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Abstract

Vision-Language (VL) pre-trained models have shown their superiority on many
multimodal tasks. However, the adversarial robustness of such models has not
been fully explored. Existing approaches mainly focus on exploring the adversar-
ial robustness under the white-box setting, which is unrealistic. In this paper, we
aim to investigate a new yet practical task to craft image and text perturbations
using pre-trained VL models to attack black-box fine-tuned models on different
downstream tasks. Towards this end, we propose VLATTACK2 to generate ad-
versarial samples by fusing perturbations of images and texts from both single-
modal and multimodal levels. At the single-modal level, we propose a new block-
wise similarity attack (BSA) strategy to learn image perturbations for disrupting
universal representations. Besides, we adopt an existing text attack strategy to
generate text perturbations independent of the image-modal attack. At the mul-
timodal level, we design a novel iterative cross-search attack (ICSA) method to
update adversarial image-text pairs periodically, starting with the outputs from the
single-modal level. We conduct extensive experiments to attack five widely-used
VL pre-trained models for six tasks. Experimental results show that VLATTACK
achieves the highest attack success rates on all tasks compared with state-of-the-art
baselines, which reveals a blind spot in the deployment of pre-trained VL models.

1 Introduction

The recent success of vision-language (VL) pre-trained models on multimodal tasks have attracted
broad attention from both academics and industry [1, 2, 3, 4, 5, 6, 7]. These models first learn
multimodal interactions by pre-training on the large-scale unlabeled image-text datasets and are
later fine-tuned with labeled pairs on different downstream VL tasks [8, 9, 10]. In many cases,
these pre-trained models have revealed more powerful cross-task learning capabilities compared to
training from scratch [11, 12]. Despite their remarkable performance, the adversarial robustness
of these VL models is still relatively unexplored.

Existing work [13, 14, 15, 16] conducting adversarial attacks in VL tasks is mainly under the white-
box setting, where the gradient information of fine-tuned models is accessible to attackers. However,
in a more realistic scenario, a malicious attacker may only be able to access the public pre-trained
models released through third parties. The attacker would not have any prior knowledge about the

∗Corresponding author.
2Source code can be found in the link https://github.com/ericyinyzy/VLAttack.
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Figure 1: An illustration of the problem of attacking block-box downstream tasks using pre-trained
vision-language models.

parameters learned by downstream VL models fine-tuned on private datasets. Towards bridging
this striking limitation, we investigate a new yet practical attack paradigm – generating adversarial
perturbations on a pre-trained VL model to attack various black-box downstream tasks fine-tuned
on the pre-trained one.

However, such an attack setting is non-trivial and faces the following challenges: (1) Task-specific
challenge. The pre-trained VL models are usually used for fine-tuning different downstream tasks,
which requires the designed attack mechanism to be general and work for attacking multiple tasks.
As illustrated in Figure 1, the attacked tasks are not only limited to close-set problems, such as visual
question answering, but also generalized to open-ended questions, such as visual grounding. (2)
Model-specific challenge. Since the parameters of the fine-tuned models are unknown, it requires
the attack method to automatically learn the adversarial transferability between pre-trained and fine-
tuned models on different modalities. Although the adversarial transferability [17, 18, 19, 20] across
image models has been widely discussed, it is still largely unexplored in the pre-trained models,
especially for constructing mutual connections between perturbations on different modalities.
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Figure 2: A brief illustration of VLATTACK.

To address all the aforementioned
challenges, we propose a new yet
general Vision-Language Attack
strategy (named VLATTACK) to
explore the adversarial transferability
between pre-trained and fine-tuned
VL models, as shown in Figure 2.
The whole VLATTACK scheme fuses
perturbations of images and texts
from two levels:

Single-modal Level. VLATTACK independently generates perturbations on a single modality, fol-
lowing a “from image to text” order as the former can be perturbed on a continuous space. The
single-modal attack can effectively detect the adversarial vulnerability of an image or text, and hence
avoids redundant perturbations on the other modality. Specifically, to fully utilize the image-text in-
teractions that have been stored in the pre-trained model, we propose a novel block-wise similarity
attack (BSA) strategy to attack the image modality, which adds perturbations to enlarge the network
block-wise distance between original and perturbed features in the pretrained model, disrupting the
universal image-text representations for the downstream predictions. If BSA fails to change the
prediction after querying the fine-tuned black-box model, VLATTACK will attack the text modality
by employing the word-level perturbation techniques [21, 22, 23, 24]. We adopt BERT-Attack [21]
to attack the text modality as its prominent performance has been widely verified in many stud-
ies [25, 26, 27]. Finally, if all the text perturbations {T′

i} fail, VLATTACK will generate a list of
perturbed samples T and feed them to the multimodal attack along with the perturbed image I′.

Multimodal Level. If the above attack fails to change the predictions, we cross-update image and
text perturbations at the multimodal level based on previous outputs. The proposed iterative cross-
search attack (ICSA) strategy updates the image-text perturbation pair (I′i,T

′
i) in an iterative way
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by considering the mutual relations between different modal perturbations. ICSA uses a text pertur-
bation T′

i selected from the list T as the guidance to iteratively update the perturbed image I′i by
employing the block-wise similarity attack (BSA) until the new pair (I′i,T

′
i) makes the prediction

of the downstream task change. In addition, text perturbations are cross-searched according to the
semantic similarity with the benign one at the multimodal attack level, which gradually increases
the extent of the direction modification to preserve the original semantics to the greatest extent.

Our contributions are summarized as follows: (1) To the best of our knowledge, we are the first
to explore the adversarial vulnerability across pre-trained and fine-tuned VL models. (2) We pro-
pose VLATTACK to search adversarial samples from different levels. For the single-modal level,
we propose the BSA strategy to unify the perturbation optimization targets on various downstream
tasks. For the multimodal level, we design the ICSA to generate adversarial image-text pairs by
cross-searching perturbations on different modalities. (3) To demonstrate the generalization ability
of VLATTACK, we evaluate the proposed VLATTACK on five widely-used VL models, includ-
ing BLIP [28], CLIP [29], ViLT [1], OFA [5] and UniTAB [4] for six tasks: (i) VQA, (ii) visual
entailment, (iii) visual reasoning, (iv) referring expression comprehension, (v) image captioning,
and (vi) image classification. Experimental results demonstrate that VLATTACK outperforms both
single-modal and multimodal attack approaches, which reveals a significant blind spot in the robust-
ness of large-scale VL models.

2 Related Work

Single-modal Adversarial Attack Methods. Image Attack. Traditional image attack meth-
ods [30, 31] generate adversarial samples by optimizing the loss function with regard to the de-
cision boundary from model outputs. Not only do the generated perturbations change the model
predictions, but they can also be transferred to other convolutional neural network (CNN) struc-
tures. Such a property is called transferability and has been extensively studied. For example, data
augmentation-based methods [32, 33] endeavor to create diverse input patterns to enhance represen-
tation diversity across different models. Feature disruptive attacks [17, 34, 35] introduce the inter-
mediate loss to change the local activation of image features output from the middle layers of CNNs,
enabling the perturbed features to transfer to different models without knowing their structures and
parameters. Text Attack. Adversarial attacks on natural language processing (NLP) tasks mainly con-
centrate on word-level and sentence-level perturbations. Word-level perturbations [21, 22, 23, 24]
substitute words with synonyms that share similar word embeddings and contextual information.
Sentence-level perturbations [25, 36, 37] focus on logical structures of texts through paraphrasing
or adding unrelated sentence segments. All of these methods have revealed the adversarial vulner-
ability of traditional NLP models to some extent. However, adapting them to a multimodal attack
setting is still underexplored.

Multimodal Adversarial Attack Methods. Multimodal VL models are susceptible to adversarial
attacks as perturbations can be added to both modalities. Existing methods mainly explore adver-
sarial robustness on a specific VL task. For the visual question answering task, Fool-VQA [13]
is proposed, which iteratively adds pixel-level perturbations on images to achieve the attack. For
the image-text retrieval task, CMLA [14] and AACH [38] add perturbations to enlarge Hamming
distance between image and text hash codes, which causes wrong image-text matching results. Re-
cently, Co-attack [15] is proposed, which combines image and text perturbations using word sub-
stitution attacks to ascertain a direction for guiding the multi-step attack on images. The whole
framework is deployed in a white-box setting, where attackers are assumed to have access to the
parameters of each downstream task model. Besides, Co-attack is only validated on three tasks,
which is not general enough.

3 Preliminaries

VL Pre-trained Model Structure. Fine-tuning from pre-training has become a unified paradigm
in the recent VL model design. Most pre-trained VL models can be divided into encoder-only [1,
39, 40, 41] and encoder-decoder [4, 5, 6] structures. Two representative model structures are shown
in Figure 3. Given an image-text pair (I,T), both VL models first embed each modality separately.
Image tokens are obtained through an image encoder composed of a vision transformer [42] or a
Resnet [43] after flattening the grid features into a sequence. Text tokens are generated through
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a word encoder made up of a tokenizer [44, 45] and a word vector projection. The encoder-only
model then attends tokens of two modalities and a learnable special token ⟨cls⟩ and feeds them
into a Transformer encoder. Finally, the output representation from the ⟨cls⟩ token is fed into a
classification head for the final prediction ⟨ans⟩. For the encoder-decoder structure, the attached
image and text tokens are fed into a Transformer network [46] to generate sequence predictions
[⟨ans1⟩, ⟨ans2⟩, · · · , ⟨end⟩] in an auto-regressive manner. The network stops regressing when an
end token ⟨end⟩ appears. In this work, we deeply explore the adversarial vulnerability of both
structures.

Threat Model. Let F denote the public pre-trained model and S represent the downstream task
model, where S shares most of or the same structure with F . As shown in Figure 3, the network
structures of both types of public VL pre-trained models are different. The encoder-only model
allows modifying the last prediction layer based on the requirement of downstream tasks but keeping
the other layers the same as F . However, the encoder-decoder model unifies the outputs of different
downstream tasks, which leads to S having the same structure as F . Note that the downstream tasks
will fully fine-tune parameters using their own data, and hence, all the model parameters in F are
updated in the fine-tuning stage. Thus, all parameters in S are not accessible.

Given an image-text pair (I,T), the goal of the downstream task is to predict the labels of the input
pair accurately, i.e., S : (I,T) → Y , where Y = {y1, · · · , yn}. For the encoder-only models,
the ground truth label is a one-hot vector. For the encoder-decoder models, the ground truth is a
sequence that consists of multiple ordered one-hot vectors. Let y denote the ground truth vector.
The goal of the adversarial attack is to generate adversarial examples (I′,T′) using F , which can
cause an incorrect prediction on S. Mathematically, our problem is formulated as follows:

max
I′,T′

1{S(I′,T′) ̸= y}, s.t. ∥I′ − I∥∞ < σi, Cos(Us(T
′), Us(T)) > σs, (1)

where σi is the l∞-norm perturbation strength on the image. σs is the semantic similarity between
the original and perturbed texts, which constrains the semantic consistency after perturbation. The
semantic similarity is measured by the cosine similarity Cos(·, ·) between the sentence embedding
Us(T

′) and Us(T) using the Universal Sentence Encoder Us [47].

4 Methodology

As shown in Figure 2, the proposed VLATTACK generates adversarial samples from two steps,
constrained by perturbation budget parameters σi and σs. The first step attacks every single modality
independently to avoid unnecessary modifications. Samples that fail at the first step will be fed into
our multimodal level, where we adopt a cross-search attack strategy to iteratively refine both image
and text perturbations at the same time. Next, we will introduce the details of VLATTACK from the
single-modal level to the multimodal level.

4.1 Single-modal Attacks: From Image to Text

VLATTACK attempts to generate adversarial samples on every single modality in the first step.
Compared to the discrete words in T, the continuous values-based image I is more vulnerable to
attack by using gradient information3. Thus, VLATTACK starts by attacking the image I.

3This motivation aligns with our experimental results as shown in Table 1.
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Image-Attack. In the black-box setting, the parameters of the fine-tuned model S are unknown.
However, the pre-trained model F is accessible. Intuitively, if the feature representations learned by
the pre-trained model F from the clean input I and the perturbed input I′ are significantly differ-
ent, such a perturbation may transfer to fine-tuned models to change the predictions of downstream
tasks. As shown in Figure 3, the image features can be obtained from both the image encoder and
the Transformer encoder, even from different layers or blocks. To fully leverage the specific charac-
teristics of the pre-trained model structure, we propose the block-wise similarity attack (BSA) to
corrupt universal contextualized representations.

As shown in Figure 4, BSA perturbs images by maximizing the block-wise distances between the
intermediate representations in the image encoder Fα and Transformer encoder Fβ of the pre-trained
model F . Mathematically, we define the loss function of BSA as follows:

L =

Mi∑
i=1

Mi
j∑

j=1

Cos(Fi,j
α (I), Fi,j

α (I
′
))︸ ︷︷ ︸

Image Encoder

+

Mk∑
k=1

Mk
t∑

t=1

Cos(Fk,t
β (I,T), Fk,t

β (I
′
,T))︸ ︷︷ ︸

Transformer Encoder

, (2)

where Mi is the number of blocks in the image encoder, and M i
j is the number of flattened image

feature embeddings generated in the i-th block4. Similarly, Mk is the number of blocks in the
Transformer encoder, and Mk

t is the number of image token features generated in the k-th block.
Fi,j

α is the j-th feature vector obtained in the i-th layer of the image encoder, and Fk,t
β is the t-th

feature vector obtained in the k-th layer of the Transformer encoder. The image encoder only takes
a single image I or I′ as the input, but the Transformer encoder will use both image and text as
the input. We adopt the cosine similarity to calculate the distances between perturbed and benign
features as token representations attended with each other in the inner product space [46]. Note that
BSA does not rely on the information from the decision boundary, and thus, it can be easily adapted
to different task settings by disrupting the benign representations.

In the image attack step, we generate an adversarial image candidate through project gradient decent
optimization [30] with Ns iterations, where Ns < N and N is the maximum number of iterations
on the image attack. The remaining N − Ns attack step budgets will be used in the multimodal
attack in Section 4.2. If (I′,T) is an adversarial sample generated by BSA, then VLATTACK will
stop. Otherwise, VLATTACK moves to attack the text modality.

Text-Attack. In some VL tasks, the number of tokens in the text is quite small. For example,
the average length of the text in the VQAv2 [48] and RefCOCO [49] datasets is 6.21 and 3.57,
respectively5. Moreover, some of them are nonsense words, which makes it unnecessary to design a
new approach for attacking the text modality. Furthermore, existing text attack approaches such as
BERT-Attack [21] are powerful for generating adversarial samples for texts. Therefore, we directly
apply BERT-Attack to generate text perturbations. To avoid unnecessary modifications, we use the
clean image I as the input instead of the generation perturbed image I′.

Specifically, an adversarial candidate T′
i produced by BERT-Attack is firstly fed into a univer-

sal sentence encoder Us with the benign text T to test the semantic similarity. T
′

i will be
removed if the cosine similarity γi between T′

i and T is smaller than the threshold σs, i.e.,
γi = Cos(Us(T

′
i), Us(T)) < σs. Otherwise, we put T′

i and the benign image I into the fine-
tuned model S to detect whether the new pair (I,T′

i) perturbs the original prediction y. During
the text attack, we create a list T to store all perturbed samples {T′

i} and the corresponding cosine
similarity values {γi}. If any sample in T successfully changes the prediction of the downstream
task, then VLATTACK will stop. Otherwise, VLATTACK will carry the perturbed image I′ from the
image attack and the perturbed text candidate list T from the text attack to the multimodal attack
level. Note that BERT-Attack is based on synonym word substitution. Even for a short text, the
number of adversarial examples can still be large. In other words, the length of T may be large. The
whole single-modal attack process is shown in Algorithm 1 (lines 1-15).

4If image encoder is a ResNet module, the output image feature from i-th block has a shape of (Hi,Wi, Ci),
where Hi, Wi and Ci denote the height, width and number of channels, respectively. We then collapse the
spatial dimensions of the feature and obtain M i

j = HiWi.
5We obtained these statistics by investigating the validation datasets.
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Algorithm 1 VLATTACK

Input: A pre-trained model F , a fine-tuned model S, a clean image-text pair (I,T) and its prediction y on the
S , and the Gaussian distribution U ;

Parameters: Perturbation budget σi on I, σs on T. Iteration number N and Ns.
1: //Single-modal Attacks: From Image to Text (Section 4.1)
2: Initialize I′ = I+ δ, δ ∈ U(0, 1), T =
3: // Image attack by updating I′ using Eq. (2) for Ns steps
4: I′ = BSA(L, I′,T, Ns, σi, F )

5: if S(I′,T) ̸= y then return (I
′
,T)

6: else
7: // Text attack by applying BERT-attack
8: for pertubed text T

′
i in BERT-attack do

9: if γi = Cos(Us(T
′
i), Us(T)) > σs then

10: Add the pair (T′
i, γi) into T ;

11: if S(I,T
′
i) ̸= y then return (I,T

′
i)

12: end if
13: end if
14: end for
15: end if
16: // Multimodal Attack (Section 4.2)
17: Rank T according to similarity scores {γi} and get top-K samples {T̂′

1, · · · , T̂′
K} according to Eq. (3);

18: for k = 1, · · · ,K do
19: if S(I′k,T′

k) ̸= y then return (I′k,T
′
k)

20: end if
21: Replace (I′k, T̂

′
k) with (I

′
,T) in Eq. (2);

22: I
′
k+1 = BSA(L, I

′
k, T̂

′
k, Nk, σi, F )

23: if S(I′k+1,T
′
k) ̸= y then return (I′k+1,T

′
k)

24: end if
25: end for
26: return None

4.2 Multimodal Attack

In many cases, only perturbing images or texts is hard to succeed, as a single-modality perturbation is
insufficient to break down the image-text correlation. To solve this problem, we propose a new attack
strategy to disrupt dynamic mutual connections based on perturbations from different modalities.

Attack Steps. Since the maximum number of image attack steps N is predefined, it is impossible
to test all the perturbed image-text pairs (I′,T′

i) using the remaining budget N −Ns if the length of
T (i.e., |T |) is very large. Thus, we need to rank the perturbed text samples {T′

i} according to their
corresponding cosine similarity values {γi} in a descending order to make the adversarial sample
keep the high semantic similarity with the original text T. Let K denote the number of attack steps
in the multimodal attack, and we have:

K =

{
N −Ns, if |T | > N −Ns;

|T |, if |T | ⩽ N −Ns.
(3)

Iterative Cross-Search Attack. A naive way to conduct the multimodal attack is to test each
perturbed image-text pair (I′, T̂′

k) (k = 1, · · · ,K) by querying the black-box fine-tuned model S,
where T̂′

i is the i-th text perturbation in the ranked list T . However, this simple approach ignores
learning mutual connections between the perturbed text and image. To solve this issue, we propose
a new iterative cross-search attack (ICSA) strategy. In ICSA, VLATTACK will dynamically update
the image perturbation under the guidance of the text perturbation.

Specifically, in each multimodal attack step, ICSA first determines the number of image attack steps.
Since there are K adversarial text candidates that will be equally used in ICSA, the iteration number
of image attacks that will be allocated to each text sample is Nk = ⌊N−Ns

K ⌋. ICSA will take the k-th
pair (I′k, T̂

′
k) as the input to generate the new image perturbation I′k+1 by optimizing the block-wise

attack loss in Eq. (2), where I′1 is the output from the image attack in the single-modal level, i.e., I′.
Such a process is repeated until an adversarial sample (I

′

j , T̂
′
j) is found, or all the K perturbed texts

6



Table 1: Comparison of VLATTACK with baselines on ViLT, Unitab, and OFA for different tasks,
respectively. All results are displayed by ASR (%). B&A means the BERT-Attack approach.

Pre-trained
Model Task Dataset Image Only Text Only multimodality

DR SSP FDA BSA B&A R&R Co-Attack VLATTACK

ViLT VQA VQAv2 23.89 50.36 29.27 65.20 17.24 8.69 35.13 78.05
VR NLVR2 21.58 35.13 22.60 52.17 32.18 24.82 42.04 66.65

BLIP VQA VQAv2 7.04 11.84 7.12 25.04 21.04 2.94 14.24 48.78
VR NLVR2 6.66 6.88 10.22 27.16 33.08 16.92 8.70 52.66

Unitab

VQA VQAv2 22.88 33.67 41.80 48.40 14.20 5.48 33.87 62.20
REC RefCOCO 21.32 64.56 75.24 89.70 13.68 8.75 56.48 93.52
REC RefCOCO+ 26.30 69.60 76.21 90.96 6.40 2.46 68.69 93.40
REC RefCOCOg 26.39 69.26 78.64 91.31 22.03 18.52 65.50 95.61

OFA

VQA VQAv2 25.06 33.88 40.02 54.05 10.22 2.34 51.16 78.82
VE SNLI-VE 13.71 15.11 20.90 29.19 10.51 4.92 18.66 41.78

REC RefCOCO 11.60 16.00 27.06 40.82 13.15 7.64 32.04 56.62
REC RefCOCO+ 16.58 22.28 33.26 46.44 4.66 7.04 45.28 58.14
REC RefCOCOg 16.39 24.80 33.22 54.63 19.23 15.13 30.53 73.30

are visited. When T = ∅, VLATTACK will degenerate to the block-wise similarity attack (BSA)
and iteratively updates I

′
for N − Ns steps. Finally, VLATTACK generates adversarial samples

based on either single-modality or cross-modality attacks. The overall scheme of VLATTACK is
summarized in Algorithm 1.

5 Experiments

5.1 Experiment Setup

Pre-trained VL Models and Tasks. Experiments are conducted on five pre-trained models For the
encoder-only model, we adopt ViLT [1] and BLIP [28] for two downstream tasks, including the vi-
sual question answering (VQA) task on the VQAv2 dataset [48] and the visual reasoning (VR) task
on the NLVR2 dataset [50]. For the encoder-decoder structure, we adopt Unitab [4] and OFA [5].
For Unitab, evaluations are made on the VQAv2 dataset for the VQA task and on RefCOCO, Re-
fCOCO+, and RefCOCOg datasets [49] for the Referring Expression Comprehension (REC) task
that can be viewed as the task of bounding box generation. For OFA, we implement experiments
on the same tasks as Unitab and add the SNLI-VE dataset [51] for the visual entailment (VE) task.
The specific structures of these models are detailed in Appendix A. To verify the overall generality,
we evaluate the uni-modal tasks on OFA [5] using MSCOCO [52] for the image captioning task
and ImageNet-1K [53] for the image classification task. We also evaluate CLIP [29] on the image
classification task on the SVHN [54] dataset. Note that all evaluation tasks have publicly available
pre-trained and fine-tuned models, which provide more robust reproducibility. The details of each
dataset and implementation can be found in Appendix B.

Baselines. We compare VLATTACK with adversarial attacks on different modalities. For attacks
on the image modality, we take DR [17], SSP [35], and FDA [34] as baselines. These methods
are designed to perturb image features only and can be directly adapted to our problem. Other
methods [18, 19, 30, 32, 33, 55] either fully rely on the output from classifiers or combine feature
perturbation with classification loss [20, 56, 57]. These methods can not be applied in our problem
setting since the pre-trained and fine-tuned models usually share different prediction heads and are
trained on different tasks. For attacks on the text modality, we take BERT-Attack (B&A) [21]
and R&R [24] as baselines. VLATTACK also compares with Co-Attack [15], which is the only
multimodal attack scheme that adds adversarial perturbations to both modalities.

5.2 Results on Multimodal Tasks

In this section, we conduct experiments on four pre-trained VL models and use Attack Success Rate
(ASR) to evaluate the performance on four multimodal tasks, including VQA, VR, REC, and VE.
The higher the ASR, the better the performance. Results are illustrated in Table 1, where the results
of our proposed BSA and VLATTACK are highlighted. We can observe that the proposed VLAT-
TACK significantly outperforms all baselines. Compared with the best baseline on each dataset,
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Table 2: Evaluation of the Uni-modal tasks on OFA. We highlight the prediction score reported by
the original OFA paper with ∗.

Dataset MSCOCO ImageNet-1K
Metric BLEU@4 (↓) METEOR (↓) CIDEr (↓) SPICE (↓) ASR(↑)
OFA∗ 42.81 31.30 145.43 25.37 -

DR 30.26 24.47 95.52 17.89 10.43
SSP 10.99 12.52 23.54 5.67 19.44
FDA 17.77 17.92 55.75 11.36 12.31

BSA (Ours) 3.04 8.08 2.16 1.50 41.35

Table 3: CLIP model evaluation on SVHN.

Dataset SVHN
Model CLIP-ViT/16 CLIP-RN50

DR 3.32 71.62
SSP 6.36 84.26
FDA 6.20 83.52

BSA (Ours) 15.74 84.98

Table 4: MTurK evaluation on the ViLT
model using the VQAv2 dataset. Re-
sults are obtained on 650 samples.

Method SSP VLATTACK
Definitely Correct (↓) 413 307

Not Sure (↑) 58 56
Definitely Wrong (↑) 179 287

VLATTACK achieves an average gain of 29.61% on ViLT, 24.20% on BLIP, 16.48% on Unitab and
30.84% on OFA, respectively. When only adding image perturbations, our proposed BSA out-
performs the best baseline by an average of 15.94% on ViLT and on BLIP. BSA also achieves an
average gain of 12.12% and 14.13% on Unitab and OFA, respectively. As mentioned before, text
data in multimodal tasks are composed of phrases or only a few words. Consequently, text attack
performs poorly on most multimodal datasets. These high ASR values have revealed significant
security concerns regarding the adversarial robustness of pre-trained VL models.

5.3 Results on Uni-Modal Tasks

For the results on uni-modal tasks, we first evaluate OFA on image captioning and classification tasks
on MSCOCO and ImageNet-1K, respectively. Because these tasks accept a fixed text prompt for
prediction, we only perturb image I and compare different image attack methods. For the captioning
task, we choose four commonly-used metrics, including BLEU@4, METEOR, CIDEr, and SPICE,
the same as those used in OFA [5]. The lower, the better. We report ASR on the image classification
task. The higher, the better. The experimental results are illustrated in Table 2. In general, BSA
achieves the best performance on both tasks in terms of all metrics. For example, BSA significantly
reduces the CIDEr score from 145.43 to 2.16. Compared with the best baseline SSP with 23.54,
BSA reduces this score over 10 times. For the image classification task, BSA also achieves the best
performance with 41.35% ASR. The superior performance demonstrates that the VLATTACK can
also generalize to computer vision tasks when only using BSA. Note that we do not evaluate text-
to-image generation tasks because our attack framework produces the same results as BERT-Attack
with text-only inputs.

We also evaluate CLIP on the image classification task on the SVHN dataset. Concretely, we use
the image encoder of CLIP as the pre-trained model and then fine-tune on the SVHN dataset after
adding a linear classification head. For the choices of image encoder of CLIP, we adopt ViT-B/16
and ResNet-50, denoted by CLIP-ViT/16 and CLIP-RN50. We test the attack performance using
5K correctly predicted samples. All results are illustrated in the following Table 3. Since the task
only accepts images as input, we compare our BSA with other image attack baselines. As shown in
the table, our proposed BSA still maintains the best ASR using different image encoder structures,
clearly demonstrating its effectiveness.

5.4 Systematic Validation with Crowdsourcing

We also conduct a human evaluation study to comprehensively verify the soundness of our proposed
method. The experiment is developed on the results output from the ViLT model on the VQAv2
dataset using Amazon Mechanical Turk (MTurk). The baseline that we choose is SSP since it out-
performs others in our experiments, as shown in Table 1. Specifically, we randomly sampled 650
examples and stored the generated answers after the attack. To validate the performance of both
approaches, we send the original image-question pairs and the corresponding generated answer to
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Figure 5: Ablation analysis of different components in VLATTACK. We show the results of VQAv2
(a) and SNLI-VE (b) on OFA, and VQAv2 (c) and RefCOCO (d) on Unitab.

the MTurk system. We provide three choice candidates to workers, including “Definitely Correct”,
“Not Sure”, and “Definitely Wrong”. A successful attack means that the worker will label “Defi-
nitely Wrong” to the pair. To make the annotations more accurate and reliable, each pair is annotated
by three workers, and we report the majority choice as the final human evaluation result. The statis-
tics of human evaluation results are shown in Table 4. We can observe that the proposed VLAttack
still significantly outperforms the strongest baseline SSP, thus demonstrating its robustness and ef-
fectiveness from a human perceptual perspective.

5.5 Model Design Analysis

Ablation Study. In our model design, we propose a new block-wise similarity attack (BSA) for
attacking the image modality and an interactive cross-search attack (ICSA) for attacking image-text
modalities together. We use the following methods to evaluate the effectiveness of each component.
The results are shown in Figure 5. “IE”/“TE” means that we only use the image/Transformer en-
coder when calculating the loss in Eq. (2). “BSA” uses both encoders. We set iteration Ns = 40
for a fair comparison. Next, “BSA+BA” means after attacking images using BSA, we attack texts
using BERT-Attack (Algorithm 1 Lines 1-15). “BSA+BA+Q” denotes replacing ICSA with a sim-
ple query strategy by querying the black-box task with each pair (I′,T′

i), where T′
i comes from

the perturbed text candidate list T . We can observe that for image attacks, IE and TE play an im-
portant role in different tasks, but in general, BSA (= IE + TE) outperforms them. Adding the text
attack, BSA+BA performs better than BSA. This comparison result demonstrates that both modali-
ties are vulnerable. BSA+BA+Q performs better than BSA+BA but worse than VLATTACK, which
confirms the necessity and reasonableness of conducting the interactive cross-search attack. More
results on other datasets are shown in Appendix C.

Figure 6: Investigation of iteration num-
ber N and Ns.

Parameter Sensitivity Analysis We discuss the effect of
different iteration numbers of N and Ns in VLATTACK.
All experiments are conducted on the VQAv2 dataset and
the ViLT model. The total iteration number N is set from
10 to 80, Ns is set to N

2 . As depicted in Figure 6(a), the
ASR performance is dramatically improved by increasing
N from 10 to 20 steps and then achieves the best result
when N = 40. We next investigate the impact of differ-
ent initial iteration numbers Ns. We test Ns from 5 to 40,
but the total iteration number N is fixed to 40. As shown
in Figure 6(b), the ASR score reaches the summit when
Ns is 5, and it is smoothly decreased by continually en-
larging Ns. Considering that the smaller initial iteration
number Ns increases the ratio of text perturbations, we
set Ns as 20 to obtain the best trade-off between attack
performance and the naturalness of generated adversarial
samples in our experiments.

Block-wise Similarity Attack. We further visualize the effect of our proposed BSA through atten-
tion maps in the fine-tuned downstream model S on the VQAv2 dataset through the ViLT model. As
is shown in Figure 7, the attention area is shifted from “jacket” to the background, which indicates
that the representation used to answer the question extracts information from the unrelated image
regions. We also combined the BSA with various optimization methods to verify its generalization
ability. The experimental results are presented in Appendix D.
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5.6 Case Study

Figure 7: Attention maps of the clean and adver-
sarial samples in the multimodal transformer en-
coder. Attention maps from the class token ⟨cls⟩
to images. Perturbed tokens are displayed in red.

We conduct case studies using visualization to
show the effectiveness of VLATTACK for mul-
timodal and uni-modal tasks, as displayed in
Figure 8. For multimodal tasks in Figure 8(a),
the predictions of all displayed samples remain
unchanged when attacking a single modality
via BSA. However, perturbing both modali-
ties using VLATTACK successfully modifies
the predictions. An intriguing finding can be
observed in the REC task, where the fine-tuned
model S outputs wrong predictions by stretch-
ing and deforming the original bounding box
predictions. The proposed VLATTACK also
shows its power on uni-modal tasks in Fig-
ure 8(b). For example, in the image captioning task, the fine-tuned model generates a description of
a “person” after receiving an adversarial image of a “horse”, which is entirely unrelated. More case
studies are shown in Appendix E.

Figure 8: Qualitative results of VLATTACK on (a) multimodal tasks and (b) Uni-modal tasks on
OFA. Perturbed word tokens and original predictions are displayed in red and blue, respectively. We
show the predictions after the adversarial attack with underline.

6 Conclusion

In this paper, we propose a new question, which aims to generate adversarial samples only based on
the publicly available pre-trained models to attack fine-tuned models deployed in different VL tasks.
Considering the task-specific and model-specific challenges, we proposed VLATTACK, which gen-
erates perturbations by exploring different modalities in two levels. The single-modal level attack
first perturbs images through a novel algorithm BSA to disrupt the universal image-text represen-
tations and then attacks text if the former fails, which avoids unnecessary modifications on both
modalities. If both image and text attacks fail, the multimodal attack level adopts an iterative cross-
search attack strategy to generate adversarial image-text combinations. By periodically substituting
text candidates during the image attack process, the mutual relations between different modal pertur-
bations are sufficiently explored. Experimental results demonstrate the effectiveness of the proposed
VLATTACK on attacking multiple VL tasks, which reveals a significant safety concern in realistic
scenarios.
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A. Details of VL Models

This section introduces the details of VL models involved in our experiment, including ViLT, BLIP,
Unitab, and OFA.

• ViLT. We first select ViLT [1] as the encoder-only VL model because of its succinct structure and
prominent performance on multiple downstream tasks. Given an input image I ∈ RH×W×3 and
a sentence T, ViLT yields M image tokens using a linear transformation on the flattened image
patches, where each token is a 1D vector and M = HW

P 2 for a given patch resolution (P, P ). Word
tokens are encoded through a Byte-Pair Encoder (BPE) [44] and a word-vector linear projection.
Then, tokens of two modalities and a special learnable token ⟨cls⟩ are concatenated. By attending
visual and text tokens and a special token ⟨cls⟩ in a Transformer encoder with twelve layers,
the output feature from the ⟨cls⟩ token is fed into a task-specific classification head for the final
output. Taking the VQA task as an example, the VQA classifier adopts a linear layer to output a
vector with Hs elements, where Hs is the number of all possible choices in the closed answer set
of the VQA task. The final output is obtained through the element with the highest response in the
vector.

• BLIP. The BLIP model also adopts an encoder-only structure. Specifically, BLIP first encodes an
image through a twelve-layer vision transformer ViT-B/16 [42], and generates word token embed-
dings through the BPE and a linear layer. Next, the image features and word token embeddings
are then fed into a multimodal encoder. The structure of the multimodal encoder is the same as
a twelve-layer transformer decoder, where each layer contains a self-attention module, a cross-
attention module and a feed-forward module. In each layer, the multimodal encoder first accepts
the word token embeddings as input and attends to them through the self-attention module. Then,
the updated embedding will fuse with image features through the cross-attention module. Finally,
the output from the multimodal encoder will be fed into different projection heads for downstream
tasks, just like the ViLT model.

• Unitab. Unitab adopts an encoder-decoder framework. It first embeds text T via RoBERTa [45]
and flats features after encoding image I through ResNet [43]. The attached visual and text token
features are then fed into a standard Transformer network [46] with six encoder layers and six
decoder layers. Finally, the sequence predictions [⟨ans1⟩, ⟨ans2⟩, · · · , ⟨end⟩] are obtained auto-
regressively through a projection head. The network stops regressing when an end token ⟨end⟩
appears. For different tasks, the output tokens may come from different pre-defined vocabularies.
Given the REC task as an example, four tokens [(⟨loc x1⟩, ⟨loc x2⟩), (⟨loc x3⟩, ⟨loc x4⟩)] will be
selected from the location vocabulary, which forms the coordinate of a bounding box. As a result,
these models can handle both text and grounding tasks.

• OFA. OFA also adopts an encoder-decoder structure. Different from Unitab, it adopts the BPE
to encode text and extends the linguistic vocabulary by adding image quantization tokens [58]
⟨img⟩ for synthesis tasks. Note that the main difference between OFA and Unitab lies in their
pre-training and fine-tuning strategies rather than the model structure. For example, in the
pre-training process, Unitab focuses on learning alignments between predicted words and boxes
through grounding tasks, while OFA captures more general representations through multi-task
joint training that includes both single-modal and multimodal tasks. Overall, OFA outperforms
Unitab in terms of performance improvement.

B. Dataset and Implementation

B.1 Tasks and Datasets

To verify the generalization ability of our proposed VLATTACK, we evaluate a wide array of popular
vision language tasks summarized in Table 5. Specifically, the selected tasks span from text under-
standing (visual reasoning, visual entailment, visual question answering) to image understanding
(image classification, captioning) and localization (referring expression comprehension).

For each dataset, we sample 5K correctly predicted samples in the corresponding validation dataset
to evaluate the ASR performance. All validation datasets follow the same split settings as adopted
in the respective attack models. Because VQA is a multiclass classification task, we select a correct
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Table 5: An illustration of all datasets and tasks evaluated in our paper.

Datasets Task Task description Attack Model Attack Modality
OFA Unitab ViLT Image Text

VQAv2 VQA Scene Understanding QA ✓ ✓ ✓ ✓ ✓
SNLI-VE VE VL Entailment ✓ ✓ ✓
RefCOCO REC Bounding Box Localization ✓ ✓ ✓ ✓

RefCOCOg REC Bounding Box Localization ✓ ✓ ✓ ✓
RefCOCO+ REC Bounding Box Localization ✓ ✓ ✓ ✓

NLVR2 VR Image-Text Pairs Matching ✓ ✓ ✓
MSCOCO Captioning Image Captioning ✓ ✓

ImageNet-1K Classification Object Classification ✓ ✓
SVHN Classification Digit Classification ✓ ✓

prediction only if the prediction result is the same as the label with the highest VQA score6, and
regard the label as the ground truth in Eq. (1). In the REC task, a correct prediction is considered
when the Intersection-over-Union (IoU) score between the predicted and ground truth bounding box
is larger than 0.5. We adopt the same IoU threshold as in Unitab [4] and OFA [5].

B.2 Implementation Details

For the perturbation parameters of images, we follow the setting in the common transferable image
attacks [18, 19] and set the maximum perturbation σi of each pixel to 16/255 on all tasks except
REC. Considering that even a single coordinate change can affect the final grounding results to a
great extent, the σi of the REC task is 4/255 to better highlight the ASR differences among distinct
methods. The total iteration number N and step size are set to 40 and 0.01 by following the projected
gradient decent method [30], and Ns is 20. For the perturbation on the text, the semantic similarity
constraint σs is set to 0.95, and the number of maximum modified words is set to 1 by following
the previous text-attack work [15, 24] to ensure the semantic consistency and imperceptibility. All
experiments are conducted on a single GTX A6000 GPU.

C. More Ablation Results

In Section 5.4, we conduct an ablation study to show the effectiveness of each module in our model
design on VQA, VE, and REC tasks. Here, we conduct additional ablation experiments for the
remaining tasks, including visual reasoning, image captioning, and image classification.

Figure 9: ViLT-VR. Figure 10: OFA-captioning.

Figure 9 shows the results of the ablation study on the VR task using the ViLT model. We can
observe that only using the image encoder results in significantly low ASR. However, by combining
it with the Transformer encoder (TE), BSA can achieve a high ASR. These results show the reason-
ableness of considering two encoders simultaneously when attacking the image modality. The result
of BSA+BA demonstrates the usefulness of attacking the text modality. Although BSA+BA+Q out-
performs other approaches, its performance is still lower than that of the proposed VLATTACK. This
comparison proves that the proposed iterative cross-search attack (ICSA) strategy is effective for the
multimodal attack again.

6The VQA score calculates the percentage of the predicted answer that appears in 10 reference ground truth
answers. More details can be found via https://visualqa.org/evaluation.html
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Figure 10 shows the results of the image captioning task using the OFA model. Because the image
captioning task only accepts a fixed text prompt for prediction, we only perturb the image and report
the results on IE, TE, and BSA. For this task, we report BLEU@4 and CIDEr scores. The lower,
the better. We can observe that the proposed BSA outperforms IE and TE, indicating our model
design’s effectiveness.

Figure 11: OFA-classification.

Figure 11 shows the results of the image classification task using
the OFA model. The experiment is conducted on the ImageNet-
1K dataset. Similar to the image captioning task, we only attack
images, and compare the results of IE, TE and BSA. The evaluation
metric for this task is ASR. The higher, the better. We can have
the same observations with other ablation studies, where attacking
both encoders outperforms attacking a single encoder.

Table 6: Combining VLATTACK with different gradient-based image attack schemes.

Method ViLT Unitab
VQAv2 NLVR2 VQAv2 RefCOCO RefCOCO+ RefCOCOg

BSAMI 65.40 52.32 50.38 86.00 89.20 87.39
VLATTACKMI 78.77 67.16 63.02 92.46 93.10 94.34
BSADI 65.94 52.30 42.74 90.30 91.56 91.00
VLATTACKDI 78.07 67.50 61.22 93.98 94.04 94.76

D. Different Optimization Methods

VLATTACK can be easily adapted to various optimization methods in image attacks. To demon-
strate the generalizability of our method, we replace the projected gradient decent [30] in VLAT-
TACK with Momentum Iterative method (MI) [55] and Diverse Input attack (DI) [33] since they
have shown better performance than traditional iterative attacks [30, 59]. The replaced methods are
denoted by BSAMI , and VLATTACKMI using MI, BSADI and VLATTACKDI using DI, respec-
tively. Experiments are developed on ViLT and Unitab. Results are shown in Table 6. Using MI
and DI optimizations, BSAMI and BSADI still outperform all baselines displayed in Table 1 in the
main manuscript. Also, VLATTACKMI and VLATTACKDI outperform the image attack method
BSAMI and BSADI with an average ASR improvement of 9.70% and 9.29% among all datasets.
The gain of performance demonstrates that the proposed VLATTACK can be further improved by
combining with stronger gradient-based optimization schemes.

E. Case Study

E.1 How does VLATTACK generate adversarial samples?

The proposed VLATTACK aims to attack multimodal VL tasks starting by attacking single modali-
ties. If they are failed, VLATTACK uses the proposed interactive cross-search attack (ICSA) strategy
to generate adversarial samples. In this experiment, we display the generated adversarial cases from
different attack steps, including the image modality in Figure 12, the text modality in Figure 13, and
the multimodal attack in Figure 14.

Single-modal Attacks (Section 4.1). VLATTACK first perturbs the image modality using the pro-
posed BSA and only outputs the adversarial image if the attack is successful (Algorithm 1 lines 1-5).
As shown in Figure 12, only attacking the image modality, VLATTACK can generate a successful
adversarial sample to fool the downstream task. Then, VLATTACK will stop. Otherwise, it will
perturb the text through BERT-Attack (B&A) and use the clean image as the input, which is illus-
trated in Figure 13 (Algorithm 1, lines 6-15). During the text attack, B&A will generate multiple
candidates by replacing the synonyms of a word. Since the length of text sentences is very short in
the VL datasets, we only replace one word each time. From Figure 13, we can observe that B&A
first replaces “kid” with its synonym “child”, but this is not an adversarial sample. B&A then moves
to the next word “small” and uses its synonym “cute” as the perturbation. By querying the black-box
downstream task model, VLATTACK successes, and the algorithm will stop. Multimodal Attack
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Figure 12: An adversarial image from BSA.

Figure 13: An adversarial sentence from text at-
tack.

Figure 14: An adversarial image-text pair from multimodal attack.

(Section 4.2). If the single-modal attack fails, VLATTACK moves to the multimodal attack by iter-
atively cross-updating image and text perturbations, where image perturbations are added through
BSA, and text perturbations are added according to the semantic similarity. The cross-updating pro-
cess is repeated until an adversarial image-text pair is found (Algorithm 1, lines 16-24). Figure 14
shows an example. In step 1, VLATTACK fails to attack the image modality and outputs a perturbed
image denoted as I′1. In step 2, VLATTACK also fails to attack the text modality and outputs a list of
text perturbations T . VLATTACK has to use the multimodal attack to generate adversarial samples
in step 3. It first ranks the text perturbations in T according to the semantic similarity between the
original text and each perturbation. The ranked list is denoted as {T̂′

1, · · · , T̂′
K}. Then it equally

allocates the iteration number of the image attack to generate the image perturbations iteratively. In
Figure 14, this number is 6, which means we run BSA with the budget 6 to generate a new image
perturbation.

VLATTACK takes the pair (I′1, T̂
′
1) as the input to query the black-box downstream model, where

T̂′
1 = “What material is the table make of?”. If this pair is not an adversarial sample, then the pro-

posed ICSA will adopt BSA to generate the new image perturbation I′2. The new pair (I′2, T̂
′
1) will

be checked again. If it is still not an adversarial sample, VLATTACK will use the next text pertur-
bation T̂′

2 = “What materials is the table made of?” and the newly generated image perturbation I′2
as the input and repeat the previous steps until finding a successful adversarial sample or using up
all K text perturbations in T . VLATTACK employs a systematic strategy for adversarial attacks on
VL models, sequentially targeting single-modal and multimodal perturbations to achieve successful
adversarial attacks.

E.2 Case Study on Different Tasks

We also provide additional qualitative results from Figure 15 to Figure 20 for experiments on all
six tasks. For better visualization, we display the adversarial and clean samples side by side in a
single column. By adding pixel and word perturbations, the fidelity of all samples is still preserved,
but predictions are dramatically changed. For instance, in the image captioning task of Figure 19,
all generated captions show no correlation with the input images. Some texts may even include
replacement Unicode characters, such as “\ufffd”, resulting in incomplete sentence structures.
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Figure 15: Additional quantitative results on visual question answering (VQA).

Figure 16: Additional quantitative results on visual entailment (VE).

Figure 17: Additional quantitative results on visual reasoning (VR).
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Figure 18: Additional quantitative results on referring expression comprehension (REC).

Figure 19: Additional quantitative results on the image captioning task.

Figure 20: Additional quantitative results on the image classification task.
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F. Discussion: BSA v.s. BadEncoder

We notice that the idea of our proposed BSA is somehow similar to the BadEncoder [60] method, as
they all use the cosine similarity as the optimization target. However, the proposed BSA is different
from or better than BadEncoder.

(1) BadEncoder only utilizes the final output feature vectors from the whole encoder, ignoring
the outputs from the intermediate layers/blocks. However, BSA calculates fine-grained similar-
ity scores. As shown in Eq. 2 of our original paper, we distinguish the outputs from image and
Transformer encoders. Such a design can modify the low-level vision features and the high-level
cross-modal representations. In our setting, we attack fine-tuned models of a wide diversity of down-
stream tasks, including but not limited to image classification tasks like Badencoder. The parameters
of these task-specific models are fully finetuned on distinct datasets, and the output representations
of the encoder significantly change accordingly. Thus, instead of only attacking the output fea-
ture from the last layer like BadEncoder, perturbing each intermediate feature representation from
each encoder and each block can enhance the attack performance. This statement is also verified in
Section 5.5, where the ASR score of BSA is higher than only attacking a single encoder.

(2) The motivation for adopting the cosine distance is different. In BadEncoder, CLIP uses cosine
similarity as a loss function to calculate distances for positive/negative image text pairs, which is
motivated by the pre-training strategy of CLIP. However, we adopt cosine similarity because the
fine-grained token representations attend to each other in the inner product space, which is inspired
by the mechanism design of the Transformer structure. Therefore, the proposed BSA method greatly
differs from BadEncoder in the above two aspects.

G. Limitations

The limitations of our work can be summarized from the following two aspects. On the one hand,
in our current model design, for the text modality, we directly apply the existing model instead of
developing a new one. Therefore, there is no performance improvement on tasks that only accept
texts as input, such as text-to-image synthesis. On the other hand, our research problem is formu-
lated by assuming the pre-trained and downstream models share similar structures. The adversarial
transferability between different pre-trained and fine-tuned models is worth exploring, which we left
to our future work.

H. Broad Impacts

Our research reveals substantial vulnerabilities in vision-language (VL) pre-trained models, under-
lining the importance of adversarial robustness cross pre-trained and fine-tuned models. By exposing
these vulnerabilities through the VLATTACK strategy, we offer inspiration for developing more ro-
bust models. Furthermore, our findings underscore the ethical considerations of using VL models
in real-world applications, especially those dealing with sensitive information and big data. Overall,
our work emphasizes the necessity of balancing performance and robustness in VL models, with
implications extending across computer vision, natural language processing, and broader artificial
intelligence applications.
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