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Abstract

Off-Policy Evaluation (OPE) in contextual bandits is crucial for assessing new
policies using existing data without costly experimentation. However, current OPE
methods, such as Inverse Probability Weighting (IPW) and Doubly Robust (DR)
estimators, suffer from high variance, particularly in cases of low overlap between
target and behavior policies or large action and context spaces. In this paper, we
introduce a new OPE estimator for contextual bandits, the Marginal Ratio (MR)
estimator, which focuses on the shift in the marginal distribution of outcomes
Y instead of the policies themselves. Through rigorous theoretical analysis, we
demonstrate the benefits of the MR estimator compared to conventional methods
like IPW and DR in terms of variance reduction. Additionally, we establish a
connection between the MR estimator and the state-of-the-art Marginalized Inverse
Propensity Score (MIPS) estimator, proving that MR achieves lower variance
among a generalized family of MIPS estimators. We further illustrate the utility
of the MR estimator in causal inference settings, where it exhibits enhanced
performance in estimating Average Treatment Effects (ATE). Our experiments on
synthetic and real-world datasets corroborate our theoretical findings and highlight
the practical advantages of the MR estimator in OPE for contextual bandits.

1 Introduction

In contextual bandits, the objective is to select an action A, guided by contextual information X , to
maximize the resulting outcome Y . This paradigm is prevalent in many real-world applications such
as healthcare, personalized recommendation systems, or online advertising [1–3]. The objective is
to perform actions, such as prescribing medication or recommending items, which lead to desired
outcomes like improved patient health or higher click-through rates. Nonetheless, updating the
policy presents challenges, as naïvely implementing a new, untested policy may raise ethical or
financial concerns. For instance, prescribing a drug based on a new policy poses risks, as it may
result in unexpected side effects. As a result, recent research [4–11] has concentrated on evaluating
the performance of new policies (target policy) using only existing data that was generated using the
current policy (behaviour policy). This problem is known as Off-Policy Evaluation (OPE).

Current OPE methods in contextual bandits, such as the Inverse Probability Weighting (IPW) [12]
and Doubly Robust (DR) [13] estimators primarily account for the policy shift by re-weighting the
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data using the ratio of the target and behaviour polices to estimate the target policy value. This can be
problematic as it may lead to high variance in the estimators in cases of substantial policy shifts. The
issue is further exacerbated in situations with large action or context spaces [14], since in these cases
the estimation of policy ratios is even more difficult leading to extreme bias and variance.

In this work we show that this problem of high variance in OPE can be alleviated by using methods
which directly consider the shift in the marginal distribution of the outcome Y resulting from the
policy shift, instead of considering the policy shift itself (as in IPW and DR). To this end, we propose
a new OPE estimator for contextual bandits called the Marginal Ratio (MR) estimator, which weights
the data directly based on the shift in the marginal distribution of outcomes Y and consequently is
much more robust to increasing sizes of action and context spaces than existing methods like IPW
or DR. Our extensive theoretical analyses show that MR enjoys better variance properties than the
existing methods making it highly attractive for a variety of applications in addition to OPE. One
such application is the estimation of Average Treatment Effect (ATE) in causal inference, for which
we show that MR provides greater sample efficiency than the most commonly used methods.

Our contributions in this paper are as follows:

• Firstly, we introduce MR, an OPE estimator for contextual bandits, that focuses on the shift
in the marginal distribution of Y rather than the joint distribution of (X,A, Y ). We show
that MR has favourable theoretical properties compared to existing methods like IPW and
DR. Our analysis also encompasses theory on the approximation errors of our estimator.

• Secondly, we explicitly lay out the connection between MR and Marginalized Inverse
Propensity Score (MIPS) [14], a recent state-of-the-art contextual bandits OPE method, and
prove that MR attains lowest variance among a generalized family of MIPS estimators.

• Thirdly, we show that the MR estimator can be applied in the setting of causal inference to
estimate average treatment effects (ATE), and theoretically prove that the resulting estimator
is more data-efficient with higher accuracy and lower variance than commonly used methods.

• Finally, we verify all our theoretical analyses through a variety of experiments on synthetic
and real-world datasets and empirically demonstrate that the MR estimator achieves better
overall performance compared to current state-of-the-art methods.

2 Background

2.1 Setup and Notation

We consider the standard contextual bandit setting. Let X ∈ X be a context vector (e.g., user features),
A ∈ A denote an action (e.g., recommended website to the user), and Y ∈ Y denote a scalar reward
or outcome (e.g., whether the user clicks on the website). The outcome and context are sampled from
unknown probability distributions p(y | x, a) and p(x) respectively. Let D := {(xi, ai, yi)}ni=1 be a
historically logged dataset with n observations, generated by a (possibly unknown) behaviour policy
πb(a | x). Specifically, D consists of i.i.d. samples from the joint density under behaviour policy,

pπb(x, a, y) := p(y | x, a)πb(a | x) p(x). (1)
We denote the joint density of (X,A, Y ) under the target policy as

pπ∗(x, a, y) := p(y | x, a)π∗(a | x) p(x). (2)

Moreover, we use pπb(y) to denote the marginal density of Y under the behaviour policy,

pπb(y) =

∫
A×X

pπb(x, a, y) dadx,

and likewise for the target policy π∗. Similarly, we use Eπb and Eπ∗ to denote the expectations under
the joint densities pπb(x, a, y) and pπ∗(x, a, y) respectively.

Off-policy evaluation (OPE) The main objective of OPE is to estimate the expectation of the
outcome Y under a given target policy π∗, i.e., Eπ∗ [Y ], using only the logged data D.

Throughout this work, we assume that the support of the target policy π∗ is included in the support
of the behaviour policy πb. This is to ensure that importance sampling yields unbiased off-policy
estimators, and is satisfied for exploratory behaviour policies such as the ϵ-greedy policies.
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Assumption 2.1 (Support). For any x ∈ X , a ∈ A, π∗(a | x) > 0 =⇒ πb(a | x) > 0.

2.2 Existing off-policy evaluation methodologies

Next, we will present some of the most commonly used OPE estimators before outlining the limita-
tions of these methodologies. This motivates our proposal of an alternative OPE estimator.

The value of the target policy can be expressed as the expectation of outcome Y under the target data
distribution pπ∗(x, a, y). However in most cases, we do not have access to samples from this target
distribution and hence we have to resort to importance sampling methods.

Inverse Probability Weighting (IPW) estimator One way to compute the target policy value,
Eπ∗ [Y ], when only given data generated from pπb(x, a, y) is to rewrite the policy value as follows:

Eπ∗ [Y ] =

∫
y pπ∗(x, a, y) dy dadx =

∫
y

pπ∗(x, a, y)

pπb(x, a, y)︸ ︷︷ ︸
ρ(a,x)

pπb(x, a, y) dy dadx = Eπb [Y ρ(A,X)] ,

where ρ(a, x) := pπ∗ (x,a,y)
p
πb (x,a,y)

= π∗(a|x)
πb(a|x) , given the factorizations in Eqns. (1) and (2). This leads to

the commonly used Inverse Probability Weighting (IPW) [12] estimator:

θ̂IPW :=
1

n

n∑
i=1

ρ(ai, xi) yi.

When the behaviour policy is known, IPW is an unbiased and consistent estimator. However, it
can suffer from high variance, especially as the overlap between the behaviour and target policies
decreases.

Doubly Robust (DR) estimator To alleviate the high variance of IPW, [13] proposed a Doubly
Robust (DR) estimator for OPE. DR uses an estimate of the conditional mean µ̂(a, x) ≈ E[Y | X =
x,A = a] (outcome model), as a control variate to decrease the variance of IPW. It is also doubly
robust in that it yields accurate value estimates if either the importance weights ρ(a, x) or the outcome
model µ̂(a, x) is well estimated [13, 15]. The DR estimator for Eπ∗ [Y ] can be written as follows:

θ̂DR =
1

n

n∑
i=1

ρ(ai, xi) (yi − µ̂(ai, xi)) + η̂(π∗),

where η̂(π∗) = 1
n

∑n
i=1

∑
a′∈A µ̂(a′, xi)π

∗(a′ | xi) ≈ Eπ∗ [µ̂(A,X)]. Here, η̂(π∗) is referred to as
the Direct Method (DM) as it uses µ̂(a, x) directly to estimate target policy value.

2.3 Limitation of existing methodologies

To estimate the value of the target policy π∗, the existing methodologies consider the shift in the joint
distribution of (X,A, Y ) as a result of the policy shift (by weighting samples by policy ratios). As
we show in Section 3.1, considering the joint shift can lead to inefficient policy evaluation and high
variance especially as the policy shift increases [16]. Since our goal is to estimate Eπ∗ [Y ], we will
show in the next section that considering only the shift in the marginal distribution of the outcomes Y
from pπb(Y ) to pπ∗(Y ), leads to a more efficient OPE methodology compared to existing approaches.

To better comprehend why only considering the shift in the marginal distribution is advantageous, let
us examine an extreme example where we assume that Y ⊥⊥ A | X , i.e., the outcome Y for a user X
is independent of the action A taken. In this specific instance, Eπ∗ [Y ] = Eπb [Y ] ≈ 1/n

∑n
i=1 yi,

indicating that an unweighted empirical mean serves as a suitable unbiased estimator of Eπ∗ [Y ].
However, IPW and DR estimators use policy ratios ρ(a, x) = π∗(a|x)

πb(a|x) as importance weights. In case
of large policy shifts, these ratios may vary significantly, leading to high variance in IPW and DR.

In this particular example, the shift in policies is inconsequential as it does not impact the distribution
of outcomes Y . Hence, IPW and DR estimators introduce additional variance due to the policy ratios
when they are not actually required. This limitation is not exclusive to this special case; in general,
methodologies like IPW and DR exhibit high variance when there is low overlap between target and
behavior policies [16] even if the resulting shift in marginals of the outcome Y is not significant.
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Therefore, we propose the Marginal Ratio (MR) OPE estimator for contextual bandits in the subse-
quent section, which circumvents these issues by focusing on the shift in the marginal distribution of
the outcomes Y . Additionally, we provide extensive theoretical insights on the comparison of MR to
existing state-of-the-art methods, such as IPW and DR.

3 Marginal Ratio (MR) estimator

Our method’s key insight involves weighting outcomes by the marginal density ratio of outcome Y :

Eπ∗ [Y ] =

∫
Y
y pπ∗(y) dy =

∫
Y
y
pπ∗(y)

pπb(y)
pπb(y) dy = Eπb [Y w(Y )] ,

where w(y) := pπ∗ (y)
p
πb (y)

. This leads to the Marginal Ratio OPE estimator:

θ̂MR :=
1

n

n∑
i=1

w(yi) yi.

In Section 3.1 we prove that by only considering the shift in the marginal distribution of outcomes,
the MR estimator achieves a lower variance than the standard OPE methods. In fact, this estimator
does not depend on the shift between target and behaviour policies directly. Instead, it depends on the
shift between the marginals pπb(y) and pπ∗(y).

Estimation of w(y) When the weights w(y) are known exactly, the MR estimator is unbiased and
consistent. However, in practice the weights w(y) are often not known and must be estimated using
the logged data D. Here, we outline an efficient way to estimate w(y) by first representing it as a
conditional expectation, which can subsequently be expressed as the solution to a regression problem.

Lemma 3.1. Let w(y) = pπ∗ (y)
p
πb (y)

and ρ(a, x) = π∗(a|x)
πb(a|x) , then w(y) = Eπb [ρ(A,X) | Y = y], and,

w = argmin
f

Eπb

[
(ρ(A,X)− f(Y ))2

]
. (3)

Lemma 3.1 allows us to approximate w(y) using a parametric family {fϕ : R → R | ϕ ∈ Φ} (e.g.
neural networks) and defining ŵ(y) := fϕ∗(y), where ϕ∗ solves the regression problem in Eq. (3).

Note that MR can also be estimated alternatively by directly estimating h(y) := w(y) y using a
similar regression technique as above and computing θ̂MR = 1/n

∑n
i=1 h(yi). We include additional

details along with empirical comparisons in Appendix F.1.1.

3.1 Theoretical analysis

Recall that the traditional OPE estimators like IPW and DR use importance weights which account
for the the shift in the joint distributions of (X,A, Y ). In this section, we prove that by considering
only the shift in the marginal distribution of Y instead, MR achieves better variance properties than
these estimators. Our analysis in this subsection assumes that the ratios ρ(a, x) and w(y) are known
exactly. Since the OPE estimators considered are unbiased in this case, our analysis of variance is
analogous to that of the mean squared error (MSE) here. We address the case where the weights are
not known exactly in Section 3.1.2. First, we make precise our intuition that the shift in the joint
distribution of (X,A, Y ) is ‘greater’ than the shift in the marginal distribution of outcomes Y . We
formalise this using the notion of f -divergences.
Proposition 3.2. Let f : [0,∞) → R be a convex function with f(1) = 0, and Df (P ||Q) denotes
the f -divergence between distributions P and Q. Then,

Df (pπ∗(x, a, y) || pπb(x, a, y)) ≥ Df (pπ∗(y) || pπb(y)) .

Intuition Proposition 3.2 shows that the shift in the joint distributions is at least as ‘large’ as the
shift in the marginals of the outcome Y . Traditional OPE estimators, therefore take into consideration
more of a distribution shift than needed, and consequently lead to inefficient estimators. In contrast,
the MR estimator mitigates this problem by only considering the shift in the marginal distributions of
outcomes resulting from the policy shift. This provides further intuition on why the MR estimator
has lower variance compared to existing methods.
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Proposition 3.3 (Variance comparison with IPW estimator). When the weights ρ(a, x) and w(y) are
known exactly, we have that Varπb [θ̂MR] ≤ Varπb [θ̂IPW]. In particular,

Varπb [θ̂IPW]− Varπb [θ̂MR] =
1

n
Eπb

[
Varπb [ρ(A,X) | Y ] Y 2

]
≥ 0.

Intuition Proposition 3.3 shows that the variance of MR estimator is smaller than that of the
IPW estimator when the weights are known exactly. Moreover, the proposition also shows that the
difference between the two variances will increases as the variance Varπb [ρ(A,X) | Y ] increases.
This variance is likely to be large when the policy shift between πb and π∗ is large, or when the
dimensions of contexts X and/or the actions A is large, and therefore in these cases the MR estimator
will perform increasingly better than the IPW estimator. A similar phenomenon occurs for DR as we
show next, even though in this case the variance of MR is not in general smaller than that of DR.
Proposition 3.4 (Variance comparison with DR estimator). When the weights ρ(a, x) and w(y) are
known exactly and µ(A,X) := E[Y | X,A], we have that,

Varπb [θ̂DR]− Varπb [θ̂MR] ≥
1

n
Eπb [Varπb [ρ(A,X)Y | Y ]− Varπb [ρ(A,X)µ(A,X) | X]] .

Intuition Proposition 3.4 shows that if Varπb [ρ(A,X)Y | Y ] is greater than
Varπb [ρ(A,X)µ(A,X) | X] on average, the variance of the MR estimator will be less than
that of the DR estimator. Intuitively, this will occur when the dimension of context space X is high
because in this case the conditional variance over X and A, Varπb [ρ(A,X)Y | Y ] is likely to be
greater than the conditional variance over A, Varπb [ρ(A,X)µ(A,X) | X]. Our empirical results in
Appendix F.2 are consistent with this intuition. Additionally, we also provide theoretical comparisons
with other extensions of DR, such as Switch-DR [5] and DR with Optimistic Shrinkage (DRos) [17]
in Appendix B, and show that a similar intuition applies for these results. We emphasise that the
well known results in [5] which show that IPW and DR estimators achieve the optimal worst case
variance (where the worst case is taken over a class of possible outcome distributions Y | X,A) are
not at odds with our results presented here (as the distribution of Y | X,A is fixed in our setting).

3.1.1 Comparison with Marginalised Inverse Propensity Score (MIPS) [14]

In this section, we compare MR against the recently proposed Marginalised Inverse Propensity Score
(MIPS) estimator [14], which uses a marginalisation technique to reduce variance and provides a
robust OPE estimate specifically in contextual bandits with large action spaces. We prove that the
MR estimator achieves lower variance than the MIPS estimator and doesn’t require new assumptions.

MIPS estimator As we mentioned earlier, the variance of the IPW estimator may be high when
the action A is high dimensional. To mitigate this, the MIPS estimator assumes the existence of a
(potentially lower dimensional) action embedding E, which summarises all ‘relevant’ information
about the action A. Formally, this assumption can be written as follows:
Assumption 3.5. The action A has no direct effect on the outcome Y , i.e., Y ⊥⊥ A | X,E.

For example, in the setting of a recommendation system where A corresponds to the items recom-
mended, E may correspond to the item categories. Assumption 3.5 then intuitively means that item
category E encodes all relevant information about the item A which determines the outcome Y .
Assuming that such action embedding E exists, [14] prove that the MIPS estimator θ̂MIPS, defined as

θ̂MIPS :=
1

n

n∑
i=1

pπ∗(ei, xi)

pπb(ei, xi)
yi =

1

n

n∑
i=1

pπ∗(ei | xi)

pπb(ei | xi)
yi,

provides an unbiased estimator of target policy value Eπ∗ [Y ]. Moreover, Varπb [θ̂MIPS] ≤ Varπb [θ̂IPW].

(X,A) (X,E) Y

Figure 1: Bayesian network correspond-
ing to Assumption 3.5.

Intuition The context-embedding pair (X,E) can be
seen as a representation of the context-action pair (X,A)
which contains less ‘redundant information’ regarding the
outcome Y . Intuitively, the MIPS estimator, which only
considers the shift in the distribution of (X,E) is therefore
more efficient than the IPW estimator (which considers
the shift in the distribution of (X,A) instead).
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MR achieves lower variance than MIPS Given the intuition above, we should achieve greater
variance reduction as the amount of redundant information in the representation (X,E) decreases.
We formalise this in Appendix D and show that the variance of MIPS estimator decreases as the
representation gets closer to Y in terms of information content. As a result, we achieve the greatest
variance reduction by considering the marginal shift in the outcome Y itself (as in MR) rather than
the shift in the representation (X,E) (as in MIPS). The following result formalizes this finding.

Theorem 3.6. When the weights w(y), pπ∗ (e,x)
p
πb (e,x)

and ρ(a, x) are known exactly, then under Assumption

3.5, Eπb [θ̂MR] = Eπb [θ̂MIPS] = Eπ∗ [Y ], and Varπb [θ̂MR] ≤ Varπb [θ̂MIPS] ≤ Varπb [θ̂IPW].

This analysis provides a link between the MR and MIPS estimators in the framework of contextual
bandits, and shows that the MR estimator achieves lower variance than MIPS estimator while not
requiring any additional assumptions (e.g. Assumption 3.5 as in MIPS). We also verify this empirically
in Section 5.1 by reproducing the experimental setup in [14] along with the MR baseline.

3.1.2 Weight estimation error

Our analysis so far assumes prior knowledge of the behavior policy πb and the marginal ratios w(y).
However, in practice, both quantities are often unknown and must be estimated from data. To this end,
we assume access to an additional training dataset Dtr = {(xtr

i , a
tr
i , y

tr
i )}mi=1 (for weight estimation),

in addition to the evaluation dataset D = {(xi, ai, yi)}ni=1 (for computing the OPE estimate). The
estimation of ŵ(y) involves a two-step process that exclusively utilizes data from Dtr:

(i) First, we estimate the policy ratio ρ̂(a, x) ≈ π∗(a|x)
πb(a|x) . This can be achieved by estimating

the behaviour policy π̂b, and defining ρ̂(a, x) := π∗(a|x)
π̂b(a|x) . Alternatively, ρ̂(a, x) can also be

estimated directly by using density ratio estimation techniques as in [18].
(ii) Secondly, we estimate the weights ŵ(y) using Eq. (3) with ρ̂ instead of ρ.

In practice, one may consider splitting Dtr for each estimation step outlined above. Moreover, each
approximation step may introduce bias and therefore, the MR estimator may have two sources of bias.
While classical OPE methods like IPW and DR also suffer from bias because of ρ̂ estimation, the
estimation of ŵ(y) is specific to MR. However, we show below that given any policy ratio estimate ρ̂,
if ŵ(y) approximates Eπb [ρ̂(A,X) | Y = y] ‘well enough’ (i.e., the estimation step (ii) shown above
is ‘accurate enough’), then MR achieves a lower variance than IPW and incurs little extra bias.
Proposition 3.7. Suppose that the IPW and MR estimators are defined as,

θ̃IPW :=
1

n

n∑
i=1

ρ̂(ai, xi) yi, and θ̃MR :=
1

n

n∑
i=1

ŵ(yi) yi,

and define the approximation error as ϵ := ŵ(Y )− w̃(Y ), where w̃(Y ) := Eπb [ρ̂(A,X) | Y ]. Then
we have that, Bias(θ̃MR)− Bias(θ̃IPW) = Eπb [ϵ Y ]. Moreover,

Varπb [θ̃IPW]− Varπb [θ̃MR] =
1

n
(Eπb [Varπb [ρ̂(A,X)Y | Y ]]︸ ︷︷ ︸

≥0

−Varπb [ϵ Y ]− 2Cov(w̃(Y )Y, ϵ Y )). (4)

Intuition The ϵ term defined in Proposition 3.7 denotes the error of the second approximation step
outlined above. As a direct consequence of this result, we show in Appendix C that as the error ϵ
becomes small (specifically as Eπb [ϵ2] → 0), the difference between biases of MR and IPW estimator
becomes negligible. Likewise, the terms Varπb [ϵ Y ] and Cov(w̃(Y )Y, ϵ Y ) in Eq. (4) will also be
small and as a result the variance of MR will be lower than that of IPW (as the first term is positive).

In fact, using recent results regarding the generalisation error of neural networks [19], we show that
when using 2-layer wide neural networks to approximate the weights ŵ(y), the estimation error ϵ
declines with increasing training data size m. Specifically, under certain regularity assumptions we
obtain Eπb [ϵ2] = O(m−2/3). Using this we show that as the training data size m increases, the biases
of MR and IPW estimators become roughly equal with a high probability, and

Varπb [θ̃IPW]− Varπb [θ̃MR] =
1

n
Eπb [Varπb [ρ̂(A,X)Y | Y ]] +O(m−1/3).
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Therefore the variance of MR estimator falls below that of IPW for large enough m. The empirical
results shown in Appendix F.2 are consistent with this result. Due to space constraints, the main
technical result has been included in Appendix C.

3.2 Application to causal inference

Beyond contextual bandits, the variance reduction properties of the MR estimator make it highly
useful in a wide variety of other applications. Here, we show one such application in the field of
causal inference, where MR can be used for the estimation of average treatment effect (ATE) [20]
and leads to some desirable properties in comparison to the conventional ATE estimation approaches.
Specifically, we illustrate that the MR estimator for ATE utilizes the evaluation data D more efficiently
and achieves lower variance than state-of-the-art ATE estimators and consequently provides more
accurate ATE estimates. To be concrete, the goal in this setting is to estimate ATE, defined as follows:

ATE := E[Y (1)− Y (0)].

Here Y (a) corresponds to the outcome under a deterministic policy πa(a
′ | x) := 1(a′ = a). Hence

any OPE estimator can be used to estimate E[Y (a)] (and therefore ATE) by considering target policy
π∗ = πa. An important distinction between MR and existing approaches (like IPW or DR) is that,
when estimating E[Y (a)], the existing approaches only use datapoints in D with A = a. To see why
this is the case, we note that the policy ratios π∗(A|X)

πb(A|X)
= 1(A=a)

πb(A|X)
are zero when A ̸= a. In contrast,

the MR weights pπ∗ (Y )
p
πb (Y ) are not necessarily zero for datapoints with A ̸= a, and therefore the MR

estimator uses all evaluation datapoints when estimating E[Y (a)].

As such we show that MR applied to ATE estimation leads to a smaller variance than the existing
approaches. Moreover, because MR is able to use all datapoints when estimating E[Y (a)], MR will
generally be more accurate than the existing methods especially in the setting where the data is
imbalanced, i.e., the number of datapoints with A = a is small for a specific action a. In Appendix E,
we formalise this variance reduction of the MR ATE estimator compared to IPW and DR estimators,
by deriving analogous results to Propositions 3.3 and 3.4. In addition, we also show empirically in
Section 5.3 that the MR ATE estimator outperforms the most commonly used ATE estimators.

4 Related Work

Off-Policy evaluation is a central problem both in contextual bandits [13, 5, 21, 6, 7, 17, 22, 8, 23]
and in RL [24–27]. Existing OPE methodologies can be broadly categorised into Direct Method
(DM), Inverse Probability Weighting (IPW), and Doubly Robust (DR). While DM typically has a low
variance, it suffers from high bias when the reward model is misspecified [28]. On the other hand,
IPW [12] and DR [13, 5, 17] use policy ratios as importance weights when estimating policy value
and suffer from high variance as overlap between behaviour and target policies increases or as the
action/context space gets larger [29, 14]. To circumvent this problem, techniques like weight clipping
or normalisation [4, 30, 31] are often employed, however, these can often increase bias.

In contrast to these approaches, [14] propose MIPS, which considers the marginal shift in the
distribution of a lower dimensional embedding of the action space. While this approach reduces
the variance associated with IPW, we show in Section 3.1.1 that the MR estimator achieves a lower
variance than MIPS while not requiring any additional assumptions (like Assumption 3.5).

In the context of Reinforcement Learning (RL), various marginalisation techniques of importance
weights have been used to propose OPE methodologies. [21, 25, 26] use methods which considers
the shift in the marginal distribution of the states, and applies importance weighting with respect
to this marginal shift rather than the trajectory distribution. Similarly, [32] use marginalisation
for OPE in deep RL, where the goal is to consider the shift in marginal distributions of state and
action. Although marginalization is a key trick of these estimators, these techniques do not consider
the marginal shift in reward as in MR and are aimed at resolving the curse of horizon, a problem
specific to RL. Apart from this, [33] propose a general framework of OPE based on conditional
expectations of importance ratios for variance reduction. While their proposed framework includes
reward conditioned importance ratios, this is not the main focus and there is little theoretical and
empirical comparison of their proposed methodology with existing state-of-the-art methods like DR.
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(a) Results with varying size of evaluation dataset n. (b) Results with varying α∗.

Figure 2: Results for synthetic data experiment. In 2a we have α∗ = 0.8 and in 2b we have n = 800.

Finally we note that the idea of approximating the ratio of intractable marginal densities via leveraging
the fact that this ratio can be reformulated as the conditional expectation of a ratio of tractable densities
is a standard idea in computational statistics [34] and has been exploited more recently to perform
likelihood-free inference [35]. In particular, while [34] typically approximates this expectation
through Markov chain Monte Carlo, [35] uses regression instead, however without any theory.

5 Empirical Evaluation

In this section, we provide empirical evidence to support our theoretical results by investigating the
performance of our MR estimator against the current state-of-the-art OPE methods. The code to
reproduce our experiments has been made available at: github.com/faaizT/MR-OPE.

5.1 Experiments on synthetic data

For our synthetic data experiment, we reproduce the experimental setup for the synthetic data
experiment in [14] by reusing their code with minor modifications. Specifically, X ⊆ Rd, for various
values of d as described below. Likewise, the action space A = {0, . . . , na − 1}, with na taking a
range of different values. Additional details regarding the reward function, behaviour policy πb, and
the estimation of weights ŵ(y) have been included in Appendix F.2 for completeness.

Target policies To investigate the effect of increasing policy shift, we define a class of policies,

πα∗
(a|x) = α∗

1(a = argmax
a′∈A

q(x, a′)) +
1− α∗

|A|
where q(x, a) := E[Y | X = x,A = a],

where α∗ ∈ [0, 1] allows us to control the shift between πb and π∗. In particular, as we show later,
the shift between πb and π∗ increases as α∗ → 1. Using the ground truth behaviour policy πb, we
generate a dataset which is split into training and evaluation datasets of sizes m and n respectively.

Baselines We compare our estimator with DM, IPW, DR and MIPS estimators. Our setup includes
action embeddings E satisfying Assumption 3.5, and so MIPS is unbiased. Additional baselines
have been considered in Appendix F.2. For MR, we split the training data to estimate π̂b and ŵ(y),
whereas for all other baselines we use the entire training data to estimate π̂b for a fair comparison.

Results We compute the target policy value using the n evaluation datapoints. Here, the MSE of
the estimators is computed over 10 different sets of logged data replicated with different seeds. The
results presented have context dimension d = 1000, number of actions na = 100 and training data
size m = 5000. More experiments for a variety of parameter values are included in Appendix F.2.

Varying number of evaluation data n In Figure 2a we plot the results with increasing size of
evaluation data n increases. MR achieves the smallest MSE among all the baselines considered when
n is small, with the MSE of MR being at least an order of magnitude smaller than every baseline for
n ≤ 500. This shows that MR is significantly more accurate than the baselines when the size of the
evaluation data is small. As n → ∞, the difference between the results for MR and MIPS decreases.
However, MR attains smaller variance and MSE than MIPS generally, verifying our analysis in
Section 3.1.1. Moreover, Figure 2a shows that while the variance of MR is greater than that of DM, it
still achieves the lowest MSE overall, owing to the high bias of DM.
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Varying α∗ As α∗ parameter of the target policy increases,
so does the shift between the policies πb and πα∗

as illus-
trated by the figure on the right, which plots the KL-divergence
DKL(π

b ||πα∗
) as a function of α. Figure 2b plots the results

for increasing policy shift. Overall, the MSE of MR estimator
is lowest among all the baselines. Moreover, while the MSE
and variance of all estimators increase with increasing α∗ the
increase in these quantities is lower for the MR estimator than
for the other baselines. Therefore, the relative performance of
MR estimator improves with increasing policy shift and MR
remains robust to increase in policy shift.

Additional ablation studies In Appendix F.2, we investigate the effect of varying context dimen-
sions d, number of actions na and number of training data m. In every case, we observe that the MR
estimator has a smaller MSE than all other baselines considered. In particular, MR remains robust to
increasing na whereas the MSE and variance of IPW and DR estimators degrade substantially when
na ≥ 2000. Likewise, MR outperforms the baselines even when the training data size m is small.

Table 1: Mean squared error of target policy value with standard errors over 10 different seeds for
different classification datasets. Here, number of evaluation data n = 1000, and α∗ = 0.6.

Dataset Digits Letter OptDigits PenDigits SatImage Mnist CIFAR-100

DM 0.1508±0.0015 0.0886±0.0026 0.0485±0.0016 0.0520±0.0016 0.0208±0.0009 0.1109±0.0014 0.0020±0.0001
DR 0.1334±0.0400 35.085±17.768 0.0464±0.0061 0.2343±0.1404 0.0560±0.0395 0.2617±0.0139 3823.9±2023.2
DRos 0.0847±0.0025 0.2363±0.0586 0.0384±0.0025 0.0138±0.0029 0.0078±0.0008 0.2151±0.0061 0.2628±0.1087
IPW 0.1632±0.0462 45.253±22.057 0.0844±0.0056 0.1342±0.0531 0.0900±0.0676 0.3359±0.0118 4116.9±2097.9
SwitchDR 0.0982±0.0032 0.2387±0.0507 0.0557±0.0047 0.0342±0.0090 0.0136±0.0012 0.2750±0.0102 1.1644±0.8227
MR (Ours) 0.0034±0.0001 0.0018±0.0004 0.0006±0.0002 0.0008±0.0002 0.0016±0.0003 0.0121±0.0009 0.0007±0.0002

5.2 Experiments on classification datasets

Following previous works on OPE in contextual bandits [13, 22, 36, 5], we transform classification
datasets into contextual bandit feedback data in this experiment. We consider five UCI classification
datasets [37] as well as Mnist [38] and CIFAR-100 [39] datasets, each of which comprises {(xi, a

gt
i )}i,

where xi ∈ X are feature vectors and agt
i ∈ A are the ground-truth labels. In the contextual bandits

setup, the feature vectors xi are considered to be the contexts, whereas the actions correspond to
the possible class of labels. For the context vector xi and the action ai, the reward yi is defined as
yi := 1(ai = agt

i ), i.e., the reward is 1 when the action is the same as the ground truth label and
0 otherwise. Here, the baselines considered include the DM, IPW and DR estimators as well as
Switch-DR [5] and DR with Optimistic Shrinkage (DRos) [17]. We do not consider a MIPS baseline
here as there is no natural embedding E of A. Additional details are provided in Appendix F.3.

In Table 1, we present the results with number of evaluation data n = 1000 and number of training
data m = 500. The table shows that across all datasets, MR achieves the lowest MSE among all
methods. Moreover, for the Letter and CIFAR-100 datasets the IPW and DR yield large bias and
variance arising from poor policy estimates π̂b. Despite this, the MR estimator which utilizes the
same π̂b for the estimation of ŵ(y) leads to much more accurate results. We also verify that MR
outperforms the baselines for increasing policy shift and evaluation data n in Appendix F.3.

5.3 Application to ATE estimation

In this experiment, we investigate the empirical performance of the MR estimator for ATE estimation.

Twins dataset We use the Twins dataset studied in [40], which comprises data from twin births in
the USA between 1989-1991. The treatment a = 1 corresponds to being born the heavier twin and
the outcome Y corresponds to the mortality of each of the twins in their first year of life. Specifically,
Y (1) corresponds to the mortality of the heavier twin (and likewise for Y (0)). To simulate the
observational study, we follow a similar strategy as in [40] to selectively hide one of the two twins as
explained in Appendix F.4. We obtain a total of 11,984 datapoints, of which 5000 datapoints are used
to train the behaviour policy π̂b and outcome model q̂(x, a).
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Table 2: Mean absolute ATE estimation error ϵATE with standard errors over 10 different seeds, for
increasing number of evaluation data n.

n 50 200 1600 3200

DM 0.092±0.003 0.092±0.003 0.092±0.004 0.092±0.004
DR 0.101±0.024 0.065±0.009 0.071±0.005 0.069±0.004
DRos 0.100±0.017 0.089±0.006 0.093±0.004 0.087±0.004
IPW 0.092±0.024 0.088±0.014 0.067±0.007 0.067±0.007
SwitchDR 0.101±0.024 0.065±0.009 0.071±0.005 0.069±0.004
MR (Ours) 0.062±0.007 0.065±0.007 0.061±0.005 0.061±0.006

Here, we consider the same baselines as the classification data experiments in previous section. For our
evaluation, we consider the absolute error in ATE estimation, ϵATE, defined as: ϵATE := |θ̂(n)ATE − θATE|.
Here, θ̂(n)ATE denotes the value of the ATE estimated using n evaluation datapoints. We compute the
ATE value using the n evaluation datapoints, over 10 different sets of observational data (using
different seeds). Table 2 shows that MR achieves the lowest estimation error ϵATE for all values
of n considered here. While the performance of other baselines improves with increasing n, MR
outperforms them all.

6 Discussion

In this paper, we proposed an OPE method for contextual bandits called marginal ratio (MR) estimator,
which considers only the shift in the marginal distribution of the outcomes resulting from the policy
shift. Our theoretical and empirical analysis showed that MR achieves better variance and MSE
compared to the current state-of-the-art methods and is more data efficient overall. Additionally, we
demonstrated that MR applied to ATE estimation provides more accurate results than most commonly
used methods. Next, we discuss limitations of our methodology and possible avenues for future work.

Limitations The MR estimator requires the additional step of estimating ŵ(y) which may introduce
an additional source of bias in the value estimation. However, ŵ(y) can be estimated by solving a
simple 1d regression problem, and as we show empirically in Appendix F, MR achieves the smallest
bias among all baselines considered in most cases. Most notably, our ablation study in Appendix F.2
shows that even when the training data is reasonably small, MR outperforms the baselines considered.

Future work The MR estimator can also be applied to policy optimisation problems, where the
data collected using an ‘old’ policy is used to learn a new policy. This approach has been used in
Proximal Policy Optimisation (PPO) [41] for example, which has gained immense popularity and has
been applied to reinforcement learning with human feedback (RLHF) [42]. We believe that the MR
estimator applied to these methodologies could lead to improvements in the stability and convergence
of these optimisation schemes, given its favourable variance properties.
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A Proofs

Proof of Lemma 3.1. First, we express the weights w(y) as the conditional expectation as follows:

w(y) =
pπ∗(y)

pπb(y)

=

∫
X ,A

pπ∗(x, a, y)

pπb(y)
da dx

=

∫
X ,A

pπ∗(x, a, y)

pπb(y)

pπb(x, a | y)
pπb(x, a | y)

dadx

=

∫
X ,A

pπ∗(x, a, y)

pπb(x, a, y)
pπb(x, a | y) dadx

=

∫
X ,A

ρ(a, x) pπb(x, a | y) da dx

= Eπb [ρ(A,X) | Y = y],

where ρ(a, x) = pπ∗ (x,a,y)
p
πb (x,a,y)

= π∗(a|x)
πb(a|x) . Since conditional expectations can be defined as the solution

of regression problem, the result follows.

Proof of Proposition 3.2. We have

Df (pπ∗(x, a, y) || pπb(x, a, y)) = Eπb

[
f

(
pπ∗(X,A, Y )

pπb(X,A, Y )

)]
= Eπb

[
f

(
π∗(A | X)

πb(A | X)

)]
= Eπb

[
Eπb

[
f

(
π∗(A | X)

πb(A | X)

) ∣∣∣∣∣Y
]]

≥ Eπb

[
f

(
Eπb

[
π∗(A | X)

πb(A | X)

∣∣∣∣∣Y
])]

(Jensen’s inequality)

= Eπb

[
f

(
pπ∗(Y )

pπb(Y )

)]
= Df (pπ∗(y) || pπb(y)) .

Proof of Proposition 3.3. Since Eπb [θ̂IPW] = Eπb [θ̂MR] = Eπ∗ [Y ], we have that,

Varπb [θ̂IPW]− Varπb [θ̂MR] = Eπb [θ̂IPW]2 − Eπb [θ̂MR]
2

=
1

n

(
Eπb

[
ρ(A,X)2 Y 2

]
− Eπb

[
w(Y )2 Y 2

])
=

1

n

(
Eπb

[
Eπb [ρ(A,X)2 | Y ]Y 2

]
− Eπb

[
w(Y )2 Y 2

])
=

1

n

(
Eπb

[
Eπb [ρ(A,X)2 | Y ]Y 2

]
− Eπb

[
Eπb [ρ(A,X) | Y ]2 Y 2

])
=

1

n
Eπb

[
Varπb [ρ(A,X) | Y ] Y 2

]
.

In the second last step above, we use the fact that w(y) = Eπb [ρ(A,X) | Y = y].
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Proof of Proposition 3.4. Let µ̂(a, x) ≈ E[Y | X = x,A = a] denote the outcome model in DR
estimator. Then, using multiple applications of the law of total variance we get that

nVarπb [θ̂DR] = Varπb

[
ρ(A,X) (Y − µ̂(A,X)) +

∑
a′∈A

µ̂(a′, X)π∗(a′ | X)

]
= Varπb [ρ(A,X) (Y − µ̂(A,X)) + Eπ∗ [µ̂(A,X) | X]]

= Eπb [Varπb [ρ(A,X) (Y − µ̂(A,X)) + Eπ∗ [µ̂(A,X) | X] | X,A]]

+ Varπb [Eπb [ρ(A,X) (Y − µ̂(A,X)) + Eπ∗ [µ̂(A,X) | X] | X,A]]

= Eπb [ρ(A,X)2Var[Y | X,A]]

+ Varπb [Eπb [ρ(A,X) (Y − µ̂(A,X)) + Eπb [ρ(A,X) µ̂(A,X) | X] | X,A]]

= Eπb [ρ(A,X)2Var[Y | X,A]]

+ Varπb [ρ(A,X) (µ(A,X)− µ̂(A,X)) + Eπb [ρ(A,X) µ̂(A,X) | X]]

= Eπb [ρ(A,X)2Var[Y | X,A]]

+ Varπb [Eπb [ρ(A,X) (µ(A,X)− µ̂(A,X)) + Eπb [ρ(A,X) µ̂(A,X) | X] | X]]

+ Eπb [Varπb [ρ(A,X) (µ(A,X)− µ̂(A,X)) + Eπb [ρ(A,X) µ̂(A,X) | X] | X]]

= Eπb [ρ(A,X)2Var[Y | X,A]] + Varπb [Eπb [ρ(A,X)µ(A,X) | X]]

+ Eπb [Varπb [ρ(A,X) (µ(A,X)− µ̂(A,X)) | X]]

≥ Eπb [ρ(A,X)2Var[Y | X,A]] + Varπb [Eπb [ρ(A,X)µ(A,X) | X]].

Using this, we get that

n(Varπb [θ̂DR]− Varπb [θ̂MR])

≥ Eπb [ρ(A,X)2Var[Y | X,A]] + Varπb [Eπb [ρ(A,X)µ(A,X) | X]]− Varπb [w(Y )Y ].

Again, using the law of total variance,

Varπb [ρ(A,X)Y ] = Eπb [Varπb [ρ(A,X)Y | X,A]] + Varπb [Eπb [ρ(A,X)Y | X,A]]

= Eπb [ρ(A,X)2Var[Y | X,A]] + Varπb [ρ(A,X)µ(A,X)]

= Eπb [ρ(A,X)2Var[Y | X,A]] + Varπb [Eπb [ρ(A,X)µ(A,X) | X]]

+ Eπb [Varπb [ρ(A,X)µ(A,X) | X]] .

Rearranging and substituting back into the expression earlier, we get that

n(Varπb [θ̂DR]− Varπb [θ̂MR])

≥ Varπb [ρ(A,X)Y ]− Eπb [Varπb [ρ(A,X)µ(A,X) | X]]− Varπb [w(Y )Y ].

Now, from Proposition 3.3 we know that

n(Varπb [θ̂IPW]− Varπb [θ̂MR]) = Varπb [ρ(A,X)Y ]− Varπb [w(Y )Y ] = Eπb

[
Varπb [ρ(A,X) | Y ] Y 2

]
.

Therefore,

n(Varπb [θ̂DR]− Varπb [θ̂MR])

≥ Eπb

[
Varπb [ρ(A,X) | Y ] Y 2

]
− Eπb [Varπb [ρ(A,X)µ(A,X) | X]]

= Eπb [Varπb [ρ(A,X)Y | Y ]− Varπb [ρ(A,X)µ(A,X) | X]] .

Proof of Theorem 3.6. This result follows straightforwardly from Proposition D.4 in Appendix D.

Proof of Proposition 3.7.

Bias(θ̂IPW) = Eπb [ρ̂(A,X)Y ]− Eπ∗ [Y ]

= Eπb [Eπb [ρ̂(A,X) | Y ]Y ]− Eπ∗ [Y ]

= Eπb [ŵ(Y )Y ]− Eπb [ϵ Y ]− Eπ∗ [Y ]

= Bias(θ̂MR)− Eπb [ϵ Y ].
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Next, to prove the variance result, we first use the law of total variance to obtain

Varπb [θ̂IPW] =
1

n
Varπb [ρ̂(A,X)Y ]

=
1

n
(Varπb [Eπb [ρ̂(A,X)Y | Y ]] + Eπb [Varπb [ρ̂(A,X)Y | Y ]])

=
1

n
(Varπb [w̃(Y )Y ] + Eπb [Varπb [ρ̂(A,X)Y | Y ]]) .

Moreover, using the fact that ŵ(Y ) = w̃(Y ) + ϵ we get that,

Varπb [θ̂MR] =
1

n
Varπb [ŵ(Y )Y ]

=
1

n
Varπb [(w̃(Y ) + ϵ) Y ]

=
1

n
(Varπb [w̃(Y )Y ] + Varπb [ϵ Y ] + 2Cov(w̃(Y )Y, ϵ Y )) .

Putting together the two variance expressions derived above, we get that

Varπb [θ̂IPW]− Varπb [θ̂MR]

=
1

n

(
Eπb [Varπb [ρ̂(A,X) | Y ]Y 2]− Varπb [ϵ Y ]− 2Cov(w̃(Y )Y, ϵ Y )

)
.

B Comparison with extensions of the doubly robust estimator

In this section, we theoretically investigate the variance of MR against the commonly used extensions
of the DR estimator, namely Switch-DR [5] and DR with Optimistic Shrinkage (DRos) [17]. At a
high level, these estimators seek to reduce the variance of the vanilla DR estimator by considering
modified importance weights, thereby trading off the variance for additional bias. Below, we provide
the explicit definitions of these estimators for completeness.

Switch-DR estimator The original DR estimator can still have a high variance when the importance
weights are large due to a large policy shift. Switch-DR [5] aims to circumvent this problem by
switching to DM when the importance weights are large:

θ̂SwitchDR :=
1

n

n∑
i=1

ρ(ai, xi) (yi − µ̂(ai, xi))1(ρ(ai, xi) ≤ τ) + η̂(π∗),

where τ ≥ 0 is a hyperparameter, µ̂(a, x) ≈ E[Y | X = x,A = a] is the outcome model, and

η̂(π∗) =
1

n

n∑
i=1

∑
a′∈A

µ̂(a′, xi)π
∗(a′ | xi) ≈ Eπ∗ [µ̂(A,X)]

where a∗i ∼ π∗(· | xi).

Doubly Robust with Optimal Shrinkage (DRos) DRos proposed by [17] uses new weights
ρ̂λ(ai, xi) which directly minimises sharp bounds on the MSE of the resulting estimator,

θ̂DRos :=
1

n

n∑
i=1

ρ̂λ(ai, xi) (yi − µ̂(ai, xi)) + η̂(π∗),

where λ ≥ 0 is a pre-defined hyperparameter and ρ̂λ is defined as

ρ̂λ(a, x) :=
λ

ρ2(a, x) + λ
ρ(a, x).

When λ = 0, ρ̂λ(a, x) = 0 leads to DM, whereas as λ → ∞, ρ̂λ(a, x) → ρ(a, x) leading to DR.
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More generally, both of these estimators can be written as follows:

θ̂ρ̃DR :=
1

n

n∑
i=1

ρ̃(ai, xi) (yi − µ̂(ai, xi)) + η̂(π∗).

Here, when ρ̃(a, x) = ρ(a, x)1(ρ(ai, xi) ≤ τ), we recover the Switch-DR estimator and likewise
when ρ̃(a, x) = ρ̂λ(a, x), we recover DRos.

B.1 Variance comparison with the DR extensions

Next, we provide a theoretical result comparing the variance of the MR estimator with these DR
extension methods.

Proposition B.1. When the weights w(y) are known exactly and the outcome model is exact, i.e.,
µ̂(a, x) = µ(a, x) = E[Y | X = x,A = a] in the DR estimator θ̂ρ̃DR defined above,

Varπb [θ̂ρ̃DR]− Varπb [θ̂MR] ≥
1

n
Eπb

[
Varπb [ρ(A,X) | Y ] Y 2 − Varπb [ρ(A,X)µ(A,X) | X]

]
−∆,

where ∆ := 1
nEπb

[
(ρ2(A,X)− ρ̃2(A,X))Var[Y | X,A]

]
.

Proof of Proposition B.1. Using the fact that µ̂(a, x) = µ(a, x) and the law of total variance, we get
that

nVarπb [θ̂ρ̃DR] = Varπb [ρ̃(A,X) (Y − µ̂(A,X)) +
∑
a′∈A

µ̂(a′, X)π∗(a′ | X)]

= Varπb [ρ̃(A,X) (Y − µ̂(A,X)) + Eπ∗ [µ̂(A,X) | X]]

= Varπb [ρ̃(A,X) (Y − µ(A,X)) + Eπ∗ [µ(A,X) | X]]

= Varπb [Eπb [ρ̃(A,X) (Y − µ(A,X)) + Eπ∗ [µ(A,X) | X] | X,A]]

+ Eπb [Varπb [ρ̃(A,X) (Y − µ(A,X)) + Eπ∗ [µ(A,X) | X] | X,A]]

= Varπb [Eπ∗ [µ(A,X) | X]] + Eπb [ρ̃2(A,X)Var[Y | X,A]]

= Varπb [Eπ∗ [µ(A,X) | X]] + Eπb [ρ2(A,X)Var[Y | X,A]]

+ Eπb [(ρ̃2(A,X)− ρ2(A,X))Var[Y | X,A]]︸ ︷︷ ︸
−n∆

= Varπb [Eπb [ρ(A,X)µ(A,X) | X]] + Eπb [ρ2(A,X)Var[Y | X,A]]− n∆.

Again, using the law of total variance we can rewrite the second term on the RHS above as,

Eπb [ρ2(A,X)Var[Y | X,A]]

= Varπb [ρ(A,X)Y ]− Varπb [ρ(A,X)µ(A,X)]

= Varπb [Eπb [ρ(A,X) | Y ]Y ] + Eπb [Varπb [ρ(A,X) | Y ]Y 2]

− Varπb [ρ(A,X)µ(A,X)]

= Varπb [w(Y )Y ] + Eπb [Varπb [ρ(A,X) | Y ]Y 2]− Varπb [ρ(A,X)µ(A,X)]

= nVarπb [θ̂MR] + Eπb [Varπb [ρ(A,X) | Y ]Y 2]− Varπb [ρ(A,X)µ(A,X)].

Putting this together, we get that

nVarπb [θ̂ρ̃DR]

= nVarπb [θ̂MR] + Eπb [Varπb [ρ(A,X) | Y ]Y 2]− Varπb [ρ(A,X)µ(A,X)]

+ Varπb [Eπb [ρ(A,X)µ(A,X) | X]]− n∆

= nVarπb [θ̂MR] + Eπb [Varπb [ρ(A,X) | Y ]Y 2]− Eπb [Varπb [ρ(A,X)µ(A,X) | X]]− n∆,

where in the last step above, we again use the law of total variance. Rearranging the above leads us to
the result.
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Intuition Note that for both of the DR extensions under consideration, the modified ratios ρ̃(a, x)
satisfy 0 ≤ ρ̃(a, x) ≤ ρ(a, x) and hence ∆ ≥ 0 (using the definition of ∆ in Proposition B.1). When
the modified ratios ρ̃(a, x) are ‘close’ to the true policy ratios ρ(a, x), then using the definition of
∆, we have that ∆ ≈ 0. In this case, the result above provides a similar intuition to Proposition
3.4 in the main text. Specifically, in this case we have that if Varπb [ρ(A,X)Y | Y ] is greater than
Varπb [ρ(A,X)µ(A,X) | X] on average, the variance of the MR estimator will be less than that of
the DR extension under consideration. Intuitively, this will occur when the dimension of context
space X is high because in this case the conditional variance over X and A, Varπb [ρ(A,X)Y | Y ]
is likely to be greater than the conditional variance over A, Varπb [ρ(A,X)µ(A,X) | X].

In contrast if the modified ratios ρ̃(a, x) differ substantially from ρ(a, x), then ∆ will be large and
the variance of MR may be higher than that of the resulting DR extension. However, this comes at
the cost of significantly higher bias in the DR extension and consequently MSE of the DR extension
will be high in this case.

C Weight estimation error

In this section, we theoretically investigate the effects of using the estimated importance weights ŵ(y)
rather than ρ̂(a, x) on the bias and variance of the resulting OPE estimator. Further to our discussion
in Section 3.1.2, we focus in this section on the approximation error when using a wide neural
network to estimate the weights ŵ(y). To this end, we use recent results regarding the generalization
of wide neural networks [19] to show that the estimation error of the approximation step (ii) in the
Section 3.1.2 declines with increasing number of training data when ŵ(y) is estimated using wide
neural networks. Before providing the main result, we explicitly lay out the assumptions needed.

C.1 Using wide neural networks to approximate the weights ŵ(y)

Assumption C.1. Let w̃(y) := Eπb [ρ̂(A,X) | Y = y]. Suppose w̃ ∈ H1 and ||w̃||H1 ≤ R for some
constant R, where H1 is the reproducing kernel Hilbert space (RKHS) associated with the Neural
Tangent Kernel K1 associated with 2 layer neural network defined on R.
Assumption C.2. There exists an M ∈ [0,∞) such that Pπb(|Y | ≤ M) = 1.
Assumption C.3. ρ̂(ai, xi) satisfies

ρ̂(ai, xi) = w̃(yi) + ηi,

where ηi
iid∼ N (0, σ2) for some σ > 0.

Theorem C.4. Suppose that the IPW and MR estimators are defined as,

θ̃IPW :=
1

n

n∑
i=1

ρ̂(ai, xi) yi, and θ̃MR :=
1

n

n∑
i=1

ŵm(yi) yi,

where ŵm(y) is obtained by regressing to the estimated policy ratios ρ̂(a, x) using m i.i.d. training
samples Dtr := {(xtr

i , a
tr
i , y

tr
i )}mi=1, i.e., by minimising the loss

L(ϕ) = E(X,A,Y )∼Dtr

[
(ρ̂(A,X)− fϕ(Y ))

2
]
.

Suppose Assumptions C.1-C.3 hold, then for any given δ ∈ (0, 1), if fϕ is a two-layer neural network
with width k that is sufficiently large and stops the gradient flow at time t∗ ∝ m2/3, then for
sufficiently large m, there exists a constant C1 independent of δ and m, such that

|Bias(θ̃MR)− Bias(θ̃IPW)| ≤ C1 m
−1/3 log

6

δ

holds with probability at least (1−δ)(1−ok(1)). Moreover, there exist constants C2, C3 independent
of δ and m such that

n(Varπb [θ̃IPW]− Varπb [θ̃MR]) ≥ Eπb [Varπb [ρ̂(A,X)Y | Y ]]︸ ︷︷ ︸
≥0

−C2 m
−2/3 log2

6

δ
− C3 m

−1/3 log
6

δ

holds with probability at least (1 − δ)(1 − ok(1)). Here, the randomness comes from the joint
distribution of training samples and random initialization of parameters in the neural network fϕ.
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Proof of Theorem C.4. The proof of this theorem relies on [19, Theorem 4.1]. Recall the definition
w̃(Y ) := Eπb [ρ̂(A,X) | Y ]. We can rewrite our setup in the setting of [19, Theorem 4.1], by
relabelling ρ̂(a, x) in our setup as y in their setup and relabelling y in our setup as x in their setup.
Then, given δ ∈ (0, 1), from [19, Theorem 4.1], it follows that under Assumptions C.1-C.3 that there
exists a constant C independent of δ and m, such that

Eπb [ϵ2] ≤ Cm−2/3 log2
6

δ
(5)

holds with probability at least (1−δ)(1−ok(1)), where ϵ := ŵm(Y )−w̃(Y ). Recall from Proposition
3.7 that

|Bias(θ̃MR)− Bias(θ̃IPW)| = |Eπb [ϵ Y ]|.
From this it follows using Cauchy-Schwarz inequality that,

|Bias(θ̃MR)− Bias(θ̃IPW)| = |Eπb [ϵ Y ]| ≤
(
Eπb [ϵ2]Eπb [Y 2]

)1/2
.

Combining the above with Eqn. (5), it follows that,

|Bias(θ̃MR)− Bias(θ̃IPW)| ≤ C1/2 m−1/3 log
6

δ
(Eπb [Y 2])1/2 = C1 m

−1/3 log
6

δ

holds with probability at least (1− δ)(1− ok(1)), where C1 = C1/2 (Eπb [Y 2])1/2.

Next, to prove the variance result, we recall from Proposition 3.7 that

n(Varπb [θ̃IPW]− Varπb [θ̃MR]) = Eπb [Varπb [ρ̂(A,X) | Y ]Y 2]− Varπb [ϵ Y ]− 2Cov(ϵ Y, w̃(Y )Y )

Now note that, under Assumption C.2,

Varπb [ϵ Y ] ≤ Eπb [(ϵ Y )2] ≤ M2Eπb [ϵ2] ≤ CM2 m−2/3 log2
6

δ
= C2 m

−2/3 log2
6

δ
,

holds with probability at least (1− δ)(1− ok(1)), where C2 = CM2. Similarly, we have that with
probability at least (1− δ)(1− ok(1)),

|Cov(ϵ Y, w̃(Y )Y )| = |Eπb [ϵ w̃(Y )Y 2]− Eπb [ϵ Y ]Eπb [w̃(Y )Y ]|
≤ |Eπb [ϵ w̃(Y )Y 2]|+ |Eπb [ϵ Y ]Eπb [w̃(Y )Y ]|

≤
(
Eπb [ϵ2]Eπb [w̃(Y )2 Y 4]

)1/2
+ (Eπb [ϵ2]Eπb [Y 2])1/2|Eπb [w̃(Y )Y ]|

= (Eπb [ϵ2])1/2
(
(Eπb [w̃(Y )2 Y 4])1/2 + (Eπb [Y 2])1/2 |Eπb [w̃(Y )Y ]|

)
≤ C3 m

−1/3 log
6

δ
,

where C3 = C (Eπb [w̃(Y )2 Y 4])1/2 + (Eπb [Y 2])1/2 |Eπb [w̃(Y )Y ]|, and we use Cauchy-Schwarz
inequality in the third step above. Putting this together, we obtain the required result.

Intuition This theorem shows that as the number of training samples m increases, the biases of
MR and IPW estimators become roughly equal, whereas the variance of MR estimator falls below
that of the IPW estimator. The empirical results shown in Appendix F.2 are consistent with this result.
Moreover, in Theorem C.4, the estimated policy ratio ρ̂(a, x) is fixed for increasing m, i.e., we do
not update ρ̂(a, x) as more training data becomes available. While this may seem as a disadvantage
for the IPW estimator, we point out that the result also holds when the policy ratio is exact (i.e.,
ρ̂(a, x) = ρ(a, x)) and hence the IPW estimator is unbiased.

Relaxing Assumption C.3 [19][Theorem 4.1] suppose that the data has the relationship shown
in Assumption C.3. However, the theorem relies on Corollary 4.4 in [43], which requires a strictly
weaker assumption (Assumption 1 in [43]). Therefore, we can relax Assumption C.3 to the following
assumption.
Assumption C.5. There exists positive constants Q and M such that for all l ≥ 2 with l ∈ N

Eπb [ρ̂(A,X)l | Y ] ≤ 1

2
l!M l−2 Q2

pπb -almost surely.

It is easy to check that Assumption C.5 is strictly weaker than Assumption C.3, and is also satisfied if
the policy ratio ρ̂(A,X) is almost surely bounded. For simplicity, we use the stronger assumption in
our Proposition C.4.
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D Generalised formulation of the MIPS estimator [14]

As described in Section 3.1.1, the MIPS estimator proposed by [14] assumes the existence of action
embeddings E which summarise all relevant information about the action A, and achieves a lower
variance than the IPW estimator. To achieve this, the MIPS estimator only considers the shift in the
distribution of (X,E) as a result of policy shift, instead of considering the shift in (X,A) (as in IPW
estimator). In this section, we show that this idea can be generalised to instead consider general
representations R of the context-action pair (X,A), which encapsulate all relevant information
about the outcome Y . The MIPS estimator is a special case of this generalised setting where the
representation R is of the form (X,E).

Generalised MIPS (G-MIPS) estimator Suppose that there exists an embedding R of the context-
action pair (X,A), with the Bayesian network shown in Figure 3. Here, R may be a lower-dimensional
representation of the (X,A) pair which contains all the information necessary to predict the outcome
Y . This corresponds to the following conditional independence assumption:
Assumption D.1. The context-action pair (X,A) has no direct effect on the outcome Y given R, i.e.,
Y ⊥⊥ (X,A) | R.

(X,A) R Y

Figure 3: Bayesian network correspond-
ing to Assumption D.1.

As illustrated in Figure 3, Assumption D.1 means that
the embedding R fully mediates every possible effect of
(X,A) on Y . The generalised MIPS estimator θ̂G-MIPS of
target policy value, Eπ∗ [Y ], is defined as

θ̂G-MIPS :=
1

n

n∑
i=1

pπ∗(ri)

pπb(ri)
yi,

where pπb(r) denote the density of R under the behaviour
policy (likewise for pπ∗(r)). Under assumption D.1,

θ̂G-MIPS provides an unbiased estimator of target policy value. Similar to Lemma 3.1, the density ratio
pπ∗ (r)
p
πb (r)

can be estimated by solving the regression problem

argmin
f

Eπb

(
π∗(A | X)

πb(A | X)
− f (R)

)2

. (6)

D.1 Variance reduction of G-MIPS estimator

By only considering the shift in the embedding R, the G-MIPS estimator achieves a lower variance
relative to the vanilla IPW estimator. The following result, which is a straightforward extension of
[14, Theorem 3.6], formalises this.

Proposition D.2 (Variance reduction of G-MIPS). When the ratios ρ(a, x) and pπ∗ (r)
p
πb (r)

are known

exactly then under Assumption D.1, we have that Eπb [θ̂IPW] = Eπb [θ̂G-MIPS] = Eπ∗ [Y ]. Moreover,

Varπb [θ̂IPW]− Varπb [θ̂G-MIPS] ≥
1

n
Eπb

[
E[Y 2 | R]Varπb [ρ(A,X) | R]

]
≥ 0.

Proof of Proposition D.2. The following proof, which is included for completeness, is a straightfor-
ward extension of [14, Theorem 3.6].

n(Varπb [θ̂IPW]− Varπb [θ̂MIPS])

= Varπb

[
π∗(A|X)

πb(A|X)
Y

]
− Varπb

[
pπ∗(R)

pπb(R)
Y

]
= Varπb

[
Eπb

[
π∗(A|X)

πb(A|X)
Y

∣∣∣∣∣R
]]

+ Eπb

[
Varπb

[
π∗(A|X)

πb(A|X)
Y

∣∣∣∣∣R
]]

− Varπb

[
Eπb

[
pπ∗(R)

pπb(R)
Y

∣∣∣∣∣R
]]

− Eπb

[
Varπb

[
pπ∗(R)

pπb(R)
Y

∣∣∣∣∣R
]]
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Now using the conditional independence Assumption D.1, the first term on the RHS above becomes,

Varπb

[
Eπb

[
π∗(A|X)

πb(A|X)
Y

∣∣∣∣∣R
]]

= Varπb

[
Eπb

[
π∗(A|X)

πb(A|X)

∣∣∣∣∣R
]
Eπb [Y |R]

]

= Varπb

[
pπ∗(R)

pπb(R)
Eπb [Y |R]

]
,

where in the last step above we use the fact that

Eπb

[
π∗(A|X)

πb(A|X)

∣∣∣∣∣R
]
=

pπ∗(R)

pπb(R)
.

Putting this together, we get that

n(Varπb [θ̂IPW]− Varπb [θ̂MIPS])

= Eπb

[
Varπb

[
π∗(A|X)

πb(A|X)
Y

∣∣∣∣∣R
]]

− Eπb

[
Varπb

[
pπ∗(R)

pπb(R)
Y

∣∣∣∣∣R
]]

. (7)

Since we have that

Eπb

[
π∗(A|X)

πb(A|X)
Y

∣∣∣∣∣R
]
= Eπb

[
π∗(A|X)

πb(A|X)

∣∣∣∣∣R
]
Eπb [Y |R] =

pπ∗(R)

pπb(R)
Eπb [Y |R] ,

Eq. (7) becomes,

Eπb

[
Varπb

[
π∗(A|X)

πb(A|X)
Y

∣∣∣∣∣R
]]

− Eπb

[
Varπb

[
pπ∗(R)

pπb(R)
Y

∣∣∣∣∣R
]]

= Eπb

[
Eπb

[(
π∗(A|X)

πb(A|X)
Y

)2
∣∣∣∣∣R
]
− Eπb

[(
pπ∗(R)

pπb(R)
Y

)2
∣∣∣∣∣R
]]

= Eπb

[
Eπb

[(
π∗(A|X)

πb(A|X)

)2
∣∣∣∣∣R
]
Eπb

[
Y 2|R

]
−
(
pπ∗(R)

pπb(R)

)2

Eπb

[
Y 2|R

]]

= Eπb

Eπb

[
Y 2|R

] Eπb

[(
π∗(A|X)

πb(A|X)

)2
∣∣∣∣∣R
]
−

(
Eπb

[
π∗(A|X)

πb(A|X)

∣∣∣∣∣R
])2


= Eπb

[
Eπb

[
Y 2|R

]
Varπb

[
π∗(A|X)

πb(A|X)

∣∣∣∣∣R
]]

.

Intuition Here, R contains all relevant information regarding the outcome Y . Moreover, intuitively
R can be thought of as the state obtained by ‘filtering out’ relevant information about Y from (X,A).
Therefore, R contains less ‘redundant’ information regarding the outcome Y as compared to the
covariate-action pair (X,A). As a result, the G-MIPS estimator which only considers the shift in
the marginal distribution of R due to the policy shift is more efficient than the IPW estimator, which
considers the shift in the joint distribution of (X,A) instead. In fact, as the amount of ‘redundant’
information regarding Y decreases in the embedding R, the G-MIPS estimator becomes increasingly
efficient with decreasing variance. We formalise this as follows:

Assumption D.3. Assume there exist embeddings R(1), R(2) of the covariate-action pair (X,A), with
Bayesian network shown in Figure 4. This corresponds to the following conditional independence
assumptions:

R(2) ⊥⊥ (X,A) | R(1), and Y ⊥⊥ (R(1), X,A) | R(2).
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(X,A) R(1) R(2) Y

Figure 4: Bayesian network corresponding to Assumption D.3.

We can define G-MIPS estimators for these embeddings to obtain unbiased OPE estimators under
Assumption D.3 as follows:

θ̂
(j)
G-MIPS :=

1

n

n∑
i=1

pπ∗(r
(j)
i )

pπb(r
(j)
i )

yi,

for j ∈ {1, 2}. Here, pπ∗ (r(j))
p
πb (r(j))

is the ratio of marginal densities of R(j) under target and behaviour

policies. We next show that the variance of θ̂(j)G-MIPS decreases with increasing j.

Proposition D.4. When the ratios ρ(a, x), w(y) and pπ∗ (r(j))
p
πb (r(j))

are known exactly for j ∈ {1, 2}, then
under Assumption D.3 we get that

Eπb [θ̂IPW] = Eπb [θ̂
(1)
G-MIPS] = Eπb [θ̂

(2)
G-MIPS] = Eπb [θ̂MR] = Eπ∗ [Y ].

Moreover,

Varπb [θ̂IPW] ≥ Varπb [θ̂
(1)
G-MIPS] ≥ Varπb [θ̂

(2)
G-MIPS] ≥ Varπb [θ̂MR].

Proof of Proposition D.4. First, we prove that the G-MIPS estimators are unbiased using induction
on j. We define R(0) := (X,A) and θ̂

(0)
G-MIPS defined as

θ̂
(0)
G-MIPS :=

1

n

n∑
i=1

pπ∗(r
(0)
i )

pπb(r
(0)
i )

yi,

recovers the IPW estimator θ̂IPW. When j = 0, we know that θ̂(0)G-MIPS = θ̂IPW is unbiased. Now,
assume that Eπb [θ̂

(j)
G-MIPS] = Eπ∗ [Y ].

Conditional on R(j), R(j+1) does not depend on the policy. Therefore,

pπ∗(r(j))

pπb(r(j))
=

pπ∗(r(j)) p(r(j+1) | r(j))
pπb(r(j)) p(r(j+1) | r(j))

=
pπ∗(r(j), r(j+1))

pπb(r(j), r(j+1))
.

And therefore,

pπ∗(r(j+1))

pπb(r(j+1))
=

∫
r(j)

pπ∗(r(j), r(j+1))

pπb(r(j), r(j+1))
pπb(r(j) | r(j+1)) dr(j)

=

∫
r(j)

pπ∗(r(j))

pπb(r(j))
pπb(r(j) | r(j+1)) dr(j)

= Eπb

[
pπ∗(R(j))

pπb(R(j))

∣∣∣∣∣R(j+1) = r(j+1)

]
.
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Using this and the fact that R(j) ⊥⊥ Y | R(j+1), we get that

Eπb

[
θ̂
(j+1)
G-MIPS

]
= Eπb

[
pπ∗(R(j+1))

pπb(R(j+1))
Y

]
= Eπb

[
pπ∗(R(j+1))

pπb(R(j+1))
Eπb [Y |R(j+1)]

]
= Eπb

[
Eπb

[
pπ∗(R(j))

pπb(R(j))

∣∣∣∣∣R(j+1)

]
Eπb [Y |R(j+1)]

]

= Eπb

[
Eπb

[
pπ∗(R(j))

pπb(R(j))
Y

∣∣∣∣∣R(j+1)

]]

= Eπb

[
pπ∗(R(j))

pπb(R(j))
Y

]
= Eπb

[
θ̂
(j)
G-MIPS

]
= Eπ∗ [Y ].

Next, to prove the variance result we consider the difference

Varπb [θ̂
(j)
G-MIPS]− Varπb [θ̂

(j+1)
G-MIPS]

=
1

n

(
Varπb

[
pπ∗(R(j))

pπb(R(j))
Y

]
− Varπb

[
pπ∗(R(j+1))

pπb(R(j+1))
Y

])
=

1

n

(
Varπb

[
Eπb

[
pπ∗(R(j))

pπb(R(j))
Y

∣∣∣∣∣R(j+1)

]]
+ Eπb

[
Varπb

[
pπ∗(R(j))

pπb(R(j))
Y

∣∣∣∣∣R(j+1)

]]

− Varπb

[
pπ∗(R(j+1))

pπb(R(j+1))
Eπb [Y | R(j+1)]

]
− Eπb

[(
pπ∗(R(j+1))

pπb(R(j+1))

)2

Varπb [Y | R(j+1)]

])
where in the last step we use the law of total variance. Now, using the fact that R(j) ⊥⊥ Y | R(j+1),
we can rewrite the expression above as

=
1

n

(
Varπb

[
Eπb

[
pπ∗(R(j))

pπb(R(j))

∣∣∣∣∣R(j+1)

]
Eπb [Y |R(j+1)]

]
+ Eπb

[
Varπb

[
pπ∗(R(j))

pπb(R(j))
Y

∣∣∣∣∣R(j+1)

]]

− Varπb

[
pπ∗(R(j+1))

pπb(R(j+1))
Eπb [Y | R(j+1)]

]
− Eπb

[(
pπ∗(R(j+1))

pπb(R(j+1))

)2

Varπb [Y | R(j+1)]

])

=
1

n

(
Eπb

[
Varπb

[
pπ∗(R(j))

pπb(R(j))
Y

∣∣∣∣∣R(j+1)

]]
− Eπb

[(
pπ∗(R(j+1))

pπb(R(j+1))

)2

Varπb [Y | R(j+1)]

])
.

Moreover, again using the conditional independence R(j) ⊥⊥ Y | R(j+1), we can expand the first
term in the expression above as follows:

Eπb

[
Varπb

[
pπ∗(R(j))

pπb(R(j))
Y

∣∣∣∣∣R(j+1)

]]
= Eπb

[
Eπb

[
p2π∗(R(j))

p2
πb(R(j))

∣∣∣∣∣R(j+1)

]
Eπb [Y 2|R(j+1)]

−

(
Eπb

[
pπ∗(R(j))

pπb(R(j))

∣∣∣∣∣R(j+1)

]
Eπb [Y |R(j+1)]

)2 ]

≥ Eπb

[(
Eπb

[
pπ∗(R(j))

pπb(R(j))

∣∣∣∣∣R(j+1)

])2

Eπb [Y 2|R(j+1)]

−
(
pπ∗(R(j+1))

pπb(R(j+1))
Eπb [Y |R(j+1)]

)2
]

= Eπb

[(
pπ∗(R(j+1))

pπb(R(j+1))

)2

Varπb [Y | R(j+1)]

]
.
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Here, to get the inequality above, we use the fact that E[X2] ≥ (E[X])2. Putting this together, we
get that Varπb [θ̂

(j)
G-MIPS]− Varπb [θ̂

(j+1)
G-MIPS] ≥ 0.

Moreover, the result Varπb [θ̂
(2)
G-MIPS] ≥ Varπb [θ̂MR] follows straightforwardly from above by defining

R(3) := Y . Then, the embeddings satisfy the causal structure

R(0) → R(1) → R(2) → R(3) → Y.

Using the result above, we know that Varπb [θ̂
(2)
G-MIPS] ≥ Varπb [θ̂

(3)
G-MIPS]. But now it is straightforward

to see that θ̂(3)G-MIPS = θ̂MR, and the result follows.

Intuition Here, R(j+1) can be thought of as the embedding obtained by ‘filtering out’ relevant infor-
mation about Y from R(j). As such, the amount of ‘redundant’ information regarding the outcome Y
decreases successively along the sequence R(0)(:= (X,A)), R(1), R(2). As a result, the G-MIPS es-
timators which only consider the shift in the marginal distributions of R(j) due to policy shift become
increasingly efficient with decreasing variance as j increases. Define the representation R(3) := Y ,
then the corresponding G-MIPS estimator reduces to the MR estimator, i.e., θ̂(3)G-MIPS = θ̂MR. More-
over, this estimator has minimum variance among all the G-MIPS estimators {θ̂(j)G-MIPS}0≤j≤k, as
the representation R(3) contains precisely the least amount of information necessary to obtain the
outcome Y . In other words, Y itself serves as the ‘best embedding’ of covariate-action pair R(0)

which contains all relevant information regarding Y . We verify this empirically in Appendix F.2
by reproducing the experimental setup in [14] along with the MR baseline. Additionally, the MR
estimator does not rely on assumptions like D.1 for unbiasedness.

In addition to this, solving the regression problem in Eq. (6) will typically be more difficult when
R is higher dimensional (as is likely to be the case for many choices of embeddings R), leading to
high bias. In contrast, for MR the embedding R = Y is one dimensional and therefore the regression
problem is significantly easier to solve and yields lower bias. Our empirical results in Appendix F
confirm this.

D.2 Doubly robust G-MIPS estimators

Consider the setup for the G-MIPS estimator shown in Figure 3. In this case, we can derive a
doubly robust extension of the G-MIPS estimator, denoted as GM-DR, which uses an estimate of
the conditional mean µ̃(r) ≈ E[Y | R = r] as a control variate to decrease the variance of G-MIPS
estimator. This can be explicitly written as follows:

θ̃DM-DR :=
1

n

n∑
i=1

pπ∗(ri)

pπb(ri)
(yi − µ̃(ri)) + η̃(π∗). (8)

where η̃(π∗) = 1
n

∑n
i=1

∑
r′∈R µ̃(r′) pπ∗(r′ | xi) is the analogue of the direct method. Here, R

denotes the space of the possible of the representations R2. Moreover, given the density p(r | x, a),
we can compute pπ∗(r | x) using

pπ∗(r | x) =
∑
a′∈A

p(r | x, a′)π∗(a′ | x).

It is straightforward to extend ideas from [13] to show that estimator θ̃DM-DR is doubly robust in that
it will yield accurate value estimates if either the importance weights pπ∗ (r)

p
πb (r)

or the outcome model
µ̃(r) is well estimated.

There is no analogous DR extension of the MR estimator A consequence of considering the
embedding R = Y (as in MR) is that in this case we do not have an analogous doubly robust
extension as above. To see why this is the case, note that when R = Y , we get that µ̃(r) = E[Y |
R = r] = E[Y | Y = y] = y. If we substitute this µ̃(r) in (8), we are simply left with η̃(π∗) on the
right hand side (as the first term cancels out). This means that the resulting estimator does not retain
the doubly robust nature as we no longer obtain an accurate estimate if either the outcome model or
the importance ratios are well estimated.

2the
∑

r′∈R can be replaced with
∫
r′∈R dr′ when R is continuous
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E Application to causal inference

In this section, we investigate the application of the MR estimator for the estimation of average
treatment effect (ATE). In this setting, we suppose that A = {0, 1}, and the goal is to estimate ATE
defined as follows:

ATE := E[Y (1)− Y (0)]

Here, we use the potential outcomes notation [44] to denote the outcome under a deterministic policy
π∗(a′ | x) = 1(a′ = a) as Y (a).

Specifically, the IPW estimator applied to ATE estimation yields:

ÂTEIPW =
1

n

n∑
i=1

ρATE(ai, xi)× yi,

where

ρATE(a, x) :=
1(a = 1)− 1(a = 0)

πb(a|x)
.

Similarly, the MR estimator can be written as

ÂTEMR =
1

n

n∑
i=1

wATE(yi)× yi,

where

wATE(y) =
pπ(1)(y)− pπ(0)(y)

pπb(y)
,

and π(a)(a′ | x) := 1(a′ = a) for a ∈ {0, 1}.

Again, using the fact that wATE(Y )
a.s.
= E[ρATE(A,X) | Y ], we can obtain wATE by minimising a

simple mean-squared loss:

wATE = argmin
f

Eπb

[
1(A = 1)− 1(A = 0)

πb(A|X)
− f(Y )

]2
.

Proposition E.1 (Variance comparison with IPW ATE estimator). When the weights ρATE(a, x) and
wATE(y) are known exactly, we have that Var[ÂTEMR] ≤ Var[ÂTEIPW]. Specifically,

Var[ÂTEIPW]− Var[ÂTEMR] =
1

n
E
[
Var [ρATE(A,X)|Y ] Y 2

]
≥ 0.

Proof of Proposition E.1. We have

Var[ÂTEIPW]− Var[ÂTEMR] =
1

n
(Var[ρATE(A,X)Y ]− Var[wATE(Y )Y ]) . (9)

Using the tower law of variance, we get that

Var[ρATE(A,X)Y ] = Var[E[ρATE(A,X)Y | Y ]] + E[Var[ρATE(A,X)Y | Y ]]

= Var[E[ρATE(A,X) | Y ]Y ] + E[Var[ρATE(A,X) | Y ]Y 2]

= Var[wATE(Y )Y ] + E[Var[ρATE(A,X) | Y ]Y 2].

Putting this together with (9) we obtain,

Var[ÂTEIPW]− Var[ÂTEMR] =
1

n
E[Var[ρATE(A,X) | Y ]Y 2],

which straightforwardly leads to the result.

Given the above definitions, the IPW estimator for E[Y (a)] would only consider datapoints with
A = a, as it weights the samples using the policy ratios 1(A = a)/πb(A|X) which are only non-
zero when A = a. This is however not the case with the MR estimator, as it uses the weights
pπ∗(Y )/pπb(Y ) which are not necessarily zero for A ̸= a. Therefore, MR uses all evaluation

25



datapoints D when estimating E[Y (a)]. The MR estimator therefore leads to a more efficient use of
evaluation data in this example.

Likewise, the doubly robust (DR) estimator applied to ATE estimation yields,

ÂTEDR :=
1

n

n∑
i=1

ρATE(ai, xi) (yi − µ̂(ai, xi)) +
1

n

n∑
i=1

(µ̂(1, xi)− µ̂(0, xi)) ,

where µ̂(a, x) ≈ E[Y | X = x,A = a]. Like in classical off-policy evaluation, DR yields an accurate
estimator of ATE when either the weights ρATE(a, x) or the outcome model i.e., µ̂(a, x) = E[Y |
X = x,A = a], are well estimated. However, despite this doubly robust nature of the estimator, we
can show that the variance of the DR estimator may be higher than that of the MR estimator in many
cases. The following result formalises this variance comparison between the DR and MR estimators,
and is analogous to the result in Proposition 3.4 derived for classical off-policy evaluation.

Proposition E.2 (Variance comparison with DR ATE estimator). When the weights ρATE(a, x) and
wATE(y) are known exactly,

Var[ÂTEDR]− Var[ÂTEMR] ≥
1

n
E [Var [ρATE(A,X)Y | Y ]− Var [ρATE(A,X)µ(A,X) | X]] ,

where µ(A,X) := E[Y | X,A].

Proof of Proposition E.2. Using the law of total variance, we get that

nVar[ÂTEDR] = Var[ρATE(A,X) (Y − µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X))]

= Var[E[ρATE(A,X) (Y − µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X)) | X,A]]

+ E[Var[ρATE(A,X) (Y − µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X)) | X,A]]

= Var[ρATE(A,X) (µ(A,X)− µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X))]

+ E[ρ2ATE(A,X)Var[Y | X,A]].

Again, using the law of total variance we can rewrite the first term on the RHS above as,

Var[ρATE(A,X) (µ(A,X)− µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X))]

= Var[E[ρATE(A,X) (µ(A,X)− µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X)) | X]]

+ E[Var[ρATE(A,X) (µ(A,X)− µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X)) | X]]

≥ Var[E[ρATE(A,X) (µ(A,X)− µ̂(A,X)) + (µ̂(1, X)− µ̂(0, X)) | X]]

= Var[E[ρATE(A,X) (µ(A,X)− µ̂(A,X)) + ρATE(A,X) µ̂(A,X) | X]]

= Var[E[ρATE(A,X)µ(A,X) | X]],

where, in the second last step above we use the fact that

E[ρATE(A,X) µ̂(A,X) | X] = µ̂(1, X)− µ̂(0, X).

Putting this together, we get that

nVar[ÂTEDR] ≥ Var[E[ρATE(A,X)µ(A,X) | X]] + E[ρ2ATE(A,X)Var[Y | X,A]].
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Therefore,

n (Var[ÂTEDR]− Var[ÂTEMR])

≥ Var[E[ρATE(A,X)µ(A,X) | X]] + E[ρ2ATE(A,X)Var[Y | X,A]]− Var[wATE(Y )Y ]

= Var[E[ρATE(A,X)µ(A,X) | X]] + E[Var[ρATE(A,X)Y | X,A]]− Var[wATE(Y )Y ]

= Var[E[ρATE(A,X)µ(A,X) | X]] + Var[ρATE(A,X)Y ]− Var[E[ρATE(A,X)Y | X,A]]

− Var[wATE(Y )Y ]

= Var[E[ρATE(A,X)µ(A,X) | X]] + Var[E[ρATE(A,X) | Y ]Y ] + E[Var[ρATE(A,X) | Y ]Y 2]

− Var[E[ρATE(A,X)Y | X,A]]− Var[wATE(Y )Y ]

= Var[E[ρATE(A,X)µ(A,X) | X]] + Var[wATE(Y )Y ] + E[Var[ρATE(A,X) | Y ]Y 2]

− Var[E[ρATE(A,X)Y | X,A]]− Var[wATE(Y )Y ]

= Var[E[ρATE(A,X)µ(A,X) | X]]− Var[E[ρATE(A,X)Y | X,A]] + E[Var[ρATE(A,X) | Y ]Y 2]

= Var[ρATE(A,X)µ(A,X)]− E[Var[ρATE(A,X)µ(A,X) | X]]− Var[ρATE(A,X)µ(A,X)]

+ E[Var[ρATE(A,X) | Y ]Y 2]

= E
[
Var [ρATE(A,X) | Y ] Y 2 − Var [ρATE(A,X)µ(A,X) | X]

]
.

Proposition E.2 shows that if Var [Y ρATE(A,X) | Y ] is greater than Var [ρATE(A,X)µ(A,X) | X]
on average, the variance of the MR estimator will be less than that of the DR estimator. Intuitively,
this is likely to happen when the dimension of context space X is high because in this case, the
conditional variance over X and A, Var [Y ρATE(A,X) | Y ] is likely to be greater than the conditional
variance over A, Var [ρATE(A,X)µ(A,X) | X].

F Experimental Results

In this section, we provide additional experimental details for the results presented in the main text.
We also include extensive experimental results to provide further empirical evidence in favour of the
MR estimator.

Computational details We ran our experiments on Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
with 8GB RAM per core. We were able to use 150 CPUs in parallel to iterate over different
configurations and seeds. However, we would like to note that for each run our algorithms only
requires 1 CPU and at most 30 minutes to run as our neural networks are relatively small. Throughout
our experiments, whenever the outcome Y was continuous, we used a fully connected neural network
with three hidden layers with 512, 256 and 32 nodes respectively (and ReLU activation function) to
estimate the weights ŵ(y). On the other hand, when the outcome is discrete we can directly estimate
ŵ(y) ≈ E[ρ̂(A,X) | Y = y] by calculating the sample mean of ρ̂(A,X) on samples with Y = y.
Additionally, for each configuration of parameters in our experiments, we ran experiments for 10
different seeds (in {0, 1, . . . , 9}).

F.1 Alternative methodology of estimating MR

In addition to the OPE baselines like IPW, DM and DR estimators considered in the main text, we
also include empirically investigate an alternative methodology of estimating MR. Below we describe
this methodology, denoted as ‘MR (alt)’, in greater detail:

F.1.1 MR (alt)

Recall our definition of MR estimator:

θ̂MR :=
1

n

n∑
i=1

w(yi) yi.
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In the main text, we propose estimating the weights w(y) first and using this to estimate θ̂MR using
the above expression. Alternatively, we can estimate h(y) := y w(y) using

h = argmin
f

Eπb

(Y π∗(A|X)

πb(A|X)
− f(Y )

)2
 .

Subsequently, the MR estimator can be written as:

θ̂MR =
1

n

n∑
i=1

h(yi).

We refer to this alternative methodology as ‘MR-alt’ and compare it empirically against the original
methodology (which we simply refer to as ‘MR’). In general, it is difficult to say which of the two
methods will perform better. Intuitively speaking, in cases where the behaviour of the quantity
Y π∗(A|X)

πb(A|X)
with varying Y is ‘smoother’ than that of π∗(A|X)

πb(A|X)
, the alternative method is expected to

perform better. Our empirical results in the next sections show that the relative performance of the
two methods varies for different data generating mechanisms.

F.2 Synthetic data experiments

Here, we include additional experimental details for the synthetic data experiments presented in
Section 5.1 for completeness. For this experiment, we use the same setup as the synthetic data
experiment in [14], reproduced by reusing their code with minor modifications.

Setup Here, we sample the d-dimensional context vectors x from a standard normal distribution.
The setup used also includes 3-dimensional categorical action embeddings E ∈ E , which are sampled
from the following conditional distribution given action A = a,

p(e | a) =
3∏

k=1

exp (αa,ek)∑
e′∈Ek

exp (αa,e′)
,

which is independent of the context X . {αa,ek} is a set of parameters sampled independently from the
standard normal distribution. Each dimension of E has a cardinality of 10, i.e., Ek = {1, 2, . . . , 10}.

Reward function The expected reward is then defined as:

q(x, e) =

3∑
k=1

ηk · (xT M xek + θTx x+ θTe xek),

where M , θx and θe are parameter matrices or vectors sampled from a uniform distribution with
range [−1, 1]. xek is a context vector corresponding to the k-th dimension of the action embedding,
which is unobserved to the estimators. ηk specifies the importance of the k-th dimension of the action
embedding, sampled from Dirichlet distribution so that

∑3
k=1 ηk = 1.

Behaviour and target policies The behaviour policy πb is defined by applying the softmax function
to q(x, a) = E[q(X,E) | A = a,X = x] as

πb(a | x) = exp (−q(x, a))∑
a′∈A exp (−q(x, a′))

.

For the target policy, we define the class of parametric policies,

πα∗
(a|x) = α∗

1(a = argmax
a′∈A

q(x, a′)) +
1− α∗

|A|
,

where α∗ ∈ [0, 1] controls the shift between the behaviour and target policies. As shown in the main
text, as α∗ → 1, the shift between behaviour and target policies increases.
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Baselines In the main text, we compare MR with DM, IPW, DR and MIPS estimators. In addition
to these baselines, here we also consider Switch-DR [5] and DR with Optimistic Shrinkage (DRos)
[17]. Following [14], we use the random forest [45] along with 2-fold cross-fitting [46] to obtain
q̂(x, e) for DR and DM methods. To estimate pπb(a | x, e) for MIPS estimator, we use logistic
regression. We also include the results for MR estimated using the alternative methodology described
in Section F.1.1. We refer to this as ‘MR (alt)’.

Estimation of behaviour policy π̂b and marginal ratio ŵ(y) We do not assume that the true
behaviour policy πb is known, and therefore estimate π̂b using the available training data. For the
MR estimator, we estimate the behaviour policy using a random forest classifier trained on 50%
of the training data and use the rest of the training data to estimate the marginal ratios ŵ(y) using
multi-layer perceptrons (MLP). Moreover, for a fair comparison we use a different behaviour policy
estimate π̂b for all other baselines which is trained on the entire training data.

(a) d = 1000, na = 100, α∗ = 0.8

(b) d = 5000, na = 250, α∗ = 0.8

(c) d = 5000, na = 250, α∗ = 1.0

Figure 5: MSE with varying size of evaluation dataset n for different choices of parameters.

F.2.1 Results

For this experiment, the results are computed over 10 different sets of logged data replicated with
different seeds, and in Figures 5 - 8 we use a total of m = 5000 training data.

Varying size of evaluation data n Figure 5 shows that MR outperforms the other baselines, in
terms of MSE and squared bias, when the number of evaluation data n ≤ 1000. Additionally, we
observe that in this experiment, MR estimated using our original methods (‘MR’), yields better results
than the alternative method of estimating MR (‘MR (alt)’). Moreover, while the variance of DM
is lower than that of MR, the DM method has a high bias and consequently a high MSE. We note
that while the difference between MSE and variance of MIPS and MR estimators decreases with
increasing evaluation data size, MR still outperforms MIPS in terms of both MSE and variance.
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(a) d = 100, na = 100, n = 100

(b) d = 100, na = 250, n = 100

(c) d = 1000, na = 250, n = 100

Figure 6: MSE with varying α∗ for different choices of parameters.

Varying α∗ Figure 6 shows the results with increasing policy shift. It can be seen that overall MR
methods achieve the smallest MSE with increasing policy shift. Moreover, the difference between
MSE and variance of MR and IPW/DR methods increases with increasing policy shift, showing that
MR performs especially better than these baselines when the difference between behaviour and target
policies is large. Similarly, we observe in Figure 6 that as the shift between the behaviour and target
policy increases with increasing α∗, so does the difference between the MSE and variance of MR and
the MIPS estimators. This shows that generally MR outperforms MIPS estimator in terms of variance
and MSE, and that MR performs especially better than MIPS as the difference between behaviour
and target policies increases.

Varying d and na Figures 7 and 8 show that MR outperforms the other baselines as the context
dimensions and/or number of actions increase. In fact, these figures show that MR is significantly
robust to increasing dimensions of action and context spaces, whereas baselines like IPW and DR
perform poorly in large action spaces.

Varying m Figure 10 shows the results with increasing number of training data m. We again
observe that the MR methods ‘MR’ and ‘MR (alt)’ outperforms the other baselines in terms of the
MSE and squared bias even when the number of training data is low. Moreover, the variance of both
the MR estimators continues to improve with increasing number of training data.

In this experiment, we observe that overall ‘MR (alt)’ performs worse than the original MR estimator
(‘MR’ in the figures). However, as we observe in Appendix F.5, this does not happen consistently
across all experiments, which suggests that the comparative performance of the two MR methods
depends on the data generating mechanism.
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(a) na = 20, n = 200, α∗ = 0.8

(b) na = 100, n = 200, α∗ = 0.8

(c) na = 250, n = 200, α∗ = 0.8

Figure 7: MSE with varying context dimensions d for different choices of parameters.

Table 3: Mean-squared error results with 2 standard errors for synthetic data setup considered in
Section 5.1 with d = 5000, na = 50, α∗ = 0.8. We use a fixed budget of datapoints (denoted by N )
for each baseline and in the case of MR we use m = 2000 of the available datapoints to estimate
ŵ(y) and the rest of data to evaluate the MR estimator (i.e. n = N − 2000 for MR). In contrast, for
IPW and MIPS since the importance ratios are already known, we use all of the N datapoints for
evaluation of the off-policy value (i.e. n = N for IPW and MIPS).

N 2800 3200 6400 10000 12000

GT weights ρ(a, x) and estimated reward model µ̂(a, x)
DM 0.137±0.028 0.099±0.012 0.103±0.012 0.093±0.010 0.089±0.010

(m = 2000 used for training µ̂(a, x) and n = N − 2000
DR 0.227±0.065 0.068±0.035 0.068±0.022 0.024±0.011 0.045±0.015

used for evaluation) DRos 0.128±0.027 0.072±0.011 0.049±0.014 0.063±0.014 0.051±0.016
SwitchDR 0.128±0.027 0.059±0.014 0.052±0.013 0.061±0.015 0.056±0.016

GT weights (all of N datapoints are used for evaluation) IPW 0.237±0.062 0.066±0.036 0.067±0.021 0.025±0.011 0.044±0.014
MIPS 0.236±0.062 0.065±0.035 0.067±0.021 0.025±0.011 0.044±0.014

Estimated weights ŵ(y) (m = 2000 used for training
and n = N − 2000 used for evaluation)

MR (Ours) 0.045±0.015 0.042±0.014 0.048±0.020 0.049±0.020 0.047±0.016

F.2.2 Known policy ratios ρ(a, x)

Our previous setting of unknown importance policy ratios ρ(a, x) captures a wide variety of real-
world applications, ranging from health care to autonomous driving. In addition, to demonstrate
the utility of MR in settings with known ρ(a, x), p(e | a, x) and unknown w(y) (for our proposed
method, MR), we have conducted additional experiments. Here, we use a fixed budget of datapoints
(denoted by N ) for each baseline and for MR we allocate m = 2000 of the available datapoints to
estimate ŵ(y) and use the remaining for evaluating the MR estimator (i.e., n = N − 2000 for MR).
In contrast, for IPW and MIPS (since the importance ratios are already known), we use all of the N
datapoints to evaluate the off-policy value (i.e. n = N for IPW and MIPS).
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(a) d = 1000, n = 100, α∗ = 0.4

(b) d = 1000, n = 100, α∗ = 0.8

(c) d = 1000, n = 100, α∗ = 1.0

Figure 8: MSE with varying number of actions na for different choices of parameters.

The results included in Table 3 show that MR achieves the smallest MSE among the baselines
for N ≤ 6400. However, we observe that the MSE of IPW, DR and MIPS (with true importance
weights) falls below that of MR (with estimated weights ŵ) when the data size N is large enough
(i.e., N ≥ 10, 000). This is to be expected since IPW, DR and MIPS are unbiased (i.e., use ground
truth importance ratios ρ(a, x)) whereas MR uses estimated weights ŵ(y) (and hence may be biased).
MR still performs the best when N ≤ 6400.

F.3 Experiments on classification datasets

Here, we conduct experiments on four classification datasets, OptDigits, PenDigits, SatImage and
Letter datasets from the UCI repository [37], the Digits dataset from scikit-learn library, as well as
the Mnist [38] and CIFAR-100 datasets [39].

Setup Following previous works [13, 22, 36, 5], the classification datasets are transformed to
contextual bandit feedback data. The classification dataset comprises {xi, a

gt
i }

n0
i=1, where xi ∈ X are

feature vectors and agt
i ∈ A are the ground-truth labels. In the contextual bandits setup, the feature

vectors xi are considered to be the contexts, whereas the actions correspond to the possible class
of labels. We split the dataset into training and testing datasets of sizes m and n respectively. We
present the results for a range of different values of m and n.

Reward function Let X be a context with ground truth label Agt, we define the reward for action
A as:

Y := 1(A = Agt).

Behaviour and target policies Using the m training datapoints, we first train a classifier f : X →
R|A| which takes as input the feature vectors xi and outputs a vector of softmax probabilities over
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labels, i.e. the a-th component of the vector f(x), denoted as (f(x))a corresponds to the estimated
probability P(Agt = a | X = x).

Next, we use f to define the ground truth behaviour policy,

πb(a | x) = (f(x))a.

For the target policies, we use f to define a parametric class of target policies using a trained classifier
f : X → R|A|.

πα∗
(a | x) = α∗ · 1(a = argmax

a′∈A
(f(x))a′) +

1− α∗

|A|
,

where α∗ ∈ [0, 1]. A value of α∗ close to 1 leads to a near-deterministic and well-performing policy.
As α∗ decreases, the policy gets increasingly worse and ‘noisy’. In this experiment, we consider
target policies π∗ = πα∗

for α∗ ∈ {0.0, 0.2, 0.4, . . . , 1.0}.

Using the behaviour policy defined above, we generate the contextual bandits data described with
training and evaluation datasets of sizes m and n respectively.

Estimation of behaviour policy π̂b and marginal ratio ŵ(y) We do not assume that the behaviour
policy πb is known, and therefore estimate it using training data. To estimate the behaviour policy π̂b,
we train a random forest classifier using the training data. This estimate of behaviour policy is used
for all the baselines in our experiment. Since the reward is binary, we can estimate the marginal ratios
ŵ(y) = Eπb [ρ̂(A,X) | Y = y] by directly estimating the sample mean of ρ̂(A,X) for datapoints
with Y = y. We re-use the m training datapoints to estimate this sample mean.

Baselines We compare our estimator with Direct Method (DM), IPW and DR estimators. In
addition, we also consider Switch-DR [5] and DR with Optimistic Shrinkage (DRos) [17]. To
estimate q̂(x, a) for DM and DR estimators, we use random forest classifiers (since reward Y is
binary). Moreover, because of the binary nature of Y , the alternative method of estimating MR yields
the same estimator as the original method, therefore we do not consider the two separately here.
Additionally, in this experiment, we do not include MIPS (or G-MIPS) baseline, as there is no natural
informative embedding E of the action A.

F.3.1 Results

For this experiment, we compute the results over 10 different sets of logged data replicated with
different seeds. Figures 11 - 17 show the results corresponding to each baseline for the different
datasets. It can be seen that across all datasets, the MR achieves the smallest MSE with increasing
evaluation data size n. Moreover, across all datasets, MR attains the minimum MSE with relatively
small number of evaluation data (n ≤ 100).

Unlike the experiments in Section 5.1, we observe that the KL-divergence between target and
behaviour policy decreases as α∗ increases (see Figure 9). Therefore, as α∗ increases the shift
between target and behaviour policies decreases. Figures 11 - 16 show that as α∗ increases, the
difference between the MSE, squared bias and variance of MR and the other baselines decreases.
This confirms our findings from earlier experiments that MR performs especially better than the other
baselines when the difference between behaviour and target policies is large.

Moreover, the figures also include results with increasing number of training data m. It can be seen
that MR out-performs the baselines even when the number of training data m is small (m = 100).
Moreover, the relative advantage of MR improves with increasing m.

F.4 Application to Average Treatment Effect (ATE) estimation

In this subsection, we provide additional details for our experiment applying MR to the problem of
ATE estimation presented in the main text. We begin by describing the dataset being used in this
experiment.

Twins dataset We use the Twins dataset as studied by [40], which comprises data from twin births
in the USA between 1989-1991. The treatment a = 1 corresponds to being born the heavier twin
and the outcome Y corresponds to the mortality of each of the twins in their first year of life. Since
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Figure 9: KL divergence DKL(π
b ||π∗) with increasing α∗ for the classification data experiments.

Here, we only include the results for a specific choice of parameters for the Letter dataset. We observe
similar results for other datasets and parameter choices.

(a) d = 1000, n = 10, α∗ = 0.8

(b) d = 1000, n = 200, α∗ = 0.8

(c) d = 1000, n = 800, α∗ = 0.8

Figure 10: MSE with varying number of training data m for different choices of parameters.

the data includes records for both twins, their outcomes would be considered as the two potential
outcomes. Specifically, Y (1) corresponds to the mortality of the heavier twin (and likewise for Y (0)).
Closely following the methodology of [40], we only chose twins which are the same sex and weigh
less than 2kgs. This provides us with a dataset of 11984 pairs of twins.

The mortality rate for the lighter twin is 18.9% and for the heavier twin is 16.4%, leading to the ATE
value being θATE = −2.5%. For each twin-pair we obtained 46 covariates relating to the parents, the
pregnancy and birth.

Treatment assignment To simulate an observational study, we selectively hide one of the two
twins by defining the treatment variable A which depends on the feature GESTAT10. This feature,
which takes integer values from 0 to 9, is obtained by grouping the number of gestation weeks prior
to birth into 10 groups. Then we sample actions A as follows,

A | X ∼ Bern(Z/10),
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(a) Results with varying n for α∗ = 0.2 and m = 1000

(b) Results with varying α∗ for m = n = 1000

(c) Results with varying m for n = 1000 and α∗ = 0.6

Figure 11: Results for OptDigits dataset

where Z is GESTAT10, and X are all the 46 features corresponding to a twin pair (including
GESTAT10).

Using the treatment assignments defined above, we generate the observational data by selectively
hiding one of the two twins from each pair. Next, we randomly split this dataset into training and
evaluation datasets of sizes m and n respectively. In this experiment, we consider m = 5000 training
datapoints.

Baselines Recall that ATE estimation can be formulated as the difference between off-policy values
of deterministic policies π(1) := 1(A = 1) and π(0) := 1(A = 0). Therefore, any OPE estimator
can be applied to ATE estimation. In this experiment, we compare our estimator against the baselines
considered in our OPE experiments in Section F.3. This includes the Direct Method (DM), IPW and
DR estimators as well as Switch-DR [5] and DR with Optimistic Shrinkage (DRos) [17]. To estimate
q̂(x, a) for DM and DR estimators, we use multi-layer perceptrons (MLP) trained on the m training
datapoints. Additionally, we estimate the behaviour policy π̂b using random forest classifier trained
on the full training dataset.

Since the outcome in this experiment is binary, we estimate the weights w(y) = Eπb [ρ̂(A,X) | Y =
y] directly by estimating the sample mean of ρ̂(A,X) for datapoints with Y = y. This means that
the alternative method of estimating MR yields the same value as the default method. We therefore
do not consider these estimators separately. Additionally, since there is no natural embedding R of
the covariate-action space which satisfies the conditional dependence Assumption D.1, we do not
consider the G-MIPS (or MIPS) estimator either.

Performance metric For our evaluation, we consider the absolute error in ATE estimation, ϵATE,
defined as:

ϵATE := |θ̂(n)ATE − θATE|.
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(a) Results with varying n for α∗ = 0.2 and m = 1000

(b) Results with varying α∗ for m = n = 1000

(c) Results with varying m for α∗ = 0.6 and n = 1000

Figure 12: Results for PenDigits dataset

Here, θ̂(n)ATE denotes the value of the ATE estimated using n evaluation datapoints. For example, for
the IPW estimator, the θ̂

(n)
ATE can be written as:

θ̂
(n)
ATE = ÂTEIPW =

1

n

n∑
i=1

(
1(ai = 1)− 1(ai = 0)

π̂b(ai | xi)

)
yi.

All results for this experiment are provided in the main text.

F.5 Additional synthetic data experiments

In addition to the synthetic data experiments provided in Section 5.1, we also consider an additional
synthetic data setup to obtain further empirical evidence in favour of the MR estimator, and also
compare it against the generalised version of the MIPS estimator (described as G-MIPS in Appendix
D). Here, we use a similar setup to [14] (albeit without action embeddings E) where the d-dimensional
context vectors x are sampled from a standard normal distribution. Likewise, the action space is finite
and comprises of na actions, i.e. A = {0, . . . , na − 1}, with na taking a range of different values.
The reward function is defined as follows:

Reward function The expected reward q(x, a) := E[Y | x, a] for these experiments is defined as
follows:

q(x, a) = sin (a · ||x||2) .
The reward Y is obtained by adding a normal noise random variable to q(x, a)

Y = q(X,A) + ϵ,

where ϵ ∼ N (0, 0.01). Here, it can be seen that conditional on R = (||X||2, A), the reward Y
does not depend on (X,A), i.e., the embedding R satisfies the conditional independence assumption
Y ⊥⊥ (X,A) | R.
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(a) Results with varying n for α∗ = 0.2 and m = 1000

(b) Results with varying α∗ for n = 1000

(c) Results with varying m for α∗ = 0.6 and n = 1000

Figure 13: Results for SatImage dataset

Behaviour and target policies We first define a behaviour policy by applying softmax function to
q(x, a) as

πb(a | x) = exp (q(x, a))∑
a′∈A exp (q(x, a′))

.

Just like in Section 5.1, to investigate the effect of increasing policy shift, we define a class of policies,

πα∗
(a|x) = α∗

1(a = argmax
a′∈A

q(x, a′)) +
1− α∗

|A|
where q(x, a) := E[Y | X = x,A = a],

where α∗ ∈ [0, 1] allows us to control the shift between πb and π∗. Again, the shift between πb and
π∗ increases as α∗ → 1. Using the ground truth behaviour policy πb, we generate a dataset which is
split into training and evaluation datasets of sizes m and n respectively.

In Figures 18 - 21, we present the results for this experimental setup for different choices of paramater
configurations.

Estimation of behaviour policy π̂b and marginal ratio ŵ(y) For the MR estimator, we estimate
the behaviour policy using a random forest classifier trained on 50% of the training data and use the
rest of the training data to estimate the marginal ratios ŵ(y) using multi-layer perceptrons (MLP).
Moreover, for a fair comparison we use a different behaviour policy estimate π̂b for all other baselines
which is trained on the entire training data.

Additional Baselines In addition to the baselines considered in the main text (Section 5.1), we also
consider Switch-DR [5] and DR with Optimistic Shrinkage (DRos) [17]. In addition, we also include
the results for MR estimated using the alternative method (‘MR (alt)’) outlined in Section F.1.1. For
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(a) Results with varying n for α∗ = 0.2 and m = 1000

(b) Results with varying α∗ for m = n = 1000

(c) Results with varying m for α∗ = 0.6 and n = 1000

Figure 14: Results for Letter dataset

the G-MIPS estimator (defined in Appendix D) considered here, we use R = (a, ||x||2)3. To estimate
q̂(x, a) for DM and DR estimators, we use multi-layer perceptrons (MLPs).

F.5.1 Results

For this experiment, the results are computed over 10 different sets of logged data replicated with
different seeds, and in Figures 18 - 21 we use a total of m = 5000 training data.

Varying n Figure 18 shows that MR outperforms the other baselines, in terms of MSE and squared
bias, when the number of evaluation data n ≤ 1000. Additionally, we observe that in this experiment,
MR esitmated using alternative methods, MR (alt), yields better results than the original method of
estimating MR. Moreover, while the variance of DM is lower than that of MR, the DM method has a
high bias and consequently a high MSE.

Varying α∗ Figure 19 shows the results with increasing policy shift. It can be seen that overall MR
methods achieve the smallest MSE with increasing policy shift. Moreover, the difference between
MSE and variance of MR and IPW/DR methods increases with increasing policy shift, showing that
MR performs especially better than these baselines when the difference between behaviour and target
policies is large.

Varying d and na Figures 20 and 21 show that MR outperforms the other baselines as the context
dimensions and/or number of actions increase. In fact, Figure 21 shows that MR is significantly
robust to increasing action space, whereas baselines like IPW and DR perform poorly in large action
spaces.

3It is easy to see that in our setup, the embedding R = (a, ||x||2) satisfies the conditional independence
assumption Y ⊥⊥ (X,A) | R needed for G-MIPS estimator to be unbiased
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(a) Results with varying n for α∗ = 0.2 and m = 1000

(b) Results with varying α∗ for m = n = 1000

(c) Results with varying m for α∗ = 0.6 and n = 1000

Figure 15: Results for Mnist dataset

Varying m Figure 22 shows the results with increasing number of training data m. We again
observe that the MR methods ‘MR’ and ‘MR (alt)’ outperforms the other baselines in terms of the
MSE and squared bias even when the number of training data is low. Moreover, the variance of both
the MR estimators continues to improve with increasing number of training data.

Unlike our experimental results in Section F.2, ‘MR (alt)’ performs better than the original MR
estimator overall. This shows that one of these two methods is not better than the other consistently
in all cases, and their relative performance depends on the dataset under consideration.

F.6 Self-normalised MR estimator

Self-normalization trick has been used in practice to reduce the variance in off-policy estimators [30].
This technique is also applicable to the MR estimator, and leads to the self-normalized MR estimator
(denoted as θSNMR) defined as follows:

θSNMR :=

n∑
i=1

w(Yi)∑n
j=1 w(Yj)

Yi.

We conducted experiments to investigate the effect of self-normalisation on the performance of
the IPW, DR and MR estimators. Figure 23 shows results for three different choices of parameter
configurations. Overall, we observe that in all settings, the MR and self-normalised MR (SNMR)
estimator outperform all other baselines including the self-normalised IPW and DR estimators
(denoted as SNIPW and SNDR respectively). Moreover, in some settings, where the importance ratios
achieve very high values, self-normalisation can reduce the variance and MSE of the corresponding
estimator (for example, Figure 23b). However, we also observe cases in which self-normalization
does not significantly change the results (Figure 23a), or may even slightly worsen the MSE of the
estimators (Figure 23c).
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(a) Results with varying n for α∗ = 0.2 and m = 500

(b) Results with varying α∗ for n = 500 and m = 1000

(c) Results with varying m for α∗ = 0.6 and n = 500

Figure 16: Results for Digits dataset. Note that compared to other datasets we consider smaller
maximum dataset sizes m,n here as the total number of available datapoints was 1797.
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(a) Results with varying n for α∗ = 0.4 and m = 2000

(b) Results with varying α∗ for n = 100 and m = 2000

(c) Results with varying m for α∗ = 0.4 and n = 100

Figure 17: Results for CIFAR-100 dataset.

(a) d = 1000, na = 100, α∗ = 0.4.

(b) d = 10000, na = 100, α∗ = 0.4.

Figure 18: Results with varying size of evaluation dataset n.
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(a) d = 1000, na = 100, n = 100.

(b) d = 10000, na = 100, n = 100.

Figure 19: Results with varying α∗.

(a) na = 100, n = 100, α∗ = 0.4.

(b) na = 500, n = 100, α∗ = 0.4.

Figure 20: Results with varying context dimensions d.
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(a) d = 100, n = 100, α∗ = 0.2.

(b) d = 100, n = 100, α∗ = 0.4.

Figure 21: Results with varying number of actions na.

(a) d = 5000, n = 100, na = 10, α∗ = 0.2.

(b) d = 5000, n = 100, na = 10, α∗ = 0.4.

Figure 22: Results with varying number of training data m.
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(a) d = 10000, n = 200, na = 20, m = 5000.

(b) d = 5000, n = 200, na = 20, m = 1000.

(c) d = 10000, n = 200, na = 20, m = 5000.

Figure 23: Results for self-normalised estimators with varying target policy shift α∗ for synthetic
data setup considered in Section 5.1. Here, “SN” denotes self-normalised estimators.
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