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Abstract

Diffusion models have recently shown remarkable success in high-quality image1

generation. Sometimes, however, a pre-trained diffusion model exhibits partial mis-2

alignment in the sense that the model can generate good images, but it sometimes3

outputs undesirable images. If so, we simply need to prevent the generation of the4

bad images, and we call this task censoring. In this work, we present censored5

generation with a pre-trained diffusion model using a reward model trained on6

minimal human feedback. We show that censoring can be accomplished with7

extreme human feedback efficiency and that labels generated with a mere few8

minutes of human feedback are sufficient.9

1 Introduction10

Diffusion probabilistic models [19, 12, 42] have recently shown remarkable success in high-quality11

image generation. Much of the progress is driven by scale [35, 36, 38], and this progression points12

to a future of spending high costs to train a small number of large-scale foundation models [4] and13

deploying them, sometimes with fine-tuning, in various applications. In particular use cases, however,14

such pre-trained diffusion models may be misaligned with goals specified before or after the training15

process. An example of the former is text-guided diffusion models occasionally generating content16

with nudity despite the text prompt containing no such request. An example scenario of the latter is17

deciding that generated images should not contain a certain type of concepts (for example, human18

faces) even though the model was pre-trained on images with such concepts.19

Fixing misalignment directly through training may require an impractical cost of compute and data.20

To train a large diffusion model again from scratch requires compute costs of up to hundreds of21

thousands of USD [30, 29]. To fine-tune a large diffusion model requires data size ranging from22

1,000 [28] to 27,000 [25].1 We argue that such costly measures are unnecessary when the pre-trained23

model is already capable of sometimes generating “good” images. If so, we simply need to prevent24

the generation of “bad” images, and we call this task censoring. (Notably, censoring does not aim25

to improve the “good” images.) Motivated by the success of reinforcement learning with human26

feedback (RLHF) in language domains [9, 49, 43, 33], we perform censoring using human feedback.27

In this work, we present censored generation with a pre-trained diffusion model using a reward model28

trained on extremely limited human feedback. Instead of fine-tuning the pre-trained diffusion model,29

we train a reward model on labels generated with a few minutes of human feedback and perform30

guided generation. By not fine-tuning the diffusion model (score network), we reduce both compute31

and data requirements for censored generation to negligible levels. (Negligible compared to any32

amount of compute and man-hours an ML scientist would realistically spend building a system with33

1The prior work [28] fine-tunes a pre-trained diffusion model on a new dataset of size 1k using a so-called
adapter module while [25] improves text-to-image alignment using 27k human-feedback data.
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(a) Baseline: MNIST class “7” (b) Censored: Crossed 7

(c) Baseline: LSUN Church with LDM (d) Censored: Stock photo watermarks

(e) Baseline: ImageNet class “tench” (fish) (f) Censored: Human faces

(g) Baseline: LSUN bedroom (h) Censored: Broken images

Figure 1: Uncensored baseline vs. censored generation. Setups are precisely defined in Section 5.
Due to space constraints, we present selected representative images here. Full sets of non-selected
samples are shown in the appendix.
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a diffusion model.) We conduct experiments within multiple setups demonstrating how minimal34

human feedback enables removal of target concepts. The specific censoring targets we consider35

are: A handwriting variation (“crossed 7”s) in MNIST [11]; Watermarks in the LSUN [46] church36

images; Human faces in the ImageNet [10] class “tench”; “Broken” images in the generation of37

LSUN bedroom images.38

Contribution. Most prior work focus on training new capabilities into diffusion models, and this39

inevitably requires large compute and data. Our main contribution is showing that a very small40

amount of human feedback data and computation is sufficient for guiding a pre-trained diffusion41

model to do what it can already do while suppressing undesirable behaviors.42

1.1 Background on diffusion probabilistic models43

Due to space constraints, we defer the comprehensive review of prior works to Appendix D. In this44

section, we briefly review the standard methods of diffusion probabilistic models (DPM) and set up45

the notation. For the sake of simplicity and specificity, we only consider the DPMs with the variance46

preserving SDE.47

Consider the variance preserving (VP) SDE48

dXt = −
βt
2
Xtdt+

√
βtdWt, X0 ∼ p0 (1)

for t ∈ [0, T ], where βt > 0, Xt ∈ Rd, and Wt is a d-dimensional Brownian motion. The process49

{Xt}t∈[0,T ] has the marginal distributions given by50

Xt
D
=
√
αtX0 +

√
1− αtεt, αt = e−

∫ t
0
βsds, εt ∼ N (0, I)

for t ∈ [0, T ] [39, Chapter 5.5]. Let pt denote the density for Xt for t ∈ [0, T ]. Anderson’s theorem51

[1] tells us that the the reverse-time SDE by52

dXt = βt

(
−∇ log pt(Xt)−

1

2
Xt

)
dt+

√
βtdW t, XT ∼ pT ,

where {W t}t∈[0,T ] is a reverse-time Brownian motion, satisfies Xt
D
= Xt ∼ pt.53

In DPMs, the initial distribution is set as the data distribution, i.e., p0 = pdata in (1), and a score54

network sθ is trained so that sθ(Xt, t) ≈ ∇ log pt(Xt). For notational convenience, one often uses55

the error network εθ(Xt, t) = −
√
1− αtsθ(Xt, t). Then, the reverse-time SDE is approximated by56

dXt = βt

(
1√

1− αt
εθ(Xt, t)−

1

2
Xt

)
dt+

√
βtdW t, XT ∼ N (0, I)

for t ∈ [0, T ].57

When an image X has a corresponding label Y , classifier guidance [40, 12] generates images from58

pt(Xt |Y ) ∝ pt(Xt, Y ) = pt(Xt)pt(Y |Xt)

for t ∈ [0, T ] using59

ε̂θ(Xt, t) = εθ(Xt, t)− ω
√
1− αt∇ log pt(Y |Xt)

dXt = βt

(
1√

1− αt
ε̂θ(Xt, t)−

1

2
Xt

)
dt+

√
βtdW t, XT ∼ N (0, I),

where ω > 0. This requires training a separate time-dependent classifier approximating pt(Y |Xt).60
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2 Problem description: Censored sampling with human feedback61

Informally, our goal is:62

Given a pre-trained diffusion model that is partially misaligned in the sense that63

generates both “good” and “bad” images, fix/modify the generation process so that64

only good images are produced.65

The meaning of “good” and “bad” depends on the context and will be specified through human66

feedback. For the sake of precision, we define the terms “benign” and “malign” to refer to the good67

and bad images: A generated image is malign if it contains unwanted features to be censored and is68

benign if it is not malign.69

Our assumptions are: (i) the pre-trained diffusion model does not know which images are benign or70

malign, (ii) a human is willing to provide minimal (∼ 3 minutes) feedback to distinguish benign and71

malign images, and (iii) the compute budget is limited.72

Mathematical formalism. Suppose a pre-trained diffusion model generates images from distribu-73

tion pdata(x) containing both benign and malign images. Assume there is a function r(x) ∈ (0, 1)74

representing the likelihood of x being benign, i.e., r(x) ≈ 1 means image x is benign and should be75

considered for sampling while r(x) ≈ 0 means image x is malign and should not be sampled. We76

mathematically formalize our goal as: Sample from the censored distribution77

pcensor(x) ∝ pdata(x)r(x).

Human feedback. The definition of benign and malign images are specified through human78

feedback. Specifically, we ask a human annotator to provide binary feedback Y ∈ {0, 1} for each79

image X through a simple graphical user interface shown in Appendix E. The feedback takes 1–380

human-minutes for the relatively easier censoring tasks and at most 10–20 human-minutes for the81

most complex task that we consider. Using the feedback data, we train a reward model rψ ≈ r, which82

we further detail in Section 3.83

Evaluation. The evaluation criterion of our methodology are the human time spent providing84

feedback, quantified by direct measurement, and sample quality, quantified by precision and recall.85

In this context, precision is the proportion of benign images, and recall is the sample diversity of86

the censored generation. Precision can be directly measured by asking human annotators to label87

the final generated images, but recall is more difficult to measure. Therefore, we primarily focus88

on precision for quantitative evaluation. We evaluate recall qualitatively by providing the generated89

images for visual inspection.90

3 Reward model and human feedback91

Let Y be a random variable such that Y = 1 if X is benign and Y = 0 if X is malign. Define the92

time-independent reward function as93

r(X) = P(Y = 1 |X).

As we later discuss in Section 4, time-dependent guidance requires a time-dependent reward function.94

Specifically, let X ∼ pdata and Y be its label. Let {Xt}t∈[0,T ] be images corrupted by the VP SDE95

(1) with X0 = X . Define the time-dependent reward function as96

rt(Xt) = P(Y = 1 |Xt) for t ∈ [0, T ].

We approximate the reward function r with a reward model rψ , i.e., we train97

rψ(X) ≈ r(X) or rψ(Xt, t) ≈ rt(Xt),

using human feedback data (X(1), Y (1)), . . . , (X(N), Y (N)). (So the time-dependent reward model98

uses (X(n)
t , Y (n)) as training data.) We use weighted binary cross entropy loss. In this section, we99

describe the most essential components of the reward model while deferring details to Appendix F.100

The main technical challenge is achieving extreme human-feedback efficiency. Specifically, we have101

N < 100 in most setups we consider. Finally, we clarify that the diffusion model (score network) is102

not trained or fine-tuned. We use relatively large pre-trained diffusion models [12, 36], but we only103

train the relatively lightweight reward model rψ .104
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Algorithm 1 Reward model ensemble

Require: Images: malign {X(1), . . . , X(NM )}, benign {X(NM+1), . . . , X(NM+NB)} (NM < NB)
for k = 1, . . . ,K do

Randomly select with replacement NM benign samples X(NM+i1), . . . , X(NM+iNM
).

Train reward model r(k)ψk
with {X(1), . . . , X(NM )} ∪ {X(NM+i1), . . . , X(NM+iNM

)} .
end for
return rψ =

∏K
k=1 r

(k)
ψk

Algorithm 2 Imitation learning of reward model

Require: Pre-trained εθ. Initialize D = ∅.
Sample X(1), . . . , X(N1) using εθ and no censoring.
Receive Y (1), . . . , Y (N1) from human feedback. Add data to buffer: D ← {(X(i), Y (i))}N1

i=1.
Train reward model rψ with D.
for r = 2, . . . , R do

Sample X(1), . . . , X(Nr) using εθ and censoring with rψ .
Receive Y (1), . . . , Y (Nr) from human feedback. Add data to buffer: D ← {(X(i), Y (i))}Nr

i=1.
Train reward model rψ with D.

end for
return rψ

3.1 Reward model ensemble for benign-dominant setups105

In some setups, benign images constitute the majority of uncensored generation. Section 5.2 considers106

such a benign-dominant setup, where 11.4% of images have stock photo watermarks and the goal is107

to censor the watermarks. A random sample of images provided to a human annotator will contain108

far more benign than malign images.109

To efficiently utilize the imbalanced data in a sample-efficient way, we propose an ensemble method110

loosely inspired by ensemble-based sample efficient RL methods [23, 6]. The method trains K111

reward models r(1)ψ1
, . . . , r

(K)
ψK

, each using a shared set of NM (scarce) malign images joined with112

NM benign images randomly subsampled bootstrap-style from the provided pool of NB (abundant)113

benign data as in Algorithm 1. The final reward model is formed as rψ =
∏K
k=1 r

(k)
ψk

. Given that114

a product becomes small when any of its factor is small, rψ is effectively asking for unanimous115

approval across r(1)ψ1
, . . . , r

(K)
ψK

.116

In experiments, we useK = 5. We use the same neural network architecture for r(1)ψ1
. . . , r

(K)
ψK

, whose117

parameters ψ1, . . . , ψK are either independently randomly initialized or transferred from the same118

pre-trained weights as discussed in Section 3.3. We observe that the ensemble method significantly119

improves the precision of the model without perceivably sacrificing recall.120

3.2 Imitation learning for malign-dominant setups121

In some setups, malign images constitute the majority of uncensored generation. Section 5.3 considers122

such a malign-dominant setup, where 69% of images are tench (fish) images with human faces and123

the goal is to censor the images with human faces. Since the ratio of malign images starts out high, a124

single round of human feedback and censoring may not sufficiently reduce the malign ratio.125

Therefore, we propose an imitation learning method loosely inspired by imitation learning RL methods126

such as DAgger [37]. The method collects human feedback data in multiple rounds and improves the127

reward model over the rounds as described in Algorithm 2. Our experiment of Section 5.3 indicates128

that 2–3 rounds of imitation learning dramatically reduce the ratio of malign images. Furthermore,129

imitation learning is a practical model of an online scenario where one continuously trains and130

updates the reward model rψ while the diffusion model is continually deployed.131
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Ensemble vs. imitation learning. In the benign-dominant setup, imitation learning is too costly in132

terms of human feedback since acquiring sufficiently many (∼ 10) malign labels may require the133

human annotator to go through too many benign labels (∼ 1000) for the second round of human134

feedback and censoring. In the malign-dominant setup, one can use a reward model ensemble, where135

reward models share the benign data while bootstrap-subsampling the malign data, but we empirically136

observe this to be ineffective. We attribute this asymmetry to the greater importance of malign data137

over benign data; the training objective is designed so as our primary goal is to censor malign images.138

3.3 Transfer learning139

To further improve human-feedback efficiency, we use transfer learning. Specifically, we take a140

ResNet18 model [17, 18] pre-trained on ImageNet1k [10] and replace the final layer with randomly141

initialized fully connected layers which have 1-dimensional output features. We observe training all142

layers to be more effective than training only the final layers. We note that transfer is appropriate for143

training a time-independent reward model, as pre-trained time-dependent classifiers are less common.144

4 Sampling145

In this section, we describe how to perform censored sampling with a trained reward model rψ. We146

follow the notation of Section 1.1.147

Time-dependent guidance. Given a time-dependent reward model rψ(Xt, t), our censored genera-148

tion follows the SDE149

ε̂θ(Xt, t) = εθ(Xt, t)− ω
√
1− αt∇ log rt(Xt)

dXt = βt

(
1√

1− αt
ε̂θ(Xt, t)−

1

2
Xt

)
dt+

√
βtdW t, XT ∼ N (0, I)

(2)

for t ∈ [0, T ] with ω > 0. From the standard classifier-guidance arguments [42, Section I], it follows150

that X0 ∼ pcensor(x) ∝ pdata(x)r(x) approximately when ω = 1. The parameter ω > 0, which151

we refer to as the guidance weight, controls the strength of the guidance, and it is analogous to the152

“gradient scale” used in prior works [12]. Using ω > 1 can be viewed as a heuristic to strengthen the153

effect of the guidance, or it can be viewed as an effort to sample from p
(ω)
censor ∝ pdatarω .154

Time-independent guidance. Given a time-independent reward model rψ(Xt), we adopt the ideas155

of universal guidance [2] and perform censored generation via replacing the ε̂θ of (2) with156

ε̂θ(Xt, t) = εθ(Xt, t)− ω
√
1− αt∇ log r(X̂0), where

X̂0 = E[X0 |Xt = Xt ] =
Xt −

√
1− αtεθ(Xt, t)√

αt

(3)

for t ∈ [0, T ] with ω > 0. To clarify, ∇ differentiates through X̂0. While this method has no157

mathematical guarantees, prior work [2] has shown strong empirical performance in related setups.2158

Backward guidance and recurrence. The prior work [2] proposes backward guidance and self-159

recurrence to further strengthen the guidance. We find that adapting these methods to our setup160

improves the censoring performance. We provide the detailed description in Appendix G.161

5 Experiments162

We now present the experimental results. Precision (censoring performance) was evaluated with163

human annotators labeling generated images. The human feedback time we report includes annotation164

of training data for the reward model rψ , but does not include the annotation of the evaluation data.165

2If we simply perform time-dependent guidance with a time-independent reward function rψ(X), the
observed performance is poor. This is because rψ(X) fails to provide meaningful guidance when the input is
noisy, and this empirical behavior agrees with the prior observations of [32, Section 2.4] and [2, Section 3.1].
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(a) MNIST: Censoring “crossed 7”
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(b) LSUN church: Censoring watermarks

Figure 2: Mean proportion of malign images after censoring with standard deviation over 5 trials, each
measured with 500 samples. Reward ensemble outperforms non-ensemble models, and the universal
guidance components further improve the results. Left: Censoring “crossed 7” from MNIST. Before
censoring, the proportion is 11.9%. The mean values of each point are: 1.30%, 0.98%, 0.60%, and
0.42%. Right: Censoring watermarks from LSUN Church. Before censoring, the proportion is
11.4%. The mean values of each point are: 3.02%, 3.84%, 1.36%, and 0.76%.

5.1 MNIST: Censoring 7 with a strike-through cross166

In this setup, we censor a handwriting variation called “crossed 7”, which has a horizontal stroke167

running across the digit, from an MNIST generation, as shown in Figure 1a. We pre-train our own168

diffusion model (score network). In this benign-dominant setup, the baseline model generates about169

11.9% malign images.170

We use 10 malign samples to perform censoring. This requires about 100 human feedback labels in171

total, which takes less than 2 minutes to collect. We observe that such minimal feedback is sufficient172

for reducing the proportion of crossed 7s to 0.42% as shown in Figure 1b and Figure 2a. Further173

details are provided in Appendix H.174

Ablation studies. We achieve our best results by combining the time-dependent reward model175

ensemble method described in Section 3.1 and the universal guidance components (backward guidance176

with recurrence) detailed in Appendix G. We verify the effectiveness of each component through177

an ablation study, summarized in Figure 2a. Specifically, we compare the censoring results using a178

reward model ensemble (labeled “Ensemble” in Figure 2a) with the cases of using (i) a single reward179

model within the ensemble (trained on 10 malign and 10 benign images; labeled “Single”) and (ii) a180

standalone reward model separately trained on the union of all training data (10 malign and 50 benign181

images; labeled “Union”) used in ensemble training. We also show that the backward and recurrence182

components do provide an additional benefit (labeled “Ensemble+Universal”).183

5.2 LSUN church: Censoring watermarks from latent diffusion model184

In the previous experiment, we use a full-dimensional diffusion model that reverses the forward185

diffusion (1) in the pixel space. In this experiment, we demonstrate that censored generation with186

minimal human feedback also works with latent diffusion models (LDMs) [45, 36], which perform187

diffusion on a lower-dimensional latent representation of (variational) autoencoders. We use an188

LDM3 pre-trained on the 256× 256 LSUN Churches [36] and censor the stock photo watermarks. In189

this benign-dominant setup, the baseline model generates about 11.4% malign images.190

Training a time-dependent reward model in the latent space to be used with an LDM would introduce191

additional complicating factors. Therefore, for simplicity and to demonstrate multiple censoring192

methods, we train a time-independent reward model ensemble and apply time-independent guidance193

as outlined in Section 4. To enhance human-feedback efficiency, we use a pre-trained ResNet18194

model and use transfer learning as discussed in Section 3.3. We use 30 malign images, and the195

human feedback takes approximately 3 minutes. We observe that this is sufficient for reducing the196

proportion of images with watermarks to 0.76% as shown in Figure 1d and Figure 2b. Further details197

are provided in Appendix I.198

3https://github.com/CompVis/latent-diffusion
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(a) Ablation results for imitation learning
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(b) Comparsion with rejection sampling

Figure 3: Mean proportion of malign tench images (w/ human face) with standard deviation over 5
trials, each measured with 1000 samples. Left: Before censoring, the proportion is 68.6%. Using
imitation learning and universal guidance, it progressively drops to 17.8%, 7.5%, 2.2%, and 1.0%.
Non-imitation learning is worse: with 20 and 30 malign images, the proportions are 10.7% and 6.8%.
Right: With acceptance thresholds 0.5 and 0.8, rejection sampling via reward models from round 1
produces 32.0% and 29.8% of malign images, worse than our proposed guidance-based censoring.

Ablation studies. We achieve our best results by combining the time-independent reward model199

ensemble method described in Section 3.1 and the universal guidance components (backward guidance200

with recurrence) detailed in Appendix G. As in Section 5.1, we verify the effectiveness of each201

component through an ablation study, summarized in Figure 2b. The label names follow the same202

rules as in Section 5.1. Notably, on average, the “single” models trained with 30 malign and 30203

benign samples outperform the “union” models trained with 30 malign and 150 malign samples.204

5.3 ImageNet: Tench (fish) without human faces205

Although the ImageNet1k dataset contains no explicit human classes, the dataset does contain human206

faces, and diffusion models have a tendency to memorize them [7]. This creates potential privacy207

risks through the use of reverse image search engines [3]. A primary example is the ImageNet class208

“tench” (fish), in which the majority of images are humans holding their catch with their celebrating209

faces clearly visible and learnable by the diffusion model.210

In this experiment, we use a conditional diffusion model4 pre-trained on the 128× 128 ImageNet211

dataset [12] as baseline and censor the instances of class “tench” containing human faces (but not212

other human body parts such as hands and arms). In this malign-dominant setup, the baseline model213

generates about 68.6% malign images.214

We perform 3 rounds of imitation learning with 10 malign and 10 benign images in each round to215

train a single reward model. The human feedback takes no more than 3 minutes in total. We observe216

that this is sufficient for reducing the proportion of images with human faces to 1.0% as shown in217

Figure 1f and Figure 3. Further details are provided in Appendix J.218

Ablation studies. We verify the effectiveness of imitation learning by comparing it with training219

the reward model at once using the same number of total samples. Specifically, we use 20 malign and220

20 benign samples from the baseline generation to train a reward model (labeled “non-imitation (20221

malign)” in Figure 3a) and compare the censoring results with round 2 of imitation learning; similarly222

we compare training at once with 30 malign and 30 benign samples (labeled “non-imitation (30223

malign)”) and compare with round 3. We consistently attain better results with imitation learning. As224

in previous experiments, the best precision is attained when backward and recurrence are combined225

with imitation learning (labeled “30+Univ”).226

We additionally compare our censoring method with another approach: rejection sampling, which227

simply generates samples from the baseline model and rejects samples X such that rψ(X) is less228

than the given acceptance threshold. Figure 3b shows that rejection sampling yields worse precision229

compared to the guided generation using the same reward model, even when using the conservative230

threshold 0.8. We also note that rejection sampling in this setup accepts only 28.2% and 25.5% of231

4https://github.com/openai/guided-diffusion
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Figure 4: Mean proportion of malign (broken) bedroom images with standard deviation over 5 trials,
each measured with 500 samples. Before censoring, the malign proportion is 12.6%. The mean
values of each point are: 8.68%, 8.48%, 4.56%, 1.36%, 4.16%, and 2.30%.

the generated samples respectively for thresholds 0.5 and 0.8 on average, making it suboptimal for232

situations where reliable real-time generation is required.233

5.4 LSUN bedroom: Censoring broken bedrooms234

Generative models often produce images with visual artifacts that are apparent to humans but are235

difficult to detect and remove via automated pipelines. In this experiment, we use a pre-trained236

diffusion model5 trained on 256 × 256 LSUN Bedroom images [12] and censor “broken” images237

as perceived by humans. In Appendix K, we precisely define the types of images we consider to be238

broken, thereby minimizing subjectivity. In this benign-dominant setup, the baseline model generates239

about 12.6% malign images.240

This censoring task is the most difficult one we consider, and we use 100 malign samples to train241

a reward-model ensemble. This requires about 900 human feedback labels, which takes about 15242

minutes to collect. To enhance human-feedback efficiency, we use a pre-trained ResNet18 model243

and use transfer learning as discussed in Section 3.3. We observe that this is sufficient for reducing244

the proportion of malign images to 1.36% as shown in Figure 1h and Figure 4. Further details are245

provided in Appendix K.246

Ablation studies. We achieve our best results by combining the (time-independent) reward ensem-247

ble and backward guidance with recurrence. We verify the effectiveness of each component through248

an ablation study summarized in Figure 4. We additionally find that rejection sampling, which rejects249

a sample X such that 1
K

∑K
k=1 r

(k)
ψk

(X) is less than a threshold, yields worse precision compared to250

the guided generation using the ensemble model and has undesirably low average acceptance ratios251

of 74.5% and 55.8% when using threshold values 0.5 and 0.8, respectively.252

6 Conclusion253

In this work, we present censored sampling of diffusion models based on minimal human feedback254

and compute. The procedure is conceptually simple, versatile, and easily executable, and we anticipate255

our approach to find broad use in aligning diffusion models. In our view, that diffusion models can256

be controlled with extreme data-efficiency, without fine-tuning of the main model weights, is an257

interesting observation in its own right (although the concept of guided sampling itself is, of course,258

not new [40, 12, 32, 35]). We are not aware of analogous results from other generative models such as259

GANs or language models; this ability to adapt/guide diffusion models with external reward functions260

seems to be a unique trait, and we believe it offers a promising direction of future work on leveraging261

human feedback with extreme sample efficiency.262

5https://github.com/openai/guided-diffusion
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A Broader impacts & safety382

As our research aims to suppress undesirable behaviors of diffusion models, our methodology carries383

the risk of being used maliciously to guide the diffusion model toward malicious behavior. Generally,384

research on alignment carries the risk of being flipped to “align” the model with malicious behavior,385

and our work is no exception. However, despite this possibility, it is unlikely that our work will be386

responsible for producing new harmful materials that a baseline model is not already capable of, as387

we do not consider training new capabilities into diffusion models. In this sense, our work does not388

pose a greater risk of harm compared to other work on content filtering.389

B Limitations390

Our methodology accomplishes its main objective, but there are a few limitations we point out.391

First, although the execution of our methodology requires minimal (few minutes) human feedback,392

an objective evaluation of our methodology does require a non-trivial amount of human feedback.393

Indeed, even though we trained our reward models with 10s of human labels, our evaluation used394

1000s of human labels. Also, the methodology is built on the assumption of having access to pre-395

trained diffusion models, and it does not consider how to train new capabilities into the base model or396

improve the quality of generated images.397

C Human subject and evaluation398

The human feedback used in this work was provided by the authors themselves. We argue that399

our work does not require external human subjects as the labeling is based on concrete, minimally400

ambiguous criteria. For the setups of Sections 5.1 (“crossed 7”), 5.2 (“watermarks”), and 5.3 (“tench”)401

the criteria is very clear and objective. For the setup of Section 5.4 (“broken” bedroom images), we402

describe our decision protocol in Section K. For transparency, we present comprehensive censored403

generation results in Sections H to K.404

We used existing datasets—ImageNet, LSUN, and MNIST—for our study. These are free of harmful405

or sensitive content, and there is no reason to expect the labeling task to have any adverse effect on406

the human subjects.407
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D Prior Works408

DPM. The initial diffusion probabilistic models (DPM) considered forward image corruption409

processes with finite discrete steps and trained neural networks to reverse them [40, 19, 41]. Later,410

this idea was connected to a continuous-time SDE formulation [42]. As the SDE formalism tends411

to be more mathematically and notationally elegant, we describe our methods through the SDE412

formalism, although all actual implementations require using an discretizations.413

The generation process of DPMs is controllable through guidance. One approach to guidance is414

to use a conditional score network, conditioned on class labels or text information [31, 20, 32, 35,415

38]. Alternatively, one can use guidance from another external network. Instances include CLIP416

guidance [32, 35], which performs guidance with a CLIP model pre-trained on image-caption pairs;417

discriminator guidance [22], which uses a discriminator network to further enforce consistency418

between generated images and training data; minority guidance [44], which uses perceptual distances419

to encourage sapling from low-density regions, and using a adversarially robust classifier [21] to better420

align the sample quality with human perception. In this work, we adapt the ideas of (time-dependent)421

classifier guidance of [40, 12] and universal guidance [2].422

RLHF. Reinforcement learning with human feedback (RLHF) was originally proposed as a method-423

ology for using feedback to train a reward model, when an explicit reward of the reinforcement424

learning setup is difficult to specify [9, 26]. However, RLHF techniques have been succesfully425

used in natural language processing setups with no apparent connection to reinforcement learning426

[49, 43, 33]. While the RLHF mechanism in language domains is not fully understood, the success427

indicates that the general strategy of fine-tuning or adjusting the behavior of a pre-trained model with428

human feedback and reward models is a promising direction.429

Controlling generative models with human feedback. The use of human feedback to fine-tune430

generative models has not yet received significant attention. The prior work of [24] aims to improve431

the aesthetic quality of the images produced by generative adversarial networks (GANs) using432

human feedback. There are methods that allow interactive editing of images produced by GANs433

(i.e., modifying images based on human feedback) but such methods do not fine-tune or modify the434

generation procedure of GANs [8, 48].435

For DPMs, the prior work of [25] fine-tunes the pre-trained Stable Diffusion [36] model to have436

better image-text alignment using 27,000 of human annotations. There have been prior work on437

removing certain concepts from a pre-trained DPMs [16, 47] which involve human evaluations, but438

these approaches do not use human feedback in their methodologies.439

Reward models. Many prior work utilizing human feedback utilize reward models in the form440

of a binary classifier, also called the Bradley–Terry model [5]. However, the specifics of the deep441

neural network architecture varies widely. In the original RLHF paper [9], the architecture seems to442

be simple MLPs and CNNs. In [33], the architecture is the same as the GPT-3 architecture except that443

the unembedding layer is replaced with a projection layer to output a scalar value. In [49, 43], the444

reward model is a linear function of the language embedding used in the policy network. In [34], the445

authors use transformer-based architectures to construct the reward models. Overall, the conclusion446

is that field has not yet converged to a particular type of reward model architecture that is different447

from the standard architecutres used in related setups. Therefore, we use simple UNet and ResNet18448

models for our reward model architectures.449
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E GUI interface450

We collect human feedback using a very minimal graphical user interface (GUI), as shown in the451

following.452

Figure 5: Simple GUI used to collect human feedback for the setup of Section 5.3. Upon user’s click,
the red boundary appears around an image, indicating that it will be labeled as malign.
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F Reward model: Further details453

Weighted loss function. We train the reward model using the weighted binary cross entropy loss454

BCEα(rψ(x; t), y) = −α · y log rψ(x; t)− (1− y) log(1− rψ(x; t)). (4)

We use α < 1 to prioritize the model to accurately classify malign images as malign at the expense455

of potentially misclassifying some benign images as malign.456

Data augmentation. We augment the training dataset with 10 to 20 random variations of each457

training image using rotation, horizontal flip, crop, and color jitter. We augment the data once and458

train the reward model to fit this augmented data as opposed to applying a random augmentation459

every time the data is loaded.460

Bootstrap subsampling. As discussed in Section 3.1, we use the reward model ensemble in the461

benign-dominant setup, where labeled benign images are more plentiful while there is a relatively462

limited quantity of Nm malign images. The K reward models of the ensemble utilize the same set of463

Nm malign images. As for the benign images, we implement a resampling strategy that is inspired by464

bootstrapping [14, 15, 13]. Each model selects Nm benign images independently with replacement465

from the pool of labeled benign images.466

G Backward guidance and recurrence467

We describe backward guidance and recurrence, techniques inspired by the universal guidance of [2].468

G.1 Backward guidance469

Compute ε̂θ(Xt, t) as in (2) or (3) (time-independent or time-dependent guidance) and form470

X̂ fwd
0 =

Xt −
√
1− αtε̂θ(Xt, t)√

αt
.

We then take X̂ fwd
0 as a starting point and perform B steps of gradient ascent with respect to log rψ(·)471

and obtain X̂bwd
0 . Finally, we replace ε̂θ by ε̂bwd

θ such that Xt =
√
αtX̂

bwd
0 +

√
1− αtε̂bwd

θ (Xt, t)472

holds, i.e.,473

ε̂bwd
θ (Xt, t) =

1√
1− αt

(
Xt −

√
αtX̂

bwd
0

)
.

G.2 Recurrence474

Once ε̂bwd
θ is computed, the guided sampling is implemented as a discretized step of the backward475

SDE476

dXt = βt

(
1√

1− αt
ε̂bwd
θ (Xt, t)−

1

2
Xt

)
dt+

√
βtdW t.

Say the discretization step-size is ∆t, so the update computesXt−∆t fromXt. In recurrent generation,477

we use the notation X
(1)

t = Xt and X
(1)

t−∆t = Xt−∆t and then obtain X
(2)

t by following the forward478

noise process of the (discretized) VP SDE (1) starting from X
(1)

t−∆t for time ∆t. We repeat the479

process R times, sequentially generating X
(1)

t−∆t, X
(2)

t−∆t, . . . , X
(R)

t−∆t.480
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H MNIST crossed 7: Experiment details and image samples481

H.1 Diffusion model482

For this experiment, we train our own diffusion model. We use the 5,000 images of the digit “7” from483

the MNIST training set and rescale them to 32× 32 resolution. The architecture of the error network484

εθ follows the UNet implementation6 of a prior work [12], featuring a composition of residual blocks485

with downsampling and upsampling convolutions and global attention layers, and time embedding486

injected into each residual block. We set the input and output channel size of the initial convolutional487

layer to 1 and 128, respectively, use channel multipliers [1, 2, 2, 2] for residual blocks at subsequent488

resolutions, and use 3 residual blocks for each resolution. We train the diffusion model for 100,000489

iterations using the AdamW [27] optimizer with β1 = 0.9 and β2 = 0.999, using learning rate 10−4,490

EMA with rate 0.9999 and batch size 256.491

H.2 Reward model and training492

The time-dependent reward model architecture is a half-UNet model with the upsampling blocks493

replaced with attention pooling to produce a scalar output. The weights are randomly initialized, i.e.,494

we do not use transfer learning. We augment the training (human feedback) data with random rotation495

in [−20, 20] degrees. When using 10 malign and 10 benign feedback data, we use α = 0.02 for the496

training loss BCEα and train all reward models for 1,000 iterations using AdamW with learning rate497

3× 10−4, weight decay 0.05, and batch size 128. When we use 10 malign and 50 benign data for the498

ablation study, we use α = 0.005 and train for the same number of epochs as used in the training of499

10 malign & 10 benign case, while using the same batch size 128.500

H.3 Sampling and ablation study501

For sampling via reward ensemble without backward guidance and recurrence, we choose ω = 1.0.502

We compare the censoring performance of a reward model ensemble with two non-ensemble reward503

models called “Single” and “Union” in Figure 2a:504

• “Single” model refers to one of the five reward models for the ensemble method, which is trained505

on randomly selected 10 malign images, and a set of 10 benign images.506

• “Union” model refers to a model which is trained on 10 malign images and a collection of 50507

benign images, combining the set of benign images used to train the ensemble. This model is508

trained for 3,000 iterations, with α = 0.005 for the BCEα loss.509

For these non-ensemble models, we use ω = 5.0, which is K = 5 times the guidance weight used in510

the ensemble case. For censored image generation using ensemble combined with backward guidance511

and recurrence as discussed in Section G, we use ω = 1.0, learning rate 0.001, B = 5, and R = 4.512

H.4 Censored generation samples513

Figure 6 shows uncensored, baseline generation. Figures 7 and 8 shows images sampled with514

censored generation without and with backward guidance and recurrence.515

6https://github.com/openai/guided-diffusion
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Figure 6: Uncensored baseline image samples from the diffusion model trained using only images of
the digit “7” from MNIST.
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Figure 7: Non-curated censored generation samples without backward guidance and recurrence.
Reward model ensemble is trained on 10 malign images.
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Figure 8: Non-curated censored generation samples with backward guidance and recurrence. Reward
model ensemble is trained on 10 malign images.
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I LSUN church: Experiment details and image samples516

I.1 Pre-trained diffusion model517

We use the pre-trained Latent Diffusion Model (LDM)7 from [36]. We follow the original settings,518

which include using the same setting of 400 DDIM steps.519

I.2 Malign image definition520

As shown in Figure 9, the “Shutterstock” watermark is composed of three elements: the Shutterstock521

logo in the center, the Shutterstock website address at the bottom, and a white X lines in the522

background. In the baseline generation, all possible combinations of these three elements arise. We523

classify an image as “malign” if it includes either the logo in the center or the website address at the524

bottom. We do not directly censor the white X lines, as they are often not clearly distinguishable525

when providing the human feedback. However, we do observe a reduction in the occurrence of the526

white X lines as they are indirectly censored due to their frequent co-occurrence with the other two527

elements of the Shutterstock watermark. While the majority of the watermarks are in the Shutterstock528

format, we did occasionally observe watermarks from other companies as well. We choose to censor529

only the Shutterstock watermarks as the other types were not sufficiently frequent.530

Figure 9: Examples of LSUN church images with Shutterstock watermarks.

I.3 Reward model training531

We utilize a ResNet18 architecture for the reward model, using the pre-trained weights available532

in torchvision.models’ “DEFAULTS” setting8, which is pre-trained in the ImageNet1k [10] dataset.533

We replace the final layer with a randomly initialized fully connected layer with a one-dimensional534

output. We train all layers of the reward model using the human feedback dataset of 60 images535

(30 malign, 30 benign) without data augmentation. We use BCEα in (4) as the training loss with536

α = 0.1. The models are trained for 600 iterations using AdamW optimizer [27] with learning rate537

3× 10−4, weight decay 0.05, and batch size 128.538

7https://github.com/CompVis/latent-diffusion
8https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18
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I.4 Sampling and ablation study539

For sampling via reward ensemble without backward guidance and recurrence, we choose ω = 2.0.540

We compare the censoring performance of a reward model ensemble with two non-ensemble reward541

models called “Single” and “Union” in Figure 2b:542

• “Single” model refers to one of the five reward models for the ensemble method, which is trained543

on randomly selected 30 malign images, and a set of 30 benign images.544

• “Union” model refers to a model which is trained on 30 malign images and a collection of 150545

benign images, combining the set of benign images used to train the ensemble. This model is546

trained for 1,800 iterations, with α = 0.01 for the BCEα loss.547

For these non-ensemble models, we use ω = 10.0, which is K = 5 times the guidance weight used548

in the ensemble case. For censored image generation using ensemble combined with recurrence as549

discussed in Section G, we use ω = 2.0 and R = 4.550

I.5 Censored generation samples551

Figure 10 shows uncensored, baseline generation. Figures 11 and 12 present images sampled with552

censored generation without and with backward guidance and recurrence.553
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Figure 10: Uncensored baseline image samples. Malign images are labeled with red borders for
visual clarity.
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Figure 11: Non-curated censored generation samples without backward guidance and recurrence.
Reward model ensemble is trained on 30 malign images. Malign images are labeled with red borders
for visual clarity.
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Figure 12: Non-curated censored generation samples with backward guidance and recurrence.
Reward model ensemble is trained on 30 malign images. Malign images are labeled with red borders
for visual clarity.
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J ImageNet tench: Experiment details and image samples554

J.1 Pre-trained diffusion model555

We use the pre-trained diffusion model9 from [12], trained on ImagtNet1k dataset [10]. We use556

(time-dependent) classifier guidance with gradient scale 0.5 as recommended by [12] and 1,000557

DDPM steps for sampling to generate samples from the class “tench”.558

J.2 Reward model training559

We use same half-UNet architecture as in Section H for the time-dependent reward model. The560

weights are randomly initialized, i.e., we do not use transfer learning. All hyperparameters are set561

identical to the values used for training the time-dependent classifier for 128 × 128 ImageNet in562

the prior work [12], except that we set the output dimension of the attention pooling layer to 1.563

We augment the training (human feedback) data with random horizontal flips with probability 0.5564

followed by one of the following transformations: 1) random rotation within [−30, 30] degrees, 2)565

random resized crop with an area of 75–100%, and 3) color jitter with contrast range [0.75, 1.33] and566

hue range [−0.2, 0.2]. We use α = 0.1 for the training loss BCEα. When using 10 malign and 10567

benign feedback data, we train reward models for 500 iterations using AdamW with learning rate568

3× 10−4, weight decay 0.05, and batch size 128. For later rounds of imitation learning, we train for569

the same number of epochs while using the same batch size 128. In other words, we train for 1,000570

iterations for round 2 and 1,500 iterations for round 3.571

J.3 Sampling and ablation study572

For sampling without backward guidance and recurrence, we choose ω = 5.0. We compare the573

censoring performance of a reward model trained with imitation learning with reward models574

trained without the multi-stage imitation learning in the ablation study. We train the non-imitation575

learning reward model for the same number of cumulative iterations with the corresponding case of576

comparison; for example, when training with 30 malign and 30 benign images from the baseline,577

we compare this with round 3 of imitation learning, so we train for 3,000 iterations, which equals578

the total sum of 500, 1,000 and 1,500 training iterations used in rounds 1, 2, and 3. For censored579

image generation via backward guidance and recurrence as discussed in Section G, we use ω = 5.0,580

learning rate 0.01, B = 5, and R = 4.581

J.4 Censored generation samples582

Figure 13 shows uncensored, baseline generation. Figures 14 and 15 present images sampled with583

censored generation without and with backward guidance and recurrence.584

9https://github.com/openai/guided-diffusion
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Figure 13: Uncensored baseline image samples.
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Figure 14: Non-curated censored generation samples without backward guidance and recurrence
after using 3 rounds of imitation learning each using 10 malign and 10 benign labeled images.
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Figure 15: Non-curated censored generation samples with backward guidance and recurrence after
using 3 rounds of imitation learning each using 10 malign and 10 benign labeled images.
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K LSUN bedroom: Experiment details and image samples585

K.1 Pre-trained diffusion model586

We use the pre-trained diffusion model10 from [12], trained on LSUN Bedroom dataset [46]. We587

follow the original settings, which include 1,000 DDPM steps, image size of 256× 256, and linear588

noise scheduler.589

K.2 Malign image definition590

We classify an LSUN bedroom image as “broken” (malign) if it meets at least one of the following591

criteria:592

(a) Obscured room layout: overall shape or layout of the room is not clearly visible;593

(b) Distorted bed shape: bed does not present as a well-defined rectangular shape;594

(c) Presence of distorted faces: there are distorted faces of humans or dogs;595

(d) Distorted or crooked line: line of walls or ceilings are distorted or bent;596

(e) Fragmented images: image is divided or fragmented in a manner that disrupts their logical597

continuity or coherence;598

(f) Unrecognizable objects: there are objects whose shapes are difficult to identify;599

(g) Excessive brightness: image is too bright or dark, thereby obscuring the forms of objects.600

Figure 16 shows examples of the above.601

On the other hand, we categorize images with the following qualities as benign, even if they may602

give the impression of being corrupted or damaged:603

(a) Complex patterns: Images that include complex patterns in beddings or wallpapers;604

(b) Physical inconsistencies: Images that are inconsistent with physical laws such as gravity or605

reflection;606

(c) Distorted text: Images that contain distorted or unclear text.607

Figure 17 shows examples of the above.608

K.3 Reward model training609

We utilize a ResNet18 architecture for the reward model, using the pre-trained weights available in610

torchvision.models’ “DEFAULTS” setting11, which is pre-trained in the ImageNet1k [10] dataset.611

We replace the final layer with a randomly initialized fully connected layer with a one-dimensional612

output. We train all layers of the reward model using the human feedback dataset of 200 images613

(100 malign, 100 benign) without data augmentation. We use BCEα in (4) as the training loss with614

α = 0.1. The models are trained for 5, 000 iterations using AdamW optimizer [27] with learning rate615

3× 10−4, weight decay 0.05, and batch size 128. We train five reward models for the ensemble.616

10https://github.com/openai/guided-diffusion
11https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18
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(a) Obscured room layout (b) Distorted bed shape (c) Presence of distorted faces

(d) Distorted or crooked line (e) Fragmented images (f) Unrecognizable objects

(g) Excessive brightness

Figure 16: Examples of "broken" LSUN bedroom images

(a) Complex patterns (b) Physical inconsistencies (c) Distorted text

Figure 17: Images classified as benign despite giving the impression of being corrupted or damaged.
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K.4 Sampling and ablation study617

For sampling via reward ensemble without backward guidance and recurrence, we choose ω = 2.0.618

We compare the censoring performance of a reward model ensemble with two non-ensemble reward619

models called “Single” and “Union” in Figure 4:620

• “Single” model refers to one of the five reward models for the ensemble method, which is trained621

on randomly selected 100 malign images, and a set of 100 benign images.622

• “Union” model refers to a model which is trained on 100 malign images and a collection of 500623

benign images, combining the set of benign images used to train the ensemble. These models624

are trained for 15,000 iterations with α = 0.02 for the BCEα loss.625

For these non-ensemble models, we use ω = 10.0, which is K = 5 times the guidance weight used in626

the ensemble case. For censored image generation using ensemble combined with backward guidance627

and recurrence as discussed in Section G, we use ω = 2.0, learning late 0.01, B = 5, and R = 4.628

K.5 Censored generation samples629

Figure 18 shows uncensored, baseline generation. Figures 19–30 present a total of 1,000 images630

sampled with censored generation, 500 generated by ensemble reward models without backward631

guidance and recurrence and 500 with backward guidance and recurrence.632
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Figure 18: 96 uncensored baseline image samples. Malign images are labeled with red borders and
positioned at the beginning for visual clarity.
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Figure 19: First set (1–96) of images among the 500 non-curated censored generation samples with a
reward model ensemble and without backward guidance and recurrence. Malign images are labeled
with red borders and positioned at the beginning for visual clarity. Qualitatively and subjectively
speaking, we observe that censoring makes the malign images less severely “broken” compared to
the malign images of the uncensored generation.
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Figure 20: Second set (97–192) of images among the 500 non-curated censored generation samples
with a reward model ensemble and without backward guidance and recurrence. Malign images
are labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and
subjectively speaking, we observe that censoring makes the malign images less severely “broken”
compared to the malign images of the uncensored generation.
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Figure 21: Third set (193–288) of images among the 500 non-curated censored generation samples
with a reward model ensemble and without backward guidance and recurrence. Malign images
are labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and
subjectively speaking, we observe that censoring makes the malign images less severely “broken”
compared to the malign images of the uncensored generation.
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Figure 22: Fourth set (289–384) of images among the 500 non-curated censored generation samples
with a reward model ensemble and without backward guidance and recurrence. Malign images
are labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and
subjectively speaking, we observe that censoring makes the malign images less severely “broken”
compared to the malign images of the uncensored generation.
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Figure 23: Fifth set (385–480) of images among the 500 non-curated censored generation samples
with a reward model ensemble and without backward guidance and recurrence. Malign images
are labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and
subjectively speaking, we observe that censoring makes the malign images less severely “broken”
compared to the malign images of the uncensored generation.
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Figure 24: Sixth set (481–500) of images among the 500 non-curated censored generation samples
with a reward model ensemble and without backward guidance and recurrence. Malign images
are labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and
subjectively speaking, we observe that censoring makes the malign images less severely “broken”
compared to the malign images of the uncensored generation.
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Figure 25: First set (1–96) of images among the 500 non-curated censored generation samples with a
reward model ensemble and with backward guidance and recurrence. Malign images are labeled with
red borders and positioned at the beginning for visual clarity. Qualitatively and subjectively speaking,
we observe that censoring makes the malign images less severely “broken” compared to the malign
images of the uncensored generation.
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Figure 26: Second set (97–192) of images among the 500 non-curated censored generation samples
with a reward model ensemble and with backward guidance and recurrence. Malign images are
labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and subjec-
tively speaking, we observe that censoring makes the malign images less severely “broken” compared
to the malign images of the uncensored generation.
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Figure 27: Third set (193–288) of images among the 500 non-curated censored generation samples
with a reward model ensemble and with backward guidance and recurrence. Malign images are
labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and subjec-
tively speaking, we observe that censoring makes the malign images less severely “broken” compared
to the malign images of the uncensored generation.
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Figure 28: Fourth set (289–384) of images among the 500 non-curated censored generation sam-
ples with a reward model ensemble and with backward guidance and recurrence. Malign images
are labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and
subjectively speaking, we observe that censoring makes the malign images less severely “broken”
compared to the malign images of the uncensored generation.
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Figure 29: Fifth set (385–480) of images among the 500 non-curated censored generation samples
with a reward model ensemble and with backward guidance and recurrence. Malign images are
labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and subjec-
tively speaking, we observe that censoring makes the malign images less severely “broken” compared
to the malign images of the uncensored generation.
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Figure 30: Sixth set (481–500) of images among the 500 non-curated censored generation samples
with a reward model ensemble and with backward guidance and recurrence. Malign images are
labeled with red borders and positioned at the beginning for visual clarity. Qualitatively and subjec-
tively speaking, we observe that censoring makes the malign images less severely “broken” compared
to the malign images of the uncensored generation.
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L Transfer learning ablation633

To evaluate the necessity of transfer learning in the LSUN bedroom setting of Section 5.4, we compare634

it with training the reward model from scratch. In this ablation study, we randomly initialize the635

weights of the reward model and train for 40,000 iterations with batch size 128. We use the training636

loss BCEα with α = 0.1 and a guidance weight of ω = 10.0.637

We observe that censoring fails without transfer learning, despite our best efforts to tune the parameters.638

The reward model is trained to interpolate the training data, but when we evaluate its performance639

on test data (which we create with additional human feedback), the classification accuracy is low:640

70.63% and 43.23% accuracy for malign and benign images. If we nevertheless proceed to perform641

censored generation, the malign proportion is 15.68% ± 5.25% when the proportion is measured642

with 500 images across 5 independent trials. This is no better than the 12.6% of the baseline model643

without censoring.644
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