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Abstract

When users receive either a positive or negative outcome from an automated system,
Explainable AI (XAI) has almost exclusively focused on how to mutate negative
outcomes into positive ones by crossing a decision boundary using counterfactuals
(e.g., “If you earn 2k more, we will accept your loan application”). Here, we
instead focus on positive outcomes, and take the novel step of using XAI to optimise
them (e.g., “Even if you wish to half your down-payment, we will still accept your
loan application”). Explanations such as these that employ “even if...” reasoning,
and do not cross a decision boundary, are known as semifactuals. To instantiate
semifactuals in this context, we introduce the concept of Gain (i.e., how much a user
stands to benefit from the explanation), and consider the first causal formalisation
of semifactuals. Tests on benchmark datasets show our algorithms are better at
maximising gain compared to prior work, and that causality is important in the
process. Most importantly however, a user study supports our main hypothesis
by showing people find semifactual explanations more useful than counterfactuals
when they receive the positive outcome of a loan acceptance.

1 Introduction

Explainable AI (XAI) is broadly categorised into factual [4, 27, 30] and contrastive explanations [29,
38]. Within contrastive XAI, despite being neglected in comparison to counterfactuals, semifactuals
are a major, fundamental part of human explanation, and have long been studied in psychology [9,
35, 49], philosophy [6, 8, 20], and lately computer science [1–3, 29, 34, 52, 62]. They take the form
of “Even if x happened, y would still be the outcome”. Such reasoning has many potential uses as
demonstrated by these prior works, but here we are focused on how semifactuals can help optimise
positive outcomes for users, which (to the best of our knowledge) remains completely unexplored.

Our definition of counterfactuals is in line with Wachter et al. [55], where a test instance classified
as c must be mutated to cross a decision boundary into class c′. Likewise, as established in the
literature [1, 29], we define a semifactual as an instance classified as c, which must be modified in
such a way as to not cross a decision boundary (and hence remain class c) [29]. In recourse [25, 50],
“negative outcomes” (e.g., a loan rejection) are generally mutated to produce “positive outcomes”
(e.g., a loan acceptance) for users using counterfactuals. In our setting, we are assuming there was
initially a positive outcome, and we are trying to mutate features to produce an even better situation
for users, and in doing so not cross the boundary into the negative outcome (i.e., using semifactuals).

Historically, counterfactuals have had obvious applications in computer science, such as explaining
how to have a bank loan accepted rather than rejected, but applications for semifactuals as less
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clear. As such, the usage of semifactuals has often inadvertently defaulted to copying counterfactual
research by also explaining negative outcomes (e.g., “Even if you double your savings, your loan will
still be rejected” [3, 29, 48]). However, such an application for semifactual explanation perhaps has
two main issues. Firstly, it is debatable if these explanations convey useful information [1], whilst a
counterfactual explaining how to cross a decision boundary and have a loan accepted has obvious
utility [24]. Secondly, such explanations make the user’s situation seem helpless [35], in that they
cannot possibly have their loan accepted, which raises ethical concerns [1]. However, our proposed
framework can be used to not only overcome both of these issues, but actively contribute to fairness.

Firstly, to try offer useful information for users, we flip the usual recourse problem and consider the
user starting from a positive (rather than a negative) outcome. In this setting, consider a user that
has had their loan accepted, but might prefer to make a smaller down-payment on a loan application.
In this situation, our framework could present an explanation such as “Even if you half your down-
payment, your loan will still be accepted”, which seems to be more useful than explaining negative
outcomes (see Section 6). Secondly, because we are starting from a positive outcome, there is no
danger of manipulating people into accepting a negative outcome, which guarantees fairness is this
regard. Now, with regards to optimising fairness even further, note that banks are not motivated
to share such explanations even though they may help people, because (for example) larger down-
payments are associated with lower risk on their behalf [7]. So, the usage of semifactuals in this
application has clear potential to actively encourage fairness and transparency. As an aside, it is worth
noting that although the focus of this paper is on financial applications, this research has broad impact
on any domain for which the optimisation of a positive outcome is beneficial. For instance, in medical
applications, our framework could present explanations of the form “Even if you half your dose of
drug x, you will still be at a low risk for disease y”. This is once again important for optimising
fairness because people are frequently over-prescribed medicine with adverse side-effects [47], but
due to profit Big Pharma has no incentive to actively encourage this type of transparency. Similar
usage of semifactuals have also been proposed in smart agriculture to combat climate change [29].

Our main contributions are: (1) the first explicit exploration of how to optimise positive outcomes with
XAI, (2) the problem formulation for this which involved augmenting current semifactual research
with the concept of Gain (see Section 3.3), and (3) the premiere user test in the XAI literature for
semifactuals, showing a clear application in which users find them more useful than counterfactuals.

2 Literature Review

When using contrastive explanation to explain loan acceptance decisions, to the best of our knowledge,
this has only been explored by McGrath et al. [36]. Specifically, they suggest positive counterfactuals,
which show “by how much” a user had their loan accepted to help inform them when making
future financial decisions. While this is interesting information, we show that users find semifactual
explanations more useful in loan acceptance situations than positive counterfactuals (see Section 6).

Semifactual explanation is growing in popularity [3], Kenny & Keane [29] first explored the idea, but
focused only on images.2 Artelt & Hammer [1] used diverse semifactuals to explain why an AI system
refuses to make predictions due to having an unacceptably low certainty, but ignore how to explain
either positive or negative outcomes. Lu et al. [34] explain spurious patterns with semifactuals using
a human-in-the-loop framework in NLP. Zhao et al. [62] proposed a class-to-class variational encoder
(C2C-VAR) with low computational cost that can generate semifactual images. Vats et al. [52] used
generative models to produce semifactual image explanations for classifications of ulcers. Lastly,
for model exploration, Xie et al. [59] sampled semifactual images with a joint Gaussian mixture
model, and Dandl et al. [15] proposed deriving semifactual explanations from interpretable region
descriptors. In contrast to all these approaches, we are showcasing how semifactuals can be used to
optimise positive outcomes for users (notably in causal settings).

From a user perspective, many have discussed the urgent need for comparative tests with semifactu-
als [29, 37, 40, 48, 56], with Aryal & Keane [3] pointing to the ‘paucity of user studies’ in the area.
However, the only such tests we are aware of are in the psychological literature over two decades
ago [35]. Taking to this challenge, we conduct the first such test directly comparing semifactuals to
counterfactuals in the XAI literature (see Section 6).

2Note there is other work on a-fortiori explanations which have similar computational techniques to semifac-
tuals [14, 19, 45], they are justifications of the form “Because x it true, y must also be true”.
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Our research is related to algorithmic recourse [50] in that we are trying to ensure users are treated
fairly by automated systems [24]. In this area, Mothilal et al. [39] explored counterfactual diversity,
in that we should be offering users several explanations. In addition, counterfactual robustness has
been examined [18], which proposes that generated explanations should be robust to distributional
shifts. Lastly, causality has been argued as essential to providing plausible recourse [26]. We see
these three facets as being important to our problem setting, and instantiate them in our framework.
There are other areas in recourse such as sequential decision making [16, 42], fairness [54], and
privacy [43], but we leave their exploration within semifactual explanation for future work.

As an aside, the literature on sufficiency could be conflated with semifactual explanation, as it
describes a set of “sufficient” features for a prediction which, in the presence of the other features
mutating, mostly doesn’t affect the outcome [17, 46, 57]. However the techniques offer no insights
for how to generate a meaningful semifactual. More importantly though, if the sufficient features are
the only actionable ones, then by definition we can’t modify them to create a semifactual.

3 Semifactual Framework

In this section, we describe the basic definitions and assumptions for our semifactual framework
to optimise positive outcomes for users, before formalising it under the concept of Gain (i.e., how
much a user stands to benefit from the explanation) in a causal setting, neither of which has been
considered before. As an aside, we also show how the established concepts of plausibility, robustness,
and diversity can be made fit into the objective to offer better explanations. Finally, we reflect on the
theoretical properties of the framework.

3.1 Definitions

Let us denote an individual x ∈ X with k mutable features X = {X1, . . . , Xk}. Given the individual
x, a set of actions can be applied to x where each action a(x) is also a k-dim vector. As in prior
work [25], we apply a(x) and a exchangeably, since the individual x will always be fixed. We
explicitly exclude features that are either immutable or non-actionable. Adopting Pearl’s do()
operator [44], an action can be defined as a(x) = do(X := θ), or simply do(θ), to force a hard
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explicitly exclude features that are either immutable or non-actionable. Adopting Pearl’s do()
operator [36], an action can be defined as a(x) = do(X = ✓), or simply do(✓), to force a hard
intervention of replacing x by ✓ where ✓ 2 X . It implies that, for each feature, Xi := ✓i for the
individual x. If the action do(✓) imposes no change, we have x = ✓. We further denote a set of
human-constrained actionable ranges A = {a(x) = do(✓) : 8✓ 2 X}. Moreover, the actions have to
be mutable and explicitly exclude any action which keeps the individual in the same position.

The non-causal semi-factual interaction between x and a(x) is defined by SF : X ⇥A 7! X . That
is, the individual x taking action a(x) will lead to another representation ✓ 2 X representing that
person’s recourse. Moreover, a structural semi-factual is defined which considers the dependence
between the related features [15, 19]. We denote the structural causal model (SCM) by M = (S, PU )
where S are a set of structural equations and PU is the distribution over the exogenous variables
U 2 U . Consider that in a causal graph, there is a set of causal parents for each feature xi 2 x,
denoted by Pai. We denote the structural equations as S = {xi := gi(Pai, Ui) : i = 1, . . . , k} where
gi(·) is a deterministic function that describes the causal relationship for xi, and depends on the
exogenous variable Ui 2 U alongside the corresponding parent set Pai. Hence, S induces a mapping
S : U 7! X ⇤ and its inverse mapping S�1 : X 7! U . Let f � g(x) = f(g(x)) which can be extended
to more functions. Hence, we specify the SCM-equipped semi-factual by SF(x, do(✓); M) to denote
the transition between the states by taking a certain action through an SCM M, where

✓0 = SF(x, do(✓); M) := S � S�1 � SF(x, do(✓); M) . (1)

If all features are independently manipulable, we have ✓0 = ✓ = SF(x, do(✓); M) = SF(x, do(✓)).
Therefore, SF(x, do(✓); M) is a more generalized formulation which covers the non-causal case.
Lastly, we assume a binary model that generates the score for the users is h, where h : X 7! {0, 1}
by which we can simply consider that 1 means a positive outcome (e.g., a loan acceptance) and 0 is
a negative outcome (e.g., a loan rejection). We set a lower threshold  that separates the decision
boundary. For the form defined above,  = 0.5 is a reasonable threshold that fits all situations well.

✓0 = SF(x, a; M) := S � S�1 � SF(x, do(✓); M) . (2)

3.2 Framework

Let us define the semi-factual framework centering on Gain (G), with additional plausibility (P ),
regularization (R), and hard constraints (H), indexed by j. All of the components are parameterized
with x and a subset of suggestions {a1, . . . , am}. Letting f(·) be a function composed by Gain and
weight, the causal semi-factual framework is defined as

max
a1,...,am

1

m

mX

i=1

f(P (x, ai), G(x, ai)) + �R({✓1, . . . ,✓m})

s.t. ✓i = SF(x, ai; M), Hj(✓i) � 0, 8i, j (3)

where the regularization and hard constraints can be multiple and be indexed with i and j respectively.
One may define a similar formulation for the non-causal case. In the paper, we implement a Gain
function, with plausibility as weight, diversity as regularization, and robustness as hard constraints.
We defer all details of the components until Section 3.4.

3.3 Optimizing Positive Outcomes With “Gain”

For the core of the objective we appeal to the notion of Gain. Note that gain is similar to the idea
of Cost commonly used in recourse [41], but the crucial difference here is that we are trying to
maximize gain, rather than minimize cost (which is typically done). Moreover, gain ideally considers
the causal dependencies between features in its function, whilst cost typically only considers the
user’s action(s). Furthermore, achieving positive gain is important also. To elaborate, prior work
on semi-factuals has maximized L2 distance between a test instance and explanatory one to define
“good” semi-factuals [1, 23], irregardless of what features are mutated, but gain is designed to be more
meaningful in application by purposefully trying to change features that would benefit a user. Hence,
we define positive gain as modifying features in such a way which favorably mutates an individual
user’s current situation. For example, taking the example of a user who has their loan application for
buying a new house accepted, they may desire to spend more time away from work with family, so
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Figure 1: Semifactual Explanation to Optimise Positive Outcomes: An individual x has their loan
accepted, but there are several semifactual explanations which can help optimise their outcome. Our
algorithm produces a set of semifactual explanations which maximise the distance between x and the
final explanation SF(x, a;M). This allows the largest Gain to be achieved so that the user gets the
maximum benefit. In contrast, counterfactual algorithms are not suitable because they are designed
to target the shortest path across a decision boundary. In addition, the semifactuals are robust to
distributional shifts by constraining an ϵ-neighborhood between them and the decision boundary.
NoteM is the Structural Causal Model (SCM), see Section 3.
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intervention of replacing x by θ where θ ∈ X . It implies that, for each feature, Xi := θi for the
individual x. If the action do(θ) imposes no change, x = θ holds. We further denote a set of
human-constrained actionable ranges A = {a(x) = do(θ) : ∀θ ∈ X}. Note that the actions have to
be mutable and explicitly exclude any action which keeps the individual in the same position.

The non-causal semifactual interaction between x and a(x) is defined by SF : X ×A 7→ X . That
is, the individual x taking action a(x) will lead to another representation θ ∈ X representing that
person’s recourse. Now, a structural semifactual is defined which considers the dependence between
the related features [18, 24]. We denote the structural causal model (SCM) byM = (S,PU ) where
S are a set of structural equations and PU is the distribution over the exogenous variables U ∈ U .
Consider that in a causal graph, there is a set of causal parents for each feature xi ∈ x, denoted
by Pai. We denote the structural equations as S = {xi := gi(Pai, Ui) : i = 1, . . . , k} where
gi(·) is a deterministic function that describes the causal relationship for xi, and depends on the
exogenous variable Ui ∈ U alongside the corresponding parent set Pai. Hence, S induces a mapping
S : U 7→ X ∗ and its inverse mapping S−1 : X 7→ U . Let f ◦ g(x) = f(g(x)) which can be extended
to more functions. Hence, we specify the SCM-processed semifactual by SF(x, do(θ);M) to denote
the transition between the states by taking a certain action through an SCMM, where

θ′ = SF(x, do(θ);M) := S ◦ S−1 ◦ SF(x, do(θ);M) . (1)

If all features are independently manipulable, we have θ′ = θ = SF(x, do(θ);M) = SF(x, do(θ)).
Therefore, SF(x, do(θ);M) is a more generalised formulation which covers the non-causal case.
Lastly, we assume a binary model that generates the score for the users is h, where h : X 7→ {0, 1}
by which we can simply consider that 1 means a positive outcome (e.g., a loan acceptance) and 0 is
a negative outcome (e.g., a loan rejection). We set a lower threshold ψ that separates the decision
boundary. For the form defined above, ψ = 0.5 is a reasonable threshold that fits all situations well.

3.2 Framework

We define our semifactual framework as one centering on gain (G) that is weighted by plausibility (P ),
regularization in the form of diversity (R), and hard constraints in the form of robustness (H), indexed
by j. All of the components are parameterized with x and a subset of suggestions {a1, . . . , am}.
Letting f(·) be a function composed by gain and some weighting (i.e., plausibility for us), the causal
semifactual framework is defined as

max
a1,...,am

1

m

m∑

i=1

f(G(x, ai), P (x, ai)) + γR({θ1, . . . ,θm})

s.t. θi = SF(x, ai;M), Hj(θi) ≥ 0,∀i, j (2)

where the regularisation and hard constraints can be multiple and indexed with i and j, respectively.
One may define a similar formulation for the non-causal case (see Section 4.2). We defer all details
of the components until Section 3.4.

3.3 Optimising Positive Outcomes with Gain

For the core of the objective we appeal to the notion of gain. Note that gain is similar to the idea of
cost commonly used in recourse [50], but there are three crucial differences. First, we are trying to
maximise gain, rather than minimise cost [24]. Second, gain ideally considers the causal dependencies
between features in its function, whilst cost typically only considers the user’s action(s) [24]. Third,
gain is further subdivided into positive and negative polarities. To elaborate on this last point, take the
example of a user who has their loan application for buying a new house accepted. In this situation, if
they desired to spend more time away from work with family, they would experience positive gain if
they could work less hours per week and still have their loan accepted (see Figure 1). Conversely,
if this person increased the number of hours they worked, they would experience negative gain.
Notably, positive/negative gain is not necessarily connected to the model’s probabilities (see a1
in Figure 1 moving away from the decision boundary). Similar to actionability constraints which can
offer individualised recourse [50], what is positive/negative gain must be manually defined for each
individual. As prior work on semifactuals simply maximised the L2 distance between a test instance
and explanatory one to define good explanations [1, 29], we introduced the concept of gain to make
them more meaningful in application.
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More formally, we define the gain function by G : X ×A → R. By denoting θ = SF(x, a;M), we
decompose the function as follows:

G(x, a) := PSF ◦ δ(x,θ) = PSF ◦ δ(x,SF(x, a;M)) (3)

where P(·, ·) is an oracle function that computes the payoff based on the vectorised difference
between x and θ, i.e., δ : X × X 7→ Rk which is a symmetrical difference function between the
two feature representations. The subscript of PSF denotes a semifactual. In interpretation, the gain
function compares two states, (1) the original feature vector x, and (2) the SCM-processed end state
θ which was led to through x taking action a.

Why is Gain not necessarily equivalent to Cost? Formally, to enable the comparison, we write
the cost function (denoted by C(x, a)) as

C(x, a) = −PCF ◦ δ(x,SF(x, a)) (4)

which builds on the fact that cost solely considers the feature change. Note that SF is equivalent to
the notion CF in [25], what makes our approach different is the consideration of positive outcomes
and gain. Our finding is that gain in semifactuals (SFs) is not necessarily equivalent to cost in
counterfactuals (CFs) where the equivalence ignores the sign of both quantities, as formally stated as
follows.
Theorem 3.1. Even if PSF (·, ·) ≡ PCF (·, ·), gain and cost are not necessarily equivalent ignoring
the sign.

Proof. Note that SCMs are also considered in counterfactual recourse [18, 24, 26]. However, in
this prior research SCMs are typically applied for enforcing hard plausibility constraints, not in the
computation of a user’s cost. In contrast, our gain function takes the SCM-processed semifactual
θ′ as an input. We employ proof by contradiction here. Assume that cost and gain are equivalent
ignoring sign so that, without loss of generality,

|G(x, a)| = |C(x, a)| ⇐⇒ |P ◦ δ(x,SF(x, a;M))| = |P ◦ δ(x,SF(x, a))|
⇐⇒ δ(x,SF(x, a;M)) = δ(x,SF(x, a)) (5)

holds. However, SCMs can result in possibly more features being changed since some features could
be others’ causal parents and those causal children will change their values accordingly. By denoting
θ = SF(x, a) and θ′ = SF(x, a′), we consider the general case as follows:

|δ(x,θ)| − |δ(x,θ′)| =
∑

i

|δ(x,θ)i| −
∑

i

|δ(x,θ′)i|

=
∑

{i:θi=θ′
i}∪{i:θi ̸=θ′

i}
|δ(x,θ)i| − |δ(x,θ′)i| = 0 +

∑

{i:θi ̸=θ′
i}
|δ(x,θ)i| − |δ(x,θ′)i| ≤ 0 , (6)

which contradicts with Equation (5). Thus, even if the oracle function for calculating the payoff is the
same, gain and cost are still not necessarily equivalent. Also, the equality in Equation (6) holds when
all features are independently manipulable or the changed features are independently manipulable of
the remaining features, so that SF(x, a) = SF(x, a;M). The proof completes here.

3.4 Semifactual Components

Here, we detail how to incorporate the concepts of plausibility, robustness, and diversity into our
framework for maximising gain, because they are agreed upon as important in the literature and useful
for evaluation. While plausibility and diversity have been explored in semifactual explanation [1, 29],
robustness and causality (and indeed an objective balancing all together) have not, yet we argue and
show that the subtleties of “even if...” thinking are perhaps better captured in a casual setting.

Plausible Gain We define plausibility here as explanations which are within distribution. For
example, an explanation saying a person could earn less and still have their loan accepted should
change their “debt-to-income ratio” feature also, or it will lie outside the data manifold. Prior work
on semifactuals has only considered euclidean distance to training data as a heuristic for this [29],
in contrast we posit (similar to the counterfactual literature [23]) that this is better approached with
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SCMs. Hence, we define the plausibility for x taking the action a by P (x, a) = Pr(a = do(θ)|x)
where x is fixed for an individual and Pr(·) is a density function. In our non-causal tests, we use the
L2 norm to training data to approximate plausibility (i.e., being in distribution, similar to [29, 32, 51]).
However, this issue of plausibility is naturally taken care of in our causal tests thanks to the SCM
ensuring plausible feature mutations, so we don’t explicitly consider plausibility there going forward.

Robust Gain Continuing with the example of a person who has a loan accepted to buy a house, the
semifactual should sometimes be robust to distribution shifts. For example, if the person uses the
semifactual explanation to triple their loan amount (recall Figure 1), they will likely need upwards of
six months to locate a new house during which the semifactual should hold if the person e.g. gets an
additional credit card. Hence, we define our semifactual robustness such that while taking action a,
any close neighbor of the generated semifactual SF(x, a;M) can still receive a positive outcome.
The ϵ-neighborhood of x centering around an individual x is

B(x) = {θ = SF(x, a;M) : ∀a ∈ A, δ(θ,x) ≤ ϵ} (7)

which covers all neighbors that can be reached from x by taking an actionable feature change a
through the SCM M. By definition, x is also a neighbor of itself since x ∈ B(x) holds given
δ(x,x) = 0. Let us represent B(SF(x, a;M)) by Bs(x, a) for simplicity. Given the predictive
model h(·) and an individual x, an action a is robust for individual x if h(θ) > ψ, ∀θ ∈ Bs(x, a),
which is equivalent to minθ∈Bs(x,a) h(θ)− ψ > 0. For instance, ψ = 0.5 works for a binary model
case. We hence denote the term related to the robustness by

H(x, a) = min
θ∈Bs(x,a)

h(θ)− ψ , (8)

which will be useful for constructing the final objective.

Diverse Gain It is generally preferred to offer a number of suggested actions {a1, . . . , am}, rather
than a single one [60]. Like prior work in counterfactuals, we define diversity as the average pair-wise
distance among a set of entities [39, 61]. We reuse the distance function δ and define the diversity
objective within a set of SFs {θi}mi=1 ⊆ Xm as

R({θi}mi=1) =

{
2

m(m−1)

∑m
i=1

∑m
j>i L2 ◦ δ(θi,θj) m > 1

0 m = 1
(9)

which represents a pairwise mean distance among the set of data points, based on the L2 norm. One
may accommodate m = 1 for the case when only a single semifactual is desired.

3.4.1 Semifactual Objective

The final objective may be constructed as follows.
Definition 3.2 (Semifactual Objective). We consider a simple composition multiplication function
for f(·). Considering gain, plausibility, robustness, and diversity, the semifactual objective function
is:

max
1

m

m∑

i=1

P (x, ai)G(x, ai) + γR ({SF(x, ai;M)}mi=1)

s.t. ∀i = 1, . . . ,m : ai ∈ A, H(x, ai) > ψ .

(10)

In optimisation [10], an adversarial interpretation from the perspective of a two-player zero sum
game can further simplify Equation (10) to

J := min
λ1,...,λm≥0

max
a1,...,am∈A

1

m

m∑

i=1

P (x, ai)G(x, ai) + λiH(x, ai) + γR ({SF(x, ai;M)}mi=1) ,

(11)
where H(x, a) is the Lagrangian. The primal player tries to maximise the plausibility-weighted gain
and diversity, with regard to a, whilst the dual player tries to minimise regarding a set of λ.

Since there arem suggestions, the constraints for robustness will bem times. Observing the objective,
the robustness is a hard constraint, whilst the diversity can be regarded as regularisation. P can
be seen as a scaling factor for G which helps to guarantee that high expected gain is only possible
alongside high plausibility, simply adding them misses this special property.
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3.5 Properties of the Framework

Effective Solution Space. We discuss the set of meaningful solutions here and the result validates
the re-formulation [i.e., Equation (11)] of the semifactual framework [i.e., Equation (10)]. First, we
depict the lemma.

Lemma 3.3. Assume that the limit of the gain function and diversity term are finite. Also, assume
that A+ := {a ∈ A : G(x, a) ≥ 0} is non-empty for an individual x. The semifactual objective
J ≥ 0 when ∀i = 1, . . . ,m, ai ∈ A+ : H(x, ai) ≥ 0, otherwise J = −∞.

See Section A.1 for the proof. We can summarise that the action set which is able to provide the
positive payoff can be defined by the named effective solution space for x: A = {a ∈ A : H(x, a) ≥
0, G(x, a) > 0}. Hence, repeated suggestions will be produced when the number of actions in this
space is smaller than the required m. Otherwise, the solution will provide more versatile options.
There are no suggestions to achieve an effective semifactual(s) (i.e., with positive gain) if this solution
space is empty. However, similar situations exist for counterfactuals when they are also impossible to
generate, assuming a similar set of actionable constraints are defined.

4 Implementation Details

We now introduce our methods to solve Equation (11), henceforth called Semifactual-recourse
GENeration (S-GEN), for both causal and non-causal domains. In the following paragraphs, we use
Ĝ to denote an empirical approximation of G, and likewise for P , H , R, and J .

4.1 Causal Case

Assuming the presence of a differentiable classifier h(·) and SCMM, (recall the latter guarantees
plausibility), let Ωi(x) = {Pr(θ) : θ ∈ Bs(x, ai)} be the probability distribution over the ϵ-
neighborhood of SF(x, ai;M). Also, let Bi represent a finite subset of Bs(x, ai) sampled according
to Ωi(x). Our objective is:

max
a1,...,am

min
λ1,...,λm

1

m

m∑

i=1

−λiL (h(SF(x, ai;M), h(x))− 1

|Bi|
∑

θi∈Bi

λiL (h(θi), h(x))

+ P̂ (x, ai)Ĝ(x, ai) + γR̂({SF(x, ai;M)}mi=1)

s.t. ∀i = 1, . . . ,m : ai ∈ A, λi > 0 (12)

where L is the binary cross entropy loss. For robustness, we used Monte Carlo (MC) sampling with
an epsilon ϵ robust hypersphere, and if either the instance or sampling return a negative outcome
with h(·), we use the prior optimisation step as the solution. For diversity, m is set to the number of
actionable feature sets, and a solution is obtained for each. We utilise the causal recourse approach of
Karimi et al. [26] for solving the maximin. The actionable bounds are clipped each iteration, and λ is
iteratively decreased to put more emphasis on gain over time (see Algorithm 2).

4.2 Non-Causal Case

For the non-causal case, we use a genetic algorithm [53, 58] which only assumes a binary predictive
model h(·). This approach follows the standard design for genetic algorithms, with some minor
alterations specifically for semifactual generation, see Appendix D for the pseudocode. Next we
present the fitness function which optimises our objective.

4.2.1 Fitness Function

For gain, the average distance between an individual x and each semifactual SF(x, a) is measured as
Ĝ(x, a) = ∥SF(x, a)− x∥2. For robustness, we relax it to two constraints: Hp is the probabilistic
robustness for the neighbor points where the generated semifactuals for a query are randomly
perturbed using MC simulation to make sure the surrounding neighborhood is robust, and Ha

the absolute robustness for the individual x (more detail in Section A.2). For the first constraint,
a score of Ĥp(x, a) = 1

n

∑n
i=1 1{h(x) = h(θi)} where θ ∼ Pr(Bs(x, a)), is returned. For
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the second constraint, a score of Ĥa(x, a) = 1{h(x) = h ◦ SF(x, a)} is returned. Hence, the
solution is rewarded for (1) the neighborhood samples, and (2) the semifactuals themselves being
classified as h(x). For plausibility, we take from prior work and directly use the training data [29].
Specifically, considering the training data set D, we define the notion of plausibility using the
distance of each semifactual generated to the nearest training data point. As the term must be
maximised, we use a function which is monotonically decreasing with respect to the distance with
P (x, a) ≈ P̂D(x, a) = exp{1/(minθ∈D ∥SF(x, a)− θ∥22 + γp)} where γp is to account for when
a perfect match to the semifactual exists in the training data (thus the division is undefined), and
P̂D(x, a) is an empirical approximation (based on D) of the plausibility. Lastly, for diversity [39, 61],
we take the mean distance between all m generated semifactuals with R̂({SF(x, ai)}mi=1) which
precisely follows Equation (9). This objective collapses to 0 when m = 1.

Certain objectives need to be weighted individually based on the problem. For example, explanations
which can be acted upon immediately perhaps don’t need robustness. Notably, the multiplier λ
in Equation (11) is split to λp and λa, for Hp and Ha respectively. In this work, we treat them
as hyperparameters. Also, they are used alongside γ to balance the objectives. Since λ and γ are
selected as hyperparameters, they are removed under the min operator. Finally, the objective (fitness)
function is defined as:

max
a1,...,am∈A+

1

m

m∑

i=1

P̂D(x, ai)Ĝ(x, ai) + λpĤp(x, ai) + λsĤa(x, ai) + γR̂({SF(x, ai;M)}mi=1) .

We selected the hyperparameters via a grid search, see Appendix C. Crucially, we also weight the
fitness function output by Ĥp(x, a) to encourage solutions with more semifactuals (see Algorithm 1).

5 Experiments & Results

Here we test S-GEN in both causal and non-causal settings. We show the effectiveness of our
method in optimising a user’s positive outcome compared to baselines and open source our code
(see Appendix E). The actionability constraints are detailed in Appendix B. Baselines were modified
to be appropriately compared, most importantly, we stopped counterfactual techniques before they
crossed a decision boundary (thus generating semifactuals), and modified semifactual techniques to
work on tabular data, Appendix G details the peripheral modifications.

In the non-causal setting, we consider three datasets, Loan Application [33], German Credit [21], and
BCSC [11]. All categorical variables are one hot encoded. Three models were used, a decision tree,
logistic regression, and naïve bayes, each with 30 random test data point explanation samples gotten
by varying the random seed. Note that because the range varied on each dataset, the results were
normalised and averaged for each, but Appendix F details each individual dataset for completeness.
For baselines, we modify three techniques, DiCE by Mothilal et al. [39] (henceforth DiCE*), PIECE
by Kenny & Keane [29] (henceforth PIECE*), and Diverse semifactual Explanations of Reject
by Artelt & Hammer [1] (henceforth DSER*). Plausibility is measured as the distance between a
generated semifactual(s) and the nearest training example; thus, the smaller the better. Robustness is
measured by MC sampling n = 100 single feature perturbations of each semifactual θi, predicting
their class, and returning a float between 0-1 of the success rate as described in Section 4.2.1.

In the causal setting, the Adult [31] and COMPAS [5] datasets are considered. The SCMs from Nabi
& Shpitser [41] were used, and the structural equations from Dominguez et al. [18]. All categorical
features are treated as real-valued. We use the pre-trained MLP classifiers from Dominguez et al. [18]
and take 30 averaged samples from 5 random seeds. As baselines we modify the technique of Karimi
et al. [26] [henceforth Karimi et al.(2021)*], and Dominguez et al. [18] [henceforth Dominguez et
al.(2022)*], the latter optimises with robustness in mind. We optimise the relevant techniques to
be robust in an ϵ = 0.1 hypersphere, and the C&W adversarial attack by Carlini & Wagner [12]
measures robustness by checking if the nearest adversarial attack is outside this radius.

For all tests, the main metric of concern is gain, that is, the mean distance between a query and its
generated semifactual(s), the larger this number, the better. Diversity is also measured for all tests as
the mean distance between all m generated semifactuals for an individual x, the higher the number,
the better. To be in line with prior art, the L2 norm is used in non-causal tests [1], and the L1 in
causal [18]. Note for causal tests the SCM guarantees plausibility so this metric is not reported.
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5.1 Non-Causal Results

Our purpose here is to show that current methods are insufficient to meet the basic requirements for
semifactual explanation discussed in Section 3.4. Specifically, a technique needs to optimise gain,
while remaining plausible, robust, and offering diverse explanations.

Observing the average normalised results across all datasets (note robustness was not normalised
since it is already 0-1 range), Figure 2 shows that S-GEN performed the best on all metrics for all
values of m (1-10). The results demonstrate that traditional counterfactual approaches (DiCE*) are
not suitable to achieve optimal gain, due to them focusing on minimising cost. Moreover, methods
built for semifactual generation specifically (i.e., DSER* & PIECE*) that do actually maximise gain
somewhat, still fail to match the results of S-GEN. This shows that S-GEN is superior to existing
semifactual methods (and popular counterfactual approaches appropriately modified) for maximising
a user’s gain in positive outcomes. Moreover, it does so while maintaining superior plausibility,
robustness, and diversity in all tests.

5.2 Causal Results

We evaluate our algorithm in a causal setting where the SCMs and structural equations are known.
The primary purpose of this test is to demonstrate that the semantics of semifactual “even if” thinking
is better captured in a causal setting due to dependencies being taken into account when calculating a
person’s gain. With regard to diversity, we fix m to the maximum number of feature sets available
from the actionable features (so only one m value is tested).

Figures 3a and 3b show the initial gain achieved by a person after taking a certain action (i.e., the
Action Gain), and how this gain transforms after considering the causal relationship between features
(i.e., the Causal Gain). Firstly, the total gain achieved by S-GEN is much larger than the baselines in
both datasets and hence consistent with our non-causal tests. More importantly however, the change
in gain a person achieves after considering the causal relations in the adult dataset is significantly
higher both in significance testing and effect size (0.055± 0.001 v. 0.063± 0.001; t-test p < 0.02;
Cohen’s d = 2.24), showing it is beneficial to consider causality when calculating a person’s gain.
The results of diversity put S-GEN first also (S-GEN = 0.84 ± 0.09 v. Karimi = 0.43 ± 0.03
v. Domineguez = 0.34 ± 0.03). In robustness, both S-GEN and Domineguz et al. (2022)* did
reasonably well (S-GEN = 87% success v. Domineguz = 54% success), but Karimi et al. (2021)*
did not (7.2% success), likely due to the latter not being designed for this.

6 User Evaluation

The primary motivation behind this work is the hypothesis that semifactual explanation would be
preferred by users over counterfactuals in positive outcome settings. To test this assumption, we
design the first user test in XAI directly comparing the two. Specifically, we show users three
materials in which a person has a bank loan accepted, and three in which they don’t. Users were
then shown both explanation types for each material, and asked to rate on a scale from 1-5 how
useful each were. So, the study was a within-subjects design, and the condition was the explanation
type. Note that although we are studying the effect of the explanation type on loan acceptance, the
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Figure 2: Results: The ability of S-GEN to create semifactuals is compared to DiCE*, DSER*, and
PIECE*. Overall, S-GEN does the best, achieving significantly better results to all baselines in all
tests. Note we normalised all results before averaging because each dataset has different scaling.
Standard error bars are shown.

9



Action Gain Causal Gain
0.01

0.02

0.03

0.04

0.05

0.06

0.07

G
ai

n
Method

S-GEN
Karimi et al. (2021)*
Dominguez et al. (2022)*

(a) Causal Experiment: Adult

Action Gain Causal Gain
0.05

0.10

0.15

0.20

0.25

0.30

G
ai

n

Method
S-GEN
Karimi et al. (2021)*
Dominguez et al. (2022)*

(b) Causal Experiment: COMPAS
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Figure 3: Causal Experiment & User Study Results: (a/b) show the gain achieved by all methods both
before and after considering the causal dependencies. Firstly, note that S-GEN achieves significantly
more gain than the alternatively proposed approaches. Most importantly however, (a) shows there is
significantly more gain achieved on the Adult data by S-GEN after taking causal dependencies into
account, showing the importance of a causal formalisation. (c) Shows the user study results, where
people perceive semifactual explanation as being significantly more useful than counterfactuals in the
positive outcome of having a loan accepted. Standard error bars are shown.

loan rejection scenarios were also included to balance people’s view of the problem setting, and
as attention checks to verify that users were engaging with the materials and varying their scores
accordingly. For analysis, each user’s scores for counterfactuals and semifactuals were averaged in
both loan acceptance and rejection materials into four decimal scores per user, thus allowing us to
analyse the discrete Likert scores with t-tests [28]. As is a popular approach [22], we don’t explicitly
define what “useful” means to users, but rather let them use their own natural interpretation, as the
results returned were reasonably consistent across individuals, they appear to have converged on an
common interpretation of this word. The null hypothesis is that people will find both explanation types
not significantly different in loan acceptance. The alternative is that people will find semifactuals
significantly more useful in loan acceptance.

A power analysis [13] of two dependent means with an effect size dz = 0.8, alpha α = 0.05,
and power (1 − β err prob)=0.9 informed a sample of 15 was appropriate for t-tests. Users were
gathered from Prolific.com, 8 males, 7 females, aged 18+, native English speakers, and from the U.S.
People were paid $12/hr, which totalled $35. The semifactuals were generated with S-GEN, and the
counterfactuals with DiCE [39], notably these are equivalent to positive counterfactuals by McGrath
et al. [36] for explaining loan acceptance situations. The study obtained IRB approval from MIT.

All users engaged and changed their ratings significantly depending on whether a loan was accepted
or rejected, so none were excluded. Figure 3c shows users find semifactuals significantly more useful
in loan acceptance (S-GEN=3.60±0.27 v. DiCE=2.33±0.34; p < .005) compared to rejections when
counterfactuals are preferred (S-GEN=2.6±0.32 v. DiCE=4.53±0.17; p < .0001). Hence we reject
the null and lend credible evidence that semifactuals are more useful to explain positive outcomes.

7 Discussion

Although much XAI work has explored how to explain positive outcomes, to the best of our knowl-
edge, no consideration has been given towards explaining how to optimise them. Here, we have taken
the novel step of exploring this, and showed how semifactuals are especially suited for the purpose.
This required building on prior work in semifactuals by (1) introducing the concept of Gain, (2)
re-framing them in a causal setting, and (3) conducting their first user test in XAI. Perhaps the notable
limitation of our work is that although we have shown people do perceive semifactuals as being more
useful in positive outcomes, we have not demonstrated this quantitatively, notably because of the
difficulties acquiring an appropriate user base alongside the ethical considerations of such a study.
Moreover, considering a casual formulation of semifactuals requires an SCM, which is not always
realistic, but we have provided a non-causal algorithm for these situations. In future work, it would be
interesting to formalise the utility of semifactuals for optimising positive outcomes in other domains
such as robotics, which likely requires other considerations.
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A Property Analysis

A.1 Proof of Lemma 3.3

Proof. We can rewrite J to

J = max
a1,...,am∈A

{
1

m

m∑

i=1

P (x, ai)G(x, ai) +
1

m

m∑

i=1

min
λi≥0

λiH(x, ai) + γR ({SF(x, ai;M)}mi=1)

}
.

(13)
We derive the fact that, for any i,

min
λi≥0

λiR(x, ai) =

{−∞ H(x, ai) < 0

0 otherwise

where −∞ comes from setting λi = ∞ and 0 is obtained by setting λpi
= 0. By the linearity of

summation, we can further derive

1

m

m∑

i=1

min
λi≥0

λiR(x, ai) =

{−∞ ∃i,H(x, ai) < 0

0 otherwise
.

That is, if any constraint for the robustness is unsatisfied, the dual player will minimise the objective
towards −∞; however, the primal player cannot optimise towards∞ given that the limit of the gain
function and the diversity are finite. In other words, if the constraints are satisfied, the primal player
can freely optimise the objective. Once H(x, ai) ≥ 0,∀ai are satisfied, the objective becomes

J̃ := max
a1,...,am∈A+

1

m

m∑

i=1

P (x, ai)G(x, ai) + γR ({SF(x, ai;M)}mi=1)

≥ min
a1,...,am∈A+

1

m

m∑

i=1

P (x, ai)G(x, ai) + γR ({SF(x, ai;M)}mi=1)

> 0

(14)

as P (x, ai) > 0 and G(x, ai) ≥ 0 for any ai ∈ A+; also, R ≥ 0 holds. We conclude the proof
here.

A.2 A Probabilistic Relaxation of Robustness

Absolute robustness is difficult to guarantee, and common practice is to relax this via a probabilistic
approach [26].

Assume there is a distribution over the sample space Bs(x, a) denoted by Pr(Bs(x, a)). We write
θ ∼ Pr(Bs(x, a)) to indicate that θ is sampled from the set Bs(x, a) under the density Pr(·). Let
E[h(θ)|x, a] denote the expectation of θ in this configuration. Hence, we modify Equation (8) to

E[h(θ)|x, a] > ψ̃, (15)

where ψ̃ is a function that adjusts the base score threshold ψ. It is crucial to have this threshold
function in order to consider the variance of scores in the neighbor set. Particularly, we would like
most neighbors to remain in a similarly “good" state, with low variance between them.

Moreover, we explicitly impose h(SF(x, a;M)) − ψ > 0. It places a hard constraint to avoid
the case in which the neighbors of the semifactual are robust, but the “semifactual" itself has
crossed the decision boundary to become a counterfactual. Whilst somewhat unlikely, this situation
is theoretically possible, and requires consideration. In this case, H is re-written as Hp, which
represents a combination of (i) the probabilistic robustness, and (ii) the absolute robustness for the
semifactual Ha such that:

Hp(x, a) = E[h(θ)|x, a]− ψ̃ Ha(x, a) = h(SF(x, a;M))− ψ . (16)
In practice, Hp is still non-trivial to solve. Monte Carlo (MC) sampling is a common strategy to
apply here such that, by sampling a fixed sized batch B = {θ : θ ∼ Pr(Bs(x, a))},

Hp(x, a) = E[h(θ)|x, a]− ψ̃ ≈ (1/|B|)∑θ∈B h(θ)− ψ̃ . (17)
This implies that we substitute an unbiased estimator for the population mean.
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B Actionability Constraints

B.1 Non-Causal

Here we define the actionability constraints used in the various domains. It may be assumed that the
direction features are allowed to change corresponds with positive gain. We use various sized “action
sets" to fully test all algorithms in various setups. The German Credit data used 15 actionable features
to be closely in line with Mothilal et al. [39] whom allowed all features to be mutable. However, we
also used 7 on Lending Club, and 4 on Adult Census/Breast Cancer to test the algorithms in situations
with smaller action spaces also for completeness.

We ordered categorical features in a sensible fashion to “direct" semifactual “even if" thinking, and
when we say a categorical feature could decrease/increase, we are referring to this pre-defined order.
If you are interested in the exact ordering, please refer to our code which contains all the lists, but
here we summarise. In reality however, a user must specify their exact actionability constraints, what
we have specified here is designed to be representative what is possible for the “average" individual.

B.1.1 German Credit Dataset

The continuous features used were ‘duration’, ‘amount’, ‘age’, the categorical ones were
‘status’, ’credit_history’, ‘purpose’, ‘savings’, ‘employment_duration’, ‘installment_rate’, ‘per-
sonal_status_sex’, ‘other_debtors’, ’present_residence’, ‘property’, ‘other_installment_plans’, ‘hous-
ing’, ‘number_credits’, ‘job’, ‘people_liable’, ‘telephone’, ‘foreign_worker’. As actionable features
for semifactual recourse, we considered the following:

• duration: We allowed people to increase the duration of their loan.
• amount: We allowed people to increase the amount of their loan.
• status: We allowed people to move towards having lower status.
• credit_history: We allowed people to move towards e.g. having a late payment if their credit

history was otherwise good.
• savings: This feature was allowed to decrease.
• employment_duration: This feature was allowed to decrease in case people wanted to e.g.

start a new job.
• installment_rate: This feature was allowed to move towards lower payments.
• other_debtors: this feature was allowed to add another co-applicant.
• present_residence: This feature was allowed to move towards e.g. renting in case the user

desired to do so whilst searching for a new house with their loan.
• property: this feature was allowed to move towards having no property in case the user

desired to sell their house/car etc to help pay for e.g. a downpayment.
• other_installment_plans: This feature was allowed to add other installment plans.
• housing: this feature was allowed to move towards renting away from e.g. owning.
• number_credits: This feature was allowed to increase if the user desired to acquire more

credit cards.
• job: this feature was allowed to decrease in case the individual desired to get a different,

less demanding job within their institution, or indeed quite their job to e.g. start a business.
• people_liable: This feature was allowed to move towards more people being liable.

B.1.2 Lending Club

The continuous features used were ‘loan_amnt’, ‘pub_rec_bankruptcies’, ‘annual_inc’, ‘dti’, the
categorical ones were ‘emp_length’, ‘term’, ‘grade’, ‘home_ownership’, ‘purpose’. As actionable
features for semifactual recourse, we considered the following:

• home_ownership: This feature was allowed to decrease towards e.g. renting.
• annual_inc: this feature was allowed to decrease if the person desired to e.g. work less

hours.
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• emp_length: This feature was allowed to decrease in case the individual desired to change
careers.

• dti: dept to income ratio, this feature was allowed to increase.

• pub_rec_bankruptcies: This feature was allowed to increase in case the user decided they
wanted to declare bankruptcy to e.g. try and keep some assets.

• loan_amnt: this feature was allowed to increase.

• term: This feature was allowed to decrease.

B.1.3 Breast Cancer

The continuous features used were none, the categorical ones were ‘agegrp’, ‘density’, ‘race’,
‘Hispanic’, ‘bmi’, ‘agefirst’, ‘nrelbc’, ‘brstproc’, ‘lastmamm’, ‘surgmeno’, ‘hrt’. As actionable
features for semifactual recourse, we considered the following:

• bmi: This feature was allowed to move towards less healthy BMI levels in case the patient
e.g. has hypothyroidism.

• brstproc: this feature was allowed to move towards having had a previous breast proceedure
in case the patient would like to do so or was advised.

• hrt: This feature was allowed to move towards starting HRT, in case a person may wish to
alleviate synthoms of the menopause.

• agegrp: this feature was allowed to get older in case the individual would like to take no
action confident that it would not lead to cancer in the next few years/decades.

B.2 Causal

In the causal setting, we allowed a user’s age to increase a maximum of 5 years to mimic the
motivating examples in the paper about a user having a bank loan accepted. In such a situation, the
user may want to e.g. work less hours over the next 5 years whilst they repay the loan, and still have
it accepted.

Next, we detail the direction features are allowed to change, and what direction corresponds to
positive gain.

B.2.1 Adult Income Census

We use the features “sex”, “age”, “native-country”, “marital-status”, “education-num”, “hours-per-
week”, which are the variables in the causal graph of Nabi & Shpitser [41]. We consider “age”
and “hours-per-week” as actionable. We allow “age” to increase a maximum of five years, and
“hours-per-week” to decrease.

For positive gain, we considered: Age, marital status, and eduation-num increasing corresponding to
positive gain, and hours-per-week decreasing corresponding to positive gain. A persons sex was seen
as neutral gain.

B.2.2 COMPAS

We use the features “age”, “race”, “sex” and “priors count”, which are the variables in the causal
graph of Nabi & Shpitser [41]. We consider “age” and “priors count” as actionable. As actionability
constraints, we assume that both features are non-negative and can only be increase. Age specifically
is only allowed to increase by 5 years for each individual.

For positive gain, we considered: Age and priors count increasing corresponding to positive gain. A
persons sex and race was seen as neutral gain.

C Hyperparameter Choices

In this section, we discuss the hyperparameter specifications for the causal and non-causal cases
respectively.
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C.1 Non-Causal

Here we note the values for the hyperparameters used in our demonstrations. All were obtained
though pilot grid-searches across each dataset. The hyperparameter choices are summarised in Table 1

Table 1: Hyperparameter Specifications
Data λp λs γd γp

German credit 30 10 1 1e−1

Lending Club 30 10 1 1e−1

Breast Cancer 10 10 10 1e−1

For S-GEN itself, we used the same hyperparameters everywhere outside of the above table. The
number of generations spent searching for a solution was 20. The population size was fixed at
{12, 24, 48, 72, 96, 120}, for diversity sizes of {1, 2, 4, 6, 8, 10}, respectively. The mutation rate was
0.05. The number of “elite" solutions passed on for each generation was 4. The probability of a
crossover happening was 0.5. The number of Monte Carlo trials for each instance was 100. The
continuous features were perturbed (in mutation or population initialization) by the output from
sampling a standard normal distribution with standard deviation equal to the max actionable feature
value, minus the min actionable feature value, multiplied by 0.05.

C.2 Causal

In our causal tests we chose λ as 1.0, and this was gradually decreased by a momentum of η=0.9
each iteration to put more emphases on the maximization of gain.

D Algorithm Pseudocode

Algorithm 1 S-GEN: Genetic Algorithm to Generate semifactual Recourse with Robustness and
Diversity in a Non-Causal Model Agnostic Setting
Require: x the user feature
Require: h(·) the predictive model
Require: m the expected number of suggestions
Require: n the number of candidates, n > m
Ensure: RSF the set of semifactual(s)

1: Sample n candidates D← {θi ∼ X}ni=1
2: while the stopping criterion is not satisfied do
3: Obtain the fitness scores f with respect to D
4: Save the fittest θ∗ ∈ D according to f
5: Let D evolve by natural selection according to f , crossover, mutation, and elitism with x∗

6: end while
7: Collect the best m unique candidates from {θ ∈ D : h(θ) = h(x) = 1} to RSF , according to

the corresponding fitness scores in f
8: if |RSF | < m then
9: Complement RSF to m elements with θ randomly drawn from RSF

10: end if

E Code

For our full code used please see:

https://github.com/EoinKenny/Semifactual_Recourse_Generation

The ability to reproduce the results is given.
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Algorithm 2 S-GEN: Algorithm to Generate Robust & Diverse Causal semifactual Explanations for
Differentiable Classifiers
Require: x the user feature vector
Require: h(·) the predictive model
Require: M the differentiable SCM
Require: ϵ the epsilon robustness
Require: η the momentum parameter
Require: τ the learning rate
Require: Proj(·) a projection function that ensures the action is actionable
Ensure: RSF the set of semifactual(s)

1: RSF ← ∅
2: i← 0
3: for a ∈ A do
4: Move to next loop if the SF generated with the initial a does not satisfy the constraints.
5: ai ← a
6: while not converged do
7: Sample a batch of neighbors from Bs(x, ai), denoted by Bi

8: if h(SF(x, ai;M)) = 0 or h(θ) = 0,∃θ ∈ Bi then
9: break

10: end if
11: Ji ← −λiL (h(SF(x, ai;M)), h(x))−∑

θi∈Bi

λi

|Bi|L (h(θi), h(x)) + P̂ (x, ai)Ĝ(x, ai)

12: ai ← Proj (ai + τ∇ai
Ji)

13: λi ← ηλi
14: end while
15: RSF ← RSF ∪ {SF(x, ai;M)}
16: i← i+ 1
17: if i ≥ m then
18: break
19: end if
20: end for

F Individual Dataset Results

The results are presented in Figure 4.
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Figure 4: Results: The ability of S-GEN to create semifactuals is compared to DiCE* and PIECE*.
Overall, S-GEN does the best, achieving significantly better results to both baselines on 11/16 tests.
Moreover, S-GEN was only significantly worse than either baseline on a single test (i.e., plausibility
on German Credit), with the remaining four tests being competitive between methods. Standard error
bars are shown.
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G Baselines

G.1 Non-Casual

DiCE Our modification to DiCE, starts by generating a counterfactual(s) for a query. Next, we
use the algorithm again, but on the generated counterfactuals(s), to make them generate a second
counterfactual, which goes back over the decision boundary. In effect, this generates a semifactual(s)
for a query.

PIECE Second, we use the PIECE framework by Kenny and Keane [29], but apply it to tabular
data. Following the authors, we divide the training data into two sets, the first corresponding to those
predicted as the original class c, and the second to those predicted as the counterfactual class c′, these
are again split into the respective features. Hence, if there are 2 classes, with 4 features, there are
2× 4 = 8 sets of data. These sets were then modeled using the best fit found for a Beta distribution
on continuous features, and a simple Categorical distribution for categorical features. To generate a
semifactual predicted as c, we take the probability of each feature value in the query using the models
of the counterfactual class c′, and modify each to be its expected statistical value in c′ one-by-one
(from the lowest probability to the highest), until the next would take it over the decision boundary.
In the case of continuous features, as done by Kenny and Keane [29], we take the probability as being
the minimum of the two integrals either side of the feature value in the distribution. In the case the
expected feature values lie outside the actionability range, we clip them to the closest value allowed.

DSER For Diverse Explanation of Reject [1] (DSER) we had to modify the the technique in two
main ways. Most notably, the techniques doesn’t deal with categorical features, so to overcome this,
we optimised treating all one hot encoded features as real-valued, and then projected each categorical
feature onto its nearest value. Next, the method addresses diversity by iterating all different sets
of possible features, in our domains this is computationally intractable. Hence, we optimise one
semifactual at a time, each time pushing each solution as far as possible from those already found.

G.2 Causal

Karimi et al. (2021) The method by Karimi et al. [25] is a recourse method designed to minimise
cost whilst traversing the decision boundary. To modify the technique, we simply stop the optimization
when the next step would take it over the decision boundary.

Dominguez et al. (2022) The method by Dominguez et al. [18] is identical to Karimi et al. [25],
but they add in a robustness component. Namely, they take an individual x, and solve an inner loss
which means that an individual of distance ϵ = 0.1 (in our tests) close to x, with the same recourse
given, will also achieve recourse. We simply keep the same optimization process, but aim to solve
a different objective. The objective we solve is to move towards the decision boundary, but when
the recourse option causes either x or the individual close to it to cross the decision boundary, we
terminate the optimization one step prior to this.

H Computational Costs

All tests were run on a MacBook Pro, Apple M1 Pro, 16 GB. Re-running tests will take less than 1
day.

I User Study

Here we show our entire user study for complete transparency. We used the German Credit dataset,
but converted the currency into U.S. dollars since it was given to U.S. citizens to complete.
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