
A Conditional Majority

Given formulas �, , Mi : �. is a sentence that is true iff is true for at least half the values of i
that make � true.
Proposition 2. For any two predicates �(i) and (i), Mi : �(i). (i) can be expressed in FO(M).

Proof. Mi : �. can be rewritten using a counting quantifier and a threshold quantifier:

9k, k0.
h
2k0 = k ^ 9ki : �(i) ^ 9�k0

j : (�(j) ^ (j))
i
.

The formula 2k0 = k can be defined using bit. We then use the fact that counting and threshold
quantifiers can be expressed in terms of majority quantifiers (Barrington et al., 1990) to conclude that
Mi : �. can be expressed in FO(M).

B Omitted Proofs

Table 1 summarizes the notation we use in the following proofs when describing computation graphs
and circuit families.

Table 1: Summary of common notation for computation graph and circuit families.
Graph Circuit Output Range Description
i0 i Z index of node or gate

nodeG(n, i0) nodeC(n, i) F18 type of node or gate
edgeG(n, i

0, j0) edgeC(n, i, j) Z argument # of edge i ! j
sizeG(n) sizeC(n) Z # of nodes or gates
depthG(n) depthC(n) Z longest path length

bnode(n, i) [0, sizeG(n)] block containing i
bstart(n, i0) [0, sizeC(n)] first gate in block i0

bsize(n, i0) Z size of block i0

B.1 Transformers are Log-Uniform Computation Graph Families

We now justify that the computation graph family defining a transformer is log-uniform. To do this,
we introduce a stronger notion of uniformity called column uniformity that captures the highly regular
structure of the transformer.

Let node(G, i) be the i-th node of computation graph G. Let a mod b be the remainder when a is
divided by b.
Definition 6 (Column uniformity). A computation graph family G is T (n)-column-uniform iff there
exists a computation graph K (with fixed size w.r.t n) such that, for all i, j such that 0  i, j <
sizeG(n):

1. nodeG(n, i) = node (K, i mod size(K)).
2. If bi/size(K)c = bj/size(K)c, then

edgeG(n, i, j) = edge (K, i mod size(K), j mod size(K)) .

Otherwise, edgeG(n, i, j) can be computed by a deterministic Turing machine in time T (n).

We define log-column-uniform analogously to log-uniform: i.e., we let T (n) = O(log n). log-
column-uniform implies log-uniform because our implementations of nodeG and edgeG can store K
in a finite lookup table and compute the quotient and remainder of i and j by size(K) in O(log n)
time using Lemma 12. The edges outside of K are computable in O(log n) time by construction.
Lemma 1 (Proof in Appendix B.1). A transformer T is a log-uniform computation graph family

where F contains embedding, self-attention, feedforward, and output components.

12

Proof. We show the stronger condition that any transformer T is a log-column-uniform computation
graph family, which implies it is log-uniform.

We have the column K by Definition 2: all that remains to show is that edgeGT can be computed
in time O(log n) for edges outside the column. These edges route from the layer ` output to the
self-attention heads of layer `+ 1. Following from the column structure, there exists k` such that a
node i is an output vector of layer ` iff k` = i mod size(K). In a finite lookup table, we can store
k` for each `+ 1, and use this for self-attention routing. For an unmasked self-attention head j, we
compute:

edgeGT (n, i, j) =

⇢
bi/size(K)c if k` = i mod size(K)

�1 otherwise.

For causally masked attention, we extend the first case to check that bi/size(K)c  bj/size(K)c.
Either way, this logic can be implemented in time O(log n) via Lemma 12. Thus, we conclude that
GT is column-uniform.

B.2 Transformer Components are Computable by Log-Uniform Threshold Circuits

Lemma 2 (Proof in Appendix B.2). Let T be a log-precision transformer with fixed parameters ✓T .

Then each component in F is computable in log-uniform TC
0
.

We prove a more general version of Lemma 2 that handles some cases with weights growing with n.
The weights ✓T are just a special case of a computation graph (that do not depend on the input); we
can thus apply our definition of log-uniform to them. Lemma 2 follows from a more general result
with log-uniform ✓T :
Lemma 5. Let T be a log-uniform transformer with log-uniform ✓T . Then each component in F is

computable in log-uniform TC
0
.

Proof. In Appendix C, we show that log-uniform ✓T implies:

1. The embedding component is computable in log-uniform TC
0 (Lemma 6).

2. The self attention mechanism is computable in log-uniform TC
0 (Lemma 7).

3. The activation block is computable in log-uniform TC
0 (Lemma 8).

4. The output classifier head is computable in log-uniform TC
0 (Lemma 9).

We have shown that each F 2 F is computable in log-uniform TC
0.

B.3 Transformer Component Size Has a Log-Time Upper Bound

Lemma 3 (Proof in Appendix B.3). Let T be a log-precision transformer with fixed parameters

✓T . There exists a function bsize(n) that is a power of 2 and computable in O(log n) time s.t.

sizeF (n)  bsize(n) for all F 2 F.

Proof. Let 2b(n) be the least power of 2 at least as large as sizeF (n) for all F . We observe that 2b(n)
is at most 2 ·maxF sizeF (n) for all n. Because each F has poly size, there is a fixed k such that, for
large enough n,19

2
b(n)  nk

) b(n)  kdlog ne.

Define b0(n) = kdlog ne and bsize(n) = 2
b0(n). bsize(n) is both a power of 2 and an upper bound

on 2
b(n); what remains to be shown is that it can be computed in time O(log n). We can first

compute dlog ne in time O(log n) by finding the greatest nonzero index of n. Next, we can compute
b0(n) = k ·dlog ne in time O(log log n) since k is fixed size and dlog ne has size at most O(log log n)
(Brent & Zimmermann, 2010). Finally, we compute bsize(n) = 2

b0(n) by simply left-shifting 1 at
most O(log n) times.

19We can compute bsize(n) for small n using finite lookup.

13

B.4 Circuit Families Can Be Padded to Log-Time Size Upper Bounds

Recall that the last p bits of our circuits represent the circuit’s output (cf. Section 5.1). In Lemma 4,
we consider F(x) = F 0

(x) if and only if the last p bits of F and F 0 agree for all x.

Lemma 4 (Proof in Appendix B.4). If F is a log-uniform TC
0

family and sizeF (n)  bsize(n),
there exists a log-uniform TC

0
family F 0

s.t. F(x) = F 0
(x) for all x and sizeF 0(n) = bsize(n).

Proof. The high level idea is that we can pad F to a circuit F 0 that has size bsize(n) and simply
copies over the p output bits of F to its own last p bits using identity gates.

We first set nodeF 0 to copy over the existing circuit and append identity nodes. Let Id denote an
identity node. Then nodeF 0 is defined as:

nodeF 0(n, i) =

8
<

:

nodeF (n, i) if nodeF (n, i) 6= ;
Id if nodeF (n, i) = ; ^ i < bsize(n)
; otherwise.

We see that the size of F 0 will thus be of size bsize(n).

Next, we extend edgeF 0(n, i, j) to route the original output bits to the new output bits. Recall that
an edge value of 0 means i is the first argument of gate j, and an edge value of �1 means there is
no edge i ! j. Let kj = p(n)� (bsize(n)� j) be the index of node j as an output gate in F 0. For
example, k = 0 for the first output bit. Now let outputF (n, i, k) represent whether node i is the k-th
output of Fn. We can compute outputF (n, i, k) in terms of nodeF as follows:

outputF (n, i, k) () nodeF (n, i+ p(n)� k � 1) 6= ; ^ nodeF (n, i+ p(n)� k) = ;.

Then edgeF 0 is defined:

edgeF 0(n, i, j) =

8
<

:

edgeF (n, i, j) if edgeF (n, i, j) 6= �1

0 if outputF (n, i, kj)
�1 otherwise.

The first condition simply copies over the original edges. The second condition adds p(n) new edges
(for the different values of k) that route the final p(n) nodes of F to the final p(n) nodes of F 0,
guaranteeing that the two circuits will compute the same function.

Because both nodeF 0 and edgeF 0 just rely on addition, conditional branching, and a finite number of
calls to functions computable in time O(log n), they are both computable in time O(log n).

C Transformer Column Components

In this section, we generally omit layer subscripts for clarity. We assume a pre-norm (Xiong et al.,
2020) parameterization of the transformer for concreteness and because this is more standard in
newer transformers. However, the results would also hold with the original post-norm (Vaswani et al.,
2017).

As mentioned in the main text, we view ✓T as a concatenation of the parameters for the transformer
functions. Thus, if m and w are computable in time O(log n) and ✓T is log-uniform, it follows that
the parameter vector for each �, s, v, f , and  is itself log-uniform because we can map indices in the
smaller parameter vectors to indices in ✓T in time O(log n).

C.1 Transformer Embeddings

For each position 1  i  n, the transformer embedding function represents token �i 2 ⌃ and its
position i with a vector. Let V be an embedding matrix of size |⌃|⇥m where each row represents
the embedding for some �. Let f : N ! Dm

p be computable in time O(log n). Then,

�(�i, i) = v�i + f(i).

Lemma 6. If ✓T is log-uniform, then � is computable in log-uniform TC
0
.

14

Proof. The embedding block can be expressed as a constant-size computation graph that constructs
V, computes v�i using an affine transformation, computes f(i), and then, finally, sums v�i and
f(i). The first step is computable by a log-uniform constant-depth, poly-size threshold circuit family
since ✓T is log-uniform. We can compute an affine transformation via a log-uniform constant-depth
poly-size threshold circuit family via Lemma 10. f(i) can be directly computed by the Turing
machine constructing the circuit by construction. The sum of the two terms can then be computed by
a log-uniform constant-depth threshold circuit of size polynomial in m, which is also polynomial
in n. Since we have a computation graph where all node types are computable by log-uniform,
constant-depth, poly-size threshold circuit families, we conclude by Corollary 3.2 that � can also be
computed by log-uniform, constant-depth, poly-size threshold circuit family.

C.2 Self Attention

The two components of the self attention block are s, the similarity function, and v, the value function.
Let hi be the hidden state at the previous layer and h̄i = lnorm(hi). Then, the similarity function
first computes queries and keys, and then takes the scaled dot-product between them:

qi = Wqh̄i + bq

ki = Wkh̄i + bk

s(hi,hj) = exp

q>
i kip
m/h

!
.

Then the value function is defined v(hi) = Whh̄i + bh. We first show that the value function (and
also the keys and queries by symmetry) is computable in log-uniform TC

0:

Lemma 7. If ✓T is log-uniform, then the self-attention component is computable in log-uniform TC
0
.

Proof. v is a composition of constructing the parameters (in log-uniform TC
0 since ✓T is log-

uniform), layer norm (in log-uniform TC
0 by Lemma 11), and an affine transformation (in log-

uniform TC
0 by Lemma 10). Thus, v is computable in log-uniform TC

0.

Computing s is a constant-depth computation graph. First, we compute qi and ki and then multiply
them, and all of these steps are in log-uniform TC

0. Next, we can compute m and h in time O(log n)
and build a log-uniform TC

0 circuit that divides the product of the last step by
p
m/h. Finally, we

compute p-precision exp, which can be expressed in log-uniform TC
0 as multiplication followed by

left-shifting. Thus, by Corollary 3.2, s can be computed in log-uniform TC
0.

s and v are log-uniform, so their size p is at most poly(n). Computing self attention reduces to
binary multiplication and division over Dp, and performing iterated addition (summation) over n
numbers in Dp. Binary multiplication, binary division (Hesse, 2001), and iterated addition (Merrill &
Sabharwal, 2023) can all be computed in log-uniform TC

0, i.e., by a log-uniform, constant-depth
threshold circuit family of size at most poly(p)  poly(n). Thus, self attention can also be computed
in log-uniform TC

0.

C.3 Activation Block

The activation function f encapsulates the aggregation of the attention head outputs and the feedfor-
ward subnetwork of the transformer. f takes as input attention head outputs ai,1, . . . ,ai,h 2 Dm/h

p

and the previous layer value hi.

The first part of the activation block simulates the pooling part of the self-attention sublayer. The
head outputs are first concatenated to form a vector ai, which is then passed through an affine
transformation (Wo,bo) : Dm

p ! Dm
p followed by residual connections to form the sublayer output

oi 2 Dm
p :

oi = Woai + bo + hi.

The second part of the activation block first applies layer-norm and then simulates the feedforward
subnetwork to compute the next layer vector h0

i. Let ōi = lnorm(oi). Let � be a nonlinearity
computable in linear time on its input (in the most standard transformer, ReLU). Then, for affine

15

transformations (W1,b1) : Dm
p ! Dw

p and (W2,b2) : Dw
p ! Dm

p , the feedforward subnetwork can
be defined:

h0
i = W2�(W1ōi + b1) + b2 + oi.

Lemma 8. If ✓T is log-uniform, then f is computable in log-uniform TC
0
.

Proof. The activation block can be expressed as a constant-size computation graph where the nodes
construct affine transformation parameters, apply affine transformations, compute layer-norm, and
compute elementwise nonlinearities. Since each of these nodes is computable by a log-uniform,
constant-depth, poly-size threshold circuit family, the activation block is as well.

C.4 Output Classifier Head

We assume the output from the transformer is computed as follows. First, h̄1 = lnorm(h1). Then,
we use a parameter vector w 2 Dm

p and bias term b to compute:

(h1) = sgn(w>h̄1 + b).

Lemma 9. If ✓T is log-uniform, then  is computable in log-uniform TC
0
.

Proof. We can express computing  as a composition of constructing the parameters w, b and
computing the affine transformation. Both parts of this composition are computable by a log-uniform,
constant-depth, poly-size threshold circuit family, so computing  is as well.

D Neural Net Building Blocks

In this section we analyze the uniformity of common neural net building blocks that are used within
the various high-level transformer components.

D.1 Affine Transformations

Affine transformations are a core part of neural networks used in various parts of the transformer. An
affine transformation takes as input parameters (W,b) : Da

p ! Db
p and a vector x 2 Da

p and returns
Wx+ b.
Lemma 10. For p = O(log n), any p-precision affine transformation where W,b are log-uniform is

computable by a log-uniform, constant-size threshold circuit family of size polynomial in a and b.

Proof. We first use the uniformity of W,b to construct them in O(log n) time. For the transformation
Wx + b, first compute each wi � x in parallel, where � represents elementwise multiplication.
Since binary multiplication over polynomial-size numbers is in log-uniform TC

0, this can be done
in parallel with log-uniform TC

0 circuits. We then use b log-uniform, constant-depth, poly-size
threshold circuit families, each corresponding to an output index, that compute the sum over the a
entries of each wi � x. The affine transformation corresponds to the composition of these two steps,
and is thus computable by a log-uniform TC

0 circuit family.

D.2 Layer Norm

The layer norm is applied between sublayers in the transformer. Let µ = (1/d)
Pd

i=1 xi. The layer
norm y 2 Dm

p of a vector x 2 Dm
p is computed, for scalars a, b 2 Dp,

y = a

✓
x� µ

kx� µk

◆
+ b.

Lemma 11. If a, b are log-uniform, the layer norm over a vector of size m can be computed by a

log-uniform threshold circuit family of constant depth and size polynomial in m.

16

Proof. First compute m using summation over the constant term 1 from 1 to m. This summation can
be computed by a log-uniform constant-depth threshold circuit family of size polynomial in m. Then
compute the sum over x using a similar circuit, and divide them to get µ, using the fact that integer
division is in log-uniform TC

0 (Hesse, 2001). We can then compute x� µ in log-uniform TC
0.

At this point, we can compute kx� µk in log-uniform TC
0 (Hunter et al., 2010), then divide each

x� µ by the norm in log-uniform TC
0, and then apply the final affine transformation in log-uniform

TC
0 (Lemma 10). Thus, computing layer norm is in log-uniform TC

0.

E Arithmetic Complexity

Lemma 12. Given an m-bit integer a and n-bit integer b, we can compute the quotient ba/bc and

remainder a mod b in time O(mn).

Proof. Let D(m,n) and M(m,n) denote, respectively, the time complexity of dividing and multi-
plying an m-bit integer by an n-bit integer. Brent & Zimmermann (2010) give the following fact:
D(m+ n, n)  O(M(m,n)). With the goal of analyzing D(m,n), we apply this as follows:

D(m,n)  D(m+ n, n)

 O(M(m,n))

 O(mn).

Applying Lemma 12 when a has size O(log n) and b has size O(1) says that we can do division in
time O(log n).

17

	Introduction
	Preliminaries: Transformers and FO(M)
	Transformers
	First-Order Logic with Majority
	Examples

	Finite Precision Transformers Cannot Attend Universally
	Main Result: Expressing Log-Precision Transformers in FO(M)
	Preliminaries for Proving Theorem 2
	Computation Graphs
	Computation Graph Families

	Proof of Theorem 2
	Simulating Computation Graph Families with Circuit Families

	Conclusion
	Conditional Majority
	Omitted Proofs
	Transformers are Log-Uniform Computation Graph Families
	Transformer Components are Computable by Log-Uniform Threshold Circuits
	Transformer Component Size Has a Log-Time Upper Bound
	Circuit Families Can Be Padded to Log-Time Size Upper Bounds

	Transformer Column Components
	Transformer Embeddings
	Self Attention
	Activation Block
	Output Classifier Head

	Neural Net Building Blocks
	Affine Transformations
	Layer Norm

	Arithmetic Complexity

