

2.1 Method statement82

To keep greedily-trained modules from overfitting and destroying information needed later, we83

penalize their kinetic energy to force them to preserve the geometry of the problem as much as84

possible. If each module is a single residual block (that is a function T=id+r, which includes85

many transformer architectures [32, 14]), its kinetic energy is simply the squared norm of its residue86

r=T−id, which we add to the loss L in the target of the greedy problems (1). All layers that have87

the same input and output dimension can be rewritten as residual blocks and the analysis applies to a88

large variety of architectures such as VGG [45]. Given τ>0, we now solve, for 1≤k≤K, Problems89

(T τk , F
τ
k ) ∈ arg min

T,F

∑
x∈D

L(F, T (Gτk−1(x)) +
1

2τ
‖T (Gτk−1(x))−Gτk−1(x)‖2 (2)

whereGτk=T τk ◦..◦T τ1 for 1≤k≤K andGτ0=id. The final network is F τK◦GτK . Intuitively, this biases90

the modules towards moving the points as little as possible, thus at least keeping the performance of91

the previous module. Residual connections are already biased towards small displacements and this92

bias is desirable and should be encouraged [28, 58, 21, 12, 29]. But the method can be applied to any93

module where T (x) and x have the same dimension so that T (x)−x can be computed.94

To facilitate the theoretical analysis, we rewrite the method in a more general formulation using data95

distribution ρ, which can be discrete or continuous, and the distribution-wide loss L that arises from96

the point-wise loss L. Then Problem (2) is equivalent to Problem97

(T τk , F
τ
k ) ∈ arg min

T,F
L(F, T]ρ

τ
k) +

1

2τ

∫
Ω

‖T (x)− x‖2 dρτk(x) (3)

with ρτk+1=(T τk )]ρ
τ
k and ρτ1=ρ. So data embedding distributions ρτk are pushed forward by maps T τk .98

2.2 Link with the minimizing movement scheme99

We now formulate our main result: solving Problems (3) is equivalent to following a minimizing100

movement scheme (MMS) [43] in distribution space for minimizing Z(µ) := minF L(F, µ), which101

is the loss of the best classifier. If we are limited to linear classifiers, Z(ρτk) is the linear separability102

of the representation ρτk at module k of the data distribution ρ. The MMS, introduced in [19, 18], is a103

metric counterpart to Euclidean gradient descent for minimizing functionals over distributions. In our104

case, Z is the functional we want to minimize. We define the MMS below in Definition 2.1105

The distribution space we work in is the metric Wasserstein space W2(Ω) = (P(Ω),W2), where106

Ω ⊂ Rd is a convex compact set, P(Ω) is the set of probability distributions over Ω and W2 is the107

Wasserstein distance over P(Ω) derived from the optimal transport problem with Euclidean cost:108

W 2
2 (α, β) = min

T s.t. T]α=β

∫
Ω

‖T (x)− x‖2 dα(x) (4)

where we assume that ∂Ω is negligible and that the distributions are absolutely continous.109

Definition 2.1. Given Z : W2(Ω)→ R, and starting from ρτ1 ∈ P(Ω), the Minimizing Movement110

Scheme (MMS) takes proximal steps for minimizing Z . It is s given by111

ρτk+1 ∈ arg min
ρ∈P(Ω)

Z(ρ) +
1

2τ
W 2

2 (ρ, ρτk) (5)
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The MMS (5) can be seen as a non-Euclidean implicit Euler step for following the gradient flow of112

Z , and ρτk converges to a minimizer of Z under some conditions (see the end of this section).113

So under the mentioned assumptions on Ω and absolute continuity of the distributions, we have that114

Problems (3) are equivalent to the minimizing movement scheme (5):115

Proposition 2.2. The distributions ρτk+1 = (T τk )]ρ
τ
k, where the functions T τk are found by solving116

(3) and ρτ1 = ρ is the data distribution, coincide with the MMS (5) for Z = minF L(F, .).117

Proof. The minimizing movement scheme (5) is equivalent to taking ρτk+1 = (T τk )]ρ
τ
k where118

T τk ∈ arg min
T :Ω→Ω

Z(T]ρ
τ
k) +

1

2τ
W 2

2 (T]ρ
τ
k, ρ

τ
k) (6)

under conditions that guarantee the existence of a transport map between ρτk and any other measure,119

and absolute continuity of ρτk suffices, and the loss can ensure that ρτk+1 is also absolutely continuous.120

Among the functions T τk that solve problem (6), is the optimal transport map from ρτk to ρτk+1. To121

solve specifically for this optimal transport map, we have to solve the equivalent Problem122

T τk ∈ arg min
T
Z(T]ρ

τ
k) +

1

2τ

∫
Ω

‖T (x)− x‖2 dρτk(x) (7)

Problems (6) and (7) have the same minimum value, but the minimizer of (7) is now an optimal123

transport map between ρτk and ρτk+1. This is immediate from the definition (4) of the W2 distance.124

Equivalently minimizing first over F and then over T in (3), it follows from the definition of Z that125

Problems (3) and (7) are equivalent, which concludes.126

When solving over neural networks in practice, their representation power shown by universal127

approximation theorems is important here to get close to equivalence between (5) and (6).128

If Z is lower-semi continuous then Problems (5) always admit a solution because P(Ω) is compact.129

If Z is also λ-geodesically convex for λ>0, we have convergence of ρτk as k→∞ and τ→0 to130

a minimizer of Z , potentially under more technical conditions (see Appendix B). Even though a131

machine learning loss will usually not satisfy these conditions, this analysis offers hints as to why132

our method avoids in practice the problem of stagnation or collapse in performance of module-wise133

training as k increases, as we are making proximal local steps in Wasserstein space to minimize the134

loss. This convergence discussion also suggests taking τ as small as possible and many modules.135

2.3 Regularity result136

As a secondary result, we show that Problem (3) has a solution and that the solution module T τk is an137

optimal transport map between its input and output distributions, which means that it comes with138

some regularity. [29] show that these networks generalize better and overfit less in practice. We139

assume that the minimization in F is over a compact set F , that ρτk is absolutely continuous, that L is140

continuous and non-negative, that Ω is convex and compact and that ∂Ω is negligible.141

Proposition 2.3. Problem (3) has a minimizer (T τk , F
τ
k ) such that T τk is an optimal transport map.142

And for any minimizer (T τk , F
τ
k ), T τk is an optimal transport map.143

The proof is in Appendix C. OT maps have regularity properties under some boundedness assumptions.144

Given Theorem A.1 in Appendix A taken from [16], T τk is η-Hölder continuous almost everywhere145

and if the optimization algorithm we use to solve the discretized problem (2) returns an approximate146

solution pair (F̃ τk , T̃
τ
k ) such that T̃ τk is an ε-optimal transport map, i.e. ‖T̃ τk − T τk ‖∞ ≤ ε, then we147

have (using the triangle inequality) the following stability property of the module T̃ τk :148

‖T̃ τk (x)− T̃ τk (y)‖ ≤ 2ε+ C‖x− y‖η (8)

for almost every x, y ∈ supp(ρτk) and C>0. Composing these stability bounds on T τk and T̃ τk allows149

to get bounds for the composition networks Gτk and G̃τk=T̃ τk ◦ .. ◦ T̃ τ1 .150

To summarize Section 2, the transport regularization makes each module more regular and it allows151

the modules to build on each other as k increases to solve the task, which is the property we desire.152
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3 Practical implementation153

3.1 Multi-block modules154

For simplicity, we presented in (2) the case where each module is a single residual block. However,155

in practice, we often split the network into modules that are made-up of many residual blocks each.156

We show here that regularizing the kinetic energy of such modules still amounts to a transport157

regularization, which means that the theoretical results in Propositions 2.2 and 2.3 still apply.158

If each module Tk is made up of M residual blocks, i.e. applies xm+1=xm+rm(xm) for 0≤m<M ,159

then its total discrete kinetic energy for a single data point x0 is the sum of its squared residue norms160 ∑
‖rm(xm)‖2, since a residual network can be seen as a discrete Euler scheme for an ordinary161

differential equation [54] with velocity field r:162

xm+1 = xm + rm(xm) ←→ ∂txt = rt(xt) (9)

and
∑
‖rm(xm)‖2 is then the discretization of the total kinetic energy

∫ 1

0
‖rt(x)‖2 dt of the ODE.163

If ψxm denotes the position of a point x after m residual blocks, then regularizing the kinetic energy164

of multi-block modules now means solving165

(T τk , F
τ
k ) ∈ arg min

T,F

∑
x∈D

(L(F, T (Gτk−1(x)) +
1

2τ

M−1∑
m=0

‖rm(ψxm)‖2) (10)

s.t. T = (id + rM−1) ◦ ... ◦ (id + r0), ψx0 = Gτk−1(x), ψxm+1 = ψxm + rm(ψxm)

whereGτk=T τk ◦..◦T τ1 for 1≤k≤K andGτ0=id. We also minimize this sum of squared residue norms166

instead of ‖T (x)− x‖2 (the two no longer coincide) as it works better in practice, which we assume167

is because it offers a more localized control of the transport. As expressed in (9), a residual network168

can be seen as an Euler scheme of an ODE and Problem (10) is then the discretization of169

(T τk , F
τ
k ) ∈ arg min

T,F
L(F, T]ρ

τ
k) +

1

2τ

∫ 1

0

‖vt‖2L2((φ·
t)]ρ

τ
k) dt (11)

s.t. T = φ·1, ∂tφ
x
t = vt(φ

x
t ), φ·0 = id

where ρτk+1 = (T τk )]ρ
τ
k and rm is the discretization of vector field vt at time t = m/M . Here,170

distributions ρτk are pushed forward through the maps T τk which correspond to the flow φ at time171

t = 1 of the kinetically-regularized velocity field vt. We recognize in the second term in the target of172

(11) the optimal transport problem in its dynamic formulation (15) from [7], and given the equivalence173

between the Monge OT problem (4) and the dynamic OT problem (15) in Appendix A, Problem (11)174

is in fact equivalent to the original continuous formulation (3), and the theoretical results in Section 2175

follow immediately (see also the proof of Proposition 2.3 in Appendix C).176

3.2 Solving the module-wise problems177

The module-wise problems can be solved in two ways. One can completely train each module with its178

auxiliary classifier for N epochs before training the next module, which receives as input the output179

of the previous trained module. We call this sequential module-wise training. But we can also do this180

batch-wise, i.e. do a complete forward pass on each batch but without a full backward pass, rather a181

backward pass that only updates the current module T τk and its auxiliary classifier F τk , meaning that182

T τk forwards its output to T τk+1 immediately after it computes it. We call this parallel module-wise183

training. It is called decoupled greedy training in [6], which shows that combining it with batch184

buffers solves all three locking problems and allows a linear training parallelization in the depth of the185

network. We propose a variant of sequential module-wise training that we call multi-lap sequential186

module-wise training, in which instead of training each module for N epochs, we train each module187

from the first to the last sequentially for N/R epochs, then go back and train from the first module to188

the last for N/R epochs again, and we do this for R laps. For the same total number of epochs and189

training time, and the same advantages (loading and training one module at a time) this provides a190

non-negligible improvement in accuracy over normal sequential module-wise training in most cases,191

as shown in Section 4. Despite our theoretical framework being that of sequential module-wise192

training, our method improves the test accuracy of all three module-wise training regimes.193
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3.3 Varying the regularization weight194

The discussion in Section 2.2 suggests taking a fixed weight τ for the transport cost that is as small as195

possible. However, instead of using a fixed τ , we might want to vary it along the depth k to further196

constrain with a smaller τk the earlier modules to avoid that they overfit or the later modules to197

maintain the accuracy of earlier modules. We might also want to regularize the network further in198

earlier epochs when the data is more entangled. We propose in Appendix D to formalize this varying199

weight τk,i across modules k and SGD iterations i by using a scheme inspired by the method of200

multipliers to solve Problems (2) and (10). However, it works best in only one experiment in practice.201

The observed dynamics of τk,i suggest simply finding a fixed value of τ that is multiplied by 2 for202

the second half of the network, which works best in all the other experiments (see Appendix E).203

4 Experiments204

We call our method TRGL for Transport-Regularized Greedy Learning. For the auxiliary classifiers,205

we use the architecture from DGL [5, 6], that is a convolution followed by an average pooling and206

a fully connected layer, which is very similar to that used by InfoPro [53], except for the Swin207

Transformer where we use a linear layer. We call vanilla greedy module-wise training with the208

same architecture but without our regularization VanGL, and we include its results in all tables for209

ablation study purposes. The code is available at github.com/block-wise/module-wise and210

implementation details are in Appendix E.211

4.1 Parallel module-wise training212

To compare with other methods, we focus first on parallel training, as it performs better than sequential213

training and has been more explored recently. The first experiment is training in parallel 3 residual214

architectures and a VGG-19 [45] divided into 4 modules of equal depth on TinyImageNet. We215

compare in Table 1 our results in this setup to three of the best recent parallel module-wise training216

methods: DGL [6], PredSim [38] and Sedona [40], from Table 2 in [40]. We find that our TRGL has217

a much better test accuracy than the three other methods, especially on the smaller architectures. It218

also performs better than end-to-end training on the three ResNets. Parallel TRGL in this case with 4219

modules consumes 10 to 21% less memory than end-to-end training (with a batch size of 256).220

Table 1: Test accuracy of parallel TRGL with 4 modules (average and 95% confidence interval over 5
runs) on TinyImageNet, compared to DGL, PredSim, Sedona and E2E from Table 2 in [40], with
memory saved compared to E2E as a percentage of E2E memory consumption in red.

Architecture Parallel VanGL Parallel TRGL (ours) PredSim DGL Sedona E2E

VGG-19 56.17 ± 0.29 (↓ 27%) 57.28 ± 0.20 (↓ 21%) 44.70 51.40 56.56 58.74
ResNet-50 58.43 ± 0.45 (↓ 26%) 60.30 ± 0.58 (↓ 20%) 47.48 53.96 54.40 58.10
ResNet-101 63.64 ± 0.30 (↓ 24%) 63.71 ± 0.40 (↓ 11%) 53.92 53.80 59.12 62.01
ResNet-152 63.87 ± 0.16 (↓ 21%) 64.23 ± 0.14 (↓ 10%) 51.76 57.64 64.10 62.32

The second experiment is training in parallel two ResNets divided into 2 modules on CIFAR100221

[30]. We compare in Table 2 our results in this setup to the two delayed gradient methods DDG [26]222

and FR [25] from Table 2 in [25]. Here again, parallel TRGL has a better accuracy than the other223

two methods and than end-to-end training. With only two modules, the memory gains from less224

backpropagation are neutralized by the weight of the extra classifier and there are negligible memory225

savings compared to end-to-end training. However, parallel TRGL has a better test accuracy by up to226

almost 2 percentage points.227

Table 2: Test accuracy of parallel TRGL with 2 modules (average and 95% confidence interval over 3
runs) on CIFAR100, compared to DDG, FR and E2E from Table 2 in [25].

Architecture Parallel VanGL Parallel TRGL (ours) DDG FR E2E

ResNet-101 77.31 ± 0.27 77.87 ± 0.44 75.75 76.90 76.52
ResNet-152 75.40 ± 0.75 76.55 ± 1.90 73.61 76.39 74.80
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The third experiment is training in parallel a ResNet-110 divided into two, four, eight and sixteen228

modules on STL10 [10]. We compare in Table 3 our results in this setup to the recent methods229

InfoPro [53] and DGL [6] from Table 2 in [53]. TRGL largely outperforms the other methods. It230

also outperforms end-to-end training in all but one case (that with 16 modules). With a batch size of231

64, memory savings of parallel TRGL compared to end-to-end training reach 48% and 58.5% with 8232

and 16 modules respectively, with comparable test accuracy. With 4 modules, TRGL training weighs233

24% less than end-to-end-training, and has a test accuracy that is better by 2 percentage points (see234

Section 4.2 and Table 5 for a detailed memory usage comparison with InfoPro).235

Table 3: Test accuracy of Parallel (Par) TRGL with K modules (average and 95% confidence interval
over 5 runs) using a ResNet-110 on STL10, compared to DGL, two variants of InfoPro and E2E from
Table 2 in [53].

K Par VanGL Par TRGL (ours) DGL InfoPro S InfoPro C E2E

2 79.85 ± 0.93 80.04 ± 0.85 75.03 ± 1.18 78.98 ± 0.51 79.01 ± 0.64 77.73 ± 1.61
4 77.11 ± 2.31 79.72 ± 0.81 73.23 ± 0.64 78.72 ± 0.27 77.27 ± 0.40 77.73 ± 1.61
8 75.71 ± 0.55 77.82 ± 0.73 72.67 ± 0.24 76.40 ± 0.49 74.85 ± 0.52 77.73 ± 1.61

16 73.57 ± 0.95 77.22 ± 1.20 72.27 ± 0.58 73.95 ± 0.71 73.73 ± 0.48 77.73 ± 1.61

The fourth experiment is training (from scratch) in parallel a Swin-Tiny Transformer [32] divided236

into 4 modules on three datasets. We compare in Table 4 our results with those of InfoPro [53] and237

InfoProL, a variant of InfoPro proposed in [39]. TRGL outperforms the other module-wise training238

methods. It does not outperform end-to-end training in this case, but consumes 29% less memory239

on CIFAR10 and CIFAR100 and 50% less on STL10, compared to 38% for InfoPro and 45% for240

InfoProL in [39].241

Table 4: Test accuracy of parallel TRGL with 4 modules (average and 95% confidence interval over 5
runs) on a Swin-Tiny Transformer, compared to InfoPro, InfoProL and E2E from Table 3 in [39],
with memory saved compared to E2E as a percentage of E2E memory consumption in red.

Dataset Parallel VanGL Parallel TRGL (ours) InfoPro InfoProL E2E

STL10 67.00 ± 1.36 (↓ 55%) 67.92 ± 1.12 (↓ 50%) 64.61 (↓ 38%) 66.89 (↓ 45%) 72.19
CIFAR10 83.94 ± 0.42 (↓ 33%) 86.48 ± 0.54 (↓ 29%) 83.38 (↓ 38%) 86.28 (↓ 45%) 91.37

CIFAR100 69.34 ± 0.91 (↓ 33%) 74.11 ± 0.31 (↓ 29%) 68.36 (↓ 38%) 73.00 (↓ 45%) 75.03

4.2 Memory savings242

As seen above, parallel TRGL is lighter than end-to-end training by up to almost 60%. The extra243

memory consumed by our regularization compared to parallel VanGL is between 2 and 13% of244

end-to-end memory. Memory savings depend then mainly on the size of the auxiliary classifier,245

which can easily be adjusted. Note that delayed gradients method DDG and FR increase memory246

usage [25], and Sedona does not claim to save memory, but rather to speed up training [40]. DGL is247

architecture-wise essentially identical to VanGL and consumes the same memory.248

We compare in Table 5 the memory consumption of our method to that of InfoPro [53] on a ResNet-249

110 on STL10 with a batch size of 64 (the same setting as in Table 3). InfoPro [53] also propose250

to split the network into modules that have the same weight but not necessarily the same number251

of layers. They only implement this for K≤4 modules. When the modules are even in weight and252

not in depth, we call the training methods VanGL*, TRGL* and InfoPro*. In practice, this leads253

to shallower early modules which slightly hurts performance according to [40], and as seen below.254

However, TRGL* still outperforms InfoPro and end-to-end training, and it leads to even bigger255

memory savings. We see in Table 5 that TRGL saves more memory than InfoPro in two out of three256

cases (4 and 8 modules), and about the same in the third case (16 modules), with much better test257

accuracy in all cases. Likewise, TRGL* is lighter than InfoPro*, with better accuracy. However,258

parallel module-wise training does slightly slow down training. Epoch time increases by 6% with 2259

modules and by 16% with 16 modules. TRGL is only slower than VanGL by 2% for for all number of260

modules due to the additional regularization term. This is comparable to InfoPro which report a time261

overhead between 1 and 27% compared to end-to-end training. See Appendix F for more details.262
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Table 5: Memory savings using a ResNet-110 on STL10 split into K modules trained in parallel with
a batch size of 64, as a percentage of the weight of end-to-end training. Average test accuracy over 5
runs is between brackets. Test accuracy of end-to-end training is 77.73%.

Equally deep modules Equally heavy modules

K Par VanGL Par TRGL (ours) InfoPro Par VanGL* Par TRGL* (ours) InfoPro*

4 27% (77.11) 24% (79.72) 18% (78.72) 41% (77.14) 39% (78.94) 33% (78.78)
8 50% (75.71) 48% (77.82) 37% (76.40)
16 61% (73.57) 58% (77.22) 59% (73.95)

4.3 Sequential full block-wise training263

Block-wise sequential training, meaning that each module is a single residual block and that the264

blocks are trained sequentially, therefore requiring only enough memory to train one block and its265

classifier. Even though it has been less explored in recent module-wise training methods, it has been266

used in practice in very constrained settings such as on-device training [51, 50]. We then test our267

regularization in this section in this setting, with more details in Appendix G. We propose here to use268

shallower ResNets that are initially wider. These architectures are well-adapted to layer-wise training269

as seen in [5]. We check first in Table 9 in Appendix G that this architecture works well with parallel270

module-wise training with 2 modules by comparing it favorably on CIFAR10 [30] with methods271

DGL [6], InfoPro [53] and DDG [26] that use a ResNet-110 with the same number of parameters.272

We then train a 10-block ResNet block-wise on CIFAR100. In Tables 10 and 11 in Appendix G, we273

see that MLS training improves the accuracy of sequential training by 0.8 percentage points when the274

trainset is full, but works less well on small train sets. Of the two, the regularization mainly improves275

the test accuracy of MLS training. The improvement increases as the training set gets smaller and276

reaches 1 percentage point. While parallel module-wise training performs quite close to end-to-end277

training in the full data regime and much better in the small data regime, sequential and multi-lap278

sequential training are competitive with end-to-end training in the small data regime. Combining the279

multi-lap trick and the regularization improves the accuracy of sequential training by 1.2 percentage280

points when using the entire trainset. We report further results for full block-wise training on MNIST281

[31] and CIFAR10 [30] in Tables 12 and 13 in Appendix G. The 88% accuracy of sequential training282

on CIFAR10 in Table 12 is the same as in Table 2 of [5], which is the best method for layer-wise283

sequential training available, with VGG networks of comparable depth and width.284

We verify that our method avoids the accuracy collapse. In Figure 2, we show the accuracy of285

each module with and without the regularization. On the left, from parallel module-wise training286

experiments from Table 3, TRGL performs worse than vanilla greedy learning early, but surpasses it in287

later modules, indicating that it does avoid early overfitting. On the right, from sequential block-wise288

training experiments from Table 12, we see a large decline in performance that the regularization289

avoids. We see similar patterns in Figure 3 in Appendix G with parallel and MLS block-wise training.290

Figure 2: Test accuracy after each module averaged over 10 runs with 95% confidence intervals.
Left: parallel vanilla (VanGL, in blue) and regularized (TRGL, in red) module-wise training of a
ResNet-110 with 16 modules on STL10 (Table 3). Right: sequential vanilla (VanGL, in blue) and
regularized (TRGL, in red) block-wise training of a 10-block ResNet on 2% of CIFAR10 (Table 12).
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5 Limitations291

The results in Appendix G show a few limitations of our method, as the improvements from the292

regularization are sometimes minimal on sequential training. However, the results show that our293

approach works in all settings (parallel and sequential with many or few modules), whereas other294

papers don’t test their methods in all settings, and some show problems in other settings than the295

original one in subsequent papers (e.g. delayed gradients methods when the number of modules296

increases [25] and PredSim in [40]). Also, for parallel training in Section 4.1, the improvement from297

the regularization compared to VanGL is larger and increases with the number of modules (so with298

the memory savings) and reaches almost 5 percentage points. We show in Appendix H that our299

method is not very sensitive to the choice of hyperparameter τ over a large scale.300

6 Related work301

Layer-wise training was initially been considered as a pre-training and initialization method [8, 36]302

and was shown recently to be competitive with end-to-end training [5, 38]. Many papers consider303

using a different auxiliary loss, instead of or in addition to the classification loss: kernel similarity [35],304

information-theory-inspired losses [46, 37, 34, 53] and biologically plausible losses [46, 38, 20, 9, 56].305

Methods [5], PredSim [38], DGL [6], Sedona [40] and InfoPro [53] report the best module-wise306

training results. [5, 6] do it simply through the architecture choice of the auxiliary networks. Sedona307

applies architecture search to decide on where to split the network into modules and what auxiliary308

classifier to use before module-wise training. Only BoostResNet [24] also proposes a block-wise309

training idea geared for ResNets. However, their results only show better early performance and310

end-to-end fine-tuning is required to be competitive. A method called ResIST [15] that is similar311

to block-wise training of ResNets randomly assigns ResBlocks to one of up to 16 modules that312

are trained independently and reassembled before another random partition. More of a distributed313

training method, it is only compared with local SGD [47]. These methods can all be combined with314

our regularization, and we do use the auxiliary classifier from [5, 6].315

Besides module-wise training, methods such as DNI [27, 11], DDG [26] and FR [25], solve the316

update and backward locking problems with an eye towards parallelization by using delayed or317

predicted gradients, or even predicted inputs to address forward locking, which is what [48] do. But318

they observe training issues with more than 5 modules [25]. This makes them compare unfavorably319

to module-wise training [6]. The high dimension of the predicted gradient which scales with the320

size of the network renders [27, 11] challenging in practice. Therefore, despite its simplicity, greedy321

module-wise training is more appealing when working in a constrained setting.322

Viewing ResNets as dynamic transport systems [13, 29] followed from their view as a discretization323

of ODEs [54]. Transport regularization of ResNets in particular is motivated by the observation that324

they are naturally biased towards minimally modifying their input [28, 21]. We further linked this325

transport viewpoint with gradient flows in the Wasserstein space to apply it in a principled way to326

module-wise training. Gradient flows on the data distribution appeared recently in deep learning.327

In [1], the focus is on functionals of measures whose first variations are known in closed form and328

used, through their gradients, in the algorithm. This limits the scope of their applications to transfer329

learning and similar tasks. Likewise, [17, 33, 4, 3] use the explicit gradient flow of f -divergences330

and other distances between measures for generation and generator refinement. In contrast, we use331

the discrete minimizing movement scheme which does not require computation of the first variation332

and allows to consider classification.333

7 Conclusion334

We introduced a transport regularization for module-wise training that theoretically links module-wise335

training to gradient flows of the loss in probability space. Our method provably leads to more regular336

modules and experimentally improves the test accuracy of module-wise parallel, sequential and337

multi-lap sequential (a variant of sequential training that we introduce) training. Through this simple338

method that does not complexify the architecture, we make module-wise training competitive with339

end-to-end training while benefiting from its lower memory usage. Being a regularization, the method340

can easily be combined with other layer-wise training methods. Future work can experiment with341

working in Wasserstein space Wp for p6=2, i.e. regularizing with a norm ‖.‖p with p6=2.342

9



References343

[1] ALVAREZ-MELIS, D., AND FUSI, N. Dataset dynamics via gradient flows in probability space.344

ICML (2021).345

[2] AMBROSIO, L., GIGLI, N., AND SAVARE, G. Gradient Flows in Metric Spaces and in the346

Space of Probability Measures. Birkhäuser Basel, 2005.347

[3] ANSARI, A. F., ANG, M. L., AND SOH, H. Refining deep generative models via discriminator348

gradient flow. In ICLR (2021).349

[4] ARBEL, M., KORBA, A., SALIM, A., AND GRETTON, A. Maximum mean discrepancy350

gradient flow. In NeurIPS (2019).351

[5] BELILOVSKY, E., EICKENBERG, M., AND OYALLON, E. Greedy layerwise learning can scale352

to imagenet. In ICML (2019).353

[6] BELILOVSKY, E., EICKENBERG, M., AND OYALLON, E. Decoupled greedy learning of cnns.354

In ICML (2020).355

[7] BENAMOU, J., AND BRENIER, Y. A computational fluid mechanics solution to the monge-356

kantorovich mass transfer problem. Numerische Mathematik (2000).357

[8] BENGIO, Y., LAMBLIN, P., POPOVICI, D., AND LAROCHELLE, H. Greedy layer-wise training358

of deep networks. In NeurIPS (2006).359

[9] BERND ILLING, WULFRAM GERSTNER, G. B. Towards truly local gradients with clapp:360

Contrastive, local and predictive plasticity. arXiv (2020).361

[10] COATE, A., LEE, H., AND NG, A. Y. An analysis of single layer networks in unsupervised362

feature learning. In AISTATS (2011).363
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A Background on optimal transport470

The Wasserstein space W2(Ω) with Ω a convex and compact subset of Rd is the space P(Ω) of471

probability measures over Ω, equipped with the distance W2 given by the solution to the optimal472

transport problem473

W 2
2 (α, β) = min

γ∈Π(α,β)

∫
Ω×Ω

‖x− y‖2 dγ(x, y) (12)

where Π(α, β) is the set of probability distribution over Ω × Ω with first marginal α and second474

marginal β, i.e. Π(α, β) = {γ ∈ P(Ω × Ω) | π1]γ = α, π2]γ = β} where π1(x, y) = x and475

π2(x, y) = y. The optimal transport problem can be seen as looking for a transportation plan476

minimizing the cost of displacing some distribution of mass from one configuration to another. This477

problem indeed has a solution in our setting and W2 can be shown to be a geodesic distance (see478

for example [42, 52]). If α is absolutely continuous and ∂Ω is α-negligible then the problem in (12)479

(called the Kantorovich problem) has a unique solution and is equivalent to the Monge problem, i.e.480

W 2
2 (α, β) = min

T s.t. T]α=β

∫
Ω

‖T (x)− x‖2 dα(x) (13)

and this problem has a unique solution T ? linked to the solution γ? of (12) through γ? = (id, T ?)]α.481

Another equivalent formulation of the optimal transport problem in this setting is the dynamical482

formulation [7]. Here, instead of directly pushing samples of α to β using T , we can equivalently483

displace mass, according to a continuous flow with velocity vt : Rd → Rd. This implies that the484

density αt at time t satisfies the continuity equation ∂tαt +∇ · (αtvt) = 0, assuming that initial and485

final conditions are given by α0 = α and α1 = β respectively. In this case, the optimal displacement486

is the one that minimizes the total action caused by v :487

W 2
2 (α, β) = min

v

∫ 1

0

‖vt‖2L2(αt)
dt (14)

s.t. ∂tαt +∇ · (αtvt) = 0, α0 = α, α1 = β

Instead of describing the density’s evolution through the continuity equation, we can describe the488

paths φxt taken by particles at position x from α when displaced along the flow v. Here φxt is the489

position at time t of the particle that was at x ∼ α at time 0. The continuity equation is then equivalent490

to ∂tφxt = vt(φ
x
t ). See chapters 4 and 5 of [42] for details. Rewriting the conditions as necessary,491

Problem (14) becomes492

W 2
2 (α, β) = min

v

∫ 1

0

‖vt‖2L2((φ·
t)]α) dt (15)

s.t. ∂tφxt = vt(φ
x
t ), φ·0 = id, (φ·1)]α = β

and the optimal transport map T ? that solves (13) is in fact T ?(x) = φx1 for φ that solves the493

continuity equation together with the optimal v? from (15). We refer to [42, 52] for these results on494

optimal transport.495

Optimal transport maps have some regularity properties under some boundedness assumptions. We496

mention the following result from [16]:497

Theorem A.1. Let α and β be absolutely continuous measures on Rd and T the optimal transport498

map between α and β for the Euclidean cost. Suppose there are bounded open sets X and Y , such499

that the density of α (respectively of β) is null on Xc (respectively Y c) and bounded away from zero500

and infinity on X (respectively Y ).501

Then there exists two relatively closed sets of null measure A ⊂ X and B ⊂ Y , such that T is
η-Hölder continuous from X \A to Y \B, i.e. ∀ x, y ∈ X \A we have

‖T (x)− T (y)‖ ≤ C‖x− y‖η for constants η, C > 0

B Background on gradient flows502

We follow [43, 2] for this background on gradient flows. Given a function L : Rd → R and an initial503

point x0 ∈ Rd, a gradient flow is a curve x : [0,∞[→ Rd that solves the Cauchy problem504 {
x′(t) = −∇L(x(t))

x(0) = x0
(16)
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A solution exists and is unique if∇L is Lipschitz or L is convex. Given τ > 0 and xτ0 = x0 define a505

sequence (xτk)k through the minimizing movement scheme:506

xτk+1 ∈ arg min
x∈Rd

L(x) +
1

2τ
‖x− xτk‖2 (17)

L lower semi-continous and L(x) ≥ C1 − C2‖x‖2 guarantees existence of a solution of (17) for507

τ small enough. L λ-convex meets these conditions and also provides uniqueness of the solution508

because of strict convexity of the target. See [42, 43, 2].509

We interpret the point xτk as the value of a curve x at time kτ . We can then construct a curve xτ as510

the piecewise constant interpolation of the points xτk. We can also construct a curve x̃τ as the affine511

interpolation of the points xτk.512

If L(x0) < ∞ and inf L > −∞ then (xτ ) and (x̃τ ) converge uniformly to the same curve x as τ513

goes to zero (up to extracting a subsequence). If L is C1, then the limit curve x is a solution of (16)514

(i.e. a gradient flow of L). If L is not differentiable then x is solution of the problem defined using515

the subdifferential of L, i.e. x satisfies x′(t) ∈ −∂L(x(t)) for almost every t.516

If L is λ-convex with λ > 0, then the solution to (16) converges exponentially to the unique minimizer517

of L (which exists by coercivity). So taking τ → 0 and k →∞, we tend towards the minimizer of L.518

The advantage of the minimizing movement scheme (17) is that it can be adapted to metric spaces519

by replacing the Euclidean distance by the metric space’s distance. In the (geodesic) metric space520

W2(Ω) with Ω convex and compact, for L : W2(Ω)→ R∪{∞} lower semi-continuous for the weak521

convergence of measures in duality with C(Ω) (equivalent to lower semi-continuous with respect to522

the distance W2) and ρτ0 = ρ0 ∈ P(Ω), the minimizing movement scheme (17) becomes523

ρτk+1 ∈ arg min
ρ∈P(Ω)

L(ρ) +
1

2τ
W 2

2 (ρ, ρτk) (18)

This problem has a solution because the objective is lower semi-continuous and the minimization is524

over P(Ω) which is compact by Banach-Alaoglu.525

We can construct a piecewise constant interpolation between the measures ρτk, or a geodesic inter-526

polation where we travel along a geodesic between ρτk and ρτk+1 in W2(Ω), constructed using the527

optimal transport map between these measures. Again, if L(x0) <∞ and inf L > −∞ then both528

interpolations converge uniformly to a limit curve ρ̃ as τ goes to zero. Under further conditions on L,529

mainly λ-geodesic convexity (i.e. λ-convexity along geodesics) for λ > 0, we can prove stability and530

convergence of ρ̃(t) to a minimizer of L as t→∞, see [42, 43, 2].531

C Proof of Proposition 2.3532

Proof. Take a minimizing sequence (F̃i, T̃i), i.e. such that C(F̃i, T̃i)→ min C, where C ≥ 0 is the533

target function in (3) and denote βi = T̃i]ρ
τ
k. Then by compacity F̃i → F ? and βi ⇀ β? in duality534

with Cb(Ω) by Banach-Alaoglu. There exists T ? an optimal transport map between ρτk and β?. Then535

C(F ?, T ?) ≤ lim C(F̃i, T̃i) = min C by continuity of L and because536 ∫
Ω

‖T ?(x)− x‖2 dρτk(x) = W 2
2 (ρτk, β

?)

= limW 2
2 (ρτk, βi)

≤ lim

∫
Ω

‖T̃i(x)− x‖2 dρτk(x)

as W2 metrizes weak convergence of measures. We take (F τk , T
τ
k ) = (F ?, T ?). It is also immediate537

that for any minimizing pair, the transport map has to be optimal. Taking a minimizing sequence538

(F̃i, ṽ
i) and the corresponding induced maps T̃i we get the same result for Problem (11). Problems539

(3) and (11) are equivalent by the equivalence between Problems (13) and (15).540

D Varying the regularization weight541

The discussion in Section 2.2 suggests taking a fixed weight τ for the transport cost that is as small as542

possible. However, instead of using a fixed τ , we might want to vary it along the depth k to further543
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constrain with a smaller τk the earlier modules to avoid that they overfit or the later modules to544

maintain the accuracy of earlier modules. We might also want to regularize the network further in545

earlier epochs when the data is more entangled. To unify and formalize this varying weight τk,i across546

modules k and SGD iterations i, we use a scheme inspired by the method of multipliers to solve547

Problems (2) and (10). To simplify the notations, we will instead consider the weight λk,i:=2τk,i548

given to the loss. We denote θk,i the parameters of both Tk and Fk at SGD iteration i. We also denote549

L(θ, x) and W (θ, x) respectively the loss and the transport regularization as functions of parameters550

θ and data point x. We now increase the weight λk,i of the loss every s iterations of SGD by a value551

that is proportional to the current loss. Given increase factor h>0, initial parameters θk,1, initial552

weights λk,1≥0, learning rates (ηi) and batches (xi), we apply for module k and i≥1:553 {
θk,i+1 = θk,i − ηi∇θ(λk,i L(θk,i, xi) +W (θk,i, xi))

λk,i+1 = λk,i + hL(θk,i+1, xi+1) if i mod s = 0 else λk,i

The weights λk,i will vary along modules k because they will evolve differently with iterations i554

for each k. They will increase more slowly with i for larger k because deeper modules will have555

smaller loss. This method can be seen as a method of multipliers for the problem of minimizing556

the transport under the constraint of zero loss. Therefore it is immediate by slightly adapting the557

proof of Proposition 2.3 or from [29] that we are still solving a problem that admits a solution558

whose non-auxiliary part is an optimal transport map with the same regularity as stated above. We559

use the same initial value λ1 = λk,1 for all modules so that this method requires choosing three560

hyper-parameters (h, s and λ1). In practice (see Section 4.1 and Appendix E), it works best in only561

one experiment. Simply manually finding a value of τ that is multiplied by 2 for the second half of562

the network works best in all the other experiments.563

E Implementation details564

We use standard data augmentation and standard implementations for VGG-19, ResNet-50, ResNet-565

101, ResNet-110, ResNet-152 and Swin-Tiny Transformer (the same as for the other methods in566

Section 4.1). We use NVIDIA Tesla V100 16GB GPUs for the experiments. Training a Resnet-152567

on TinyImageNet in Table 1 takes about 36 hours. Training a Resnet-152 on CIFAR100 in Table 1568

takes about 11 hours. Training a ResNet-110 on STL10 in Table 3 takes about 3 hours. Training a569

Swin-Tiny Transformer in Table 4 take between 40 minutes and 1 hour.570

For sequential and multi-lap sequential training, we use SGD with a learning rate of 0.007. With the571

exception of the Swin Transformer in Table 4, we use SGD for parallel training with learning rate of572

0.003 in all Tables but Table 3 where the learning rate is 0.002. For the Swin Transformer in Table 4,573

we use the AdamW optimizer with a learning rate of 0.007 and a CosineLR scheduler.574

For end-to-end training we use a learning rate of 0.1 that is divided by five at epochs 120, 160 and575

200. Momentum is always 0.9. For parallel and end-to-end training, we train for 300 epochs. For576

sequential and multi-lap sequential training, the number of epochs varies per module (see Section G).577

For experiments in Section 4.1, we use a batch size of 256, orthogonal initialization [44] with a gain578

of 0.1, label smoothing of 0.1 and weight decay of 0.0002. The batch size changes to 64 for Table 3579

and to 1024 for Table 4.580

For experiments in Section 4.3, we use a batch size of 128, orthogonal initialization with a gain of581

0.05, no label smoothing and weight decay of 0.0001.582

In Table 1, we use τ = 500000 for the first two modules and then double it for the last two modules583

for TRGL. In Table 2, we use λk,1 = 1, h = 1 and s = 50 for TRGL. In Table 3, we use τ = 0.5 and584

double it at the midpoint, expect for the first line where τ = 50.585

F Memory savings586

We compare in Table 6 the memory consumption of our method to that of InfoPro [53] on a ResNet-587

110 split into K modules trained in parallel on STL10 with a batch size of 64 (so the same setting as588

in Table 3 in Section 4.1). We report in Table 6 the memory saved as a percentage of the 6230 MiB589

memory required by end-to-end training with the same batch size. VanGL refers to our architecture590

trained without the regularization. InfoPro [53] also propose to split the network into K modules that591
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have the same weight but not necessarily the same number of layers. They only implement this for592

K≤4 modules. When the modules are even in weight and not in depth, we call the training methods593

VanGL*, TRGL* and InfoPro*. In practice, this leads to shallower early modules which slightly594

hurts performance according to [40]. We verify this in Table 7 (to be compared with Table 3 in595

Section 4.1). However, TRGL* still outperforms InfoPro and end-to-end training, and it leads to even596

bigger memory savings. We see in Table 6 that TRGL saves more memory than InfoPro in two out of597

three cases (4 and 8 modules), and about the same in the third case (16 modules), with much better598

test accuracy in all cases. Likewise, TRGL* is lighter than InfoPro*, with better accuracy. We also599

see that the added memory cost of the regularization compared to vanilla greedy learning is small.600

However, parallel module-wise training does slightly slow down training. Epoch time increases by601

6% with 2 modules and by 16% with 16 modules. TRGL is only slower than VanGL by 2% for for602

all number of modules due to the additional regularization term. This is comparable to InfoPro which603

report a time overhead between 1 and 27% compared to end-to-end training.604

Table 6: Memory savings using a ResNet-110 on STL10 split into K modules trained in parallel with
a batch size of 64, as a percentage of the weight of end-to-end training. Average test accuracy over 5
runs is between brackets. Test accuracy of end-to-end training is 77.73%.

Equally deep modules Equally heavy modules

K Par VanGL Par TRGL (ours) InfoPro Par VanGL* Par TRGL* (ours) InfoPro*

4 27% (77.11) 24% (79.72) 18% (78.72) 41% (77.14) 39% (78.94) 33% (78.78)
8 50% (75.71) 48% (77.82) 37% (76.40)
16 61% (73.57) 58% (77.22) 59% (73.95)

Table 7: Test accuracy of parallel (Par) TRGL* with K modules (average and 95% confidence
interval over 5 runs) on a ResNet-110 trained on STL10, compared to InfoPro* and E2E training
from Table 3 in [53]

K Par VanGL* Par TRGL* (ours) InfoPro*

2 79.05 ± 1.33 79.47 ± 1.36 79.05 ± 0.57
4 77.14 ± 1.23 78.94 ± 1.13 78.78 ± 0.72

Note that methods DDG [26] and FR [25], being delayed gradient methods and not module-wise605

training methods, do no save memory (they actually increase memory usage, see FR [25]). Sedona606

[40] also does not claim to save memory, as their first module (the heaviest) is deeper than the others,607

but rather to speed up computation. Finally, DGL [6] is architecture-wise essentially identical to608

VanGL and consumes the same memory.609

G Sequential full block-wise training610

To show that our method works well with all types of module-wise training when using few modules,611

we train a ResNet-101 split in 2 modules on CIFAR100, sequentially and multi-lap sequentially.612

Results are in Table 8. We see that our idea of multi-lap sequential training adds one percentage point613

of accuracy to sequential training, and that the regularization further improves the accuracy by about614

half a percentage point. As only one module has to be trained at a time, these two training methods615

require only around half the memory end-to-end training requires (the size of the heaviest module616

and its classifier more exactly).617

Table 8: Test accuracy of sequential (Seq) and multi-lap sequential (MLS) TRGL and VanGL with 2
modules on CIFAR100 using ResNet-101 (average of 2 runs).

Seq VanGL Seq TRGL MLS VanGL MLS TRGL

73.31 73.61 74.34 74.78
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We now focus on full block-wise training, meaning that each module is a single ResBlock, mostly618

sequentially. We propose here to use shallower and initially wider ResNets with a downsampling and619

256 filters initially and a further downsampling and doubling of the number of filters at the midpoint,620

no matter the depth. In these ResNets, we use the ResBlock from [22] with two convolutional layers.621

If such a network is divided in K modules of M ResBlocks each, we call the network a K−M622

ResNet. These wider shallower architectures are well-adapted to layer-wise training as seen in [5].623

We check in Table 9 that this architecture works well with parallel module-wise training by comparing624

favorably on CIFAR10 ([30]) a 2-7 ResNet with DGL, InfoPro ([53]) and DDG [26]. The 2-7 ResNet625

has 45 millions parameters, which is about the same as the ResNet-110 divided in two used by the626

other methods, and performs better when trained in parallel.627

Table 9: Average test accuracy and 95% confidence interval of 2-7 ResNet over 10 runs on CIFAR10
with parallel TRGL and VanGL, compared to DGL and DDG from [6] and InfoPro from [53] that
split a ResNet-110 in 2 module-wise-parallel-trained modules.

Parallel VanGL (ours) Parallel TRGL (ours) DGL DDG InfoPro

94.01 ± .17 94.05 ± .18 93.50 93.41 93.58

We now train a 10-block ResNet block-wise on CIFAR100 (a 10-1 ResNet in our notations). We628

report even the small improvements in accuracy to show that our method works in all settings (parallel629

or sequential with many or few splits), which other methods don’t do. For sequential training, block630

k is trained for 50+10k epochs where 0≤k≤10, block 0 being the encoder. This idea of increasing631

the number of epochs along with the depth is found in [36]. For MLS training, block k is trained632

for 10+2k epochs, and this is repeated for 5 laps. In block-wise training, the last block does not633

always perform the best and we report the accuracy of the best block. In Table 10, we see that MLS634

training improves the test accuracy of sequential training by around 0.8 percentage points when the635

training dataset is full, but works less well on small training sets. Of the two, the regularization636

mainly improves the test accuracy of MLS training. The improvement increases as the training set637

gets smaller and reaches 1 percentage point. That is also the case for parallel module-wise training in638

Table 11, which already performs quite close to end-to-end training in the full data regime and much639

better in the small data regime. Combining the multi-lap trick and the regularization improves the640

performance of sequential training by 1.2 percentage points.641

Table 10: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs on
CIFAR100 with different train sizes and sequential (Seq), multi-lap sequential (MLS) and parallel
(Par) TRGL and VanGL, compared to E2E.

Train size Seq VanGL Seq TRGL MLS VanGL MLS TRGL E2E

50000 68.74 ± 0.45 68.79 ± 0.56 69.48 ± 0.53 69.95 ± 0.50 75.85 ± 0.70
25000 60.48 ± 0.15 60.59 ± 0.14 61.33 ± 0.23 61.71 ± 0.32 65.36 ± 0.31
12500 51.64 ± 0.33 51.74 ± 0.26 51.30 ± 0.22 51.89 ± 0.30 52.39 ± 0.97
5000 36.37 ± 0.33 36.40 ± 0.40 33.68 ± 0.48 34.61 ± 0.59 36.38 ± 0.31

Table 11: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs on
CIFAR100 with different train sizes and sequential (Seq), multi-lap sequential (MLS) and parallel
(Par) TRGL and VanGL, compared to E2E.

Train size Par VanGL Par TRGL E2E

50000 72.59 ± 0.40 72.63 ± 0.40 75.85 ± 0.70
25000 64.84 ± 0.19 65.01 ± 0.27 65.36 ± 0.31
12500 55.13 ± 0.24 55.40 ± 0.35 52.39 ± 0.97
5000 39.45 ± 0.23 40.36 ± 0.23 36.38 ± 0.31
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We report further results of block-wise training on CIFAR10 in Table 12 and on MNIST [31] in Table642

13, but now we report the accuracy of the last block. We see again greater improvement due to the643

regularization as the training set gets smaller, gaining up to 6 percentage points.644

Table 12: Average last block test accuracy and 95% confidence interval of 10-1 ResNet over 10 runs
on CIFAR10 with different train sizes and sequential TRGL and VanGL, compared to E2E.

Train size Seq VanGL Seq TRGL E2E

50000 88.02 ± .18 88.20 ± .24 91.88 ± .18
25000 83.95 ± .13 84.28 ± .22 88.75 ± .27
10000 76.00 ± .39 77.18 ± .34 82.61 ± .35
5000 67.74 ± .49 69.67 ± .44 73.93 ± .67
1000 45.67 ± .88 51.34 ± .90 50.63 ± .98

Table 13: Average last block test accuracy and 95% confidence interval of 20-1 ResNet (32 filters,
fixed encoder, same classifier) over 20/50 runs on MNIST with different train sizes and parallel TRGL
and VanGL, compared to E2E.

Train size Par VanGL Par TRGL E2E

60000 99.07 ± .04 99.08 ± .04 99.30 ± .03
30000 98.90 ± .05 98.93 ± .06 99.22 ± .03
12000 98.52 ± .06 98.59 ± .06 98.96 ± .06
6000 98.05 ± .09 98.16 ± .07 98.62 ± .06
1500 96.34 ± .12 96.91 ± .07 97.19 ± .08
1200 95.80 ± .12 96.58 ± .09 96.88 ± .09
600 91.35 ± .99 95.16 ± .15 95.30 ± .17
300 89.81 ± .73 92.86 ± .24 92.87 ± .28
150 81.84 ± 1.22 87.48 ± .42 87.82 ± .59

The 88% accuracy of sequential training on CIFAR10 in Table 12 is the same as for sequential645

training in table 2 of [5], which is the best method for layer-wise sequential training available, with646

VGG networks of comparable depth and width.647

Figure 3: Test accuracy after each block of 10-1 ResNet averaged over 10 runs with 95% confidence
intervals. Left: multi-lap sequential vanilla (VanGL, in blue) and regularized (TRGL, in red) block-
wise training on 10% of the CIFAR100 training set. Right: parallel vanilla (VanGL, in blue) and
regularized (TRGL, in red) block-wise training on 10% of CIFAR100 training set.
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H Sensitivity to hyper-parameters648

We show in Figure 4 below that TRGL still performs better than VanGL (in the same setting as in649

Table 3 in Section 4.1) for values of τ from 0.03 to 100 and is still roughly equivalent to it for values650

up to 5000.651

Figure 4: Average test accuracy over 5 runs of parallel TRGL using a ResNet110 on STL10 with 16
modules with different values of τ (in red), and of VanGL (blue line).

I Broader impact652

Less memory usage has a positive environmental impact and allows organizations with less resources653

to use deep learning.654
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