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Abstract

Advancements in prompt tuning of vision-language models have underscored their
potential in enhancing open-world visual concept comprehension. However, prior
works only primarily focus on single-mode (only one prompt for each modality)
and holistic level (image or sentence) semantic alignment, which fails to capture
the sample diversity, leading to sub-optimal prompt discovery. To address the limi-
tation, we propose a multi-mode token-level tuning framework that leverages the
optimal transportation to learn and align a set of prompt tokens across modalities.
Specifically, we rely on two essential factors: 1) multi-mode prompts discovery,
which guarantees diverse semantic representations, and 2) token-level alignment,
which helps explore fine-grained similarity. Consequently, the similarity can be
calculated as a hierarchical transportation problem between the modality-specific
sets. Extensive experiments on popular image recognition benchmarks show the
superior generalization and few-shot abilities of our approach. The qualitative anal-
ysis demonstrates that the learned prompt tokens have the ability to capture diverse
visual concepts. The code is available at https://github.com/wds2014/ALIGN.

1 Introduction

Recently, prompt tuning has experienced significant advancements in adapting large pre-trained
vision language models (PVLs) such as CLIP [1] and BLIP [2] to downstream tasks [3–6]. A
typical PVL model consists of two branch networks: the text and image encoders. These networks
are used to extract the corresponding modality features. PVLs are often contrastively pre-trained
on Web-scale image-text pairs, which encourage the alignment of visual concepts with natural
language in the shared semantic space. One of the core ideas behind prompt tuning is to formulate
the downstream tasks into the original pre-training pipeline. For example, CLIP designs category
descriptions with a manual prompt template “a photo of a {class}”, which works well in generic
image recognition. Unlike fine-tuning, where the entire model is tuned using task-specific objectives,
demands prohibitive computing cost, and poses a risk of knowledge shift issues [7–9], prompt tuning
fixes the model parameters instead and optimizes prompt vectors, which act as demonstrations to
help extract task-related features. This significantly benefits the representations via PVLs, even in
performing zero-shot inference without training samples.

However, identifying optimal prompts for PVLs is not a trivial task, which usually needs to solve
the intricate semantic alignments between the textual and visual modalities. Inspired by the success
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Figure 1: The alignment comparison in recent prompt tuning methods. The proposed ALIGN learns multi-
modal multi-mode prompts at the same time, resulting in comprehensive alignments.

of prompt learning in neural language models (NLP) [10, 7, 11], approaches called textual prompt
tuning (TPT) are proposed to learn continuous prompt embeddings for CLIP’s text encoder, e.g., “X
X X X {class}”, where “X” denotes the learnable vectors [3, 4]. Optimized with a task-specific loss,
the learned prompt embeddings distill the pre-trained knowledge encoded in the fixed parameters,
achieving better flexibility and efficiency than hand-crafted methods [1]. To improve the generaliza-
tion of TPT on unseen classes, many studies attempt to give the solutions from gradient flow [12, 13],
prototype and composition prompt learning [14–16]. Moving beyond learning a single-mode prompt,
which often fails to capture diverse concepts, various methods prefer to explore multiple prompts
based on ensemble learning[1], optimal transport [17] and Bayesian inference [18–20], showing
robust alignments and better performance.

In parallel with TPT, visual prompt tuning (VPT) focuses on the patch embedding space of the
CLIP’s image encoder [6]. VPT views images as a patch sequence and introduces visual prompts
to enhance the image representations, e.g., “X X X X {image}”, where “image” denotes the image
patch sequence. VPT provides a simple and efficient idea to extract task-relevant visual features,
which has been widely applied to many visual tasks, for example, video understanding [21], domain
adaptation [22], transfer learning [23] and image segmentation [24–26]. More recently, there has been
a research trend to combine TPT and VPT to learn multi-modal prompts together [27, 28]. However,
they currently concentrate on single-mode prompt discovery, i.e., only one prompt for one modality,
which may be insufficient to represent a class [17]. This issue is even more acute in multi-modal
prompt learning, where both visual and textual concepts and their alignments need to be inferred.
Additionally, it is less sound to represent the image and label only with the global features [29, 30],
which could lose local region features of the target object, resulting in sub-optimal classification.

To this end, this work develops a comprehensive prompt tuning framework, where multi-modal
multi-mode prompts are learned by building the prompt and token-level optimal transport (OT).
Formally, after feeding multiple prompt inputs into the modality-specific encoder, our prompt-level
OT views each image as a discrete distribution P over the visual prompt space and views each label as
a discrete distribution Q over the textual prompt space. With such formulation, the classification task
becomes to measure the distance between P and Q. Moreover, along with the global prompt-level
features, the patch (or token) embeddings capture the local region features of the target object (or
category description). This motivates the token-level OT, where each prompt output is modeled as a
discrete distribution over the token embedding space. The cost matrix is then calculated between
the visual patches and textual tokens, enabling the token-level alignments. Crucially, the cost matrix
in prompt-level OT that measures the transport cost between prompts from two domains is now
converted to integrate the global features and the output of the token-level OT. This hierarchical
connection makes it possible to predict the label with the detailed token and patch features, resulting
in higher accuracy.

In summary, our method provides a novel prompt tuning framework that incorporates multiple
modalities and token-level alignments via the hierarchical OT. The prompt-level OT learns the diverse
semantics of a class from both image and language domains, and the token-level OT explores fine-
grained alignments between token embeddings. Notably, with different hyperparameter settings, the
variants of the proposed model cover many previous works, offering flexibility for easy adaptation
across diverse applications. The main contributions of the paper are as follows:

• We propose a multi-mode token-level alignment framework for multi-modal prompts tuning,
where multiple prompts are learned to improve the representation for both visual and textual
modalities. With special settings, many previous works can be margined into our framework.
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• We formulate the prompt tuning task as the distribution matching problem, and develop the
prompt and token-level OT to tackle the task with a principle and elegant solution.

• We apply our method to few-shot classification, dataset transfer learning and domain
generalization. Experiential results on widely used datasets show the superiority of the
proposed model.

2 Background

2.1 Multi-modal Prompt Tuning

Multi-modal prompt tuning (MPT) [28, 27] is a newly developed task that enables the joint learning
of textual and visual prompts for PVLs. Instead of optimizing the unimodal prompts separately,
the joint tuning paradigm not only leverages the two branch networks of PVLs, but also allows
interactions between two modalities during training, resulting in dynamic alignments. Without
loss of generality, we use a vision transformer (ViT) based CLIP for example, which consists of
a ViT as an image encoder f and a transformer as a language encoder g. Given an input image
X ∈ RH×W×3 and K label names {classk}Kk=1. MPT first incorporates b learnable tokens as visual
prompts {vi ∈ Rdv}bi=1, and another set of b learnable tokens as textual prompts {ti ∈ Rdl}bi=1.
After concatenating them alongside the image patches and class names, one can obtain the output of
CLIP as:

[z, ẽ1, ..., ẽO, ṽ1, ..., ṽb] = f(< cls >, e1, ..., eO,v1, ...,vb),

[−, t̃1, ..., t̃b, w̃k,1, ..., w̃k,kl
,hk] = g(< cls >, t1, ..., tb,wk,1, ...,wk,kl

, < eos >),

where < cls >,< eos > are virtual tokens, [e1, ..., eO] are O image patch embeddings, and
[wk,1, ...,wk,kl

] are token embeddings with length kl of k-th class. After the stacked self-attention
layers of f and g, CLIP outputs the token embeddings and views z and hk as the prompt-level
features of the image and label, respectively. Empirical findings suggest that it is more effective
to obtain the vision prompt v by projecting the language prompt t through a vision-to-language
mapping function, such as v = F (t), rather than learning them independently [28, 6]. Finally, MPT
estimates the label of x according to the cosine similarity score:

p(y = k|x) = exp(sim(z,hk)/τ)∑K
k′=1 exp(sim(z,hk′)/τ)

, (1)

where τ is the fixed temperature parameter. MPT unifies the ideas of TPT and VPT by directly tuning
the visual prompts v and textual prompt t at the same time. Eq. 1 indicates that the text encoder
g takes the category prompts as input and outputs h, which serves as the corresponding classifier
weights. Thanks to the pre-trained knowledge in CLIP, MPT retains the ability to perform open-set
classification. Note that both the encoders f and g in CLIP are frozen and only the prompt sequences
v and t are optimized during downstream training. This process can be seen as a bootstrapping step
that helps guide the encoders to extract task-relevant features.

2.2 Optimal Transport Distance

Optimal transport (OT) is an efficient tool to measure the distance between two distributions, which
is widely used in recent machine learning studies, such as text analysis [31–33], computer vision [34–
39] and generative model [40, 41]. Here we review the discrete OT matching and refer readers to
[42] for details. Given two sets of data points X = {xi}mi=1 and Y = {yj}nj=1, of which discrete
distributions are formulated as p =

∑m
i=1 aiδxi

and q =
∑n

j=1 bjδyj
, respectively. a ∈ ∆m and

b ∈ ∆n, where ∆m denotes the probability simple of Rm. We define the cost matrix between X and
Y as C = (Cij) ∈ Rm×n

≥0 , where Cij = c(xi, yj) is the transport cost from xi to yj , with c is the
cost function. The goal of OT is to optimally transport p to q at the smallest cost:

dOT(p, q;C) := min
T∈Π(p,q)

< T,C >, (2)

where < ·, · > denotes the Frobenius dot-product and T ∈ Rm×n
>0 denotes the transport plan to be

learned. OT distance is then minimized over all the joint probabilities of m × n space with two
marginal constraints Π(p, q) := {T : T1n = a,TT1m = b}, where 1m denotes m-dimensional
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all-one vector. As directly learning the optimal plan T in Eq. 2 can be time-consuming for large-scale
problems, Sinkhorn distance from [42, 43] introduces the entropic constraint on the transport plan
h(T) =

∑
m,n −Tmnln(Tmn) and thus the resulting algorithm estimates T within a few iterations,

showing better flexibility and scalability.

3 The Proposed Model

3.1 Overall Method

In this section, we introduce the technical details of our proposed model, named ALIGN, a holistic
framework for multi-modal prompt tuning with optimal transport (shown in Fig. 2). Benefiting from
the carefully designed multi-mode token-level alignment module, most existing works can be merged
into our ALIGN with special settings. Intuitively, humans learn one class with various concepts,
which provides sufficient semantic features, such as color, layout, and shape, to distinguish it from
others [17]. Inspired by this, one of the goals of this work is to learn M visual prompt and N textual
prompt simultaneously. Specifically, we first introduce our prompt-level OT, where each image
and label are modeled as the discrete distributions P and Q over M -dimensional visual space and
N -dimensional textual space. Moreover, instead of representing the prompt outputs as a single point,
e.g., the global features z and h, we distill the token-level knowledge implied in CLIP. Recalling
that, the n-th textual prompt output of the k-th class contains b+ kl token embeddings and the m-th
visual prompt output of an image contains b+O patch embeddings, which capture the local-region
features of corresponding modalities. This motivated us to develop the token-level OT that makes
token-level comparisons for fine-grained alignments. As a result, m-th and n-th points in P and Q
themselves are further modeled as discrete distributions over the shared token embedding space. Due
to the compelling two-level OT connections, where the cost matrix in prompt-level OT is obtained
by the output of token-level OT, the learned transport plan captures both the prompt and token-level
features, which provides a principled and elegant way to estimate the distance between label and
image sets.

3.2 Multi-mode Token-level Prompt Alignment

Moving beyond MPT which learns a single-mode prompt to describe the class and estimates the
similarity based on prompt-level features, we aim to explore multi-mode representations in the textual
and visual domains and make fine-grained alignment to improve the prediction accuracy. Now we
have M groups of visual prompts {vm}Mm=1 and N groups of textual prompts {tn}Nn=1, where each
vm ∈ Rdv×b and tn ∈ Rdl×b are learnable prompt sequences with length b. Mathematically, we
employ two empirical distributions P and Q to model the sets of two modalities:

P =

M∑
m=1

1

M
δxm

, Q =

N∑
n=1

1

N
δyn

, (3)

where xm and yn denote the m-th visual output and n-th textual output in the d-dimensional latent
space. They are further modeled as discrete distributions over token-level embeddings, which will
be introduced later. Eq. 3 views each prompt equally and adopts the uniform distribution to model
the weights. With those two semantic sets P and Q, the distance between images and labels is no
longer calculated by first representing each image and label as a single point and then using the cosine
similarity. ALIGN prefers to mine multi-mode features to describe various class concepts, resulting
in better representations. The distance thus can be formulated as an entropy-regularized prompt-level
OT problem [42]:

dλOT(P,Q;C) := dOT(P,Q;C)− λh(T) (4)

where λ > 0 is the weight of regularization, and C ∈ RM×N is the cost matrix between visual set
x and textual set y. T ∈ RM×N is the to-be-learned transport plan with the marginal constraint,
e.g.,T1N = 1/M,TT1M = 1/N . Note that, Tmn measures the transported probability from m-th
visual prompt to n-th textual prompt, and a large value means the high semantic connection between
two prompts across modalities. Therefore, Eq. 4 estimates the expected transport cost between P and
Q, which provides a principle solution to calculate the similarity between the images and labels.

Noticeably, the cost matrix C in Eq. 4 plays a critical role in the learning of T, and intuitively, the
larger the transport costs between two points are, the lower the transport probabilities will be. A
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Figure 2: (a) The framework of the proposed ALIGN. ALIGN learns multiple prompts for PVLs by aligning
modality-specific distributions with hierarchical OT. (b) The t-SNE visualization of image embeddings of
ALIGN.

natural choice is to specify C with the global features Cmn = 1− sim(zm,hn), where zm and hn

denote the prompt-level features of m-th visual prompt and n-th textual prompt. However, the above
definition primarily emphasizes prompt-level representation and might have a limited capacity to
capture the detailed token-level features, e.g., different patches within an image may capture various
local region features. Thus, the obtained transport plan may fail to reflect the true relations between
P and Q. To this end, we further introduce the token-level OT that considers token-level alignments
between two prompts. Specifically, we specify the visual output x and textual output y as two
empirical distributions over token embeddings (here we omit the subscript m and n for clarity):

x =

J∑
j=1

1

J
δrj

, y =

L∑
l=1

1

L
δŝl

,

where r = [ẽ1, ..., ẽO, ṽ1, ..., ṽb] is the output visual patches with length J = b + O, and s =

[t̃1, ..., t̃b, w̃k,1, ..., w̃k,kl
] is the output textual tokens with length b+ kl. Unlike z and h that agent

the prompt-level features, x and y collect the token-level features in the shared embedding space of
CLIP. Naturally, the cost matrix Ĉ ∈ RJ×L in the token-level OT is defined as Ĉjl = 1− sim(rj , sl),
which measures the transport cost between the visual patches and textual tokens. As a result, the
distance between x and y is the total transport cost of the token-level OT:

dλOT(x,y; Ĉ) = dλOT(x,y; Ĉ)− λh(T̂), (5)

where the transport plan T̂ ∈ RJ×L denotes how likely is that the j-th visual patch transports to the
l-th token feature, providing a principle solution to align token-level features. This motivated us to
develop a combined cost matrix that considers prompt and token-level features together:

Cmn = 1− sim(zm,hn) + βdλOT(xm,yn; Ĉ
mn), (6)

where β is a trade-off parameter that controls the weight of token-level cost. The first two terms
are the cosine distance between prompt-level features, and the last term is the OT distance between
the token-level sets. In this way, Eq. 6 combines the pre-trained knowledge from two levels: the
prompt-level features and the token-level embeddings. This enables the learned transport plan T in
prompt-level OT to make fine-grained matching between M visual and N textual features, resulting
in detailed alignments and better representations.

Once Eq. 4 is computed, we follow previous work [17] and predict the label of image Xj as:

p(y = k|Xj) =
exp((1− dλOT(Pj , Qk;C

jk))/τ)∑K
k′=1 exp((1− dλOT(Pj , Qk′ ;Cjk′))/τ)

, (7)

where Cj,k denote the cost matrix of j-th image and k-th label. Note that the weight of the classifier
Qk in our model can be viewed as a discrete uniform distribution over N textual prompts of label k,
which contains multiple class-related semantics, improving the classification results. Thanks to the
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differentiable Sinkhorn algorithm, all parameters of the proposed model can be optimized end-to-end
by minimizing the following cross-entropy loss:

L = − 1

|X |
∑
X∈X

K∑
k=1

yx,cp(y = k|x). (8)

where yX is the one-hot label vector of image X Due to the OT formulation, our proposed ALIGN
aims to learn M visual prompt sequences and N textual prompt sequences without introducing any
neural networks. We describe our proposed model in the Appendix Algoritm. 1.

4 Related Work

Single-modal prompt tuning: There are two storylines of single-modal prompt tuning, TPT and
VPT. The former focuses on the language branch of a PLV and is interested in prompt learning in
continuous embedding space. As one of the representative works, CoOp [3] models a prompt’s
context using a set of learnable vectors and shows great improvement over intensively-tuned manual
prompts. To solve the weak generalizability on unseen category, CoCoOp [4] extends CoOp by
explicitly conditioning prompts on image instances, which shifts the concentrations away from a
specific set of classes to each input instance, enabling a stronger generalization performance. Instead
of single-mode prompt learning, PLOT [17] learns multiple textual prompts by adopting the OT
distance between prompts and image patches, achieving diverse prompt tuning. ProDA [19] first
maturely designs multiple prompts and then models the uncertainty of prompts by employing the
Gaussian distribution to model prompt embeddings. Correspondingly, VPTs refer to prepending
visual patches to the image input space, which also shows impressive results in adapting PVLs into
downstream tasks. For example, Jia et al. [6] introduces trainable visual prompt vectors into the
image patch sequence of each Transformer layer and learns them along with a linear head. Despite
the promising performance on various visual tasks, those models are designed to learn single-modal
prompts, which fails to make use of the pre-trained multi-modal knowledge.

Multi-modal prompt tuning: Moving beyond single-modal prompt tuning, MPT is a recently
introduced task that learns textual prompts and visual prompts at the same time. This jointly tuning
strategy not only distills the multi-modal knowledge but enables the dynamic alignments between
prompts across modalities, showing better generalization. Zang et al. [27] propose a unified prompt
tuning framework (UPT) [27] that shares an initial prompt across different modalities and designs a
tiny network to generate the modality-specific prompts together. Almost parallel to UPT, Khattak
et al. [28] proposed multi-modal prompt tuning (MaPLe) and adopted a projection matrix to condition
vision prompts on their language counterparts explicitly allowing mutual propagation of gradients
to promote synergy. In comparison, this work aims to learn multi-modal multi-mode prompts to
better meet the requirement of diverse comprehensive representations. Besides, unlike measuring the
similarity between images and labels by the global prompt-level features, we model each prompt as an
empirical distribution over the token-level embedding space, and the similarity score is calculated by
combining the prompt and token-level features under a hierarchical OT framework, which provides a
novel and elegant tool to adapt PVLs into downstream tasks.

5 Experiments

5.1 Experimental Setup

Datasets To make a comprehensive evaluation, we performed extensive experiments on 4 task
settings, such as few-shot image recognition, base-to-new generalization, cross-dataset transfer
learning, and domain generalization. Those experiments are conducted on 15 widely used image
datasets, varying in scale and domains, including ImageNet [44], Caltech101 [45], OxfordPets [46],
StanfordCars [47], Flowers102 [48], Food101 [49], FGVCAircraft [50], EuroSAT [51], UCF101 [52],
DTD [53], SUN397 [54], ImageNetV2 [55], ImageNet-Sketch [56], ImageNet-A [57], and ImageNet-
R [58]. The details of each dataset are provided in the Appendix Table. B. 1.

Baselines We compare ALIGN with the state-of-the-art methods, including: CLIP [1], which
provides the base results without prompt tuning; the single-modal prompt tuning methods,e.g.,
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TPTs: CoOP [3], CoCoOp [4] and PLOT [17], and VPTs: VPT [6], and multi-modal prompt tuning
methods: UPT [27] and MaPLe [28]. Note that we modified the official code of PLOT and changed
the backbone to ViT-B/16 for a fair comparison.

Implementation Details Following previous MaPLe [28], we load the pre-trained Vit-B/16 CLIP
model as our backbone, where dl = 512, dv = 768 and d = 512. We set the number of textual and
visual prompts M = N = 4, the length of prompt tokens b = 2, the hyperparameter λ = 0.1, and
β = 1. The maximum iteration number in the Sinkhorn algorithm is set as 100. For all tasks, we
train our model with a batch-size of 4, a learning rate of 0.0035, and an optimizer as SGD. For each
task, we optimize the number of epochs. Following MaPLe we run 2 epochs to train ImageNet as
a source model with a learning rate of 0.0026. The reported results are the averaged value over 3
seeds. Please refer to the Appendix Sec. B for more details. For all baselines, we set the length of
prompts as 4 and collect their results according to the original papers or previous works. Thus, some
experimental results may be missing.
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Figure 3: The few-shot learning results on 7 datasets (more detailed results of other datasets can be
found in the Appendix Table. D. 1.). The red solid line denotes our ALIGN method, and the dotted
lines represent various baselines. All results are reported as the mean value over three seeds.

5.2 Evaluation with the Standard Setting

Few-Shot Learning. We first evaluate our model on few-shot classification, where models are
trained on 1,2,4,8, and 16 shots and then applied to the test sets. We report the accuracy scores
of all models across 11 datasets at Fig. 3. Overall, our proposed ALIGN outperforms others in
most cases and achieves consistent improvement over CoOp on all datasets. Among the multi-
modal prompt tuning methods, our method shows superior performance compared to UPV and
MaPLe in general, except for the EuroSAT datasets. This demonstrates that ALIGN has the abil-
ity to distill the across-modalities knowledge and efficiently adapt PVLs into downstream tasks.
Although there is a small margin between our model and those two models on some datasets, the
competing models usually cannot achieve high performance over all datasets, e.g., ALIGN exhibits
9.06/3.56/2.56/2.61/0.78(%) accuracy improvements compared with UPT on DTD datasets and
achieves 6.56/8.75/7.63/6.64/4.47(%) improvements compared with MaPLe. In addition, we also find
that our ALIGN performs better on 1/2/4 shots settings, showing the efficiency of our fine-grained
alignments, which provide the token-level comparison during prediction. This capability contributes
to more accurate classification, even with limited training samples.

Base-to-New Generalization. To assess the generalizability of our model, we follow CoCoOp [4]
to equally split the classes into base and new sets, and models are only trained on the base classes
while tested on the new sets. Table. 1 reports the results, and we have the following observations:
First, our proposed ALIGN surpasses previous baselines by achieving the highest average scores,

7



Table 1: Base-to-New on 11 datasets. The prompts are learned from the 16-shots base set. We report
the classification accuracy on base set (Base), new set (New), and their harmonic mean (H), where H =
(2× Base × New)/(Base + New). The best results are highlighted.

Average ImageNet Caltech 101 Oxford Pets
Base New H Base New H Base New H Base New H

CLIP 69.34 74.22 71.69 72.34 68.14 70.21 96.84 94.00 95.39 91.17 97.26 94.11
CoOp 82.66 63.22 71.65 76.14 67.88 71.77 98.00 89.81 93.72 93.67 95.29 94.47
CoCoOp 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
PLOT 77.20 60.38 67.76 75.97 69.23 72.44 96.53 82.86 89.17 93.45 79.76 86.06
MaPLe 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58
ALIGN 83.38 75.51 79.25 76.89 72.15 74.45 98.37 94.70 96.50 95.67 97.93 96.79

Stanford Cars Flowers 102 Food 101 FGVC Aircraft
Base New H Base New H Base New H Base New H

CLIP 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.65 27.19 36.29 31.08
CoOp 78.12 60.40 68.12 97.60 59.67 74.06 88.33 82.26 85.18 40.44 22.30 28.74
CoCoOp 70.49 73.59 72.10 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
PLOT 61.41 42.69 50.37 95.26 56.03 70.56 88.45 85.28 86.84 29.63 16.17 20.92
MaPLe 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50
ALIGN 77.24 76.38 76.80 97.70 73.3 83.75 90.77 92.07 91.42 37.56 36.97 37.26

SUN 397 DTD EuroSAT UCF 101
Base New H Base New H Base New H Base New H

CLIP 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.02 70.53 77.50 73.85
CoOp 80.60 65.89 72.50 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.45
CoCoOp 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
PLOT 78.56 72.34 75.32 69.87 53.63 60.68 87.39 67.63 74.30 72.71 41.51 52.84
MaPLe 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
ALIGN 82.47 79.68 81.05 82.13 54.17 65.28 94.03 74.9 83.38 84.43 78.33 81.27

Table 2: Cross-dataset transfer learning accuracy results. Here we use the key letters to denote the datasets. The
best results are highlighted.
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CoOp 71.51 93.70 89.14 65.41 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
ALIGN 72.03 93.91 90.55 65.84 73.75 86.40 24.95 67.59 46.75 47.25 69.60 67.15

thereby illustrating the superiority of the proposed framework. Second, ALIGN outperforms others
in terms of H score across all datasets, except for the DTD dataset which indicates our method offers
a more favorable trade-off between the base and new sets. We attribute this success to the token-level
multi-mode prompt tuning strategy, where the multi-mode prompts enhance the ability to identify
diverse visual concepts, which plays an essential role in unseen category prediction. Furthermore,
for datasets that have small intra-class variances, such as Stanford Cars and FGVCAircraft, ALIGN
achieves a noticeable improvement over MaPLe. The token-level alignment in ALIGN might account
for this improvement, as it makes it more effective for fine-grained image classification.

Transfer Learning and Domain Generalization. To investigate the generalizability across-datasets
or across-domains, we first train our model on ImageNet, utilizing all 1,000 classes, and subsequently
apply it to 1) other 10 datasets and 2) other 4 domain shift datasets. We report those results at
Table. 2 and 3, respectively. Based on those results, we find that our approach outperforms the
baseline methods on 8/10 datasets with the best average accuracy score on dataset transfer learning
task and 3/4 datasets on domain shift setting. These overall improvements highlight that ALIGN is
less susceptible to the distribution shift between the source and target domains, thus revealing the
robust generalizability of our model. Despite the marginal performance gain of ALIGN in contrast to
MaPLe and UPT, our method outperforms them in most cases in terms of all four tasks and provides
a novel multi-mode token-level alignment alternative for prompt tuning.
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p_1 p_2 p_3 p_4 p_1 p_2 p_3 p_4

p_1_t_2 p_1_t_3 p_2_t_3 p_4_t_1 p_1_t_1 p_2_t_1 p_2_t_2 p_3_t_1

Figure 4: Visualization of the learned prompts and tokens. p_m denotes the m-th prompt and p_m_t_l denotes
the l-th token of m-th prompt.

Table 3: Cross-domain generalization accuracy results. The best results are highlighted.

Source Target

Method Learnable ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP % 66.73 60.83 46.15 47.77 73.96
CoOp ! 71.51 64.20 47.99 49.71 75.21
CoCoOp ! 71.02 64.07 48.75 50.63 76.18
VPT ! 70.57 63.67 47.66 43.85 74.42
UPT ! 72.63 64.35 48.66 50.66 76.24
MaPLe ! 70.72 64.07 49.15 50.90 76.98
ALIGN ! 72.03 64.64 49.96 50.94 76.16

Qualitative Analysis Besides the extensive quantitative results, we are also interested in the learned
visual concepts of the proposed token-level alignments. Fortunately, the transport plan learned in
our token-level OT provides us with access to a convenient tool to visualize the most related visual
patches. We report the qualitative analysis at Fig. 2(b) and Fig. 4. From Fig. 2(b), we find that our
model prefers to learn separable representations in both base and new classes. Recalling that hn

denotes the global feature of n-th prompts, to visualize the learned prompt and obtain the attention
map over the patch space, we calculate the cosine similarity between hn and all patch embeddings
ê ∈ Rd×O. We then view the normalized cosine similarity as the attention map and visualize the
learned N = 4 prompts at the top row of Fig. 4. We observe that different prompts tend to align
different patch regions, each of which contributes to the final prediction. This finding also meets with
the motivation of the multi-mode prompt tuning, where each prompt aims to learn specific visual
semantics.

Moving beyond the prompt-level visualization, we also visualize the token-level concepts. Specif-
ically, for l-th column of the learned transport plan T̂l ∈ RJ in token-level OT, it measures how
likely the l-th token is transported to J = b+O patches. Here we focus on the O image patches and
visualize the transport plan of an image sampled from the base set and new set at the second and
third row in Fig. 4, respectively. We find that 1) different tokens within a prompt can capture various
patches with similar visual concepts. For example, both p_1_t_2 and p_1_t_3 attend to the head of
the cat; 2) Learning from the base set, the prompt tokens prefer to align the similar patches in the new
set, which reveals that our token-level alignment module has the ability to transfer from the base set
to the new set, rather than over-fitting to the base categories.

Complexity Analysis As discussed above, one of the key ideas of the proposed ALIGN is to learn
multiple prompts for vision and language inputs and explore the token-level alignments under the
hierarchical OT framework. To demonstrate the computation cost, we report the complexity analysis
at Table. 4, where we focus on the number of trainable parameters (#Paras) and inference speed
(fps). We find that 1) Overall, the multimodel prompts tuning methods (last three) require more
trainable parameters and inference time than single-modal methods. 2) The proposed ALIGN requires
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Table 4: Complexity analysis over various baselines. we report the number of trainable parameters (#Paras) and
frames per second(fps). We can not report the fps result of UPT because of its unreleased code.

Methods CoOp CoCoOp VPT PLOT UPT MAPLE ALIGN
#Paras 2,048 35,360 13,824 8,192 3,555,072 3,555,072 3,582,720
fps 645 37 152 583 - 282 62

slightly more training parameters than UPT and MAPLE because of the multiple prompts. And it
also requires more inference time than MAPLE, due to the hierarchical OT operations. 3) Thanks to
the independent OT operations, which can be calculated parallelly with the GPU, ALIGN has a faster
testing time than CoCoOp, and achieves 62 fps at the test stage.

6 Conclusion

This paper introduces a novel multi-mode token-level alignment framework for multi-modal prompt
tuning under optimal transport. We first employ the prompt-level OT to model the multi-mode
prompts across modalities, and then introduce the token-level OT by viewing each prompt itself
as a set over token embedding space. By coupling those two-level OT via the cost matrix, the
final prediction is obtained by combining the prompt-level features and the token-level embeddings,
enabling fine-grained alignments. Extensive experiments have been conducted, showing that our
proposed model achieves competing performance on four settings. In terms of the limitations, the
users may still need large GPU memory to load the pre-trained weights of PVLs to apply the proposed
model to the test process. One potential solution is to combine prompt tuning with knowledge
distillation. We leave it as a future study. Thanks to the open-world visual concept understanding of
PVLs, our model shows promising zero-shot/few-shot ability for image recognition, which has the
potential to encourage researchers to derive new and better methods for prompt tuning. Our work
may indirectly lead to a negative impacts if there is a sufficiently malicious or ill-informed choice of
a few-shot classification task.
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Appendix

A Discussion

We in this paper propose ALIGN, a unified framework for multi-modal prompt tuning, where multi-
mode modality-specific prompts are learned via the token-level alignment strategy. Moving beyond
the single-model methods, which focus on textual prompt tuning or visual prompt tuning, ALIGN
allows one to learn textual and visual prompts simultaneously, resulting in better representations in
the shared vision-text embedding space. Compared to recent multi-modal methods, such as UPT [27]
and MaPLe [28], ALIGN prefers to learn multi-mode prompts to capture diverse class attributes
and develop the token-level alignment for fine-grained comparisons. This provides ALIGN with
an efficient tool to calculate the similarity between prompts. We find that many previous works
can be merged into our ALIGN framework with special hypermeter settings. We summarize this
relationship at Table. 5. The N/A in Table. 5 means that PLOT calculates the similarity between the
prompt-level label embeddings and the visual patch embeddings, which is not the case in ALIGN,
where we calculate the similarity of prompt-level OT between textual label embeddings and visual
image embeddings. and calculate the similarity of token-level OT between token embeddings and
patch embeddings.

Table 5: Most previous works can be merged into our ALIGN framework. M : Number of visual prompts. N :
Number of textual prompts. β: Weight of token-level OT in Eq.6 in the manuscript.

Methods Type M N β
CoOp [3] Textal Prompt Tuning 0 1 0
VPT [6] Visual Prompt Tuning 1 0 0

PLOT [17] Textual Prompt Tuning 0 ≥ 1 N/A
UPT [27] Multi-modal Prompt Tuning 1 1 0

MaPLe [28] Multi-modal Prompt Tuning 1 1 0
ALIGN(Ours) Multi-modal Prompt Tuning ≥ 0 ≥ 0 ≥ 0

B Data statistics and Hyperparameter setting

We thoroughly evaluate our proposed ALIGN framework across four distinct tasks: few-shot recog-
nition, base-to-new generalization, cross-dataset transfer, and cross-domain generalization. These
extensive experiments are conducted on a diverse set of fifty commonly used vision datasets, covering
various contexts. These datasets include ImageNet [44] and Caltech101 [45] for generic image classi-
fication, OxfordPets [46], StanfordCars [47], Flowers102 [48], Food101 [49], and FGVCAircraft [50]
for fine-grained image recognition, SUN397 [54] for scene recognition, UCF101 [52] for action
recognition, DTD [53] for texture classification, and EuroSAT [51] for satellite imagery recognition.
In the case of the cross-domain generalization task, our model is trained on ImageNet and subse-
quently tested on ImageNetV2 [55], ImageNet-Sketch [56], ImageNet-A [57], and ImageNet-R [58].
We summarize data statistics at Table. B. 1

The evaluation pipeline for each task follows the approach employed by previous works [3, 28]. The
specific details of this pipeline are summarized below:

Few-shot Recognition. To evaluate the efficiency of the proposed ALIGN on the few-shot case,
we follow CoOp [3], and first partition the dataset into base and novel sets. Those two sets share the
same categories. Models are trained on the base set using a variety of shot settings, including 1, 2, 4,
8, and 16 shots per class, and then tested on the full novel set. The accuracy scores are reported to
compare the performance. The training epoch is set as 10 for 1, 2, and 4 shots and 40 for 8 and 16
shots.

Base-to-New Generalization. To show the Generalizability of unseen categories, we first divide
the dataset into two separate subsets: the base subset and the new subset. Importantly, these subsets
do not share the same categories. The base subset contains a specific set of categories used for
model training, while the new subset consists of previously unseen categories that the model has not
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been exposed to during training. Besides reporting the accuracy score on base and novel sets, we
also calculate the harmonic mean H = (2× Base × New)/(Base + New), which acts as a trade-off
between Base and New, providing a comprehensive measure of overall model performance. The
training epoch is set as 8.

Cross-Dataset Transfer. To determine the transferability of our model across different datasets,
we first train our model on the source dataset (ImageNet) and then evaluate it on 10 different target
datasets. The training epoch is set as 2 and the learning rate is set as 0.0026.

Cross-Domain Generalization. To determine the robustness of our model on the distribution-shift
setting, we trained our model on the source dataset (ImageNet) and then assess it on 4 domain-shifted
datasets, including ImageNetV2, ImageNet-Sketch, ImageNet-A, and ImageNet-R. The training
epoch is set as 2 and the learning rate is set as 0.0026.

The other training hyperparameters in the previous experiments are set according to MaPLe [28],
which are detailed listed at Table B. 2.

Table B. 1: Statistics of the used 15 datasets. N/A denotes that we do not use the corresponding training or
validation sets.

Dataset Domains #Classes #Train #Val #Test
ImageNet generic object 1000 1.28M N/A 50,000

Caltech101 generic object 100 4,128 1,649 2,465
OxfordPets fine-grained object 37 2,944 736 3,669

StanfordCars fine-grained object 196 6,509 1,635 8,041
Flowers102 fine-grained object 102 4,093 1,633 2,463

Food101 fine-grained object 101 50,500 20,200 30,300
FDVCAircraft fine-grained object 100 3,334 3,333 3,333

SUN397 scene recognition 397 15,880 3,970 19,850
UCF101 action recognition 101 7,639 1,808 3,783

DTD texture recognition 47 2,820 1,128 1,692
EuroSAT satellite object 10 13,500 5,400 8,100

ImageNetV2 generic object 1000 N/A N/A 10,000
ImageNet-Sketch sketch object 1000 N/A N/A 50,889

ImageNet-A generic object 200 N/A N/A 7,500
ImageNet-R generic object 200 N/A N/A 30,000

C Training Algorithm

Given the training datasets D = {Xi, yXi}
ND
i=1, our method aims to learn M visual and N textual

prompts simultaneously. All parameters in ALIGN are optimized by minimizing the cross-entropy
loss end-to-end. We summarize the training algorithm at Algorithm. 1.
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Table B. 2: Hyperparameter setting used in the previous experiments.

Hyperparameters Values
Batch Size 4
Input Size 224× 224
Input Interpolation "Bicubic"
Input Pixel Mean [0.48145466, 0.4578275, 0.40821073]
Input Pixel STD [0.26862954, 0.26130258, 0.27577711]
Transforms ["random resized crop", "random filp", "normalize"]
Optimizer SGD
Learning Rate 0.0035
LR Scheduler "cosine"
Warmup Epoch 1
Warmup Type "constant"
Warmup LR 1e-5
Backbone ViT-B/16
Number of Textual Prompts 4
Number of Visual Prompts 4
Learnable Prompt Length 2
Fixed Prompt Length 2
weight of token-level cost 1
weight of regularization in OT 0.1
Prompt Initialization "a photo of a"
Precision "fp16"

Algorithm 1 Training algorithm of ALIGN.

Input: Training dataset D, a pre-trained vision-language model, class name set, number of visual prompts M ,
number of textual prompts N , and the training epoch.
Output: The learned ALIGN, which discovers multi-modal multi-mode prompts for downstream tasks.
Initialize: The M and N multi-modal prompt embeddings.
Preprocess: Built N ×K textual token inputs according to Sec 2.1 in the manuscript.
for iter = 1,2,3,... do

1. Feed the textual input into the text encoder g and collect the outputs with the corresponding prompt-level
representation {hn

k}K,N
k=1,n=1 and token embeddings {sn

k}K,N
k=1,n=1, where each sn

k is the output token
embeddings of n-th prompt of k-th label with length b+ kl.
2. Sample a batch of J images. Built N ×B visual patch inputs according to Sec2.1 in the manuscript.
Feed the visual input into the visual encoder f and collect the outputs with the corresponding prompt-level
representation {zm

j }J,Mj=1,m=1 and patch embeddings {rm
j }J,Mj=1,m=1, where each rm

j denotes the output
patch embeddings of m-th prompt of j-th image with length b+O.
# Two-level OT
3. Calculate the token-level OT distance between each image and each label in Eq.5 with the collected
patch set and token set.
4. Calculate the cost matrix in prompt-level OT according to Eq.6, and then get the prompt-level OT
distance in Eq.4.
Compute the cross-entropy loss L with the obtained prompt-level OT distance according to Eq.8 and update
all learnable parameters by minimizing L with the stochastic gradient descent algorithm.

end for

D Additional Results

We in this section report additional results of other datasets on the few-shot task and conduct the
ablation studies on the prompt and token-level OT.
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Figure D1: Harmonic mean (H) results of ALIGN on Base-to-New task under different β.

D.1 Few-shot Results

We report the numerical results of various methods on 11 datasets at Table. D. 1.. From the results, we
find that our method ALIGN outperforms baselines in most cases, which demonstrates the efficiency
of the token-level prompt alignment module.

D.2 Ablation studies

Recall that the proposed model consists of the prompt-level and token-level OT, which align the
textual and visual modalities from hierarchical semantics. In the previous experiment, we view the
prompt-level and token-level OT equally and set the hyperparameter weight β = 1 in Eq.6 in the
manuscript. Here want to analyze how those two OTs affect the model performance. To this end, we
rewrite the cost matrix in Eq.6 in the manuscript as:

Cmn = (1− β)(1− sim(zm,hn)) + βdλOT(xm,yn; Ĉ
mn). (9)

Note that β = 0 and β = 1 denote two of our variants, where the former denotes only prompt-OT
works and the latter means we only focus on token-level similarity. We report the ablation results of
ALIGN on Base-to-New tasks under various settings, e.g., β = [0, 0.2, 0.5, 0.7, 1.0] at Fig. D1. We
have the following interesting findings: 1) The combined ALIGN works better than each of them; 2)
After finetuning β for each dataset, one can obtain better results than the reported values in our paper.
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Table D. 1.: The few-shot results of various methods on 11 datasets. We report mean value over 3 different
seeds. The best results are highlighted.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101

CoOp 92.4 93.2 93.5 94.0 94.8
PLOT 88.40 89.95 91.50 93.00 93.24
UPT 93.66 94.17 94.09 95.04 95.95

MaPLe 91.73 93.33 94.23 94.43 95.26
ALIGN 93.97 94.13 95.00 95.43 96.00

DTD

CoOp 48.4 51.5 59.2 64.4 69.5
PLOT 51.90 55.95 58.24 65.50 70.52
UPT 45.01 52.97 60.74 65.44 70.62

MaPLe 51.16 54.70 61.63 65.63 70.60
ALIGN 54.07 56.53 63.3 67.6 71.40

EuroSAT

CoOp 51.8 60.9 69.0 76.0 84.1
PLOT 60.10 68.45 72.97 79.84 83.12
UPT 66.46 69.07 75.36 85.62 90.77

MaPLe 66.67 79.26 84.25 89.96 92.14
ALIGN 53.23 71.43 80.93 85.97 90.77

FGVCAircraft

CoOp 24.2 25.8 27.9 32.7 34.2
PLOT 21.50 21.71 23.96 27.02 30.24
UPT 28.43 29.91 33.34 39.50 46.61

MaPLe 26.64 27.86 33.56 40.66 49.93
ALIGN 29.57 31.63 34.03 40.95 49.99

Flowers102

CoOp 72.9 80.4 85.7 92.3 96.2
PLOT 70.00 81.34 88.29 92.84 95.10
UPT 74.97 81.81 91.90 95.17 97.41

MaPLe 80.24 88.14 90.07 95.10 96.34
ALIGN 81.33 88.77 92.53 95.43 96.57

FOOD101

CoOp 81.6 80.9 81.5 82.4 84.9
PLOT 69.10 72.89 74.89 76.70 77.87
UPT 84.21 85.01 85.34 86.16 86.83

MaPLe 78.73 77.30 79.03 80.10 82.43
ALIGN 85.29 86.05 86.66 86.74 86.90

ImageNet

CoOp 68.07 69.26 69.60 70.35 71.53
PLOT 67.51 68.80 70.00 70.21 71.40
UPT 69.55 69.88 70.28 71.58 72.64

MaPLe 69.56 69.94 70.65 71.80 72.74
ALIGN 69.80 70.02 70.84 71.77 72.45

OxfordPets

CoOp 90.0 89.8 92.3 92.0 92.1
PLOT 83.21 85.77 86.02 89.13 89.95
UPT 82.93 85.40 85.97 87.40 88.10

MaPLe 89.80 86.76 90.76 90.23 91.30
ALIGN 91.36 91.93 93.4 93.67 94.17

StanfordCars

CoOp 66.4 69.2 70.1 72.8 75.2
PLOT 46.20 51.67 54.35 60.52 65.32
UPT 67.60 69.57 75.88 80.19 84.17

MaPLe 65.96 69.10 75.73 79.76 85.36
ALIGN 68.27 72.84 76.58 81.65 86.75

SUN397

CoOp 65.2 66.6 68.1 70.5 73.2
PLOT 55.33 60.02 63.21 66.02 67.98
UPT 68.84 69.76 72.12 74.00 75.90

MaPLe 61.73 63.23 67.60 69.13 73.00
ALIGN 69.14 69.98 71.88 74.15 76.57

UCF101

CoOp 70.7 73.8 76.6 79.6 80.4
PLOT 51.42 54.89 61.23 67.45 70.85
UPT 71.98 74.93 77.49 80.91 83.86

MaPLe 73.23 73.00 77.45 81.2 84.67
ALIGN 74.42 75.87 80.18 81.99 85.69
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