
Supplemental:
Mode Connectivity in Auction Design

A Detailed Proofs of the Mode Connectivity for the RochetNet

In this section we provide the detailed proofs omitted in Section 3.

A.1 Interpolating between 0-reducible menus

We start with the proofs of statements on the way towards proving Proposition 5.

Proof of Lemma 6. We prove the claim by providing an explicit construction for φ in two different
cases.

First, suppose that there is some k∗ ∈ K1 ∩ K2. In this case, start by setting φ(k) := (k, k) for
all k ∈ K1 ∩ K2. Then, for all k ∈ K1 \ K2, set φ(k) = (k, k∗), and for all k ∈ K2 \ K1, set
φ(k) = (k∗, k). So far, we have not assigned any pair twice and the two conditions of the lemma are
already satisfied, so we can simply assign the remaining pairs arbitrarily.

Second, suppose that K1 and K2 are disjoint. Note that for this being possible,
√
K + 1 must be at

least 2. Pick some distinct k1, k′1 ∈ K1 and k2, k
′
2 ∈ K2. Set φ(k1) := (k1, k2), φ(k′1) := (k′1, k

′
2),

φ(k2) := (k′1, k2), and φ(k′2) := (k1, k
′
2). Then, for all k ∈ K1 \ {k1, k′1}, set φ(k) := (k, k2) and

for all k ∈ K2 \ {k2, k′2}, set φ(k) := (k1, k). Again, we have not assigned any pair twice and
the two conditions of the lemma are already satisfied, so we can simply assign the remaining pairs
arbitrarily.

Proof of Proposition 7. We only prove the first statement on M1; the statement on M2 follows
analogously. We show that for each possible valuation v of the buyer, the price paid to the seller for
menu M is at least as high as in menu M1. Suppose for valuation v that the buyer chooses the k-th
option in menu M1. Note that we may assume k ∈ K1 due to 0-reducibility of M1. By construction
of φ, it follows that φ1(k) = k. Therefore, the k-th option in M is exactly equal to the k-th option in
M1. Making use of the fact that ties are broken in favor of larger prices, it suffices to show that the
k-th option is utility-maximizing in M , too.

To this end, let k′ ∈ K be an arbitrary index. If M1 = {(x(k), p(k)}k∈K, then the utility of option k′

in M is

v⊤(λx(k′) + (1− λ)x(φ1(k
′)))− (λp(k

′) + (1− λ)p(φ1(k
′)))

= λ(v⊤x(k′) − p(k
′)) + (1− λ)(v⊤x(φ1(k

′)) − p(φ1(k
′)))

≤ λ(v⊤x(k) − p(k)) + (1− λ)(v⊤x(k) − p(k))

= v⊤x(k) − p(k),

where the inequality follows because the k-th option is utility-maximizing for menu M1. This shows
that it is utility-maximizing for menu M , completing the proof.

Proof of Proposition 8. The claim is trivial for λ = 0 or λ = 1. Therefore, assume 0 < λ < 1 for
the remainder of the proof. Again we show that the claim holds pointwise for each possible valuation
and therefore also for the revenue. For valuation v, let k1 and k2 be the active option assigned to
the buyer in M̂1 and M̂2, respectively. Note that by construction of the menus M̂1 and M̂2 we may
assume without loss of generality that k1 ∈ K1 and k2 ∈ K2. Let k∗ := φ−1(k1, k2).

We show that option k∗ is utility-maximizing in M = {(x(k), p(k))}k∈K. To this end, we use the
notation M̂1 = {(x̂(k), p̂(k))}k∈K and M̂2 = {(ŷ(k), q̂(k))}k∈K. Let k′ ∈ K be an arbitrary index.
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The utility of option k′ in menu M can be bounded as follows:

v⊤x(k′) − p(k
′) = λ(v⊤x̂(k′) − p̂(k

′)) + (1− λ)(v⊤ŷ(k
′) − q̂(k

′))

≤ λ(v⊤x̂(k1) − p̂(k1)) + (1− λ)(v⊤ŷ(k2) − q̂(k2))

= λ(v⊤x̂(k∗) − p̂(k
∗)) + (1− λ)(v⊤ŷ(k

∗) − q̂(k
∗))

= v⊤x(k∗) − p(k
∗),

where the inequality in the second line follows because k1 and k2 are utility-maximizing for M̂1

and M̂2, respectively, and the equality in the third line follows because, by construction, in menu M̂1

option k∗ is equivalent to option k1 = φ1(k
∗) ∈ K1, and similarly in menu M̂2 option k∗ is

equivalent to option k2 = φ2(k
∗) ∈ K2. This concludes the proof that k∗ is utility-maximizing.

With the same reasoning as above, we obtain p(k
∗) = λp̂(k1)+(1−λ)q̂(k2), from which we conclude

that the price achieved by the seller in menu M for valuation v is at least as high as the convex
combination of the achieved prices for menus M̂1 and M̂2.

A.2 Discretizing large menus

This subsection is devoted to providing a detailed proof of Theorem 10. To do so, we will show how
to convert any menu M of size at least ⌈ 4

ϵ2 ⌉
2n into a 0-reducible menu M̃ such that each convex

combination of M and M̃ achieves a revenue of at least Rev(M)− ε. Without loss of generality, we
assume that M has size exactly K + 1 = ⌈ 4

ϵ2 ⌉
2n.

To construct the menu M̃ satisfying these requirements, we adapt techniques from Dughmi et al.
[2014].5 In general, the idea is to discretize the allocations in the menu by a finite allocation set S
(see Definition 15) whose size is at most

√
K + 1 = ⌈ 4

ϵ2 ⌉
n. However, because of the discretization,

the buyer may choose an option with a much smaller price, providing a lower revenue compared
to the original menu. To deal with this, we also decrease the prices on the menu; the decrease is in
proportion to the price. Intuitively, this incentives the buyer to choose the option with an originally
high price. We show, after this modification, the menu achieves a revenue of at least Rev(M)− ε.

For ease of notation, we will use ε̃ := ε2

4 and, therefore, 2
√
ε̃ = ε.

Definition 15. Let S be a (finite) set of allocations. We say that S is an ε̃-cover if, for every possible
allocation x, there exists an allocation x̃ ∈ S such that for every possible valuation vector v we have
that v⊤x ≥ v⊤x̃ ≥ v⊤x− ε̃.

The following proposition shows that one can construct an ε̃-cover S with size at most ⌈ 4
ϵ2 ⌉

n.
Proposition 16. If ∥v∥1 ≤ 1, then

S = {ε̃s}⌊
1
ε̃⌋

s=0 × {ε̃s}⌊
1
ε̃⌋

s=0 × · · · × {ε̃s}⌊
1
ε̃⌋

s=0︸ ︷︷ ︸
n terms

is an ε̃-cover, and |S| =
⌈
1
ε̃

⌉n
= ⌈ 4

ϵ2 ⌉
n.

Proof. For any allocation x, we can round it down to x̃, such that x̃j = ⌊xj

ε̃ ⌋ · ε̃. It is not hard to see
that v⊤x ≥ v⊤x̃. Additionally, the inequality v⊤x̃ ≥ v⊤x − ε̃ follows as the total loss is at most
v⊤(x̃− x) ≤ ∥v∥1∥x̃− x∥∞ ≤ ε̃.

Construction of M̃ . Given S, we can construct M̃ as follows. Each option (x(k), p(k)) in menu M

is modified to (x̃(k), p̃(k)) in menu M̃ , where x̃(k) is the corresponding allocation of x(k) in S and
the price is set to p̃(k) =

(
1−

√
ε̃
)
p(k):

M̃ =
{(

x̃(k), p̃(k)
)}

k∈K
.

5In their paper, they construct a menu with a finite number of options to approximate the optimal mechanism.
The approximation is based on the multiplicative error, and they assume the buyer’s valuation is no less than 1.
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The following lemma shows that this construction indeed ensures that the reward decreases by at
most ε.

Lemma 17. It holds that Rev(M̃) ≥ Rev(M)− 2
√
ε̃ = Rev(M)− ε.

Proof. The following inequalities demonstrate the buyer who chooses option k in menu M will not
choose option k′ in menu M̃ such that p(k

′) < p(k) −
√
ε̃.

v⊤x̃(k) −
(
1−

√
ε̃
)
p(k) ≥ v⊤x(k) − p(k) − ε̃+

√
ε̃p(k)

≥ v⊤x(k′) − p(k
′) − ε̃+

√
ε̃p(k)

≥ v⊤x̃(k′) −
(
1−

√
ε̃
)
p(k

′) − ε̃+
√
ε̃(p(k) − p(k

′))

> v⊤x̃(k′) −
(
1−

√
ε̃
)
p(k

′). (3)

The first and third inequalities hold by Definition 15 and the second inequality holds as the buyer will
choose option k in menu M1.

Therefore, the total loss on the revenue is upper bounded by
√
ε̃p(k) +

√
ε̃ ≤ 2

√
ε̃, as the price

satisfies p(k) ≤ 1.

In addition to this property of M̃ itself, we also need to show the revenue does not drop more than ε

for any menu on the line segment connecting M to M̃ .

Lemma 18. Let M ′ = λM + (1− λ)M̃ be a convex combination of the menus M and M̃ . Then,
Rev(M ′) ≥ Rev(M)− 2

√
ε̃ = Rev(M)− ε.

Proof. Let M = {(x(k), p(k))}k∈K and M ′ = {(x′(k), p′(k))}k∈K. Similar to the proof of Lemma 17,
we show that the buyer who chooses option k in menu M will not choose option k′ in menu M ′ such
that p(k

′) < p(k) −
√
ε̃. This is true by the following (in)equalities. For any k′ ∈ K, we have that

v⊤x′(k) − p′
(k)

= λ(v⊤x(k) − p(k)) + (1− λ)(v⊤x̃(k) − p̃(k))

> λ(v⊤x(k′) − p(k
′)) + (1− λ)(v⊤x̃(k′) − p̃(k

′)).

The inequality follows by combining (i) v⊤x(k) − p(k) ≥ v⊤x(k′) − p(k
′), which is true as the buyer

will choose option k in menu M ; and (ii) v⊤x̃(k) − p̃(k) > v⊤x̃(k′) − p̃(k
′) from (3).

Similar to the proof of Lemma 17, it follows than that the total loss on the revenue is upper bounded
by 2

√
ε̃.

With these lemmas at hand, we can finally prove Theorem 10.

Proof of Theorem 10. Applying the transformation described in this section to convert M1 and M2

results in two menus M̃1 and M̃2, respectively. Since M̃1 and M̃2 contain at most
√
K + 1 = ⌈ 4

ϵ2 ⌉
n

different allocations and a buyer would always choose the cheapest out of several options with
the same allocation, they are 0-reducible. Applying Proposition 5 to them implies that they are
0-mode-connected with three linear pieces. Combining these observations with Lemmas 17 and 18
implies that M1 and M2 are ε-connected with five linear pieces.

B Bounds on the Error of the Softmax Approximation for the Argmax

In the RochetNet, to ensure that the objective is a smooth function, a softmax operation is used
instead of the argmax during the training process:

Revsoftmax(M) =

∫ K∑
k=1

pi
eY (x(k)⊤v−p(k))∑K

k′=1 e
Y (x(k′)⊤v−p(k′))

dF (v).

15



Here, Y is a sufficiently large constant. In this section, we will look at the difference between the
actual revenue and this softmax revenue.

We would like to assume the density of the valuation distribution is upper bounded by X =
maxv∈[0,1]n and ∥v∥1≤1 f(v), which is a finite value. Given this assumption, the following lemma
shows that, for any menu M of size K, the difference between the actual revenue and the softmax
revenue is bounded.

Lemma 19. For any M and Y ≥ 1,

|Revsoftmax(M)− Rev(M)| ≤ K + 1

Y

(
(nX + 1 +

X
Y
) log

Y

X
+ X

)
.

Proof. We prove Revsoftmax(M) − Rev(M) ≤ K
Y

(
(nX + 1 + X

Y ) log Y
X + X

)
. Rev(M) −

Revsoftmax(M) ≤ K
Y

(
(nX + 1 + X

Y ) log Y
X + X

)
follows by a similar argument.

Let k(v) be the option chosen in menu M when the buyer’s valuation is v. Then, the difference
between these two can be bounded as follows.

Revsoftmax(M)− Rev(M) ≤
∫ K∑

k=0

(p(k) − p(k(v)))+ · eY (v⊤x(k)−p(k))∑K
k′=1 e

Y (v⊤x(k′)−p(k′))
dF (v)

≤
∫ K∑

k=0

(p(k) − p(k(v)))+eY (v⊤x(k)−p(k)−v⊤x(k(v))+p(k(v)))dF (v).

Here, (·)+ ≜ max{·, 0}. Now, we focus on one option k, and we will give an upper bound on∫
(p(k) − p(k(v)))+1v⊤x(k)−p(k)+σ≥v⊤x(k(v))−p(k(v))≥v⊤x(k)−p(k)dF (v) (4)

for the non-negative parameter σ, which will be specified later. Note that, it is always true that
v⊤x(k(v)) − p(k(v)) ≥ v⊤x(k) − p(k). If v⊤x(k) − p(k) + σ ≥ v⊤x(k(v)) − p(k(v)) is not satisfied
then eY (v⊤x(k)−p(k)−v⊤x(k(v))+p(k(v))) ≤ e−Y σ. Therefore, if (4) is upper bounded by C(σ), then
RevsoftmaxM − Rev(M) ≤ (K + 1)(C(σ) + (1 + σ)e−Y σ). 6

Note that∫
(p(k) − p(k(v)))+1v⊤x(k)−p(k)+σ≥v⊤x(k(v))−p(k(v))≥v⊤x(k)−p(k)dF (v)

≤ σ +

∫ n∑
j=1

vj(x
(k)
j − x

(k(v))
j )+1v⊤x(k)−p(k)+σ≥v⊤x(k(v))−p(k(v))≥v⊤x(k)−p(k)dF (v).

The inequality follows as we consider the region of v such that v⊤x(k)−p(k)+σ ≥ v⊤x(k(v))−p(k(v)).
Additionally, since vj ∈ [0, 1],

∫
vj(x

(k)
j − x

(k(v))
j )+1v⊤x(k)−p(k)+σ≥v⊤x(k(v))−p(k(v))≥v⊤x(k)−p(k)dF (v)

≤
∫
(x

(k)
j − x

(k(v))
j )+1v⊤x(k)−p(k)+σ≥v⊤x(k(v))−p(k(v))≥v⊤x(k)−p(k)dF (v).

Now we fix all coordinates of valuation v other than coordinate j. Note that, the function v⊤x(k(v))−
p(k(v)) − v⊤x(k) − p(k) is a convex function on vj and x

(k)
j − x

(k(v))
j is the negative gradient of this

6Note that if p(k) ≥ 1 + σ then v⊤x(k) − p(k) + (p(k) − 1) ≤ v⊤x(k(v)) − p(k(v)) as LHS ≤
0 and RHS ≥ 0. Therefore, if v⊤x(k) − p(k) + σ ≥ v⊤x(k(v)) − p(k(v)) is not satisfied, then
(p(k) − p(k(v)))+eY (v⊤x(k)−p(k)−v⊤x(k(v))+p(k(v))) ≤ maxσ′≥σ{(1 + σ′)e−Y σ′

}. Note that maxσ′≥σ{(1 +
σ′)e−Y σ′

} ≤ (1 + σ)e−Y σ when Y ≥ 1.
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convex function. Since we are looking at the region such that the function v⊤x(k(v)) − p(k(v)) −
v⊤x(k) − p(k) is bounded in [0, σ], this direct imply∫

vj∈[0,1]

(x
(k)
j − x

(k(v))
j )+1v⊤x(k)−p(k)+σ≥v⊤x(k(v))−p(k(v))≥v⊤x(k)−p(k)dF (v) ≤ Xσ.

This implies RevsoftmaxM − Rev(M) ≤ (K + 1)(σ + nXσ + (1 + σ)e−Y σ) which is upper bounded
by K+1

Y

(
(nX + 1 + X

Y ) log Y
X + X

)
by setting σ = 1

Y log Y
X .

C Example: Disconnected Local Maxima

This section shows that the revenue is not quasiconcave on M , and in fact it might have disconnected
local maxima. Recall that a function g is quasiconcave if and only if, for any x, y and λ ∈ [0, 1],

g(λx+ (1− λ)y) ≥ min{g(x), g(y)}
Hence, quasiconcavity implies 0-mode-connectivity with a single straight-line segment.

We consider the case that there is only one buyer, one item, and one regular option on the menu.
Consider the following value distribution f :

f(x) =


1.5 0 < x ≤ 1

3 + 0.15

0 1
3 + 0.15 < x ≤ 2

3 + 0.15

1.5 2
3 + 0.15 < x ≤ 1.

(5)

With this probability distribution, we show the following result. As Figure 2 shows, there are two
local maxima so that any continuous curve connecting them has lower revenue than either endpoint.
Hence, mode connectivity fails between these two points. We only give a formal proof of the fact that
the revenue is not quasiconcave.

Figure 2: Revenue of the mechanism M = {(x, p)} when the value distribution is f .

Lemma 20. Rev(M) is not quasiconcave on M .

Proof. We consider the case where n = 1 (single item case); K = 1 (menu with single options). The
value distribution, f is defined in (5).

We consider two menus: M1 and M2, where M1 = {(0, 0), (1, 0.36)} and M2 = {(0, 0), (1, 0.84)}.
Then, Rev(M1) = 0.1656 and Rev(M2) = 0.2016.

However, if we consider M3 = 1
2 (M1 +M2) = {(0, 0), (1, 0.6)}, then this provides a revenue of

0.165, which is strictly smaller than Rev(M1) and Rev(M2). More intuitively, Figure 2 shows the
revenue for x ∈ [0, 1] and p ∈ [0, 1].

D Detailed Proofs of the Mode Connectivity for AMAs

In this section, we provide the detailed proofs omitted in Section 4
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D.1 Interpolating between 0-reducible menus

In this subsection, we will prove Proposition 12, that is, we show that two 0-reducible menus
M1 = {(x(1,k), β(1,k))}k∈K and M2 = {(x(2,k), β(2,k))}k∈K are 0-mode-connected.

Similar to RochetNet, we introduce two intermediate menus M̂1 and M̂2, and show that every menu
in the piecewise linear interpolation form M1 via M̂1 and M̂2 to M2 yields a revenue of at least
min{Rev(M1), Rev(M2)}. Using that menu M1 has only

√
K + 1 non-redundant options, menu

M̂1 will be defined by repeating each of the
√
K + 1 options

√
K + 1 times. Menu M̂2 will be

derived from M2 similarly.

To make this more formal, let K′
1( and K′

2) denote the set of the indexes of options in M1( and M2)
in definition of ε-reducibility, respectively. Similar to RochetNet, with the help of the Lemma 6,
we can formally define M̂1 and M̂2 as M̂1 = {(x(1,φ1(k)), β(1,φ1(k)))}k∈K, where φ1(k) is the first
component of φ(k); and, similarly, M̂2 is derived from M2 by using the second component φ2(k) of
φ(k) instead of φ1(k).

It remains to show that all menus on the three straight line segments from M1 via M̂1 and M̂2 to M2

yield revenue of at least min{Rev(M1), Rev(M2)}.

Proposition 21. Let M = λM1 + (1− λ)M̂1 be a convex combination of the menus M1 and M̂1.
Then Rev(M) ≥ Rev(M1). Similarly, every convex combination of the menus M2 and M̂2 has
revenue at least Rev(M2).

Proof. We only prove the first statement because the second one is analogous. We show that for
each possible valuation v ∈ V mn (with ∥vi∥ ≤ 1 for all i) of the buyers, the total payment paid to
the auctioneer for menu M is at least as high as in menu M1. Suppose for valuation v ∈ V n that
the auctioneer chooses the k(v)-th option in menu M1 in maximizing the boosted welfare. Note
that we may assume k(v) ∈ K′

1 due to 0-reducibility of M1. By construction of φ, it follows that
φ1(k(v)) = k(v). Therefore, the k(v)-th option in M exactly equals the k(v)-th option in M1.
Because ties are broken in favor of larger total payments, it suffices to show that the k(v)-th option is
the one with the highest boosted welfare also in M . 7

Let k′ ∈ K be an arbitrary index. The boosted welfare of option k′ in M is∑
i

v⊤i (λx
(1,k′)
i + (1− λ)x

(1,φ1(k
′))

i )) + (β(1,k′) + (1− λ)β(1,φ1(k
′)))

= λ(
∑
i

v⊤i x
(1,k′)
i + β(1,k′)) + (1− λ)(

∑
i

v⊤i x
(1,φ1(k

′))
i + β(1,φ1(k

′)))

≤ λ(
∑
i

v⊤i x
(1,k(v))
i + β(1,k(v))) + (1− λ)(

∑
i

v⊤i x
(1,k(v))
i + β(1,k(v)))

=
∑
i

v⊤i x
(1,k(v))
i + β(1,k(v)),

where the inequality follows because the k(v)-th option is boosted welfare maximizing for menu M1.
This shows that k(v) is also a boosted welfare maximizer for menu M , completing the proof.

Proposition 22. Let M = λM̂1 + (1− λ)M̂2 be a convex combination of the menus M̂1 and M̂2.
Then Rev(M) ≥ λRev(M̂1) + (1− λ)Rev(M̂2).

Proof. The claim is trivial for λ = 0 or λ = 1. Therefore, assume 0 < λ < 1 for the remainder of
the proof. For possible valuation v ∈ V n such that ∥vi∥ ≤ 1 for all i, let k1(v) and k2(v) be the
boosted welfare maximizing options in M̂1 and M̂2, respectively. Note that by the construction of
the menus M̂1 and M̂2, we may assume without loss of generality that k1(v) ∈ K′

1 and k2(v) ∈ K′
2.

Let k∗(v) := φ−1(k1(v), k2(v)).

7Recall that the auctioneer will choose the option k maximize the β(k) among all boosted welfare maximizing
options given the formula of the total payment (2).
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We show that option k∗(v) is boosted welfare maximizing in M = {(x(k), β(k))}k∈K with valuation
v. To this end, we use the notation M̂1 = {(x̂(1,k), β̂(1,k))}k∈K and M̂2 = {(x̂(2,k), β̂(2,k))}k∈K.
Let k′ ∈ K be an arbitrary index. Then, the boosted welfare of option k′ can be bounded as follows:∑

i

v⊤i x
(k′)
i + β(k′) = λ(

∑
i

v⊤i x̂
(1,k′)
i + β̂(1,k′)) + (1− λ)(

∑
i

v⊤i x̂
(2,k′)
i + β̂(2,k′))

≤ λ(
∑
i

v⊤i x̂
(1,k1(v))
i + β̂(1,k1(v))) + (1− λ)(

∑
ij

vix̂
(2,k2(v))
ij + β̂(2,k2(v))

= λ(
∑
i

v⊤i x̂
(1,k∗(v))
i + β̂(1,k∗(v))) + (1− λ)(

∑
i

v⊤i x̂
(1,k∗(v))
i + β̂(1,k∗(v)))

=
∑
i

v⊤i x
(k∗(v))
i + β(k∗(v)),

where the inequality in the second line follows because k1(v) and k2(v) are boosted welfare maxi-
mizers for M̂1 and M̂2, respectively. The equality in the third line follows because, by construction,
in menu M̂1 option k∗(v) is equivalent to option k1(v) = φ1(k

∗(v)) ∈ K′
1. Similarly, in menu M̂2

option k∗(v) is equivalent to option k2(v) = φ2(k
∗(v)) ∈ K′

2. This concludes the proof that k∗(v)
is a boosted welfare maximizer in M .

Note that the total payment of M = {(x(k), β(k))}k∈K can be written in the following form:∑
i

pi(v) =
∑
i

∑
l ̸=i

v⊤l x
(k(v−i))
l + β(k(v−i))

−
∑
i

∑
l ̸=i

v⊤l x
(k(v))
l + β(k(v))

 .

where k(·) is the boosted welfare maximizer used in M . As ties are broken in favor of larger total
payments, this value decreases by replacing k(·) by k∗(·) 8:∑

i

∑
l ̸=i

v⊤l x
(k(v−i))
l + β(k(v−i))

−
∑
i

∑
l ̸=i

v⊤l x
(k(v))
l + β(k(v))


≥
∑
i

∑
l ̸=i

v⊤l x
(k∗(v−i))
l + β(k∗(v−i))

−
∑
i

∑
l ̸=i

v⊤l x
(k∗(v))
l + β(k∗(v))

 .

Since k∗(v) is fixed for different λ and, by linear combination, it holds that x̂(k∗(·)) = λx̂(1,k∗(·)) +

(1− λ)x̂(2,k∗(·)) and β̂(k∗(·)) = λβ̂(1,k∗(·)) + (1− λ)β̂(2,k∗(·)),∑
i

∑
l ̸=i

v⊤l x
(k∗(v−i))
l + β(k∗(v−i))

−
∑
i

∑
l ̸=i

v⊤l x
(k∗(v))
l + β(k∗(v))


= λ

∑
i

∑
l ̸=i

v⊤l x̂
(1,k∗(v−i))
l + β̂(1,k∗(v−i))


−
∑
i

∑
l ̸=i

v⊤l x̂
(1,k∗(v))
l + β̂(1,k∗(v))


+ (1− λ)

∑
i

∑
l ̸=i

v⊤l x̂
(2,k∗(v−i))
l + β̂(2,k∗(v−i))


−
∑
i

∑
l ̸=i

v⊤l x̂
(2,k∗(v))
l + β̂(2,k∗(v))


= λRev(M̂1) + (1− λ)Rev(M̂2).

This completes the proof.
8Note that both k(·) and k∗(·) maximize the boosted welfare.
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D.2 Discretizing large menus

This subsection provides a detailed proof of Theorem 14. To do this, we will show that, for an
AMA with a large number of options, one can discretize it such that, after discretization, the menu is
0-reducible. Additionally, during this discretization, the revenue loss will be up to ε.

Lemma 23. Consider an AMA M1 with at least K + 1 = ⌈ 16m3

ϵ2 ⌉2nm options. There exists an
0-reducible menu M̃1, such that, for any linear combination of M1 and M̃1, M = λM1+(1−λ)M̃1

for λ ∈ [0, 1], Rev(M) ≥ Rev(M1)− ε.

Theorem 14 simply follows by combining Lemma 23 and Proposition 12.

Note that the payments and allocations only depend on those boosted welfare maximizing options.
Therefore, to show that M̃1 is 0-reducible, it suffices to show M̃1 has at most

√
K + 1 different

allocations.

We now formally define M̃1. We introduce parameters ε̃ and δ, which will be specified later.

Construction of M̃1 For x(k), we round it to x̃(k) in which x̃
(k)
ij = ε̃

m

⌊
mx

(k)
ij

ε̃

⌋
. With this rounding,

for any v ∈ [0, 1]nm such that ∥vi∥ ≤ 1 for i, 9∑
i

v⊤i x
(k)
i ≥

∑
i

v⊤i x̃
(k)
i ≥

∑
i

v⊤i x
(k)
i − ε̃. (6)

For β(k), we let β̃(k) = (1− δ)β(k).

Lemma 24. For any given 0 < ε ≤ 1
4 , let δ =

√
ε̃

m and ε̃ = ε2

16m2 . Then,

Rev(M̃1) ≥ Rev(M1)− ε.

The number of different allocations in M̃1 is at most ⌈ 16m3

ε2 ⌉nm. Additionally, for any linear
combination of M1 and M̃1, M = λM1 + (1− λ)M̃1, Rev(M) ≥ Rev(M1)− ε.

Proof. We first demonstrate Rev(M̃1) ≥ Rev(M1)−mε̃− m2δ
1−δ − ε̃

δ . The result follows by picking

δ =
√
ε̃

m and ε̃ = ε2

16m2 . The proof of the bound on the linear combination of M1 and M̃1 is analogous.
We use the notation M1 = {x(k), β(k)}k∈K and M̃1 = {x̃(k), β̃(k)}k∈K.

We fix the valuation v. Let k(v) = argmaxk
∑

i v
⊤
i x

(k)
i + β(k) and satisfy the tie-breaking rule.

The total payment using M1 can be expressed as follows:

∑
i

∑
l ̸=i

v⊤l x
(k(v−i))
l + β(k(v−i))

−
∑
i

∑
l ̸=i

v⊤l x
(k(v))
l − β(k(v))


=
∑
i

∑
l ̸=i

v⊤l x
(k(v−i))
l + β(k(v−i))


︸ ︷︷ ︸

A1

−(m− 1)

(∑
i

v⊤i x
(k(v))
i + β(k(v))

)
︸ ︷︷ ︸

B1

−β(k(v)). (7)

Similarly, let k̃(v) = argmaxk
∑

i v
⊤
i x̃

(k)
i + β̃(k), then, the total payment with M̃1 is

∑
i

∑
l ̸=i

v⊤l x̃
(k̃(v−i))
l + β̃(k̃(v−i))


︸ ︷︷ ︸

A2

−(m− 1)

(∑
i

v⊤i x̃
(k̃(v))
i + β̃(k̃(v))

)
︸ ︷︷ ︸

B2

−β̃(k̃(v)). (8)

We bound the differences between A1 and A2, B1 and B2, and β(k(v)) and β̃(k̃(v)) separately.

9The second inequality holds as v⊤i (x
(k)
i − x̃

(k)
i ) ≤ ∥vi∥1∥x(k)

i − x̃
(k)
i ∥∞ ≤ ε̃

m
for any i.
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First, for the difference between A1 and A2, we can use the following inequalities: for any possible v
such that ∥vi∥ ≤ 1 for all i,∑

i

v⊤i x
(k(v))
i + β(k(v)) ≤

∑
i

v⊤i x̃
(k(v))
i + β̃(k(v)) + ε̃+ δβ(k(v))

≤
∑
i

v⊤i x̃
(k̃(v))
i + β̃(k̃(v)) + ε̃+ δβ(k(v)).

This implies

A1 ≤ A2 +mε̃+
∑
i

δβ(k(v−i)). (9)

Second, for the difference between B1 and B2, we can use the following inequalities: for any possible
v such that ∥vi∥ ≤ 1 for all i,∑

i

v⊤i x
(k(v))
i + β(k(v)) ≥

∑
i

v⊤i x
(k̃(v))
i + β(k̃(v))

≥
∑
i

v⊤i x̃
(k̃(v))
i + β̃(k̃(v)) + δβ(k̃(v)).

This implies

B1 ≤ B2 − (m− 1)δβ(k̃(v)). (10)

Finally, we want to claim

β(k̃(v)) ≤ β(k(v)) +
ε̃

δ
, which implies β̃(k̃(v)) ≤ β(k(v)) +

ε̃

δ
− δβ(k̃(v)); (11)

as otherwise if β(k̃(v)) > β(k(v)) + ε̃
δ , then this implies∑

i

v⊤i x̃
(k(v))
i + β̃(k(v)) ≥

∑
i

v⊤i x
(k(v))
i + β(k(v)) − ε̃− δβ(k(v))

≥
∑
i

v⊤i x
(k̃(v))
i + β(k̃(v)) − ε̃− δβ(k(v))

≥
∑
i

v⊤i x̃
(k̃(v))
i + β̃(k̃(v)) − ε̃+ δ(β(k̃(v)) − β(k(v)))

>
∑
i

v⊤i x̃
(k̃(v))
i + β̃(k̃(v)), (12)

which contradicts the fact that k̃(v) = argmaxk
∑

i v
⊤
i x̃

(k)
i + β̃(k).

By combining the formula of total payment with M1, (7), the formula of total payment with M̃1,
(8), and inequalities (9), (10), (11); the loss on the total payment is at most mε̃+

∑
i δβ

(k(v−i)) −
mδβ(k̃(v)) + ε̃

δ . Note that β̃(k(v−i)) ≤ β̃(k̃(v)) +m10. Therefore, the total loss on the payment is at
most mε̃+ m2δ

1−δ + ε̃
δ which is Rev(M̃1) ≥ Rev(M1)−mε̃− m2δ

1−δ − ε̃
δ .

Now, we prove a similar result for M , which is a linear combination of M1 and M̃1: M = λM1 +

(1 − λ)M̃1. Let M = (x′(k), β′(k))k∈K and k′(v) = argmaxk
∑

i v
⊤
i x

′(k)
i + β′(k). The total

payment of M is

∑
i

∑
l ̸=i

v⊤l x
′(k(v−i))
l + β′(k(v−i))


︸ ︷︷ ︸

A3

−(m− 1)

(∑
i

v⊤i x
′(k(v))
i + β′(k(v))

)
︸ ︷︷ ︸

B3

−β′(k(v)). (13)

10This is true becasue v⊤x̃(k(v−i)) + β̃(k(v−i)) ≤ v⊤x̃(k̃(v)) + β̃(k̃(v)) and v⊤x̃(k(v)) ≤ m.

21



Note that, by linear combination, for any k,
∑

i v
⊤
i x

(k)
i ≥

∑
i v

⊤
i x

′(k)
i ≥

∑
i v

⊤
i x

(k)
i − ε̃ and

β′(k) = (1− δ′)β(k) such that δ′ = (1− λ)δ. With similar proofs as (9) and (10), the following two
inequalities hold,

A1 ≤ A3 +mε̃+
∑
i

δ′β(k(v−i)); (14)

B1 ≤ B3 − (m− 1)δ′β(k′(v)). (15)
And, similarly,

β(k′(v)) ≤ β(k(v)) +
ε̃

δ
, (16)

as otherwise β(k′(v)) > β(k(v)) + ε̃
δ implies∑

i

v⊤i x
′(k(v))
i + β′(k(v))

= λ(
∑
i

v⊤i x
(k(v))
i + β(k(v))) + (1− λ)(

∑
i

v⊤i x̃
(k(v))
i + β̃(k(v)))

> λ(
∑
i

v⊤i x
(k̂(v))
i + β(k̂(v))) + (1− λ)(

∑
i

v⊤i x̂
(k(v))
i + β̂(k(v)))

=
∑
i

v⊤i x
′(k′(v))
i + β′(k′(v))

.

The strict inequality follows from (12) and λ < 1.

Therefore, combining inequalities (14), (15), (16), the total payment with M1, (7), and the total
payment with M , (13); the total loss for M is at most mε̃+ m2δ′

1−δ′ +
ε̃
δ ≤ mε̃+ m2δ

1−δ + ε̃
δ .

The result follows by picking δ =
√
ε̃

m and ε̃ = ε2

16m2 .

D.3 Difference between softmax and argmax in revenue

Similar to the case of the RochetNet, in the training process, softmax operation is used instead of
argmax. Recall that the revenue of AMA is

Rev =

∫
v

∑
i

pi(v)dF (v),

where

pi(v) =

∑
l ̸=i

v⊤l x
(k(v−i))
l + β(k(v−i))

−

∑
l ̸=i

v⊤l x
(k(v))
l + β(k(v))

 ,

and
k(v) = argmax

k

∑
i

v⊤i x
(k)
i + β(k).

For the softmax version, instead of using k(v) which exactly maximizes the boosted social welfare,
now ksoftmax(v) is a random variable:

ksoftmax(v) = k with probability
eY (v⊤

i x
(k)
i +β(k))∑

k′ eY (v⊤
i x

(k′)
i +β(k′))

;

and the price is the expectation on k(v)

psoftmaxi (v) =E

∑
l ̸=i

v⊤l x
(ksoftmax(v−i))
l + β(ksoftmax(v−i))


−

∑
l ̸=i

v⊤l x
(ksoftmax(v))
l + β(ksoftmax(v))

 ;
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and the revenue is

Revsoftmax(M) =

∫
v

∑
i

psoftmaxi (v)dF (v).

We show the following result. Note that we also assume the maximal density of a valuation type is X .

Theorem 25.

|Revsoftmax(M)− Rev(M)| ≤ m(K + 1)

eY
+

nmX (K + 1)

Y

(
1 + log

mY

mX

)
.

To prove this theorem, we need the following lemma which provides one of the basic properties of
the softmax.

Lemma 26. Given L values, a1 ≥ a2 ≥ a3 ≥ · · · ≥ aL, then 0 ≤ a1 −
∑

k ak
eY ak∑
k′ e

Y a
k′ ≤ L

eY .

Proof. It’s clear that 0 ≤ a1 −
∑

k ak
eY ak∑
k′ e

Y a
k′ . On the other direction,

a1 −
∑
k

ak
eY ak∑
k′ eY ak′

≤
∑
k

(a1 − ak)
eY (ak−a1)∑
k′ eY (ak′−a1)

≤ 1

Y

∑
k

Y (a1 − ak)
eY (ak−a1)∑
k′ eY (ak′−a1)

≤ 1

Y

∑
k

eY (a1−ak)−1 eY (ak−a1)∑
k′ eY (ak′−a1)

≤ L

eY

1∑
k′ eY (ak′−a1)

≤ L

eY
.

Now, we can prove Theorem 25.

Proof of Theorem 25. We first give the upper bound on Rev(M)− Revsoftmax(M).

Let k(v) = argmaxk
∑

i v
⊤
i x

(k)
i + β(k) be the rule used in Rev(M). Recall that

∑
i

pi(v) =
∑
i

∑
l ̸=i

v⊤l x
(k(v−i))
l + β(k(v−i))

−
∑
i

∑
l ̸=i

v⊤l x
(k(v))
l + β(k(v))


and

∑
i

psoftmaxi (v) = E

∑
i

∑
l ̸=i

v⊤l x
(ksoftmax(v−i))
l + β(ksoftmax(v−i))


−
∑
i

∑
l ̸=i

v⊤l x
(ksoftmax(v))
l + β(ksoftmax(v))

 .
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Then,

Rev(M)− Revsoftmax(M)

= Ev

∑
i

∑
l ̸=i

v⊤l x
(k(v−i))
l + β(k(v−i))


− E

∑
i

∑
l ̸=i

v⊤l x
(ksoftmax(v−i))
l + β(ksoftmax(v−i))


−m

(∑
i

v⊤i x
(k(v))
i + β(k(v))

)

+ E

[
m

(∑
i

v⊤i x
(ksoftmax(v))
i + β(ksoftmax(v))

)]

+
∑
i

v⊤i x
(k(v))
i − E

[∑
i

v⊤i x
(ksoftmax(v))
i

]]

≤ m(K + 1)

eY
+ E

[∑
i

v⊤i x
(k(v))
i

]
− E

[∑
i

v⊤i x
(ksoftmax(v))
i

]
.

The inequality follows by Lemma 26. Then, we will bound the difference between E
[∑

i v
⊤
i x

(k(v))
i

]
and E

[∑
i v

⊤
i x

(ksoftmax(v))
i

]
. More specifically,

E[vijx(k(v))
ij ]− E[vijx(ksoftmax(v))

ij ]

=

∫
v

vijx
(k(v))
ij −

∑
k

vijx
(k)
ij

eY (
∑

i′ v
⊤
i′x

(k)

i′ +β(k))∑
k′ e

Y (
∑

i′ v
⊤
i′x

(k′)
i′ +β(k′))

dF (v)

≤
∫
v

∑
k

(x
(k)
ij − x

(k(v))
ij )+

eY (
∑

i′ v
⊤
i′x

(k)

i′ +β(k))∑
k′ e

Y (
∑

i′ v
⊤
i′x

(k′)
i′ +β(k′))

dF (v)

≤
∫
v

∑
k

(x
(k)
ij − x

(k(v))
ij )+eY (

∑
i′ v

⊤
i′x

(k)

i′ +β(k)−
∑

i′ v
⊤
i′x

(k(v))

i′ −β(k(v)))
dF (v).

Recall that (·)+ ≜ max{·, 0}. Let’s define BW(k) =
∑

i′ v
⊤
i′ x

(k)
i′ + β(k) to be the boosted welfare

of option k for simplicity. Now, we focus on one option k, and we will give an upper bound on∫
(x

(k)
ij − x

(k(v))
ij )+1BW(k)+σ≥BW(k(v))≥BW(k)dF (v) (17)

for the non-negative σ. The value of σ will be determined later. Note that it is always true that
BW(k(v)) ≥ BW(k) by the definition of k(v). Additionally, if BW(k) + σ ≥ BW(k(v)) is not

satisfied then eY (
∑

i′ v
⊤
i′x

(k)

i′ +β(k)−
∑

i′ v
⊤
i′x

(k(v))

i′ −β(k(v))) ≤ e−Y σ . Therefore, if (17) is upper bounded
by Cij(σ), then Revsoftmax(M)− Rev(M) ≤ mK

eY + (K + 1)
(∑

ij Cij(σ) + nme−Y σ
)

.

Note that ∫
(x

(k)
ij − x

(k(v))
ij )+1BW(k)+σ≥BW(k(v))≥BW(k)dF (v)

=

∫
(x

(k)
ij − x

(k(v))
ij )+1BW(k(v))−BW(K)∈[0,σ]dF (v). (18)

Now we fix all coordinates of valuation v other than coordinate ij. Note that, the function BW(k(v))−
BW(k) =

∑
i′ v

⊤
i′ x

(k(v))
i′ +β(k(v))−

∑
i′ v

⊤
i′ x

(k)
i′ −β(k) is a convex function on vij and (x(k(v))

ij −x
(k)
ij )
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is the gradient. Since we are looking at the region such that the function BW(k(v)) − BW(k) is
bounded in [0, σ], this direct implies∫

(x
(k)
ij − x

(k(v))
ij )+1BW(k)+σ≥BW(k(v))≥BW(k)dF (v) ≤ Xσ.

as the maximal density is at most X . This implies Rev(M) − Revsoftmax(M) ≤ m(K+1)
eY + (K +

1)nmXσ + (K + 1)nme−Y σ which is upper bounded by m(K+1)
eY + nmX (K+1)

Y

(
1 + log Y

X
)

by
setting σ = 1

Y log Y
X .

The upper bound on Revsoftmax(M)− Rev(M) follows by a similar argument.
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