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Abstract

Inspired by fast algorithms in natural language processing, we study low rank
approximation in the entrywise transformed setting where we want to find a good
rank k approximation to f(U ·V ), where U, V ⊤ ∈ Rn×r are given, r = O(log(n)),
and f(x) is a general scalar function. Previous work in sublinear low rank ap-
proximation has shown that if both (1) U = V ⊤ and (2) f(x) is a PSD kernel
function, then there is an O(nkω−1) time constant relative error approximation
algorithm, where ω ≈ 2.376 is the exponent of matrix multiplication. We give the
first conditional time hardness results for this problem, demonstrating that both
conditions (1) and (2) are in fact necessary for getting better than n2−o(1) time for
a relative error low rank approximation for a wide class of functions. We give novel
reductions from the Strong Exponential Time Hypothesis (SETH) that rely on lower
bounding the leverage scores of flat sparse vectors and hold even when the rank of
the transformed matrix f(UV ) and the target rank are no(1), and when U = V ⊤.
Furthermore, even when f(x) = xp is a simple polynomial, we give runtime lower
bounds in the case when U ̸= V ⊤ of the form Ω(min(n2−o(1),Ω(2p))). Lastly,
we demonstrate that our lower bounds are tight by giving an O(n ·poly(k, 2p, 1/ϵ))
time relative error approximation algorithm and a fast O(n · poly(k, p, 1/ϵ)) addi-
tive error approximation using fast tensor-based sketching. Additionally, since our
low rank algorithms rely on matrix-vector product subroutines, our lower bounds
extend to show that computing f(UV )W , for even a small matrix W , requires
Ω(n2−o(1)) time.

1 Introduction

The central idea behind the classic problem of low rank approximation (LRA) is to approximate
a given matrix with a rank k matrix that preserves the important features of the original matrix,
while being computationally more efficient and statistically more stable. One particular area of
interest in LRA is the low rank decomposition of entrywise transformed matrices, where the entries
of the original matrix are transformed through a non-linear function before being approximated, with
various applications in kernel methods, self-attention, and likelihood computations [Choromanski
et al., 2021, Levy and Goldberg, 2014]. In these settings, the Gram matrix of a dot-product kernel,
the attention module’s product operator, or even the non-linear computation of activation in a deep
network can all be represented as f(UV ), where the inputs are low dimensional matrices U, V . Note
that while UV is low rank, f(UV ) may not be, with the rank blowup dependent on the choice of the
transformation f .

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



For entrywise transformed low rank approximation, we aim to find an approximately optimal rank k
approximation, in terms of relative Frobenius norm error, to the matrix A = f(UV ) given U ∈ Rn×r

and V ∈ Rr×d, where f is a scalar transformation. In this paper, our goal is to study the functions f
such that this task is solvable in subquadratic O(n2−ϵ) time and for ease of presentation, we assume
n = d in this section. This problem was studied in the distributed setting in Woodruff and Zhong
[2016] for functions f(x) = |x|p, where the goal was to minimize communication. It was also studied
in the streaming setting, where it was shown that O(n poly(k/ϵ)) memory suffices to solve rank k
approximation with additive error O(ϵ∥U∥∥V ∥) for the function f(x) = log(|x| + 1) in a single
pass [Jiang et al., 2021], improving the earlier work of [Liang et al., 2020]. In a related paper, Han
et al. [2020] present an algorithm for low-rank approximation of polynomial entrywise transforms;
however, they make no comparison to the optimal rank k error.

In the setting when U = V ⊤, certain choices of f(x) can surprisingly admit subqradratic relative
error algorithms, such as when f represents a positive semi-definite (PSD) kernel [Musco and Musco,
2017]. Moreover, for any PSD matrix of any rank, by sampling according to the leverage scores of
the matrix square root of the kernel, recent work shows that relative error low rank decomposition
is possible in O(n(k/ϵ)ω−1) time, where ω ≈ 2.373 is the exponent of matrix multiplication; see
[Musco and Woodruff, 2017, Bakshi et al., 2020]. Note that in many cases when U = V ⊤, carefully
choosing f will result in A = f(UV ) being PSD. In fact, when ui are all unit norm, if f admits
a Taylor expansion with non-negative coefficients, then A = f(UU⊤) is a PSD matrix and admit
sub-quadratic low rank approximations.

On the surface, this astounding algorithmic result seems to conflict with subquadratic lower bounds
for basic linear algebraic primitives for many kernel functions, especially the exponential kernel
used in the attention architecture. Specifically, such work looks at kernel matrix vector products
and shows they take Ω(n2−o(1)) time for relative and additive error approximations [Keles et al.,
2023]. Furthermore, these bounds can be refined to hold in the restricted regime when the entries
of the matrix are Ω(

√
log(n)) [Alman and Song, 2023]. These conditional lower bounds, as with

others for linear algebraic problems, are derived from hardness based on the Strong Exponential Time
Hypothesis (SETH) [Lokshtanov et al., 2013].

The crucial observation to resolve this seeming contradiction is to recognize that the low rank
approximation allows for an error bound that depends on the error of the best rank-k approximation,
which can be much larger that the error tolerated in the previous lower bounds. Therefore, hardness
for LRA is inherently different than hardness for approximating the entire matrix additively or than
matrix-vector (MV) multiplication. In fact, we will show that hardness for MV multiplication is, in
some sense, strictly easier to establish.

Some related lower bounds include the work of Backurs et al. [2017] that solving kernel Support
Vector Machines (SVM), ridge regression, or Principal Component Analysis (PCA) problems to
high accuracy or approximating kernel density estimates up to a constant factor for kernels with
exponential tails, requires n2−o(1) time assuming SETH. Also, Alman et al. [2020] show that for linear
algebraic primitives for the Laplacian of a graph with weights given by a kernel, most operations,
such as ϵ-approximate matrix-vector multiplication, are hard, although their hardness results assume
a log(1/ϵ) dependence when reducing to SETH.

1.1 Our Contributions

In the setting of entrywise-transformed low rank approximation, we show that we cannot get sub-
quadratic relative error LRA generally when either 1) U ̸= V ⊤ even for PSD kernel functions or 2)
for transformations that are approximately polynomials of |x| even for constant degree. Therefore,
without multiple strong structural assumptions on A, there is no subquadratic approximation algo-
rithm, even when r = Θ(log(n)) and the rank of the transformed matrix f(UV ) and the target rank
are no(1). We emphasize these novel hardness results hold for a large class of transformations and
in fact generalize to hardness for matrix vector multiplication, which can be derived as a corollary,
implying that computing f(UV )z also requires Ω(n2−o(1)) time for many f that have not been
studied before (see Theorem 3.2). On the positive side, for the polynomial activation f(x) = xp, we
provide an O(n · poly(rp, k, 1/ϵ)) time algorithm for relative error LRA and O(n · poly(p, k, 1/ϵ))
time for additive error LRA via fast tensor-based sketches (see Algorithm 2).

2



Upper Bounds
Prior Work Complexity Matrix Type Task

Musco and Woodruff [2017] O(n · poly(k/ϵ)) PSD, U = V ⊤ Relative LRA
Bakshi et al. [2020] O(n · (k/ϵ)ω−1) PSD, U = V ⊤ Relative LRA

This work O(n · poly(2p, k, 1/ϵ)) f(x) = xp, U ̸= V ⊤ Relative LRA
This work O(n · poly(p, k, 1/ϵ)) f(x) = xp, U ̸= V ⊤ Additive LRA

Lower Bounds
Backurs et al. [2017] Ω(n2−o(1)) Gaussian, U = V ⊤ PCA, Regression
Alman et al. [2020] Ω(n2−o(1)) Kernel Laplacians U = V ⊤ MV product
Keles et al. [2023] Ω(n2−o(1)) Exponential Kernels, U = V ⊤ MV product

This work Ω(n2−o(1)) f(x) = |x|p +O(|x|p+1), U = V ⊤1 Relative LRA, MV
This work Ω(min(n2−o(1), 2Ω(p))) f(x) = xp, U ̸= V ⊤ Relative LRA, MV

Table 1: Overview of upper bounds for low rank approximation (LRA) and lower bounds for relative
linear algebraic primitives, where the dependence on r is omitted. This table illustrates multiple
separation results: 1) LRA is strictly easier than matrix vector (MV) products for positive semidefinite
kernels, 2) LRA is strictly easier for functions f(x) that are kernels, even when considering low-
degree polynomials of |x|, 3) LRA is strictly easier when U = V ⊤ for f(x) = xp for p = Ω(log(n)),
which has a 2Ω(p) lower bound when U ̸= V ⊤, 4) additive error LRA is strictly easier than relative
error LRA. Our work extends to any function f(x) that admits a Taylor series dominated by |x|p
around x = 0. For example, this includes f(x) = log(|x|+ 1) = |x|+O(|x|2).

We note that previous lower bound techniques do not apply for LRA since relative error LRA
approximations of f(UV ) are possible without approximating a matrix vector product, as shown by
the O(n1+o(1)) time LRA algorithm for the popular exponential kernel f(x) = exp(x) by querying
a sublinear number of entries of f(UU⊤) [Musco and Woodruff, 2017, Bakshi et al., 2020]. Indeed,
our novel lower bounds differ from previous reductions from Orthogonal Vectors Problem (OVP) by
explicitly creating LRA instances and exploiting linear algebraic structural properties of the column
spaces of a low-rank tensored matrix.

Specifically, our reduction uses an structural property that if there is a pair of input vectors to OVP
which are orthogonal, then under mild assumptions, this implies we can find a sparse vector in the
column span of the low rank approximation of f(UV ), where U, V are matrices containing the input
vectors to OVP. Also, our algorithm (Algorithm 1) relies on another critical observation that this
sparse vector has uniform magnitude in the non-zero entries, each of which corresponds to a vector
with an orthogonal vector pair. By exploiting the structure of this vector, we can lower bound the
leverage score of each row that corresponds to a non-zero entry of this sparse vector, and we can
appeal to fast leverage score computation algorithms to find a small no(1)-size superset of the support
of the sparse vector. Finally, we can quickly check which pairs of entries in the superset correspond
to vectors in the original OVP problem via a brute-force search, completing the reduction. The
precise reduction is a bit more technically involved, as we also need to allow for additive error for our
applications.

In the setting when U ̸= V ⊤, we show novel lower bounds in the case when f(x) = xp is a
polynomial kernel function and admits a simple rank rp decomposition. We show that we cannot
do better than the naı̈ve decomposition and prove an Ω(min(n2−o(1), 2Ω(p)) lower bound (see
Theorem 3.3). This implies in the setting when p = ω(log(n)) and k = no(1), that surprisingly there
is a separation between the (1) U = V ⊤ setting and the (2) U ̸= V ⊤ setting: when f(x) = x2p,
in the first setting, previous works show that there admits an O(nkω−1) approximation algorithm;
however, in the second setting when U ̸= V ⊤, our lower bounds imply that there cannot exists a
truly subquadratic time algorithm. We emphasize that these exponential lower bounds in the degree
for the polynomial kernel are the first of their kind to rule out truly subquadratic algorithms for
p = ω(log(n)), even when f(x) = xp is a simple polynomial.

We also give an O(n · poly(rp/ϵ)) time algorithm for relative error approximation, which agrees
with our lower bounds (see Theorem 4.1), showing that our lower bounds for the polynomial
kernel when U ̸= V ⊤ are in fact tight. In addition, we provide an O(n · poly(p, k, 1/ϵ)) time
algorithm for additive error LRA that avoids the inherent exponential dependence on p, highlighting
a separation between additive and multiplicative error LRA when p = Ω(log(n)). Specifically, we
can achieve the easier additive error approximation with fast tensor-based sketching matrices (see
Theorem 4.2) by applying comparable techniques to an independent subsequent work on polynomial-
based transformers, although the main difference is that they do not output a rank k approximation
and suffers a worse dependence on p, 1/ϵ due to their non-negativity guarantees [Kacham et al.,
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2023]. We remark that while the polynomial tensor matrix itself can be approximated relatively in
O(n ·poly(p)) runtime, we emphasize that the polynomial kernel, as a product of two tensor matrices,
must incur additive error or suffer Ω(2p) runtime for relative error guarantees.

Finally, we observe that we can generalize our lower bounds for LRA by exploiting the fact that our
algorithms for fast LRA reduce to matrix vector product! Therefore, our relative error algorithms
are reductions that give MV lower bounds, which are automatically derived for a large number of
entrywise transformed matrices, even when U = V ⊤ (see Theorem 4.3). This implies that in some
sense, LRA is an easier problem than MV approximation, implying that our lower bounds for LRA
are stronger. We summarize the most relevant prior results and our contributions in Table 1.

1.2 Related Work to Transformers and Natural Language Processing

A primary downstream application from our work is in the field of natural language, as it is common
to compute similarity matrices f(UV ) from token embeddings U, V . Such is the case for the
popular use of Transformers [Vaswani et al., 2017] and their efficient attention variants [Tay et al.,
2022]. The standard attention mechanism consists of the operation softmax(UV√

d
)W , where in our

notation, U, V,W are the “query”, “key”, and “value” matrices respectively. Simplifying and ignoring
normalizations, this can be seen as f(UV )W where f(x) = exp(x). For a given f , one can
potentially linearize the attention mechanism if there exist U⋆, V ⋆ such that f(UV ) ≈ U⋆V ⋆, as
then the order of matrix multiplication can be rearranged into U⋆(V ⋆W ) which allows memory and
runtime in O(ndk).

In the unnormalized softmax case where f(x⊤y) = exp(x⊤y), Choromanski et al. [2021] notes
that exp(x⊤y) = Eζ∼N (0,Id)

[
exp

(
ζ⊤x− ∥x∥2

2

)
exp

(
ζ⊤y − ∥y∥2

2

)]
which thus allows defining

U⋆, V ⋆ as random feature matrices from sampled ζ1, . . . , ζk. Further use of kernel properties to
improve the softmax approximation have been introduced in Choromanski et al. [2022], Likhosherstov
et al. [2022]. More generally, for f such that f(x⊤y) = K(x, y) admits a kernel representation,
one may consider using variants of Bochner’s theorem [Feller, 1968] to provide approximations via
random Fourier features [Rahimi and Recht, 2007].

While works such as Tsai et al. [2019], Kacham et al. [2023] have experimented with linear, poly-
nomial, exponential, and RBF kernels, so far the dominant paradigm, termed the class of Linear
Transformers Katharopoulos et al. [2020], is to conveniently instead consider the reverse case, where
one defines a mapping ϕ : R → R in order to define the kernel K(x, y) = ϕ(x)⊤ϕ(y). Unfortunately,
usually this does not lead to a closed-form f such that f(x⊤y) = ϕ(x)⊤ϕ(y), which can lack
interpretability and compatibility with classic attention mechanisms.

However, one may consider nonlinear functions f which do not admit a kernel; for example, the class
of functions f(x) = logc(|x|+ 1) for c > 0 is used in Levy and Goldberg [2014], Li et al. [2015] to
compute implicit word embeddings and corresponding generative models. Within this application
domain, our work thus provides answers to the question: for which classes of functions f can one
efficiently compute low-rank approximations U⋆, V ⋆ such that f(UV ) ≈ U⋆V ⋆, especially when
f(x⊤y) does not admit a kernel structure K(x, y)?

2 Preliminaries

We let our implicit matrix A = f(UV ) be n×d where U ∈ Rn×r and V ∈ Rr×d and n ≥ d without
loss of generality, where f : R → R is a scalar function. We will also assume that d = nΩ(1) and it is
often the case in empirical settings that d = n. We say that a matrix A is positive semi-definite (PSD)
if it is symmetric and only has non-negative eigenvalues; a function f is a kernel function if f(UU⊤)
is PSD for any matrix U . The i-th leverage score ℓi of matrix B ∈ Rn×d is equal to its sensitivity,
i.e. ℓi = supx∈Rd

(BT
i x)2

∥Bx∥2
2

= supy∈colspan(B)
y2
i

∥y∥2
2

, where Bi is the i-th row of B. The Khatri-Rao

product of B ∈ Rn×d is C ∈ Rn×dp

, where the i-th row of C is Bi tensored with itself p times. We
use the standard notation that Õ(f) is O(f poly(log f)).

For the approximate rank k LRA problem, we want to find U ′ ∈ Rn×k and V ′ ∈ Rk×n such that

∥A− U ′V ′∥ ≤ (1 + ϵ) min
Ũ∈Rn×k,Ṽ ∈Rk×d

∥A− Ũ Ṽ ∥
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where ∥ · ∥ denotes the Frobenius norm, unless otherwise specified and we denote [A]k = Ũ⋆Ṽ ⋆

as some rank k matrix that minimizes the objective. Note this approximation is a relative error
approximation guarantee, but can be analogously defined for additive error. For stronger lower
bounds, we consider a weakened version of this problem given by outputting only a best rank k
projection, specifically we want to find orthogonal W ∈ Rn×k: ∥A−AWW⊤∥ ≤ (1+ϵ)∥A−[A]k∥.

Our lower bounds will rely on reductions from the conditional hardness of OVP and Max-IP, whose
hardness comes from SETH. We observe, from our remarks, that some more restrictive structure can
be placed on the input vector sets A,B to OVP without removing the hard instances.
Assumption 1. (Hardness of Orthogonal Vectors Problem (OVP)[Williams, 2005]). Let A =
{a1, . . . , an} and B = {b1, . . . , bd} be sets, where ai, bj ∈ {0, 1}r are binary vectors for all
i ∈ [n] = {1, 2, . . . , n}, j ∈ [d]. Any algorithm which given any input (A,B) decides with constant
probability if there is at least one pair of vectors a ∈ A and b ∈ B such that aT b = 0 requires
(nd)1−o(1) time, provided r = ω(log n) and r = no(1). Observe that the lower bounds also hold
when A = B is enforced.
Remark 2. Previous work [Williams, 2005, Vassilevska Williams, 2015] has shown that Assumption 1
is true for n = d unless the Strong Exponential Time Hypothesis (SETH, Impagliazzo and Paturi
[2001]) is false. Given this assumption, one can handle general n and d by a padding argument: if
one could solve OVP with an algorithm A running in at most (nd)1−C time for a constant C > 0,
and without loss of generality n ≥ d, then one could solve the problem when |A| = |B| = n by
splitting B into Θ(n/d) disjoint sets each of size at most d, and solving the problem on each disjoint
set in total time less than (nd)1−C ·Θ(n/d) = n2−C/dC ≤ n2−C , contradicting the assumption in
the |A| = |B| = n case.
Remark 3. In Assumption 1 we can enforce more restrictive structure on the input sets A,B without
making the problem easier. Specifically, we can assume that there are at most no(1) distinct pairs with
a ∈ A and b ∈ B for which aT b = 0. Indeed, otherwise by sampling (nd)2−Ω(1) pairs at random
and checking if aT b = 0, we would solve the OVP problem in (nd)1−Ω(1) · r = (nd)1−Ω(1) time,
using that r = no(1). This would contradict Assumption 1.
Assumption 4. (Hardness of Apx-Max-IPn,d Problem, Definition 2.1, Remark 2.2, and Lemma 4.1
of Chen and Williams [2019]). Two sets A = {a1, . . . , an} and B = {b1, . . . , bn} are given, where
ai, bi ∈ {0, 1}s are binary vectors for all i ∈ [n], with s = ω(log(n)). Let m = max

a∈A,b∈B
a · b. Any

algorithm which outputs a number m̃ ∈ [m/100,m] with constant probability requires (nd)1−o(1)

time.
Remark 5. As in Remark 2 and Remark 3, we can reduce the general n and d case to the case n = d
of previous work [Chen and Williams, 2019], and we can also enforce that there are at most no(1)

pairs a ∈ A and b ∈ B for which a · b ≥ m/100, as otherwise sampling would solve the problem in
less than (nd)1−o(1) time.

3 LRA Runtime Lower Bounds

We show that the complexity of low rank approximation of an entrywise transformed matrix turns out
to heavily depend on the type of entrywise transformation. Based on standard complexity assumptions,
we show an (nd)1−o(1) = n1+Ω(1) time lower bound for entrywise function f(x) = |x|p for odd
integers p in Theorem 3.1 below, while we show a weaker 2Ω(p) lower bound for any integer in
Theorem 3.3, which becomes (nd)1−o(1) for p = Θ(log n). This is no accident, as we show
a matching 2O(p)n1+o(1) upper bound in Theorem 4.1. Furthermore, our lower bounds extend
to functions that are approximately odd-degree polynomials of |x|, even if the degree is small.
Specifically, this includes the commonly used f(x) = log(|x|+ 1) ≈ |x|.
Our proofs use variations of the Orthogonal Vectors Problem (OVP) to create two types of instances
of implicit low rank approximation to create a fast O(n1+o(1)) time algorithm to solve OVP (see Al-
gorithm 1) when given access to a low rank approximation algorithm with constant relative error and
small constant additive error guarantees. Let A,B be the set of input vectors of OVP. Then, in our
reduction, if there is a pair of input vectors which are orthogonal, then applying LRA, we can find
either 1) a column span deviation of the low rank approximation or 2) a sparse vector in the column
span of the low rank approximation. Note that we do not look at the exact column spans, but allow an
additive error depending on the additive error of the output.
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In the latter case, we note that our reduction structure ensures that all entries in this vector have the
same magnitude. Consequently, since the column span of the output has low rank, each such entry in
the support of this sparse vector corresponds to a large leverage score, and so to find the support of
this unknown sparse column we can use algorithms to compute or approximate all leverage scores
given the low rank factorization of the entrywise transformed matrix. This enables us to find a small
superset of the support of the sparse vector, and then brute-force which pairs of entries in the superset
correspond to vectors in the original OVP problem that intersect. The overall time in the reduction is
negligible compared to the time to solve OVP, and therefore it must be that finding the factorization
of the entrywise transformed matrix itself was expensive.

In the former case, it follows that the column spans of the output are necessarily far from each other
in the two cases, and we can quickly check this and therefore solve the OVP problem. Together, it
follows that the time for finding the factorization of the entrywise transformed matrix itself must have
been large. While there are quantitative differences in the two cases of odd and even integers p, the
proofs both follow this strategy.

Algorithm 1 OVP to LRA Reduction
Input: Sets A = {a1, . . . , an ∈ {0, 1}s} and B = {b1, . . . , bn ∈ {0, 1}s}
Output: YES if there exists a⊤b = 0 and NO otherwise.

1: Choose c ∈ {−1, 1}n uniformly at random
2: Let U = [A | c] ∈ Rn×(s+1) and V⊤ = [B | c] ∈ Rn×(s+1) and r = s+ 1.
3: Let W = LRA(U,V, f = |x|p) for constant relative error and α additive error
4: Compute U′′ = U⊗ ...⊗U ∈ Rn×rp , U tensored with itself p times and similarly for V′′.
5: Let r2i = ∥U′′V′′ei∥22 − ∥U′′V′′WW⊤ei∥22 for i-th column ▷Calculate column distances of

U′′V′′ to column span of W.
6: If any of r2i > 1.01α, output YES ▷α is any upper bound on additive error of LRA
7: Compute 1/2-approximate leverage scores ℓi of U′′ and let S = {i ∈ [n]|ℓi ≥ 1/(100no(1))}

▷Finds the representative subset and the threshold is given by the OVP assumption.
8: Compute all dot products between ai and B for all i ∈ S. Output YES if there exists a pair such

that a⊤i bj = 0 and NO otherwise

3.1 General Functions of |x|p for odd integers p

In the following theorem we will also allow for a tiny amount of additive error, as this will be useful
for our later lower bound applications where we approximate other functions using a Taylor series
and reduce from the following theorem.
Theorem 3.1. Suppose n ∈ N, f(x) = |x|p for an odd integer constant p = O(log(n)), and
r = O(log(n)). There is a positive integer k = no(1), such that for any approximation factor ∆ ≥ 1
and any constant α < 2, any possibly randomized, algorithm which given any input U ∈ Rn×r and
V ∈ Rr×d outputs W ∈ Rn×k satisfying

∥f(U · V )WW⊤ − f(U · V )∥2F ≤ ∆ · ∥[f(U · V )]k − f(U · V )∥2F + α,

with constant probability, requires (nd)1−o(1) time, under Assumption 1. Further, this holds even
if U = V T . Here [f(U · V )]k denotes the best rank-k approximation to f(U · V ) in the Frobenius
norm.

Proof. Suppose A and B are input sets to the OVP problem of Assumption 1 with parameter r = s+1,
where s is the dimension of the points. We let the rows of U be the points in A, but we append one
additional dimension, represented as column vector c to U that is chosen uniformly at random in
{−1, 1}n. Similarly, the columns of V correspond to the points in B, but we append one additional
row to V , which is equal to cT . Observe that if A = B, then necessarily U = V ⊤.

Let Case 1 be when there is no a ∈ A and b ∈ B with aT b = 0, and Case 2 be when there is an
a ∈ A and a b ∈ B with aT b = 0, and we are deciding whether we are in Case 2. We claim that
our algorithm (Algorithm 1) will always output NO when we are in Case 1 and will output YES
with constant probability when we are in Case 2. This clearly suffices to solve OVP with constant
probability.
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Notice that if there is no a ∈ A and b ∈ B for which aT b = 0, then for all a ∈ A and b ∈ B, we
have aT b ≥ 1. Consequently with probability 1 over the choice of column vector c, for all i ∈ [n]
and j ∈ [d], UiVj ≥ 0, where Ui is the i-th row of U and Vj is the j-th column of V . Consequently,
f(UiVj) = (UiVj)

p. Thus, f(U · V ) = U ′′V ′′, where each row of U ′′ ∈ Rn×rp is the Khatri-Rao
product of itself p times, and each column of V ′′ ∈ Rrp×d is the Khatri-Rao product of itself p times.

Observe that the rank of f(U · V ) is at most rank(U ′′) + no(1) ≤ (s+ 1)p + no(1) since by Remark
3 we have at most no(1) dot product pairs that are zero, implying that f(U · V ) can be obtained from
U ′′ · V ′′ by changing at most no(1) entries. It follows that there is a value k ≤ no(1) + (s+ 1)p such
that, in both cases, for any multiplicative approximation factor ∆ ≥ 1, necessarily the output W
satisfies ∥f(U · V )WW⊤ − f(U · V )∥2F ≤ α with constant probability.

Next, we compare the column span of W to that of U ′′ · V ′′. In Case 1, there is no pairwise dot
product that is zero, so we have that f(U · V ) = U ′′V ′′. Therefore, each column of U ′′ · V ′′ has
squared distance at most α to the column span of W .

Note that we can compute all squared distances of U ′′V ′′ to the column span of W in O(n1+o(1))
time. This is so that we can detect whether we are in case 1, where U ′′V ′′ has at squared distance at
most α to the column span of W , or we are in case 2. Specifically, we compute the squared distance
by the Pythagorean theorem and since W is orthogonal:

r2i = ∥U ′′ · V ′′ei∥22 − ∥U ′′V ′′WW⊤ei∥22

and for each i, we can compute this in no(1) time, given the matrices we have precomputed in the
previous paragraph. Thus, we can compute all squared distances up to additive 1/ poly(n) in n1+o(1)

time. If we see that any squared distance is larger than α+ 1/poly(n), we know we are in Case 2.

Therefore, we may assume in what follows that each column of U ′′ · V ′′ has squared distance at most
α+1/ poly(n) from the column span of W . In this case we can also determine in n1+o(1) time, with
constant probability, whether we are in Case 2. To do so, we apply a leverage score approximation
algorithm [Clarkson and Woodruff, 2013] to find a small representative subset A′ ⊂ A such that
|A′| = no(1) and if there exists a ∈ A, b ∈ B such that a⊤b = 0, then a ∈ A′. Specifically, suppose
there is an a ∈ A and a b ∈ B for which aT b = 0, and suppose Ui extends a by one coordinate and Vj

extends b by one coordinate. Then with probability at least 1/2, UT
i Vj = −1, and so f(UT

i Vj) = 1.
Let us condition on this event. Then we have the following claim in this case.

Claim 6. Let a ∈ A and b ∈ B be such that aT b = 0, and the corresponding row Ui and column Vj

satisfy U⊤
i Vj = −1. Also, suppose each column of U ′·V ′ has squared distance at most α+1/ poly(n)

from the column span of U ′′. Then, in n1+o(1) time, we can find a representative subset A′ ⊂ A of
size no(1) such that a ∈ A′ with high probability.

Proof. (of Claim) First note that by Remark 3, there can be at most no(1) coordinates in the j-th
column of f(U · V ) which differ from their corresponding coordinate value in the j-th column of
U ′′V ′′, since each such difference corresponds to a pair of points a ∈ A and b ∈ B in the OVP
problem for which aT b = 0. Hence, since f(U · V ) has squared distance at most α + 1/ poly(n)
from the column span of W , then consider the following vectors by taking the difference of the j-th
column of f(U ·V ) and the j-th column of U ′′ ·V ′′, we would have vectors v denoting the difference
vector and e being the residual vector of v projected on the column span of U ′′, with the following
properties:

• v contains at most no(1) values, each of value equal to 2,

• ∥e∥ ≤ α+ 1/ poly(n)

• v + e is in the column span of U ′′.

Let S ⊂ [n] be the set of of indices i for which (v+e)2i
∥v+e∥2

2
≥ 1/no(1). Since α+1/ poly(n) is at most a

constant strictly less than 2, it follows that for each i in the support of v, since vi = 2, we have that
(v+e)2i
∥v+e∥2

2
≥ 1/no(1). Since also ∥v + e∥22 ≤ no(1), the support of v is included in S and |S| ≤ no(1).
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Recall the definition of leverage scores ℓi from Section 2 and that the sum of the n leverage scores of
B ∈ Rn×t is exactly equal to the rank of B, which is at most t. Since v + e is in the column span of
U ′′, the i-th leverage score of U ′′ satisfies ℓi(U ′′) ≥ (v + e)2i /∥v + e∥22 = Ω(1/no(1)).

Consequently, each coordinate i in S satisfies ℓi(U
′′) = Ω(1/no(1)). It is known [Clarkson and

Woodruff, 2013] how, given a matrix B, in O(nt log n)+tO(1) time, one can compute a list ℓ′1, . . . , ℓ
′
n

with ℓ′i = Θ(ℓi) for all i with probability 1−1/n100. Consequently, using that rank(U ′′) ≤ rp, given
U ′′ one can find a superset T containing S for which |T | = O(rpno(1)) in n1+o(1) time, where recall
r = s+ 1 and s = no(1) and p is constant. Note that our bound on |T | follows since we just need to
keep the leverage scores that are Ω(1/no(1)) and the sum of all leverage scores is at most rp = no(1),
recalling r = s+ 1 and s = no(1).

Continuing the proof of Theorem 3.1, by our claim, when we are in Case 2, with at least constant
probability, we find in time O(n1+o(1)) a representative subset A′ of size O(no(1)). Given our subset
A′, one can then compute all pairs of dot products between the points in A′ and the points in B in
O(no(1)ds) time, and since we may assume n ≥ d without loss of generality, we can compute all
such pairs in n1+o(1) time. Lastly, if no such a, b exist, when we are in Case 1, this algorithm cannot
err. Therefore, we have an algorithm that can solve OV P , which then violates Assumption 1, using
that (nd)1−o(1) = n1+Ω(1).

Our lower bound techniques also apply to a number of important function f that do not have the
form of |x|p for an integer p. We show that our lower bounds for LRA in fact holds for any function
g(x) = f(|x|), where f(x) is a function that admits a Taylor expansion with a dominant term of
xp, for odd p, around 0. Of particular interest in natural language processing [Liang et al., 2020,
Jiang et al., 2021] is the function g(x) = log(1 + |x|), where satisfies g(x) = f(|x|), where
f(x) = x+O(|x|2) and thus we can appeal to our lower bound with p = 1.

Theorem 3.2. Suppose n ∈ N, r = O(log(n)), and g(x) = f(|x|), where f admits a Taylor
expansion f(x) = cpx

p +O(|x|p+1) for odd p = O(log(n)). There is a positive integer k = no(1),
such that for any approximation factor ∆ ≥ 1, any, possibly randomized, algorithm which given
inputs U ∈ Rn×r and V ∈ Rr×d outputs W ∈ Rn×k satisfying

∥g(U · V )WW⊤ − g(U · V )∥2F ≤ ∆ · ∥[g(U · V )]k − g(U · V )∥2F

with constant probability, requires (nd)1−o(1) time, under Assumption 1. Further, this holds even if
U = V ⊤.

3.2 Polynomials of All Integers p

We now give the proof for p-degree polynomials for all integers p, which is weaker than Theorem 3.1
for odd integers, but this is the first such lower bound for even integers. The weaker bound cannot be
substantially improved since in this setting f(x) = xp, so f(UV ) is in fact a kernel and matrix vector
multiplication can be performed in O(nrp) time. For intuition why our lower bound techniques do
not extend, recall that our previous reduction forces the absolute value operation to essentially alter
entries of (UV )p but only at entries of the original with zero dot product. Therefore, we can write
as a sum of a low rank matrix (from tensor product) and a sparse matrix, whose sparse entries now
represent the OVP pairs. However, when p is even, the absolute value operation leaves the entries
unchanged and does not induce the additional sparse matrix. Therefore, our lower bounds for this
setting rely on a slightly different variant of OVP, specifically quadratic lower bounds for finding the
maximum dot product (Assumption 4).

Intuitively, our new reduction is as follows: Let OPT be the maximum inner product and by assumption,
consider this small set of large inner product pairs, which represents a small number of entries in
that are large in magnitude so that when you apply a threshold at OPT/100, the resulting matrix is
sparse. Since f(x) = xp amplifies the magnitude differences, it follows that (UV )p is much closer
relatively to an approximately sparse, and therefore low rank, matrix. Therefore an approximate
low rank approximation (LRA) algorithm can recover this sparse low rank matrix well enough so
that the span of the approximate matrix can be used, via leverage score computations, to solve the
APX-Max-IP problem.
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Theorem 3.3. Let U ∈ Rn×r and V ∈ Rr×d be given with r = O(log(n)). Suppose f(x) = xp

for an integer p ≥ 1. There is a positive integer k = no(1), such that for any approximation factor
∆ ≥ 1, any, possibly randomized, algorithm which outputs W ∈ Rn×k satisfying ∥f(U ·V )WW⊤−
f(U · V )∥2F ≤ ∆ · ∥[f(U · V )]k − f(U · V )∥2F , with constant probability for any constant ∆ > 1,
requires min((nd)1−o(1), 2Ω(p)) time, under Assumption 4.

The lower bound for general functions f(x) in Theorem 3.2 with odd-degree dominating term in
its Taylor expansion works because we can scale down the entries in our input matrix so that our
relative-error approximation guarantee is still preserved but the function is largely approximated by
only the leading polynomial term. By a combination of the same taylor expansion argument with a
slight more general version of Theorem 3.3 that handles small additive error, we note that we can
extend our results to when p is even.

We note that our lower bounds do not generalize to the case when U = V because as mentioned in
our intuitive introduction, our reduction hinges on the sparse low-rank structure of (UV )p. However,
when U = V , the sparsity structure is broken as the diagonal of the matrix is now larger than the
maximum inner product of two different vectors, and this destroys the low rank structure. In some
sense, the diagonal of our matrix is forced to include the dot product of ui with itself and this shifts
the entire matrix by a large multiple of the identity, crucially removing the sparse + low-rank structure
that we exploited in our lower bound argument before. Indeed, as we remark below, the resulting
positive semidefinite (PSD) structure allows us to derive a fast LRA algorithm and our lower bound
no longer holds in this setting.
Remark 7. Recall that when U = V ⊤, there is an nr(k/ϵ)ω−1 subquadratic time algorithm when
k = O(no(1)), for (1 + ϵ)-relative error approximation, but reducing the U ̸= V ⊤ case to the
U = V ⊤ case requires blowing up k to k + rp. Therefore, our lower bounds imply that the U ̸= V ⊤

case is strictly more difficult in terms of runtime in certain settings.

4 LRA Algorithms from Matrix Vector Products

In this section, we can show upper bounds for low rank approximation of entrywise transformed
products that are O(n1+o(1)) when f(x) represents a kernel matrix but U ̸= V ⊤. Specifically, we
focus on polynomial functions of the form f(x) = xp and demonstrate that our lower bounds are
tight for relative error LRA. Note that we have shown that low rank approximation guarantees for
PSD matrices when U = V ⊤ cannot translate to the case when U ̸= V ⊤. Still, we demonstrate
that relative error low rank approximation is possible in n1+o(1) time for polynomial kernels with
even degree, although there will be an exponential dependence on p for relative error low rank
approximation. Our relative error algorithms are relatively standard and rely on low rank projections
by using matrix vector products to perform randomized sketching to reduce our row or column
dimension to O(poly(k/ϵ)) [Woodruff, 2014].
Theorem 4.1. Let U ∈ Rn×r and V ∈ Rr×d. Suppose f(x) = xp for an even integer p ≥ 1 and
k < rp. For any approximation factor ϵ > 0 , there is an algorithm that outputs U ′ ∈ Rn×k and
V ′ ∈ Rk×d satisfying ∥U ′ · V ′ − f(U · V )∥2F ≤ (1 + ϵ) · ∥[f(U · V )]k − f(U · V )∥2F with constant
probability with runtime O((n+ d)rpk/ϵ3 + poly(rp/ϵ)).

Proof. Note that f(UiVj) = (UiVj)
p. Thus, we may rewrite f(U · V ) = U ′′V ′′, where each row

of U ′′ ∈ Rn×rp is the Khatri-Rao product of itself p times, and each column of V ′′ ∈ Rrp×d is the
Khatri-Rao product of itself p times. Note that the rank of U ′′V ′′ is at most dp.

Let S be a random Gaussian sketching matrix with O(k/ϵ) rows, so we know that these matrices
satisfy the (

√
ϵ/k, 9/10, l)-JL property [Woodruff, 2014]. Furthermore, let R be a random Gaussian

matrix with O(min(k/ϵ3, rp/ϵ2)) columns, so we know that it is a (1+O(ϵ)) ℓ2 subspace embedding
of the row space of SU ′′. Then, by Theorem 47 of Woodruff [2014], the following is true with
constant probability

∥(U ′′V ′′R)(SU ′′V ′′R)+(SU ′′V ′′)− f(UV )∥2F ≤ (1 + ϵ) · ∥[f(U · V )]k − f(U · V )∥2F
Finally we bound the runtime of computing this product. Note that we may compute SU ′′ and V ′′R
in nrp · (k/ϵ+min(k/ϵ3, rp/ϵ2)) time. Then, note that the remaining products can be computed in
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poly(krp/ϵ) = poly(rp/ϵ) time. And lastly, the rank k approximation follows from solving for the
low rank approximation on the restricted subspace SU ′′V ′′R of rank and letting Z = [U ′′V ′′RU ]k,
where U is the orthonormal basis such that UU⊤ is the projection onto the row space of SAR.

We also provide an additive error guarantee on the low rank approximation guarantees that depends
polynomially on p, as opposed to the tight exponential dependence in the relative error setting. This
implies that additive error LRA is strictly easier and can be accomplished in subquadratic time when
p = Ω(log(n)). Note that lower bounds for additive error are not emphasized in this paper as the
upper bound is already quite competitive and simply outputting requires Ω(n ∗ poly(p)).
Our guarantees follow from tensor-based sketching techniques that are applied along each tensor
dimension to remove the exponential dependence on p. We note that this results in an additive error
term that is on the order of the p-norms of U, V . This term is related to the absolute error guarantees
of [Han et al., 2020], which also depends on the product of the p-norms of Euclidean norms of the
rows of U, V .

Algorithm 2 TensorSketch LRA
Input: Matrices U ∈ Rn×r,V ∈ Rr×d, p > 0 even integer
Output: rank k approximation of f(UV ), where f(x) = |x|p

1: Let T be a TensorSketch with m = O(pϵ−2) rows ▷See Ahle et al. [2020]
2: Compute U′′′ = U′′T⊤ and V′′′ = TV′′, where U′′ ∈ Rn×rp ,V′′ ∈ Rrp×d are U,V tensored

themselves p times.
3: Let S,R be random Gaussian matrices with O(k/ϵ) rows and O(p/ϵ4) columns respectively
4: Compute an orthonormal basis P of row span of SU′′′V′′′R. ▷This implies

PP⊤ = (SU′′′V′′′R)+(SU′′′V′′′R)
5: Compute the rank k decomposition: U′V′ = [U′′′V′′′RP]k. ▷[M]k is the best rank k

approximation to M
6: Output U′, V′P⊤(SU′′′V′′′R)+SU′′′V′′′

Theorem 4.2. Let U ∈ Rn×r and V ∈ Rr×d. Suppose f(x) = xp for an even integer p ≥ 1 and k <
rp. For any approximation factor ϵ > 0, there is an algorithm (Algorithm 2) that outputs U ′ ∈ Rn×k

and V ′ ∈ Rk×d satisfying ∥U ′ · V ′ − f(U · V )∥2F ≤ (1 + ϵ) · ∥[f(U · V )]k − f(U · V )∥2F + ϵ2L2

with constant probability with runtime O((n + d) · poly(p, r, k, 1/ϵ)), where the additive term is
given by L2 = (

∑n
i=1 ∥Ui∥2p2 )(

∑d
i=1 ∥Vi∥2p2 ) = ∥U∥2p2p,2∥V ⊤∥2p2p,2.

4.1 Lower Bounds on Matrix Multiplication

Our low rank approximation algorithms use a matrix vector multiplication subroutine f(UV )zi for
O(poly(k/ϵ)) different vectors zi as their main dimensionality reduction technique for subquadratic
time upper bounds. This can be used to directly translate lower bounds for low rank approximation
to implicit matrix vector multiplication for a wide range of scalar functions that extends previous
work beyond the exponential function. We emphasize that these matrix-vector product lower bounds
also imply that our LRA lower bounds are non-trivial and significantly strengthen those provided by
previous works.
Theorem 4.3 (LRA reduces to Matrix Vector Products). Let U, V, f be as in Theorem 3.2. Then,
any possibly randomized algorithm that for any vector z ∈ Rn, outputs f(UV )z up to 1/poly(n)
entrywise error, with constant probability, requires Ω((nd)1−o(1)) time, under Assumption 1. This
holds even when U = V ⊤.
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A Missing Lower Bound Proofs

Proof of Theorem 3.2. Let U, V T ∈ {−1, 0, 1}n×r be an instance of entrywise transformed low rank
approximation with g. WLOG, by scaling our solution, we can let cp = 1. Let B = poly(n) be
sufficiently large, and let Ũ = U/

√
B and Ṽ = V/

√
B. For each i, j ∈ [n], for B sufficiently large

and using that r = no(1),

g(ŨiṼj) = f(|ŨiṼj |) = f(|UiVj |/B) =
|UiVj |p

Bp
−O

(
|UiVj |p+1

Bp+1

)
=

|UiVj |p

Bp
−O

(
rp

Bp+1

)
= h(ŨiṼj)−O

(
rp

Bp+1

)
.

where h(x) = |x|p. Hence, if Ũ ′, Ṽ ′ are such that

∥Ũ ′ · Ṽ ′ − g(Ũ · Ṽ )∥2F ≤ ∆∥[g(Ũ · Ṽ )]k − g(Ũ · Ṽ )∥2F ,

then by the triangle inequality,

∥Ũ ′ · Ṽ ′ − h(Ũ · Ṽ )∥F ≤ ∥g(Ũ · Ṽ )− h(Ũ · Ṽ )∥F +
√
∆∥[g(Ũ · Ṽ )]k − g(Ũ · Ṽ )∥F

≤ O

(
nrp

Bp+1

)
+
√
∆∥[g(Ũ · Ṽ )]k − g(Ũ · Ṽ )∥F .

Setting U ′ =
√
B · Ũ ′ and V ′ =

√
B · Ṽ ′ and scaling both sides by B, we have

∥U ′ · V ′ − h(U · V )∥F ≤ O

(
nrp

Bp

)
+B

√
∆∥[g(Ũ · Ṽ )]k − g(Ũ · Ṽ )∥F

≤ O

(
nrp

Bp

)
+B

√
∆∥[h(Ũ · Ṽ )]k − g(Ũ · Ṽ )∥F

≤ O

(
nrp

Bp

)
+B

√
∆∥[h(Ũ · Ṽ )]k − h(Ũ · Ṽ )∥F

+ B
√
∆∥h(Ũ · Ṽ )− g(Ũ · Ṽ )∥F

= O

(√
∆nrp

Bp

)
+B

√
∆∥[h(Ũ · Ṽ )]k − h(Ũ · Ṽ )∥F

= O

(√
∆nrp

Bp

)
+
√
∆∥[h(U · V )]k − h(U · V )∥F ,

where in the second inequality we used that [h(Ũ · Ṽ )]k has rank k whereas [g(Ũ · Ṽ )]k is the best
rank-k approximation to g(Ũ · Ṽ ) in Frobenius norm. Note that the third line is triangle inequality
and the fourth line follows our entrywise approximation bounds.

Now by AM-GM, using that a ≤ b+ c implies that a2 ≤ 2b2 + 2c2 for a, b, c ≥ 0, we have

∥U ′ · V ′ − h(U · V )∥2F = O

(
∆n2r2p

B2p

)
+ 2∆∥[h(U · V )]k − h(U · V )∥2F .

Thus, U ′ · V ′ is a rank-k approximation to h(U · V ) with additive error 1
poly(n) , by setting B to be

large enough, and relative error 2∆. The total time to find U ′ and V ′ is the same as the time to solve
entrywise transformed low rank approximation with respect to the function g on inputs Ũ and Ṽ , and
thus by Theorem 3.1 is at least (nd)1−o(1). Note that applying the case U = V ⊤ in Theorem 3.1
establishes this theorem when Ũ = Ṽ ⊤.

Proof of Theorem 3.3. Suppose A and B are the input sets to the Apx-Max-IPn,d Problem of As-
sumption 4 with parameter s = r. We let the rows of U be the points in A and we let the columns
of V be the points in B. As in the proof of Theorem 3.1, we have f(UT

i Vj) = (UT
i Vj)

p so
f(U · V ) = U ′′ · V ′′. By Remark 5, there are at most no(1) entries of f(U · V ) that are at least
(m/100)p.
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Hence, if we set k to be an appropriate value in no(1), then

∥[f(U · V )]k − f(U · V )∥2F ≤ (nd)(m/100)2p,

since one possible rank-k approximation is just to zero out the at most no(1) entries of f(U · V ) that
are at least (m/100)p. By the correctness guarantee, with constant probability,

∥f(U · V )WW⊤ − f(U · V )∥2F ≤ ∆ · (nd)(m/100)2p = O(nd)(m/100)2p. (A.1)

We may assume WLOG that p ≥ C log n for the moment, for a sufficiently large constant C > 0
since a trivial lower bound for outputting an LRA is Ω(n), so the inclusion of the 2Ω(p) term in the
lower bound allows us to make this assumption. Therefore, we conclude that f(U · V ) is in the
column span of W up to 1/poly(n) error. Consequently, consider the maximum entry m, which we
can assume is at least 1, as otherwise all points in A would have disjoint support from those in B but
this can be verified in O(nr) = n1+o(1) time, contradicting the n1+Ω(1) lower bound for d = nΩ(1)

in Assumption 4.

It follows that if the maximum m occurs in the (i, j)-th entry of f(U · V ) = U ′′V ′′, then there exists
a vector in the column span of U ′′ for which the i-th entry is [mp(1− poly(n)),mp(1 + poly(n))]
and all other entries are in the range [−mp/poly(n),mp/poly(n)] since (1/100)p = 1/poly(n).
Consequently, since the column span of W is close to the column span of U ′′ up to 1/poly(n) error,
we see that the column span of W also contains these almost-sparse vectors that have no(1) large
entries. As argued before similarly in Theorem 3.1, the rows of these large dot products forces the
row leverage scores of W to be Ω(1). Since W has rank k = no(1), in n1+o(1) time we can find
the set S of no(1) row leverage scores of W that are Ω(1). We can then explicitly compute all dot
products between pairs of vectors in A ∩ S and B in n1+o(1) total time, at which point we can output
the maximum dot product, which includes m. Therefore by Assumption 4, the total time to find W is
at least (nd)1−o(1).

Proof of Theorem 4.3. This proof follows by reducing low rank approximation to matrix multipli-
cation by the same algorithm as in Theorem 4.1. Specifically, let us set k = no(1) and n = d and
note that our low rank approximation algorithm’s runtime is dominated by computing S · f(UV ) and
f(UV ) ·R, where S,R are matrices with poly(k/ϵ) rows and columns, respectively. In fact, those
operations are the only terms that incur a polynomial dependence on n.

Therefore, suppose there exists such a matrix multiplication algorithm that takes time O(n2−c) for
some c. Then this would directly imply that computing both S · f(UV ), f(UV ) ·R takes O(n2−c)
time as [Sf(UV )]⊤ = f(V ⊤U⊤)S⊤. By our guarantees in Theorem 47 of Woodruff [2014], this
implies a constant relative error LRA in time O(n2−c), which contradicts Theorem 3.2.

B Missing Upper Bound Proofs

Proof of Theorem 4.2. Again, f(UiVj) = (UiVj)
p so we may rewrite f(U · V ) = U ′′V ′′, where

each row of U ′′ ∈ Rn×rp is the Khatri-Rao product of itself p times, and each column of V ′′ ∈ Rrp×d

is the Khatri-Rao product of itself p times.

Using Theorem 1 of Ahle et al. [2020], we see that with probability 0.9, our approximate matrix
product guarantees hold for U ′′, V ′′ such that if Π is an m × rp TensorSRHT matrix with m =
Θ(p/ϵ2), then

∥U ′′Π⊤ΠV ′′ − U ′′V ′′∥F ≤ ϵ∥U ′′∥F ∥V ′′∥F

Therefore, we can use the approximate low rank sketches again to approximately solve:

min
UV

∥U ′′Π⊤ΠV ′′ − UV ∥2F

Specifically, let S be a random Gaussian sketching matrix with O(k/ϵ) rows. We know that these
matrices satisfy the (

√
ϵ/k, 9/10, l)-JL property Woodruff [2014]. Furthermore, let R be a random
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Gaussian matrix with O(m/ϵ2) columns, so we know that it is a (1 +O(ϵ)) ℓ2 subspace embedding
of the row space of SU ′′Π⊤, which has rank at most m. Let U ′′′ = U ′′Π⊤ and let ΠV ′′ = V ′′′.
Then, by Theorem 47 of Woodruff [2014], the following is true with constant probability

∥(U ′′′V ′′′R)(SU ′′′V ′′′R)+(SU ′′′V ′′′)− U ′′′V ′′′∥F ≤ (1 + ϵ) ·min
U,V

∥UV − U ′′′V ′′′∥F

Finally we bound the runtime of computing this product. Note that we may compute U ′′′ and V ′′′ in
time O(np(m + r)) time. Then, computing SU ′′′, V ′′′R can be done in nm · (k/ϵ +m/ϵ2) time.
Lastly, the remaining products can be computed in poly(kp/ϵ) and the final rank k decomposition
can be computed and we can find U ′, V ′ such that

∥U ′V ′ − U ′′′V ′′′∥F ≤ (1 + ϵ)min
U,V

∥UV − U ′′′V ′′′∥F

Now, let U⋆, V ⋆ be the optimal rank k decomposition of the original problem of
f(UV ), then by the guarantees of approximate matrix product and the triangle inequality,
∥U⋆V ⋆ − U ′′V ′′∥F ≥ ∥U⋆V ⋆ − U ′′Π⊤ΠV ′′∥F − ϵ∥U ′′∥F ∥V ′′∥F .

Therefore, we conclude that

∥U ′V ′ − U ′′Π⊤ΠV ′′∥F ≤ (1 + ϵ)∥U⋆V ⋆ − U ′′Π⊤ΠV ′′∥F
≤ (1 + ϵ)∥U⋆V ⋆ − U ′′V ′′∥F + 2ϵ∥U ′′∥F ∥V ′′∥F

We end by rewriting ∥U ′′∥2F = Tr(U ′′U ′′⊤) =
∑n

i=1(U
⊤
i Ui)

p =
∑

i ∥Ui∥2p2 and similarly for
∥V ′′∥2F and then applying AM-GM and noting that (1 + ϵ)2 = 1 +O(ϵ).

15


	Introduction
	Our Contributions
	Related Work to Transformers and Natural Language Processing

	Preliminaries
	LRA Runtime Lower Bounds
	General Functions of |x|p for odd integers p
	Polynomials of All Integers p

	LRA Algorithms from Matrix Vector Products
	Lower Bounds on Matrix Multiplication

	Missing Lower Bound Proofs
	Missing Upper Bound Proofs

