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Abstract

We examine the relationship between learnability and robust (or agnostic) learn-
ability for the problem of distribution learning. We show that learnability of a
distribution class implies robust learnability with only additive corruption, but not if
there may be subtractive corruption. Thus, contrary to other learning settings (e.g.,
PAC learning of function classes), realizable learnability does not imply agnostic
learnability. We also explore related implications in the context of compression
schemes and differentially private learnability.

1 Introduction

Distribution learning (sometimes called density estimation) refers to the following statistical task:
given i.i.d. samples from some (unknown) distribution p, produce an estimate of p. This is one of the
most fundamental and well-studied questions in both statistics [DL01] and computer science [Dia16],
often equivalent to classic problems of parameter estimation (e.g., mean estimation) in parametric
settings. It is easy to see that no learner can meaningfully approximate any given p without having
some prior knowledge. The problem then becomes: assuming the sample generating distribution
p belongs to a given class of distributions C, and given parameters ε, δ ∈ (0, 1), output some
distribution p̂ such that with probability at least 1 − δ, the statistical distance between p and p̂
is at most ε. Specifically, we employ total variation distance, the most studied metric in density
estimation [DL01, Dia16], using dTV(p, q) to denote the distance between distributions p and q. This
case, when p ∈ C, is often called the realizable setting. If, for some particular class C, this is doable
with a finite number of samples n(ε, δ), then we say the distribution class is (ε, δ)-learnable.1 A
class is learnable if it is (ε, δ)-learnable for every (ε, δ) ∈ (0, 1)2. A significant amount of work has
focused on proving bounds on n(ε, δ) for a number of classes C of interest – for example, one can
consider the class C of all Gaussian distributions N (µ,Σ) in some Euclidean space Rd.

However, this framework is restrictive in the sense that it requires the unknown distribution to be
exactly a member of the class C of interest. This may not be the case for a variety of possible reasons,
including some innocuous and some malicious. As one example, while it is a common modelling
assumption to posit that data comes from a Gaussian distribution, Nature rarely samples exactly from
Gaussians, we consider this only to be a convenient approximation. More generally, the class C that
the learner assumes can be thought of as reflecting some prior knowledge about the task at hand.
Such prior knowledge is almost always only an approximation of reality. Alternatively, we may be in
an adversarial setting, where a malicious actor has the ability to modify an otherwise well-behaved

∗Authors are listed in alphabetical order.
1For the sake of exposition, we defer formal definitions of our learnability notions to Section 1.1.
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distribution, say by injecting datapoints of their own (known in the machine learning literature as
data poisoning attacks [BNL12, SKL17, DKK+19, GTX+20, GFH+21, LKY23]).

More formally, the classic problem of agnostic learnability is generally described as follows: given
a (known) class of distributions C, and a (finite) set of samples drawn i.i.d. from some (unknown)
distribution p, find a distribution p̂ whose statistical distance from p is not much more than that of
the closest member of C. It is not hard to see that this is equivalent to a notion of robust learnability,
where the distribution p is not viewed as arbitrary, but instead an adversarial corruption of some
distribution within C.2 Given their equivalence, throughout this work, we will use agnostic and robust
learnability interchangeably.

The difference between a robust setting and the previous realizable one is that now, instead of
assuming p ∈ C and asking for an arbitrarily good approximation of p, we make no prior assumption
about the data-generating distribution and only ask to approximate as well as (or close to) what the
best member of some “benchmark” class C can do.

We address the following question: Assuming a class of distributions is learnable, under which notions
of robustness is it guaranteed to be robustly learnable? We focus entirely on information-theoretic
learnability, and eschew concerns of computational efficiency. Indeed, our question of interest is so
broad that computationally efficient algorithms may be too much to hope for.

We shall consider a few variants of robust learnability. Specifically, we will impose requirements on
the nature of the difference between the data-generating distribution p and members of the class C.
Obviously, such requirements can only make the task of robust learning easier.

One such model considers additive robustness. The underlying distribution is restricted to be a mixture
of a distribution p from C, and some ‘contaminating’ distribution q. In this Statistics community, this
celebrated model is known as Huber’s contamination model [Hub64]. Analogously, one can consider
subtractive robustness. It includes the case where the starting point is a distribution in the class C, but
a fraction of the probability mass is removed and samples are drawn from the resulting distribution
(after rescaling). These two models are related to adversaries who can add or remove points from a
sampled dataset, see discussion at the end of Section 1.2.

A significant line of work focuses on understanding the sample complexity of agnostic distribution
learning (see examples and discussion in Section 1.3). Most study restricted classes of distributions,
with analyses that are only applicable in certain classes. Some works have found quantitative separa-
tions between the different robustness models. For instance, in the specific case of Gaussian mean
estimation, [DKK+16, LRV16, DKS17, DKK+18] give strong evidence that efficient algorithms can
achieve better error if they must only be additively robust, rather than robust in general. However,
such findings are again restricted to specific cases, and say little about the overall relationship between
learnability in general and these various robust learning models.

Current results leave open a more comprehensive treatment of robustness in distribution learning.
Specifically, what is the relative power of these different robustness models, and what is their impact
on which types of distributions are learnable? Are there more generic ways to design robust learning
algorithms?

Our two main contributions are the following:

• We give a generic algorithm which converts a learner for a distribution class into a learner
for that class which is robust to additive corruptions.

• We show that there exist distribution classes which are learnable, but are no longer learnable
after subtractive corruption.

Stated succinctly: we show that learnability implies robust learnability when an adversary can make
additive corruptions, but not subtractive corruptions. Other results explore implications related to
compression schemes and differentially private learnability.

2A related notion of robust learnability instead imagines the adversary modifies the samples from a distribution
in C, rather than the distribution itself. This adaptive model is discussed further in Section 1.2.
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1.1 Definitions of Learnability

In order to more precisely describe our results, we define various notions of learnability. We start with
the standard notion of PAC learnability for a distribution class. We get samples from a distribution p
belonging to a distribution class C, and the goal is to output a distribution similar to p.
Definition 1.1 (Learnability). We say that a class C of probability distributions is learnable (or,
realizably learnable) if there exists a learner A and a function nC : (0, 1)2 → N, such that for every
probability distribution p ∈ C, and every (ε, δ) ∈ (0, 1)2, for n ≥ nC(ε, δ) the probability over
samples S of that size drawn i.i.d. from the distribution p that dTV(p,A(S)) ≤ ε is at least 1− δ.

We next introduce the more challenging setting of robust, or agnostic, learning. In this setting, the
sampled distribution is within bounded distance to the distribution class C, rather than being in C itself.
For technical reasons, we introduce two closely-related definitions. Roughly speaking, the latter
definition assumes the distance from the sampling distribution to C is fixed, whereas the former (more
commonly considered in the agnostic learning literature) doesn’t. Note that in many cases, robust
algorithms designed with knowledge of the distance η to C can be modified to do without [JOR22].
Definition 1.2 (Robust learnability).

1. For α > 0, we say that a class C of probability distributions is α-robustly learnable
(also referred to as α-agnostically learnable) if there exists a learner A and a function
nC : (0, 1)2 → N, such that for every probability distribution p, and (ε, δ) ∈ (0, 1)2, for
n ≥ nC(ε, δ) the probability over samples S of that size drawn i.i.d. from the distribution p
that dTV(p,A(S)) ≤ αmin{dTV(p, p

′) : p′ ∈ C}+ ε is at least 1− δ.

When α = 1 we omit it and say that the class is robustly (or agnostically) learnable.

2. For 0 ≤ η ≤ and α > 0, we say that a class C of probability distributions is η-α-robustly
learnable if there exists a learner A and a function nC : (0, 1)2 → N, such that for every
probability distribution p such that min{dTV(p, p

′) : p′ ∈ C} ≤ η and (ε, δ) ∈ (0, 1)2, for
n ≥ nC(ε, δ) the probability over samples S of that size drawn i.i.d. from the distribution p
that dTV(p,A(S)) ≤ αη + ε is at least 1− δ.

Finally, we introduce notions of robust learnability which correspond to only additive or subtractive
deviations from the distribution class C. These more stringent requirements than standard (realizable)
learnability, but more lenient than η-α-robust learnability: the adversary in that setting can deviate
from the distribution class C with both additive and subtractive modifications simultaneously.
Definition 1.3 (Additive robust learnability). Given parameters 0 ≤ η ≤ 1 and α > 0, we say that
a class C of probability distributions is η-additive α-robustly learnable if there exists a learner A
and a function nC : (0, 1)2 → N, such that for every probability distribution q, every p ∈ C, and
(ε, δ) ∈ (0, 1)2, for n ≥ nC(ε, δ) the probability over samples S of that size drawn i.i.d. from the
distribution ηq + (1− η)p, that dTV(A(S), p) ≤ αη + ε is at least 1− δ.
Definition 1.4 (Subtractive robust learnability). Given parameters 0 ≤ η ≤ 1 and α > 0, we say that
a class C of probability distributions is η-subtractive α-robustly learnable if there exists a learner
A and a function nC : (0, 1)2 → N, such that for every probability distribution p for which there
exists a probability distribution q such that ηq + (1 − η)p ∈ C, and for every (ε, δ) ∈ (0, 1)2, for
n ≥ nC(ε, δ) the probability over samples S of that size drawn i.i.d. from the distribution p, that
dTV(A(S), p) ≤ αη + ε is at least 1− δ.

1.2 Results and Techniques

We explore how different robustness models affect learnability of distributions, showing strong
separations between them. Our first main result shows that learnability implies additively robust
learnability.
Theorem 1.5. Any class of probability distributions Q which is realizably learnable, is also η-
additively 2-robustly learnable for every η ∈ (0, 1/4).

Note that, since additively robust learnability trivially implies learnability, this shows an equivalence
between learnability and additively robust learnability.

Our algorithm enumerates over all subsets of the dataset of an appropriate size, such that at least one
subset contains no samples from the contaminating distribution. A realizable learner is applied to
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each subset, and techniques from hypothesis selection [Yat85, DL96, DL97, DL01] are used to pick
the best of the learned distributions. Further details appear in Section 2.

We also note that since our robust learning algorithm enumerates all large subsets of the training
dataset, it is not computationally efficient. Indeed, for such a broad characterization, this would be
too much to ask. Efficient algorithms for robust learnability are an exciting and active field of study,
but outside the scope of this work. For further discussion see Section 1.3.

Our other main result shows that a distribution class being learnable does not imply that it is
subtractive robustly learnable.
Theorem 1.6. For every α > 0, there exists a class that is learnable, but not η-subtractively
α-robustly learnable for any 0 ≤ η ≤ 1

16α .

An immediate corollary is that learnability does not imply robust (or agnostic) learnability, since this
is a more demanding notion than subtractive robust learnability.

Our proof of this theorem proceeds by constructing a class of distributions that is learnable, but classes
obtained by subtracting light-weight parts of these distributions are not α-robustly learnable with
respect to the original learnable class. More concretely, our construction works as follows. We start by
considering a distribution class that, by itself, is not learnable with any finite number of samples. We
map each distribution in that class to a new distribution, which additionally features a point with non-
trivial mass that “encodes” the identity of the distribution, thus creating a new class of distributions
which is learnable. Subtractive contamination is then able to “erase” this point mass, leaving a
learner with sample access only to the original (unlearnable) class. Our construction is inspired by
the recent construction of Lechner and Ben-David [LBD23], showing that the learnability of classes
of probability distributions cannot be characterized by any notion of combinatorial dimension. For
more details, see Section 3.

Thus far, we have only considered additive and subtractive robustness separately. General robust-
ness, where probability mass can be both added and removed, is more powerful than either model
individually. However, if a class is additive robustly learnable and subtractive robustly learnable,
is it robustly learnable? Though this is intuitively true, we are not aware of an immediate proof.
Using a similar argument as Theorem 1.5, we derive a stronger statement: that subtractively robust
learnability implies robust learnability.
Theorem 1.7. If a class C is η-subtractive α-robustly learnable, then it is also η-(2α+ 4)-robustly
learnable.

Adjacent to distribution learning is the notion of sample compression schemes. Recent work by
Ashtiani, Ben-David, Harvey, Liaw, Mehrabian, and Plan [ABDH+18] expanded notions of sample
compression schemes to apply to the task of learning probability distributions. They showed that
the existence of such sample compression schemes for a class of distributions imply the learnability
of that class. While the existence of sample compression schemes for classification tasks imply the
existence of such schemes for robust leaning, the question if similar implication hold for distribution
learning schemes was not answered. We strongly refute this statement. We use a construction similar
to that of Theorem 1.6, see Section 3.1 for more details.
Theorem 1.8. The existence of compression schemes for a class of probability distributions does not
imply the existence of robust compression schemes for that class.

Finally, a natural question is whether other forms of learnability imply robust learnability. We
investigate when differentially private3 (DP) learnability does or does not imply robust learnability. We
find that the same results and separations as before hold when the distribution class is learnable under
approximate differential privacy (i.e., (ε, δ)-DP), but, perhaps surprisingly, under pure differential
privacy (i.e., (ε, 0)-DP), private learnability implies robust learnability for all considered adversaries.4

Theorem 1.9 (Informal). (ε, 0)-DP learnability implies robust (ε, 0)-DP learnability. For any δ > 0,
(ε, δ)-DP learnability implies additively robust learnability, but not subtractively robust learnability.

3Differential privacy is a popular and rigorous notion of data privacy. For the definition of differential privacy,
see Section 4.

4In the context of differential privacy, we diverge slightly from the established notation. Specifically, we
align ourselves with common notation in the DP literature, using ε and δ for privacy parameters, and use α (in
place of ε) and β (in place of δ) for accuracy parameters.
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For pure DP learnability, we employ an equivalence between learnability under pure differential
privacy and packing [BKSW19]. Existence of such a packing in turn implies learnability under both
pure differential privacy and with both additive and subtractive contamination. For approximate
DP learnability, we note that the corresponding version of Theorem 1.5 automatically holds, since
private learnability implies learnability. We show that our construction for Theorem 1.6 is still
learnable under approximate differential privacy, and thus the corresponding non-implication holds.
See Section 4 for more details.

To summarize the qualitative versions of our findings:

• Learnability and additively robust learnability are equivalent (Theorem 1.5);

• Learnability does not imply subtractively robust learnability (Theorem 1.6);

• Subtractively robust learnability implies robust learnability (Theorem 1.7);

• Pure DP learnability is equivalent to robust pure DP learnability (Theorem 1.9);

• Approximate DP learnability implies additively robust learnability,5 but not subtractively
robust learnability (Theorem 1.9);

• Existence of sample compression schemes does not imply the existence of robust sample
compression schemes (Theorem 1.8).

Quantitative versions of these statements can be found in their respective theorems.

Adaptive Adversaries. Our definition of robustness allows an adversary to make changes to the
underlying distribution. Equivalently, it corresponds to an adversary who can add or remove points
from a dataset, but must commit to these modifications before the dataset is actually sampled. A
stronger6 adversary would be able to choose which points to add or remove after seeing the sampled
dataset. Such an adversary is referred to as adaptive. Since adaptive adversaries are stronger than the
ones we consider, any impossibility result that we show also holds in this settings (e.g., learnability
does not imply subtractive robust learnability when the adversary is adaptive). It is an interesting
open question to understand whether our algorithms can be strengthened to work in this setting. Some
positive evidence in this direction is due to Blanc, Lange, Malik, and Tan [BLMT22], who show that
adaptive and non-adaptive adversaries have qualitatively similar power in many settings.

1.3 Related Work

Robust estimation is a classic subfield of Statistics, see, for example, the classic works [Tuk60,
Hub64]. Our work fits more into the Computer Science literature on distribution estimation, initiated
by the work of [KMR+94], which was in turn inspired by Valiant’s PAC learning model [Val84].
Since then, several works have focused on algorithms for learning specific classes of distributions,
see, e.g., [CDSS13, CDSS14a, CDSS14b, LS17, ABDH+20]. A recent line of work, initiated
by [DKK+16, LRV16], focuses on computationally-efficient robust estimation of multivariate distri-
butions, see, e.g., [DKK+17, SCV18, DKK+18, KSS18, HL18, DKK+19, LM21, LM22, BDJ+22,
JKV23] and [DK22] for a reference. In contrast to all of these works, we focus on broad and generic
connections between learnability and robust learnability, rather than studying robust learnability of a
particular class of distributions.

Some of our algorithmic results employ tools from hypothesis selection, a problem which focuses on
agnostic learning with respect to a specified finite set of distributions. The most popular approaches
are based on ideas introduced by Yatracos [Yat85] and subsequently refined by Devroye and Lu-
gosi [DL96, DL97, DL01]. Several others have studied hypothesis selection with an eye for several
considerations, including running time, approximation factor, robustness, privacy, parallelization,
and more [MS08, DDS12, DK14, SOAJ14, DKK+16, ABDH+18, AFJ+18, BKSW19, BKM19,
GKK+20, BBK+22, AAK21].

Distribution learning under the constraint of differential privacy [DMNS06] has been an active
area of research, see, e.g., [KV18, KLSU19, BS19, ASZ21, CWZ21, KMS+22b, KMS22a], and

5A natural open question is whether approximate DP learnability implies additively-robust approximate-DP
learnability.

6And in the case of removals, much more natural

5



[KU20] for a survey. A number of these works have focused on connections between robustness and
privacy [DL09, BKSW19, KSU20, AM20, BGS+21, LKKO21, LKO22, KMV22, RJC22, SM22,
HKM22, GH22, HKMN23, AKT+23]. Again, these results either focus on specific classes of
distributions, or give implications that require additional technical conditions, whereas we aim to
give characterizations of robust learnability under minimal assumptions.

The question whether learnability under realizability assumptions extends to non-realizable setting
has a long history. For binary classification tasks, both notions are characterized by the finiteness of
the VC-dimension, and are therefore equivalent [VC71, VC74, BEHW89, Hau92]. [BPS09] show a
similar result for online learning. Namely, that agnostic (non-realizable) learnability is characterized
by the finiteness of the Littlestone dimension, and is therefore equivalent to realizable learnability.

Going beyond binary classification, recent work [HKLM22] shows that the equivalence of realizable
and agnostic learnability extends across a wide variety of settings. These include models with no
known characterization of learnability such as learning with arbitrary distributional assumptions
and more general loss functions, as well as a host of other popular settings such as robust learning,
partial learning, fair learning, and the statistical query model. This stands in contrast to our results
for the distribution learning setting. We show that realizable learnability of a class of probability
distributions does not imply its agnostic learnability. It is interesting and natural to explore the
relationship between various notions of distribution learnability, which we have scratched the surface
of in this work.

2 Learnability Implies Additive Robust Learnability

We recall Theorem 1.5, which shows that any class that is realizably learnable is also additive robustly
learnable.
Theorem 1.5. Any class of probability distributions Q which is realizably learnable, is also η-
additively 2-robustly learnable for every η ∈ (0, 1/4).

We prove this theorem by providing an algorithm based on classical tools for hypothesis selec-
tion [Yat85, DL96, DL97, DL01]. These methods take as input a set of samples from an unknown
distribution and a collection of hypotheses distributions. If the unknown distribution is close to
one of the hypotheses, then, given enough samples, the algorithm will output a close hypothesis.
Roughly speaking, our algorithm looks at all large subsets of the dataset, such that at least one will
correspond to an uncontaminated set of samples. A learner for the realizable setting (whose existence
we assumed) is applied to each to generate a set of hypotheses, and we then use hypothesis selection
to pick one with sufficient accuracy. The proof of Theorem 1.7 (showing that subtractively robust
learnability implies robust learnability) follows almost the exact same recipe, except the realizable
learner is replaced with a learner robust to subtractive contaminations. We recall some preliminaries
in Section A. We then prove Theorem 1.5 in Section B, and we formalize and prove a version of
Theorem 1.7 in Section 2.1.

We note that α = 2 and α = 3 are often the optimal factors to expect in distribution learning settings,
even for the case of finite distribution classes. For example, for proper agnostic learning the factor
α = 3 is known to be optimal for finite collections of distributions, which holds for classes with only
2 distributions [BKM19]. Similarly the factor of α = 2 is optimal if the notion of learning is relaxed
to improper learners [BKM19, CDSS14b]. While we are not aware of lower bounds for the additive
setting, a small constant factor such as 2 is within expectations for these problems.

For the proof of Theorem 1.5, we refer the reader to Section B in the appendix.

2.1 Subtractive Robust Learnability Implies Robust Learnability

Similarly, we can show that robustness with respect to a subtractive adversary implies robustness
with respect to a general adversary. We note that this theorem requires a change in constants from α
to (2α+ 4).
Theorem 1.7. If a class C is η-subtractive α-robustly learnable, then it is also η-(2α+ 4)-robustly
learnable.

The proof follows a similar argument as the proof of Theorem 1.5 and can be found in Section C in
the appendix.
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3 Learnability Does Not Imply Robust (Agnostic) Learnablity

In this section we show that there are classes of distributions which are realizably learnable, but not
robustly learnable.
Theorem 3.1. There are classes of distributions Q, such that Q is realizably learnable, but for
every α ∈ R, Q is not α-robustly learnable. Moreover, the sample complexity of learning Q can be
arbitrarily close to (but larger than) linear. Namely, for any super-linear function g, there is a class
Qg , with

• Qg is realizable learnable with sample complexity nre
Qg

(ε, δ) ≤ log(1/δ)g(1/ε);

• for every α ∈ R, Qg is not α-robustly learnable.

Note that this statement appears slightly weaker than Theorem 1.6, in that it holds for α-robust
learnability rather than η-subtractive α-robust learnability. In fact, the two statements are incompara-
ble, due to the order of quantifiers in the construction. Here we provide a single class which is not
α-robustly learnable for every α, whereas in the proof of Theorem 1.6 we give a different class for
each α (though the two constructions are similar). For simplicity we focus here on Theorem 3.1,
whereas the proofs of Theorem 1.6 and other claims appear in Section D.

The key idea to the proof is to construct a class which is easy to learn in the realizable case, by
having each distribution of the class have a unique support element that is not shared by any other
distributions in the class. Distributions on which this “indicator element” has sufficient mass will be
easily identified, independent of how rich the class is on other domain elements. That richness makes
the class hard to learn from samples that miss those indicators. Furthermore, we construct the class in
a way that its members are close in total variation distance to distributions that place no weight on
those indicator elements.

This is done by making the mass on these indicator elements small, so that the members of a class of
distributions that results from deleting these indicator bits are close to the initially constructed class,
Qg. In order to make this work for every target accuracy and sample complexity, we need to have
a union of such classes with decreasingly small mass on the indicator bits. In order for this to not
interfere with the realizable learnability, we let the distributions with small mass on the indicator bits
have most of their mass on one point (0, 0) that is the same for all distributions in the class. This
ensures that distributions for which the indicator bit will likely not be observed because their mass
is smaller than some η are still easily ε-approximated by a constant distribution (δ(0,0)). Lastly we
ensure the impossibility of agnostic learnability, by controlling the rate at which η approaches zero to
be faster than the rate at which ε approaches zero. With this intuition in mind, we will now describe
the construction and proof of this theorem.

Proof. We first define the distributions in Qg . Let {Ai ⊂ N : i ∈ N} be an enumeration of all finite
subsets of N. Define distributions over N× N as follows:

qi,j,k =

(
1− 1

j

)
δ(0,0) +

(
1

j
− 1

k

)
UAi×{2j+1} +

1

k
δ(i,2j+2), (1)

where, for every finite set W , UW denotes the uniform distribution over W . For a monotone, super-
linear function g : N → N, we now let Qg = {qi,j,g(j) : i, j ∈ N}. The first bullet point of the
theorem (the class is learnable) follows from Claim 3.2 and the second bullet point (the class is not
robustly learnable) follows from Claim 3.3.

Claim 3.2. For a monotone function g : N → N, let Qg = {qi,j,g(j) : i, j ∈ N}. Then, the sample
complexity of Qg in the realizable case is upper bounded by

nre
Qg

(ε, δ) ≤ log(1/δ)g(1/ε).

This claim can be proved by showing that the following learner defined by

A(S) =

{
qi,j,g(j) if (i, 2j + 2) ∈ S

δ(0,0) otherwise
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is a successful learner in the realizable case. Intuitively, this learner is successful for distributions
qi,j,g(j) for which j is large (i.e., j > 1

ε ), since this will mean that dTV(qi,j,g(j), δ(0,0)) is small.
Furthermore, it is successful for distributions qi,j,g(j) for which j is small (i.e., upper bounded by
some constant dependent on ε), because this will lower bound the probability 1/g(j) of observing
the indicator bit on (i, 2j + 2). Once the indicator bit is observed the distribution will be uniquely
identified.

Claim 3.3. For every function g ∈ ω(n) the class Qg is not α-robustly learnable for any α > 0.

This claim can be proven by showing that for every α, there is η, such that the class of distributions Q′

such that for every q′ ∈ Q′ there is q ∈ Qg with dTV(q, q
′) < η which is not αη-weakly learnable.7

In particular, those for every q′ ∈ Q′ there is q ∈ Qg and p such that q = (1 − η)q′ + ηq. We
construct this class and show that it is not learnable by using the construction and Lemma 3 from
[LBD23].

3.1 Existence of sample compression schemes

Sample compression schemes are combinatorial properties of classes that imply their learnability.
For a variety of learning tasks, such as binary classification or expectation maximization a class has
a sample compression scheme if and only if it is learnable [MY16, BHM+17]. For classification
tasks, sample compression for realizable samples implies agnostic sample compression. [ABDH+20]
used compression schemes to show learnability of classes of distributions in the realizable case, but
left open the question if for learning probability distributions, the existence of realizable sample
compression schemes implies the existence of similar schemes for the non-realizable (agnostic, or
robust) settings. We provide a negative answer to this question.

More concretely, let Q be a class of distributions over some domain X . A compression scheme for Q
involves two agents: an encoder and a decoder.

• The encoder knows a distribution q and receives a sample S generated by this distribution.
The encoder picks a bounded size sub-sample and sends it, possibly with a few additional
bits to the decoder.

• The decoder receives the message and uses an agreed upon decoding rule (that may depend
on Q but not on q or S) to constructs a distribution p that is close to q.

Of course, there is some probability that the samples are not representative of the distribution q, in
which case the compression scheme will fail. Thus, we only require that the decoding succeed with
constant probability.

We say that a class Q has a sample compression scheme (realizable or robust) if for every accuracy
parameter ε > 0, the minimal required size of the sample S, and upper bounds on the size of the
sub-sample and number of additional bits in the encoder’s message depend only of Q and ε (and are
independent of the sample generating q and on the sample S).

A realizable compression scheme is required to handle only q’s in Q and output p such that
dTV(p, q) ≤ ε, while a robust compression scheme should handle any q but the decoder’s out-
put p is only required to be minq∈Q{dTV(p, q)}+ ε close to q.

Theorem 3.4 (Formal version of Theorem 1.8). For every α ∈ R, the existence of a realizable
compression scheme, does not imply the existence of an α-robust compression scheme. That is, there
is a class Q that has a realizable compression scheme, but for every α ∈ R, Q does not have an
α-robust compression scheme.

Proof. Consider the class Q = Qg from Section 3. We note that this class has a compression
scheme of size 1. However, from [ABDH+18], we know that having a α-robust compression scheme
implies α-agnostic learnability. We showed in Theorem 1.6 that for every α and for every superlinear
function g, the class Qg is not α-agnostically learnable. It follows that Qg does not have an α-robust
compression scheme.

7We provide a definition for ε-weak learnability as Definition D.2. We note that the definition we provide
is what would usually be referred to as (1/2− ε)-weak learnability in the supervised learning literature. For
simplicity, because ε is our parameter of interest, we reparameterized the definition to be more intuitive.
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In Section E, we present a precise quantitative definition of sample compression schemes, as well as
the proof that the class Qg has a sample compression scheme of size 1.

4 Implications of Private Learnability

Qualitatively speaking, differentially private algorithms offer a form of “robustness” – the output
distribution of a differentially private algorithm is insensitive to the change of a single point in its
input sample. The relationship between privacy and notions of “robustness” has been studied under
various settings, where it has been shown that robust algorithms can be made private and vice versa
[DL09, GH22, HKMN23].

For distribution learning, we find that: (1) the requirement of approximate differentially private
learnability also does not imply (general) robust learnability; and (2) the stronger requirement of pure
differentially pirvate learnability does imply robust learnability.
Definition 4.1 (Differential Privacy [DMNS06]). Let X be an input domain and Y to be an output
domain. A randomized algorithm A : Xm → Y is (ε, δ)-differentially private (DP) if for every
x, x′ ∈ Xn that differ in one entry,

P[A(x) ∈ B] ≤ eε · P[A(x′) ∈ B] + δ for all B ⊆ Y .

If A is (ε, δ)-DP for δ > 0, we say it satisfies approximate DP. If it satisfies (ε, 0)-DP, we say it
satisfies pure DP.
Definition 4.2 (DP learnable class). We say that a class C of probability distributions is (approximate)
DP learnable if there exists a randomized learner A and a function nC : (0, 1)4 → N, such that for
every probability distribution p ∈ C, and every (α, β, ε, δ) ∈ (0, 1)4, for n ≥ nC(α, β, ε, δ)

1. A is (ε, δ)-DP; and

2. The probability over samples S of size n drawn i.i.d. from the distribution p, as well as over
the randomness of A that

dTV(p,A(S)) ≤ α

is at least 1− β.

We say C is pure DP learnable if a learner A can be found that satisfies (ε, 0)-DP, in which case the
sample complexity function nC : (0, 1)3 → N does not take δ as a parameter.
Theorem 4.3 (Approximate DP learnability vs. robust learnability).

1. If a class Q is approximate DP learnable, then Q is η-additive 2-robustly learnable for any
η ∈ (0, 1/4).

2. There exists an approximate DP learnable class Q that is not α-robustly learnable for any
α ≥ 1.

Note that the first claim is immediate from Theorem 1.5, since approximate DP learnability implies
learnability. To prove the second claim, we show that the learner for the class Q described in Theorem
3.1 can be made differentially private by employing stability-based histograms [BNS16]. The proof
appears in Section F.
Theorem 4.4 (Pure DP learnable vs. robustly learnable). If a class Q is pure DP learnable, then Q
is 3-robustly learnable.

The proof relies on the finite cover characterization of pure DP learnability.
Proposition 4.5 (Packing lower bound, Lemma 5.1 from [BKSW19]). Let C be a class of distributions,
and let α, ε > 0. Suppose Pα is a α-packing of C, that is, Pα ⊆ C such that for any p ̸= q ∈
Pα, dTV(p, q) > α.

Any ε-DP algorithm A that takes n i.i.d. samples S from any p ∈ C and has dTV(p,A(S)) ≤ α/2
with probability ≥ 9/10 requires

n ≥
log |Pα| − log 10

9

ε
.
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Proof of Theorem 4.4. Let α, β > 0. Pure DP learnability of Q implies that there exists a 1-DP
algorithm ADP and n = nC(α/12, 1/10, 1) such that for any p ∈ Q, with probability ≥ 9/10 over
the sampling of n i.i.d. samples S from p, as well as over the randomness of the algorithm ADP , we
have dTV(p,ADP (S)) ≤ α/12. By Proposition 4.5, any α/6-packing Pα/6 of Q has

|Pα/6| ≤ exp (m) · (10/9).

Let Q̂ be such a maximal α/6-packing. By maximality, Q̂ is also an α/6-cover of Q. Hence, running
Yatracos’ 3-robust finite class learner (Theorem A.1) A over Q̂ with

nQ̂(α/2, β) = O

(
log |Q̂|+ log(1/β)

(α/2)2

)
samples drawn i.i.d. from p yields, with probability ≥ 1− β

dTV(p,A(S)) ≤ 3min{dTV(p, p
′) : p′ ∈ Q̂}+ α/2

≤ 3(min{dTV(p, p
′) : p′ ∈ Q}+ α/6) + α/2

= 3min{dTV(p, p
′) : p′ ∈ Q}+ α.

Note that Yatracos’ algorithm for hypothesis selection can be replaced with a pure DP algorithm for
hypothesis selection (Theorem 27 of [AAK21]) in order to achieve the following stronger implication.
Theorem 4.6 (Pure DP learnable vs. robustly learnable). If a class Q is pure DP learnable, then Q
is pure DP 3-robustly learnable.

5 Conclusions

We examine the connection between learnability and robust learnability for general classes of
probability distributions. Our main findings are somewhat surprising in that, in contrast to most
known leaning scenarios, learnability does not imply robust learnability. We also show that learnability
does imply additively robust learnability. We use our proof techniques to draw new insights related to
compression schemes and differentially private distribution learning.
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A Additional Preliminaries

We recall a classic theorem for the problem of hypothesis selection. Given a set of candidate
hypothesis distributions, the algorithm selects one which is close to an unknown distribution (to
which we have sample access). The requisite number of samples from the unknown distribution is
logarithmic in the size of the set of candidates.

Theorem A.1 (Yatracos’ 3-robust learner for finite classes (Theorem 4.4 of [ABDH+20], based on
Theorem 1 of [Yat85])). Let C be a finite class of distributions over a domain X . There exists an
algorithm A such that for any (α, β) ∈ (0, 1)2 and for any distribution p over X , given a sample S
of size

m = O

(
log |C|+ log(1/δ)

ε2

)
drawn i.i.d. from p, we have that with probability ≥ 1− δ,

dTV(p,A(S)) ≤ 3 ·min{dTV(p, p
′) : p′ ∈ C}+ ε.

We also use the following form of the Chernoff bound.

Proposition A.2 (Chernoff bounds). Let X =
∑m

i=1 Xi where X1...Xm are independent draws
from Bernoulli(p). For any t ∈ (0, 1), P[X/m ≤ (1− t)p] ≤ exp(−t2mp/2).

B Learnability Implies Additive Robust Learnability

In this section, we provide the proof for Theorem 1.5.

Theorem 1.5. Any class of probability distributions Q which is realizably learnable, is also η-
additively 2-robustly learnable for every η ∈ (0, 1/4).

Proof. Recall that Q is a class of probability distributions which is realizably learnable. We let Are
Q be

a realizable learner for Q, with sample complexity nre
Q . Let accuracy parameters ε, δ > 0 be arbitrary.

We will define n1 ≥ max
{
2nre

Q ( ε9 ,
δ
5 ),

162(1+log( 5
δ ))

ε2

}
and n2 ≥ 162(2(η+ 2ε

9 )n1 log(n1)+log( 5
δ )))

ε2 ≥
162(1+log( 5

δ ))

ε2 , and n = n1 + n2 be their sum.

Our additive robust learner will receive a sample S ∼ (ηq + (1 − η)p)n of size n. We can view a
subset S′ ⊂ S as the “clean” part, being i.i.d. generated by p. The size of this clean part |S′| = n′ is
distributed according to a binomial distribution Bin(n, 1−η). By a Chernoff bound (Proposition A.2),
we get

P
[
n′ ≤

(
1− ε

9
− η
)
n
]
≤ P

[
n′ ≤

(
1− ε

9
− η +

ηε

9

)
n
]
= P

[
n′ ≤

(
1− ε

9

)
(1− η)n

]

≤ exp

(
−
(ε
9

)2
n (1− η) /2

)
= exp

(
− ε2

162
n (1− η)

)
≤ exp

(
− ε2

162
n

(
1− 3

4

))
Thus, given that n = n1 + n2 ≥ 2(

162(1+log( 5
δ ))

ε2 ) with probability at least 1 − δ
5 , we have

n′ ≥ n
(
1− η − ε

9

)
. For the rest of the argument we will now assume that we have indeed

n′ ≥ n
(
1− η − ε

9

)
. The learner now randomly partitions the sample S into S1 and S2 of sizes n1

and n2, respectively. Now let S′
1 = S1∩S′ and S′

2 = S2∩S′ be the intersections of these sets with the
clean set S′, and n′

1 and n′
2 be their respective sizes. We note that n′

1 ∼ Hypergeometric(n, n′, n1)
and n′

2 ∼ Hypergeometric(n, n′, n2).8 Thus, assuming m′ ≥ m(1− η − ε
9 ) using Proposition A.2,

we have that

Pr

[
|S′

1| ≤
(
1− η − 2ε

9

)
n1

]
≤ e−

2
81 ε

2n1

8Recall that Hypergeometric(N,K, n) is the random variable of the number of “successes” when n draws
are made without replacement from a set of size N , where K elements of the set are considered to be successes.
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and

Pr

[
|S′

2| ≤
(
1− η − 2ε

9

)
n2

]
≤ e−

2
81 ε

2n2 ,

where the probability is over the random partition of S. We note that by our choices of n1 and n2,
with probability 1 − 2δ

5 , the clean fractions of S1 and S2 (namely |S′
1|

|S1| and |S′
2|

|S2| ) are each at least(
1− η − 2ε

9

)
.

Let

Ĥ =

{
Are

Q (S′′) : S′′ ⊂ S1 with |S′′| =
(
1− η − 2ε

9

)
n1

}
be the set of distributions output by the realizable learning algorithm Are

Q when given as input
all possible subsets of S1 of size exactly

(
1− η − 2ε

9

)
n1. For ε < 9η

2 , we know that this set

of distributions |Ĥ| is of size
(

n1

(1− η − 2ε
9 )n1

)
≤ n2ηn1

1 . By the guarantee of the realizable

learning algorithm Are
Q , if there exists a “clean” subset S′

1 ⊂ S1 where |S′
1| ≥ n1(1− η − 2ε

9 ) (i.e.,
S′
1 ∼ pn1(1−η− 2ε

9 )), then with probability 1 − δ
5 there exists a candidate distribution q∗ ∈ Ĥ with

dTV(p, q
∗) = ε

9 .

We now define and consider the Yatracos sets.9 For every qi, qj ∈ Ĥ, define the Yatracos set between
qi and qj to be Ai,j = {x : qi(x) ≥ qj(x)}.10 We let

Y(Ĥ) = {Ai,j ⊂ X : qi, qj ∈ Ĥ}

denote the set of all pairwise Yatracos sets between distributions in the set Ĥ.

We now consider the A-distance [KBG04] between two distributions with respect to the Yatracos
sets, i.e., we consider

dY(Ĥ)(p
′, q′) = sup

B∈Y(Ĥ)

|p′(B)− q′(B)|.

This distance looks at the supremum of the discrepancy between the distributions across the Yatracos
sets. Consequently, for any two distributions p′, q′ we have dTV(p

′, q′) ≥ dY(Ĥ)(p
′, q′), since

total variation distance is the supremum of the discrepancy across all possible sets. Furthermore,
if q′, p′ ∈ Ĥ, then dTV(p

′, q′) = dY(Ĥ)(p
′, q′), since either of the Yatracos sets between the two

distributions serves as a set that realizes the total variation distance between them.

Suppose there is some q∗ ∈ Ĥ with dTV(p, q
∗) ≤ ε

9 . Then for every q ∈ Ĥ:

dTV(p, q) ≤ dTV(p, q
∗) + dTV(q

∗, q)

≤ ε

9
+ dY(Ĥ)(q

∗, q)

≤ ε

9
+ dY(Ĥ)(q

∗, p) + dY(Ĥ)(p, q)

≤ ε

9
+ dTV(q

∗, p) + dY(Ĥ)(p, q)

≤ 2ε

9
+ dY(Ĥ)(p, q).

Lastly, we will argue that we can empirically approximate dY(Ĥ)(p, q), which we can then use

to select a hypothesis. We note that, since Y(Ĥ) is a finite set of size ≤
(

n1

(1− η − 2ε
9 )n1

)2

=(
n1

(η + 2ε
9 )n1

)2

≤ ((n
(η+ 2ε

9 )
1 ))2 = n

2(η+ 2η
9 )n1

1 , we have uniform convergence11 with respect to

9These sets are also sometimes called Scheffé sets in the literature.
10Note that this definition is asymmetric: Ai,j ̸= Aj,i.
11A collection of sets W has the uniform convergence property if for every (ε, δ) ∈ (0, 1)2 there is a number

mW(ε, δ) such that for every probability distribution p, with probability ≥ (1 − δ) over samples S of size
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Y(Ĥ). Recall that, we assumed that there is “clean” subsample S′′
2 ⊂ S2, which is i.i.d. distributed

according to p and of size (1 − 2ε
9 − η)n1. We also note that the clean samples S1 and S2 are

drawn independently from each other. Thus with probability 1− δ
5 , S′′

2 is ε
9 -representative of p with

respect to Y(Ĥ). For a sample S0 and a set B ⊂ X , let us denote S0(B) = |S0∩B|
|S0| . Because of the

ε
9 -representativeness of S′′

2 , we have for every B ∈ Y(Ĥ):

|p(B)− S′′
2 (B)| ≤ ε

9
.

Thus,

|p(B)− S2(B)|

=

∣∣∣∣p(B)− |S2 ∩B|
|S2|

∣∣∣∣
≤ max

{∣∣∣∣p(B)− |S′′
2 ∩B|
|S2|

∣∣∣∣ , ∣∣∣∣p(B)−
|S′′

2 ∩B|+ (η + 2ε
9 )n2

|S2|

∣∣∣∣}
≤ max

{∣∣∣∣p(B)− S′′
2 (B)|S′′

2 |
n2

∣∣∣∣ , ∣∣∣∣p(B)−
S′′
2 (B)|S′′

2 |+ (η + 2ε
9 )n2

n2

∣∣∣∣}
≤ max

{∣∣∣∣p(B)−
(
1− η − 2ε

9

)
S′′
2 (B)

∣∣∣∣ ,
∣∣∣∣∣p(B)−

S′′
2 (B)

(
1− η − 2ε

9

)
n2 +

(
η + 2ε

9

)
n2

n2

∣∣∣∣∣
}

≤ max

{
|p(B)− S′′

2 (B)|+
∣∣∣∣S′′

2 (B)−
(
1− η − 2ε

9

)
S′′
2 (B)

∣∣∣∣ , ∣∣∣∣p(B)−
(
S′′
2 (B)

(
1− η − 2ε

9

)
+

(
η +

2ε

9

))∣∣∣∣}
≤ max

{
3ε

9
+ η,

∣∣∣∣p(B)− S′′
2 (B)

(
1− η − 2ε

9

)
−
(
η +

2ε

9

)∣∣∣∣}
≤ max

{
3ε

9
+ η,

∣∣∣∣p(B)− S′′
2 (B) + S′′

2 (B)

(
η +

2ε

9

)
−
(
η +

2ε

9

)∣∣∣∣}
≤ max

{
3ε

9
+ η, |p(B)− S′′

2 (B)|+
∣∣∣∣S′′

2 (B)

(
η +

2ε

9

)
−
(
η +

2ε

9

)∣∣∣∣}
≤ max

{
3ε

9
+ η,

ε

9
+ |S′′

2 (B)− 1|
(
η +

2ε

9

)}
≤ max

{
3ε

9
+ η,

ε

9
+

(
η +

2ε

9

)}
≤ 3ε

9
+ η

Let the empirical A-distance with respect to the Yatracos sets be defined by

dY(Ĥ)(q, S) = sup
B∈dY(Ĥ)

|q(B)− S(B)|.

n > nW(ε, δ) generated i.i.d. by p, a sample S is ε-representative for W with respect to p. Namely, for every

A ∈ W ,
∣∣∣ |A∩S|

|S| − p(A)
∣∣∣ ≤ ε. If W is finite then nW(ε, δ) ≤ log(|W|)+log(1/δ)

ε2
. For more details see Chapter

4 in [SB14].
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Now if the learner outputs q̂ ∈ argminq∈Ĥ dY(Ĥ)(q, S), then putting all of our guarantees together,
we get that with probability 1− δ

dTV(q̂, p) ≤
2ε

9
+ dY(Ĥ)(q̂, p)

≤ 5ε

9
+ η + dY(Ĥ)(q̂, S2)

≤ 5ε

9
+ η + dY(Ĥ)(q

∗, S2)

≤ 8ε

9
+ 2η + dY(Ĥ)(q

∗, p)

≤ 8ε

9
+ 2η +

ε

9
≤ 2η + ε.

C Robust Learnability with Subtractive Contamination Implies Robust
Learnability with General Contamination

In this section we will provide the proof for Theorem 1.7.

Theorem 1.7. If a class C is η-subtractive α-robustly learnable, then it is also η-(2α+ 4)-robustly
learnable.

Proof. Let C be a concept class that is η-subtractively α-robust learnable. Then there exists a
successful η-subtractive α-robust learner Asub

C with sample complexity nsub
C for the class C. Let

ε < 9η
2 and δ and be arbitrary.

Let n1 ≥ max
{
2nsub

C ( ε9 ,
δ
5 )/(1− η − 2ε

9 ),
162(1+log( 5

δ ))

ε2

}
and n2 ≥{

(4(η+ 2ε
9 )n1 log(n1)+log( 5

δ )))

ε2 ,
162(1+log( 5

δ ))

ε2

}
. Lastly let n = n1 + n2.

Let p ∈ C be arbitrary. The α-η-robust learner receives a sample S ∼ pm such that there is q ∈ C
such that dTV(p, q) = η. Thus there exists a distributions q1, q2, q3, such that (1− η)q1 + ηq2 = p
and (1 − η)q1 + q3 = q. We now use the same learning strategy as in Theorem 1.5: We split the
sample randomly into two subsamples S1 and S2, where we use S1 to learn candidate sets and then
use S2 to select the hypothesis from the candidate set. The goal in both settings is to find as close an
approximation to q1 as possible. The candidate based on S1 is created by feeding subsamples of S1

into the subtractively robust learner in such a way that with high probability one of the subsamples is
guaranteed to be i.i.d. generated by q1 and thus (with high probability) yield a good hypothesis. More
precisely, the learner randomly splits the sample S into S1 and S2 with |S1| = n1 and |S1| = n2. We
now define the "clean" part of S′ ⊂ S, i.e. the part of S′ that is i.i.d. distributed according to q1. We
note that the size of this "clean" sample |S′| = n′ is a random variable and distributed according to
the binomial distributions Binom(n, 1− η). Now applying Chernoff bound, with the same argument
as in the proof of Theorem 1.5, we get that with probability 1− δ

5 , we have n′ ≥ n(1− η− ε
9 ). Now

let S′
1 = S1 ∩ S′ and S′

2 = S2 ∩ S′ be the "clean parts" of the subsamples S1 and S2 respectively.
The sizes |S′′

1 | = n′
1 and |S′′

2 | = n′′
2 We note that n′

1 ∼ Hypergeometric(n, n(1 − η), n1) and
n′
2 ∼ Hypergeometric(n, n(1− η), n2). Thus,

Prrandom split

[
|S′

1| ≤
(
1− η − 2ε

9

)
n1

]
≤ e−

2
81 ε

2n1

and

Prrandom split

[
|S′

2| ≤
(
1− η − 2ε

9

)
n2

]
≤ e−

2
81 ε

2n2 .
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Taking together the guarantees on our random splits and the size of n′, we note that by our choices of
n1 and n2 with probability 1− 3δ

5 , the fractions of the parts that are i.i.d. generated by q1 (namely
|S′′

1 |
|S′

1|
and |S′′

2 |
|S′

2|
) are at least (1− η − 2ε

9 ). Going forward we will assume that this is indeed the case.

Let

Ĥ =

{
Asub

Q (S̃) : S̃ ⊂ S′
1 with |S̃| =

(
1− η − 2ε

9

)
n1

}
.

Using our assumption that |S′
1| ≥ (1−η− 2ε

9 )n1, we know that there is S′′
1 ⊂ S′

1 with Asub
Q (S′′

1 ) ∈ H′.

As S′′
1 ∼ q

(1−η− 2ε
9 )n1

1 , by the learning guarantee of Asub
Q with probability 1− δ

5 , there is a candidate
distribution q∗ ∈ Ĥ with dTV(p, q

∗) ≤ dTV(p, q1) + dTV(q1, q
∗) = η + (αη + ε

9 ) = (α+ 1)η + ε
9 .

We now consider the Yatracos sets. For every qi, qj ∈ Ĥ, let Ai,j = {x : qi(x) ≥ qj(x)} and let

Y(Ĥ) =
{
Aij ⊂ X : qi, qj ∈ Ĥ

}
.

We now consider the A-distance [KBG04] between two distributions with respect to the Yatracos
sets, i.e., we consider

dY(Ĥ)(p
′, q′) = sup

B∈Y(Ĥ)

|p′(B)− q′(B)|.

We note, that for any two distributions p′, q′ we have dTV(p
′, q′) ≥ dY(Ĥ)(p

′, q′). Furthermore,

if q′, p′ ∈ Ĥ, then dTV(p
′, q′) = dY(Ĥ)(p

′, q′). Assume there is q∗ ∈ Ĥ with dTV(p, q
∗) ≤

(α+ 1)η + ε
9 , then for every q ∈ Ĥ:

dTV(p, q) ≤ dTV(p, q
∗) + dTV(q

∗, q)

≤ (α+ 1)η +
ε

9
+ dY(Ĥ)(q

∗, q)

≤ (α+ 1)η +
ε

9
+ dY(Ĥ)(q

∗, p) + dY(Ĥ)(p, q)

≤ (α+ 1)η +
ε

9
+ dTV(q

∗, p) + dY(Ĥ)(p, q)

≤ 2(α+ 1)η +
2ε

9
+ dY(Ĥ)(p, q).

Lastly, we will argue that we can empirically approximate dY(Ĥ)(p, q), which we can then use to

select a hypothesis. We note that, since Y(Ĥ) is a finite set of size |Y(Ĥ)| = (
(

n1

(1−η− 2ε
9 )n1

)
)2 ≤

n
2(η+ 2ε

9 )n1

1 , we have uniform convergence with respect to Y(Ĥ). Recall that S′
2 ∼ q

n′
2

1 and by our
previous assumption n′

2 ≤ n2

(
1− η − 2ε

9

)
. Thus by our choice of n2 , with probability 1 − δ

5 ,
there is S′′

2 ⊂ S′
2 ⊂ S2 with |S′′

2 | =
(
1− η − 2ε

9

)
n2 such that S′′

2 is ε
9 -representative of q1 with

respect to Y(Ĥ). For a sample S0 and a set B ⊂ X , let us denote S0(B) = |S0∩B|
|S0| . Because of the

ε
9 -representativeness of S′

2, we have for every B ∈ Y(Ĥ):

|q1(B)− S′′
2 (B)| ≤ ε

9

Thus,
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|q1(B)− S2(B)| ≤ |q1(B)− S′′
2 (B)|+ |S′′

2 (B)− S2(B)|

≤ ε

9
+

∣∣∣∣ |S2 ∩B|
|S2|

− |S′′
2 ∩B|
|S′′

2 |

∣∣∣∣
≤ ε

9
+

∣∣∣∣ |S2 ∩B|
n2

− |S′′
2 ∩B|

n2(1− η − 2ε
9 )

∣∣∣∣
=

ε

9
+

∣∣∣∣∣ |S2 ∩B|(1− η − 2ε
η )− |S′′

2 ∩B|
(1− η − 2ε

9 )n2

∣∣∣∣∣
≤ ε

9
+ max{

|(|S′′
2 ∩B|+ (η + 2ε

9 )n2)(1− η − 2ε
9 )− |S′′

2 ∩B||
(1− η − 2ε

9 )n2

,

|(|S′′
2 ∩B|(1− η − 2ε

9 )− |S′′
2 ∩B||

(1− η − 2ε
9 )n2

}

≤ ε

9

+ max{
|(|S′′

2 ∩B|+ (η + 2ε
9 )n2)(1− η − 2ε

9 )− ((1− η − 2ε
9 )|S

′′
2 ∩B|+ (η + 2ε

9 )|S
′′
2 ∩B|)|

n2(1− η − 2ε
9 )

,

n2(η + 2ε
9 )

n2(1− η − 2ε
9 )

}

≤ ε

9
+ max

{ |(η + 2ε
9 )n2(1− η − 2ε

9 )− |S′′
2 ∩B|(η + 2ε

9 )|
(1− η − 2ε

9 )n2

,
(η + 2ε

9 )

(1− η − 2ε
9 )

}
≤ ε

9
+ max

{ |(η + 2ε
9 )(n2(1− η − 2ε

9 )|)
(1− η − 2ε

9 )n2

, η +
2ε

9
)

}
≤ ε

9
+ η +

2ε

9
≤ 3ε

9
+ η

Let us remember that the empirical A-distance with respect to the Yatracos is defined by

dY(Ĥ)(q, S) = sup
B∈Y

|q(B)− S(B)| .

Now if the learner outputs q̂ ∈ argminq∈Ĥ dY(Ĥ)(q, S2), then putting all of our guarantees together,
with probability 1− δ we get

dTV(q̂, p) ≤ 2(α+ 1)η +
2ε

9
+ dY(q̂, p)

≤ 2(α+ 1)η +
2ε

9
+ dY(q̂, q1) + dY(q1, p)

≤ 2(α+ 1)η +
2ε

9
+ η + (η +

3η

9
) + dY(q̂, S2)

≤ 2(α+ 2)η +
5ε

9
+ dY(q̂, S2)

≤ 2(α+ 2)η +
5ε

9
+ dY(q

∗, S2)

≤ 2(α+ 2)η +
5ε

9
+ (η +

3ε

9
) + dY(q

∗, q1)

≤ (2α+ 3)η +
8ε

9
+ η + dY(q

∗, p)

≤ (2α+ 4)η + ε+ dTV(q
∗, p).
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D Learnability Does Not Imply Robust Learnability

We start with an upper bound, showing that our class Qg is realizably learnable.
Claim 3.2. For a monotone function g : N → N, let Qg = {qi,j,g(j) : i, j ∈ N}. Then, the sample
complexity of Qg in the realizable case is upper bounded by

nre
Qg

(ε, δ) ≤ log(1/δ)g(1/ε).

Proof. Let the realizable learner A be

A(S) =

{
qi,j,g(j) if (i, 2j + 2) ∈ S

δ(0,0) otherwise

Note that for all Qg-realizable samples this learner is well-defined. Furthermore, we note that in
the realizable case, whenever A outputs a distribution different from δ(0,0), then A(S) outputs the
ground-truth distribution, i.e., the output has TV-distance 0 to the true distribution. Lastly, we note,
that for an i.i.d. sample S ∼ qni,j,g(j), we have the following upper bound for the learner identifying
the correct distribution:

PS∼qn
i,j,g(j)

[A(S) = q(j)] = PS∼qn
i,j,g(j)

[(i, 2j + 2) ∈ S] = 1− (1− 1/g(j))n.

We note, that since g is a monotone function, if ε ≤ 1
j , then g(j) ≤ g( 1ε ) and therefore,

(1− 1/g(j))n ≤ (1− 1/g(1/ε))n.

Furthermore for qi,j,g(j), we have that dTV(δ(0,0), qi,j,g(j)) =
1
j .

Putting these two observations together, we get

PS∼qn
i,j,g(j)

[dTV(A(S), qi,j,g(j)) ≥ ε] ≤

{
(1− 1/g(1/ε))n if 1

j ≤ ε

0 if 1
j > ε

.

Thus, for every q ∈ Qg ,

PS∼qn [dTV(A(S), q) ≥ ε] ≤ (1− 1/g(1/ε))n ≤ exp

(
− n

g(1/ε)

)
.

Letting the left-hand side equal the failure probability δ and solving for n, we get,

log δ ≥ −n

g(1/ε)

log(δ)g(1/ε) ≥ −n

n ≥ − log(δ)g(1/ε) = log(1/δ)g(1/ε).

Thus, we have a sample complexity bound of

nQg
(ε, δ) ≤ log(1/δ)g(1/ε).

Now, we show a lower bound, that our class Qg is not robustly learnable. Before we do that, we
require a few more preliminaries. For a distribution class Q and a distribution p, let their total
variation distance be defined by

dTV(p,Q) = inf
q∈Q

dTV(p, q).

We also use the following lemma from [LBD23].
Lemma D.1 (Lemma 3 from [LBD23]). Let Pη,4k = {(1− η)δ(0,0) + ηUA×{2j+1} : A ⊂ [4k]} For
Q = Pη,4k, we have nre

Q (η8 ,
1
7 ) ≥ k.
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Finally, we recall the definition of weak learnability, which says that a distribution class is learnable
only for some particular value of the accuracy parameter.

Definition D.2. A class Q is ε-weakly learnable, if there is a learner A and a sample complexity
function n : (0, 1) → N, such that for ever δ ∈ (0, 1) and every p ∈ Q and every n ≥ n(δ),

PS∼pn [dTV(A(S), p) ≤ ε] < δ.

Learnability clearly implies ε-weak learnability for every ε ∈ (0, 1). While in some learning models
(e.g., binary classification) learnability and weak learnability are equivalent, the same is not true for
distribution learning [LBD23].

We are now ready to prove that Qg is not robustly learnable.

Claim 3.3. For every function g ∈ ω(n) the class Qg is not α-robustly learnable for any α > 0.

Proof. Consider

q′i,j =

(
1− 1

j

)
δ(0,0) +

1

j
UAi×{2j+1}

Note that dTV(q
′
i,j ,Qg) = 1

g(j) . Therefore, in order to show that Qg is not α-robustly learnable,
it is sufficient to show that there are j and ε, such that the class Q′

j = {q′i,j : i ∈ N} is not
( α
g(j) + ε)-weakly learnable.

We will now show that for any γ < 1
8j , the class Q′

j = {q′i,j : i ∈ N} is not γ-weakly learnable.
Recalling notation from Lemma D.1, we note that that for every n ∈ N the class P 1

j ,4k
⊂ Q′

j . By

monotonicity of the sample complexity and Lemma D.1, we have nQ′
j
( 1
8j ,

1
7 ) ≥ nP1/j,4n

( 1
8j ,

1
7 ) ≥ n,

proving that this class is not weakly learnable.

Lastly, we need to show that for every α, there are ε and j, such that this claim holds for γ ≤ ( α
g(j)+ε).

That is, we need to show that there are ε and j, such that

α

g(j)
+ ε <

1

8j
.

Let ε = 1
16j . Now let g be any superlinear function, i.e., for every c ∈ R, there is tc ∈ N, such that

for every t ≥ tc, g(t) ≥ ct. This implies that, for any α ∈ R, there is j ∈ N such that g(j) > 16jα.
Thus for any super-linear function g and any α ∈ R, the class Qg is not α-robustly learnable.

D.1 Proof of Theorem 1.6

The result of Theorem 1.6 follows directly from the construction of class Qg for Theorem 3.1, the
Claim 3.2 that shows this class is realizable learnable, and an adapated version for Claim 3.3, which
states the following:

Claim D.3. For every α, there is g(t) ∈ O(t2), such that for every 0 ≤ η ≤ 1
16α the class Qg is not

η-subtractive α-robustly learnable.

Proof. Let α > 1 be arbitrary. Let g : N → N be defined by g(t) = 32αt2 for all t ∈ N. Now for
every 0 ≤ η ≤ 1

16α , there exists some j, such that j
g(j) . ≤ η ≤ 1

16αj

For such j, we consider the distributions

q′i,j =

(
1− 1

j

)
δ(0,0) +

1

j
UAi×{2j+1}

as in the proof of Claim 3.2. Recall that the element of Qg are of the form

qi,j,g(j) =

(
1− 1

j

)
δ(0,0) +

(
1

j
− 1

g(j)

)
UAi×{2j+1} +

1

g(j)
δ(i,2j+2)
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Then we have,

qi,j,g(j) =

(
1− 1

j

)
δ(0,0) +

(
1

j
− 1

g(j)

)
UAi×{2j+1} +

1

g(j)
δ(i,2j+2) =

=

(
1− 1

j

)
δ(0,0) +

(
g(j)− j

jg(j)

)
UAi×{2j+1} +

j

jg(j)
δ(i,2j+2) =

=

(
g(j)− j

g(j)

)((
1− 1

j

)
δ(0,0) +

1

j
UAi×{(2,j+1)}

)
+

j

g(j)

((
1− 1

j

)
δ(0,0) +

1

j
δ(i,2j+2)

)
=

(
1− j

g(j)

)
q′i,j +

j

g(j)

((
1− 1

j

)
δ(0,0) +

1

j
δ(i,2j+2)

)
.

Thus for every element q′i,j of the class Q′
j = {q′i,j : i ∈ N}, there is a distribution p, such that

(1− η)q′i,j + ηp ∈ Qg. That is, every element of Q′
j results from the η-subtractive contamination

of some element in Qg. Thus, for showing that Qg is not η-subtractive α-robustly learnable, it is
sufficient to show, that Q′

j is not (αη+ε)-weakly learnable for ε = 1
16j . As we have seen in the proof

of Claim 3.3, we can use Lemma D.1 to show that for every n, we have nQ′
j
( 1
8j ,

1
7 ) ≥ n. Lastly, we

need that 1
8j ≥ αη+ ε, or after replacing ε, we need 1

16j ≥ αη. This follows directly from the choice
of g.

E Existence of sample compression schemes

We adopt the [ABDH+20] definition of sample compression schemes. We will let C be a class of
distribution over some domain X . A compression scheme for C involves two parties: an encoder and
a decoder.

• The encoder has some distribution q ∈ C and receives n samples from q. They send a
succinct message (dependent on q) to the decoder, which will allow the decoder to output a
distribution close to q. This message consists of a subset of size τ of the n samples, as well
as t additional bits.

• The decoder receives the τ samples and t bits and outputs a distribution which is close to q.

Since this process inherently involves randomness (of the samples drawn from q), we require that this
interaction succeeds at outputting a distribution close to q with only constant probability.

More formally, we have the following definitions for a decoder and a (robust) compression scheme.
Definition E.1 (decoder, Definition 4.1 of [ABDH+20]). A decoder for C is a deterministic function
J :

⋃∞
n=0 Xn ×

⋃∞
n=0{0, 1}n → C, which takes a finite sequence of elements of X and a finite

sequence of bits, and outputs a member of C.

The formal definition of a compression scheme follows.
Definition E.2 (robust compression schemes, Definition 4.2 of [ABDH+20]). Let τ, t, n : (0, 1) →
Z≥0 be functions, and let r ≥ 0. We say C admits (τ, t, n) r-robust compression if there exists a
decoder J for C such that for any distribution q ∈ C and any distribution p on X with dTV(p, q) ≤ r,
the following holds:

For any ε ∈ (0, 1), if a sample S is drawn from pn(ε), then, with probability at
least 2/3, there exists a sequence L of at most τ(ε) elements of S, and a sequence
B of at most t(ε) bits, such that dTV(J (L,B), C) ≤ r + ε.

Note that S and L are sequences rather than sets, and can potentially contain repetitions.
Theorem E.3 (Compression implies learning, Theorem 4.5 of [ABDH+20]). Suppose C admits
(τ, t, n) r-robust compression. Let τ ′(ε)τ(ε) + t(ε). Then C can be max{3, 2/r}-learned in the
agnostic setting using

O

(
n
(ε
6

)
log
(1
δ

)
+

τ ′(ε/6) log(n(ε/6) log3(1/δ)) + log(1/δ)

ε2

)
= Õ

(
n
(ε
6

)
+

τ ′(ε/6) log n(ε/6)

ε2

)
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samples. If Q admits (τ, t, n) non-robust compression, then Q can be learned in the realizable setting
using the same number of samples.
Theorem E.4. The class Q = Qg from Section 3 has a compression scheme of message size 1 (i.e.,
using just a single sample point).

Proof. Let n(ε) be 10/g(ε) and, give a sample S of at least that size, let the encoder pick a subset
L(S) ⊆ S be

L(S) =

{
{(i, 2j + 2)} if (i, 2j + 2) ∈ S

{(0, 0)} otherwise

Let the decoder output

J (L) =

{
qi,j,g(j) if (i, 2j + 2) ∈ L

δ(0,0) otherwise

With this construction established, the analysis follows very similarly to the analysis in the proof of
Claim 3.2.

We note that the claim of Theorem 1.8 (and Theorem 3.4) follows directly.

F Approximate DP learnability vs robust learnability

We prove the second claim in Theorem 4.3 by showing that the learner for the class Q described in
Theorem 3.1 can be made differentially private by employing stability-based histograms [KKMN09,
BNS16].
Proposition F.1 (Stability-based histograms [KKMN09, BNS16], Lemma 4.1 from [AAL21]). Let
X be a domain of examples. Let K be a countable index set, and let (hk)k∈K be a sequence of
disjoint histogram bins over X . For every (α, β, ε, δ) ∈ (0, 1)4, there is an (ε, δ)-DP algorithm that
takes a dataset S of size n and with probability ≥ 1− β, outputs bin frequency estimates (fk)k∈K

such that ∣∣∣∣fk − |{x ∈ S : x ∈ hk}|
n

∣∣∣∣ ≤ α

for all k ∈ K, so long as

n ≥ Ω

(
log(1/βδ)

αε

)
.

Proof of Theorem 4.3. Recall the realizably-but-not-robustly learnable class of distributions Qg =
{qi,j,g(j) : i, j ∈ N} over N2 from Theorem 3.1, where g : N → N is a monotone, super-linear
function and qi,j,k is as defined in (1).

Fix (α, β, ε, δ) ∈ (0, 1)4. We define our DP learner ADP for Qg as follows: we take a sample S of
size

n ≥ Ω

(
log(1/(β/2)δ)

(1/4g(1/α))ε

)
+ 32 log(1/(β/2))g(1/α)

and run the stability-based histogram from Proposition F.1 targeting (ε, δ)-DP, with singleton
histogram buckets (h(a,b))(a,b)∈N2 , each h(a,b) = {(a, b)}. This yields frequency estimates
(f(a,b))(a,b)∈N2 with |f(a,b) − |{x ∈ S : x = (a, b)}|| ≤ 1/4g(1/α) for all (a, b) ∈ N2 with
probability ≥ 1− β/2. Then let

ADP (S) =

{
qi,j,g(j) if f(i,2j+2) ≥ 1/2g(1/α)

δ0 otherwise.

Note that by post-processing ADP is indeed (ε, δ)-DP. Now suppose qi,j,g(j) is our unknown distri-
bution. There are two cases:
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If 1/j ≤ α, conditioned on the success of the histogram algorithm, the only possible outputs of ADP

are δ0 and qi,j,g(j), so dTV(ADP (S), qi,j,g(j)) ≤ α with probability ≥ 1− β/2.

If 1/j > α, we have 1/g(1/α) < 1/g(j). By the second term in n and Chernoff bounds (Proposition
A.2), we can conclude that

P
[
|{x ∈ S : x = (i, 2j + 2)}|

n
≤ 3

4g(1/α)

]
≤ β/2.

If the above event does not occur and if the histogram algorithm does not fail, ADP outputs qi,j,g(j)
exactly. So dTV(ADP (S), qi,j,g(j)) = 0 with probability ≥ 1− β.
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