A Technical Proofs

Proof of Proposition 4.1. . Using the chain rule, (1), and the definitions of $\ell_{x}, \phi_{x}, \psi_{x}$, and Z_{x}, it follows that for any $\delta \in \mathcal{W}$ we have

$$
\begin{aligned}
D_{\bar{w}} h(x, \bar{w})[\delta] & =D\left(\ell_{x} \circ \phi_{x}\right)(\bar{w})[\delta]=D\left(\ell_{x} \circ \psi_{x}\right)\left(Z_{x}(\bar{w})\right) \circ D Z_{x}(\bar{w})[\delta] \\
& =\left\langle\nabla\left(\ell_{x} \circ \psi_{x}\right)\left(Z_{x}(\bar{w})\right), D Z_{x}(\bar{w})[\delta]\right\rangle=\left\langle g_{x}, \mathcal{A}_{x} \delta\right\rangle \\
& =\left\langle\mathcal{A}_{x}^{*} g_{x}, \delta\right\rangle .
\end{aligned}
$$

The conclusion follows immediately from (2) with $\psi=h(x, \cdot)$ and $w_{0}=\bar{w}$.

B Efficient Implementation of Algorithm 2

This appendix presents the technical details of efficiently implementing Algorithm 2.

B. 1 Computing Intermediate Quantities

We argue that in the setting of neural networks, Algorithm 2 can obtain the intermediate quantities

$$
\zeta_{i} \equiv \zeta_{i, x}, \quad g_{i} \equiv g_{i, x}
$$

in a single forward and backward (or backpropagation) pass of the given network. For ease of notation, let $i \geq 1$ be fixed and denote

$$
\Phi_{i}(\cdot) \equiv \phi_{i}\left(\cdot, \ldots, \phi_{1}\left(w_{1}, x\right)\right), \quad \tilde{\Phi}_{i}(\cdot) \equiv \phi_{i}\left(w_{i}, \cdot\right), \quad Z_{i}(\cdot) \equiv Z_{x, i}(\cdot), \quad \psi_{i}(\cdot)=\psi_{x, i}(\cdot)
$$

for every $i=1, \ldots, k$ and $x \in B$.
We start with the claim about ζ_{i}. As $Z_{i}(\cdot)$ and $\phi_{i}(\cdot, \cdot)$ are the only two functions in our setting that depend on w_{i}, it is straightforward to see that there exist functions $\alpha_{i}(\cdot)$ and $\beta_{i}(\cdot)$ such that

$$
\begin{equation*}
\Phi_{i}\left(w_{i}\right)=\alpha_{i} \circ Z_{i}\left(w_{i}\right), \quad Z_{i}\left(w_{i}\right)=\beta_{i} \circ \Phi_{i-1}\left(w_{i-1}\right) \tag{9}
\end{equation*}
$$

which together yield the recursive expression

$$
\begin{equation*}
\Phi_{i}\left(w_{i}\right)=\alpha_{i} \circ \beta_{i} \circ \Phi_{i-1}\left(w_{i-1}\right) \equiv \tilde{\Phi}\left(\Phi_{i-1}\left(w_{i-1}\right)\right) \tag{10}
\end{equation*}
$$

Since a single forward pass obtains the values $\left\{\Phi_{i}\left(w_{i}\right)\right\}_{i=1}^{k}$ in sequence, it follows from (9) and (10) that we also obtain $\zeta_{i}=Z_{i}\left(w_{i}\right)$ as part of the forward pass.
To show the claim about g_{i}, we first notice that (9) and (10) imply

$$
\psi_{i}(\cdot)=\alpha_{k} \circ \beta_{k} \circ \alpha_{k-1} \circ \beta_{k-1} \circ \cdots \circ \alpha_{i}(\cdot)
$$

and, hence, the derivative of $\psi_{i}(\cdot)$ only depends on the derivatives of $\left\{\alpha_{j}\right\}_{j=i}^{k}$ and $\left\{\beta_{j}\right\}_{j=i+1}^{k}$. Since a single backpropagation step (i) obtains the derivatives (or their adjoints) of ℓ_{x}, α_{i}, and β_{i} in the reverse order of $i=k, \ldots, 1$ and (ii) efficiently computes their sequential compositions, e.g.,

$$
D\left(\ell_{k} \circ \alpha_{k} \circ \beta_{k} \circ \cdots \circ \alpha_{i}\right)(\cdot)(\cdot)
$$

it follows that the adjoint operators $\left[D\left(\ell_{x} \circ \psi_{i}\right)(\cdot)\right]^{*}(\cdot)$ are also obtained from a single backpagation step. Assuming that $\zeta_{i}=Z_{i}\left(w_{i}\right)$ was already obtained in the first for-loop of Algorithm 2, we also obtain from these operators the gradients $g_{i}=\nabla\left(\ell_{x} \circ \psi_{i}\right)\left(\zeta_{i}\right)$.
In the next section, we give some examples of layers where the representations of the functions Ω_{i} can also be obtained simultaneously with the outputs ζ_{i}.

B. 2 Computing Batch Gradients

Suppose that (5) holds for every $x \in B$ and $i=1, \ldots, k$, and define

$$
S_{i}(B):=\sum_{x \in B} \ell_{x} \circ \psi_{i, x}\left(\zeta_{i, x}\right), \quad \hat{g}_{i, x}:=\nabla_{\zeta_{i, x}} S_{i}(B)
$$

Let us now show that $g_{i, x}=\hat{g}_{i, x}$. First, observe that if $x, x^{\prime} \in B$ and $x \neq x^{\prime}$ then neither $\ell_{x}(\cdot)$ nor $\psi_{i, x}(\cdot)$ depend on the value of $\zeta_{i, x^{\prime}}$ (and vice versa) for any $i=1, \ldots, k$. Consequently,

$$
\begin{aligned}
\hat{g}_{i, x}=\nabla_{\zeta_{i, x}} S_{i}(B) & =\nabla_{\zeta_{i, x}}\left(\ell_{x} \circ \psi_{i, x}\right)\left(\zeta_{i, x}\right)+\underbrace{\sum_{x^{\prime} \neq x} \nabla_{\zeta_{i, x}}\left(\ell_{x} \circ \psi_{i, x}\left(\zeta_{i, x}\right)\right)}_{=0} \\
& =\nabla_{\zeta_{i, x}}\left(\ell_{x} \circ \psi_{i, x}\right)\left(\zeta_{i, x}\right)=g_{i, x}
\end{aligned}
$$

Note that since each $\zeta_{i, x}$ is computed in a single forward pass of a batch B (see Appendix B.1), the quantities $\hat{g}_{i, x}$, which are gradients taken with respect to $\zeta_{i, x}$, are obtained in a single (batched) backward pass.

C Additional Algorithms

Algorithm 3 gives a subroutine for computing the necessary scalars used in the efficient squared norm function of the embedding layer.

```
Algorithm 3 Computing the Nonzero Values of \(n_{k}(x)\)
    Input: \(\pi(x)=\left[\pi_{1}(x), \ldots, \pi_{q}(x)\right]\)
    Create an empty binary search tree \(T\), where \(T[k]\) denotes the value at key \(k\)
    for \(i=1, \ldots, q\) do
        If \(\pi_{i}(x)\) is not in \(T\), set \(T\left[\pi_{i}(x)\right]=1\).
        Otherwise, set \(T\left[\pi_{i}(x)\right]=T\left[\pi_{i}(x)\right]+1\)
    end for
    For every key \(k\) in \(T\), set \(n_{k}(x)=T[k]\).
    Return the nonzero values of \(n_{k}(x)\).
```


D Decomposition Proofs

This appendix gives the derivation of the squared-normed functions $\Omega_{x}(\cdot)$ found in the main body of the paper.

D. 1 Fully-Connected Layer

Since $Z_{x}(\cdot)$ is linear, the adjoint operator of $D Z_{x}(V, b)(\cdot)$ is clearly given by

$$
\left[D Z_{x}(V, b)\right]^{*}(g)=\left[\begin{array}{c}
U_{x}^{*} \\
\mathcal{Q}^{*}
\end{array}\right] g
$$

and, hence, that $\Omega_{x}(g)=\left\|U_{x}^{*} g\right\|^{2}+\left\|\mathcal{Q}^{*} g\right\|^{2}$. It now follows from the definition of the adjoint that

$$
\left\|U^{*} g\right\|^{2}=\left\langle U_{x}^{*} g, U_{x}^{*} g\right\rangle=\left\langle U_{x} U_{x}^{*} g, g\right\rangle=\left\langle U_{x} U_{x}^{*}, g g^{*}\right\rangle
$$

which then implies

$$
\Omega_{x}(g)=\left\langle U_{x} U_{x}^{*}, g g^{*}\right\rangle+\left\|\mathcal{Q}^{*} g\right\|^{2}
$$

D. 2 Embedding Layer

Since $Z_{x}(\cdot)$ is linear, the adjoint operator of $D Z_{x}(W)(\cdot)$ is clearly given by

$$
\left[D Z_{x}(W)\right]^{*}(g)=Y_{\pi(x)}^{*} g
$$

and, hence, that $\Omega_{i}(g)=\left\|Y_{\pi(x)}^{*} g\right\|^{2}$. Now, denote $Y_{\pi}=Y_{\pi(x)}, \pi=\pi(x)$, and $\operatorname{Row}_{k}(M)$ to be the k-th row of a matrix M. Recall that

$$
Y_{\pi} W=\left[\begin{array}{c}
\operatorname{Row}_{\pi_{1}}(W) \\
\vdots \\
\operatorname{Row}_{\pi_{q}}(W)
\end{array}\right]
$$

Hence, for every $g \in \mathbb{R}^{q \times d}$ and $W \in \mathbb{R}^{r \times d}$, we have

$$
\left\langle Y_{\pi} W, g\right\rangle=\sum_{i=1}^{q}\left\langle\operatorname{Row}_{\pi_{i}}(W), \operatorname{Row}_{i}(g)\right\rangle=\sum_{j=1}^{r}\left\langle\operatorname{Row}_{j}(W), \nu_{j}(g)\right\rangle=\left\langle W, Y_{\pi}^{*} g\right\rangle
$$

where

$$
\operatorname{Row}_{j}\left(Y_{\pi}^{*} g\right)=\nu_{j}(g)=\sum_{i: \pi_{i}=j} \operatorname{Row}_{i}(g)
$$

Using the fact that $\operatorname{Row}_{i_{1}}(g)=\operatorname{Row}_{i_{2}}(g)$ for any i_{1} and i_{2} satisfying $\pi_{i_{1}}=\pi_{i_{2}}=j$, we have that

$$
\operatorname{Row}_{j}\left(Y_{\pi}^{*} g\right)=\sum_{i: \pi_{i}=j} \operatorname{Row}_{i}(g)=n_{j}(x) \tilde{g}_{j}
$$

which clearly implies $\Omega_{x}(g)=\left\|Y_{\pi}^{*} g\right\|^{2}=\sum_{j=1}^{r} n_{j}(x) \tilde{g}_{j}$.

D. 3 Low Rank Approximation Layer

Since $Z_{x}(\cdot)$ is quadratic, $Z_{x}(\cdot)$ is Fréchet differentiable and, hence, Gateaux differentiable. Consequently, the derivative $D Z_{x}(V)(\cdot)$ is given by the Gateaux differential

$$
\begin{aligned}
D Z_{x}(V)[\Delta] & =\lim _{t \downarrow 0} \frac{Z_{x}(V+t \Delta)-Z_{x}(V)}{t} \\
& =\lim _{t \downarrow 0} \frac{\left\langle U_{x},(V+t \Delta)(V+t \Delta)^{*}-V V^{*}\right\rangle}{2 t} \\
& =\frac{1}{2}\left\langle U_{x}, \Delta V^{*}+V \Delta^{*}\right\rangle+\lim _{t \downarrow 0} \frac{t}{2}\left\langle U_{x}, \Delta \Delta^{*}\right\rangle \\
& =\frac{1}{2}\left\langle U_{x}, \Delta V^{*}+V \Delta^{*}\right\rangle
\end{aligned}
$$

Re-arranging terms, we have that

$$
D Z_{x}(V)[\Delta]=\frac{1}{2}\left\langle U_{x}, \Delta V^{*}+V \Delta\right\rangle=\frac{1}{2}\left\langle\left(U_{x}+U_{x}^{*}\right) V, \Delta\right\rangle
$$

and, hence, that $\left[D Z_{x}(V)\right]^{*}(g)=g\left(U_{x} V^{*}+V U_{x}^{*}\right) / 2$ for every $g \in \mathbb{R}$. Consequently, we have that

$$
\Omega_{x}(g)=\left\|\left[D Z_{x}(V)\right]^{*}(g)\right\|^{2}=\frac{g^{2}}{4}\left\|\left(U_{x}+U_{x}^{*}\right) V\right\|^{2}
$$

E Additional Squared-Norm Functions

This appendix discusses decompositions of more complicated layer functions.

E. 1 Multi-Head Attention

Define the auxiliary functions Softmax : $\mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ and

$$
\mathcal{T}: \mathbb{R}^{d_{1} \times n} \times \mathbb{R}^{d_{2} \times n} \times \mathbb{R}^{d_{3} \times n} \times \mathbb{R}^{d_{3} \times n} \mapsto \mathbb{R}^{d_{3} \times n}
$$

as given by

$$
\begin{aligned}
{[\operatorname{Softmax}(x)]_{j} } & =\frac{\exp \left(x_{j}\right)}{\sum_{i=1}^{n} \exp \left(x_{i}\right)} \\
\mathcal{T}(Q, K, V, M) & =V\left[\operatorname{Softmax}\left(\frac{K^{T} Q}{\sqrt{d_{1}}}\right) \bullet M^{T}\right] \in \mathbb{R}^{d_{3} \times n}
\end{aligned}
$$

where 1 is a vector of all ones and $A \bullet B$ denotes the Hadamard product between A and B.

Given variables $\left\{W_{i}^{Q}\right\}_{i=1}^{h} \subseteq \mathbb{R}^{d_{m} \times d_{q}},\left\{W_{i}^{K}\right\}_{i=1}^{h} \subseteq \mathbb{R}^{d_{m} \times d_{q}},\left\{W_{i}^{V}\right\}_{i=1}^{h} \subseteq \mathbb{R}^{d_{m} \times d_{v}}$, and $\left\{W_{i}^{O}\right\}_{i=1}^{h} \subseteq \mathbb{R}^{d_{m} \times d_{v}}$, input queries $Q_{x} \in \mathbb{R}^{\bar{d}_{q} \times n}$, input keys $K_{x} \in \mathbb{R}^{d_{q} \times n}$, input values $V_{x} \in \mathbb{R}^{d_{v} \times n}$, and mask $M_{x} \in \mathbb{R}^{d_{v} \times n}$, the multi-head attention layer function $\phi_{x}(\cdot)$ is given by

$$
\begin{aligned}
\phi_{x}(W) & =\sum_{i=1}^{h} W_{i}^{O} \mathcal{T}_{i}(x), \\
\mathcal{T}_{i}(x) & :=\mathcal{T}\left(W_{i}^{Q} Q_{x}, W_{i}^{K} K_{x}, W_{i}^{V} V_{x}, M_{x}\right) \in \mathbb{R}^{d_{v} \times n}
\end{aligned}
$$

where $W=\left(W_{1}, \ldots, W_{h}\right)$ and $W_{i}:=\left(W_{i}^{Q}, W_{i}^{K}, W_{i}^{V}, W_{i}^{O}\right)$.
We now consider the squared-norm function

$$
\Omega_{x}: \mathbb{R}^{h d_{m} \times n} \times \mathbb{R}^{h d_{m} \times n} \times \mathbb{R}^{h d_{m} \times n} \times \mathbb{R}^{h d_{m} \times n} \mapsto \mathbb{R}
$$

generated by the choice of

$$
Z_{x}\left(W_{1}, \ldots, W_{h}\right)=\left[\begin{array}{c}
Z_{x}^{Q}\left(W_{1}^{Q}, \ldots, W_{h}^{Q}\right) \\
Z_{x}^{K}\left(W_{1}^{K}, \ldots, W_{h}^{K}\right) \\
Z_{x}^{V}\left(W_{1}^{V}, \ldots, W_{h}^{V}\right) \\
Z_{x}^{O}\left(W_{1}^{O}, \ldots, W_{h}^{O}\right)
\end{array}\right]
$$

given by

$$
\begin{aligned}
& {\left[Z_{x}^{Q}\left(W_{1}^{Q}, \ldots, W_{h}^{Q}\right)\right]_{j}=Z_{x, j}^{Q}:=W_{j}^{Q} Q_{x}} \\
& {\left[Z_{x}^{K}\left(W_{1}^{K}, \ldots, W_{h}^{K}\right)\right]_{j}=Z_{x, j}^{K}:=W_{j}^{K} K_{x}} \\
& {\left[Z_{x}^{V}\left(W_{1}^{V}, \ldots, W_{h}^{V}\right)\right]_{j}=Z_{x, j}^{V}:=W_{j}^{V} V_{x}} \\
& {\left[Z_{x}^{O}\left(W_{1}^{O}, \ldots, W_{h}^{O}\right)\right]_{j}=Z_{x, j}^{O}:=W_{j}^{O} \mathcal{T}_{j}(x),}
\end{aligned}
$$

for $j=1, \ldots, h$. Since each of the block functions that define $Z_{x}(\cdot)$ are linear, we can apply the same analysis as in the fully connected setting to obtain

$$
\begin{aligned}
& \left\|\left[D Z_{x, j}^{B}\right]^{*}\left(g_{j}\right)\right\|^{2}=\left\langle B B^{*}, g_{j} g_{j}^{*}\right\rangle \quad \forall B \in\left\{Q_{x}, K_{x}, V_{x}\right\} \\
& \left\|\left[D Z_{x, j}^{O}\right]^{*}\left(g_{j}\right)\right\|^{2}=\left\langle\mathcal{T}_{j}(x)\left[\mathcal{T}_{j}(x)\right]^{*}, g_{j} g_{j}^{*}\right\rangle
\end{aligned}
$$

Hence, for appropriately sized gradients $g=\left(g_{1}, \ldots, g_{h}\right)$ where $\left(g_{j}^{Q_{x}}, g_{j}^{K_{x}}, g_{j}^{V_{x}}, g_{j}^{O}\right)$, one has that

$$
\Omega_{x}(g)=\sum_{j=1}^{h}\left[\left\langle\mathcal{T}_{j}(x)\left[\mathcal{T}_{j}(x)\right]^{*},\left(g_{j}^{O}\right)\left(g_{j}^{O}\right)^{*}\right\rangle+\sum_{B \in\left\{Q_{x}, K_{x}, V_{x}\right\}}\left\langle B B^{*},\left(g_{j}^{B}\right)\left(g_{j}^{B}\right)^{*}\right\rangle\right],
$$

and a representation of Ω_{x} may be obtained through the matrices $Q_{x} Q_{x}^{*}, K_{x} K_{x}^{*}, V_{x} V_{x}^{*}$, and $\left\{\mathcal{T}_{j}(x)\left[\mathcal{T}_{j}(x)\right]^{*}\right\}_{j=1}^{h}$, which only consumes $\Theta\left(d_{q}^{2}+h d_{v}^{2}\right)$ additional storage for a batch B.
Notice that this is exceedingly more efficient than the naive approach of materializing each $\nabla_{W} h(x, W)$ for $x \in B$, which consumes $\Theta\left(|B|\left(d_{m} d_{q}+d_{m} d_{v}\right)\right)$ additional storage. Moreover, the classic ghost clipping technique does not immediately apply to $\phi_{x}(W)$ as there is not a simple transform from $\phi_{x}(W)$ to some linear function of W.

E. 2 Layer Normalization

Given scaling variables $\gamma \in \mathbb{R}^{c}$, offset variables $\beta \in \mathbb{R}^{c}$, tolerance $\varepsilon>0$, input $u_{x} \in \mathbb{R}^{d}$ where $c \mid d$, and a linear broadcasting operator $\mathcal{Q}: \mathbb{R}^{c} \mapsto \mathbb{R}^{d}$, the layer normalization layer function $\phi_{x}(\cdot)$ is given by

$$
\phi_{x}(\gamma, \beta)=(\mathcal{Q} \gamma) \bullet\left[\frac{u_{x}-\operatorname{Mean}\left(u_{x}\right)}{\sqrt{\operatorname{Var}\left(u_{x}\right)+\varepsilon}}\right]+\mathcal{Q} \beta
$$

where $A \bullet B$ denotes the Hadamard product between A and B and $\operatorname{Mean}\left(u_{x}\right)\left(\right.$ resp. $\left.\operatorname{Var}\left(u_{x}\right)\right)$ is a vector in \mathbb{R}^{d} (resp. scalar in \mathbb{R}) whose entries are the mean (resp. variance) of the entries in u_{x}.
We now consider the squared-norm function $\Omega_{x}: \mathbb{R}^{c} \times \mathbb{R}^{c} \mapsto \mathbb{R}$ generated by the choice of $Z_{x}(\gamma, \beta)=(\gamma, \beta)$, i.e., $Z_{x}(\cdot)$ is the identity function. Immediately, one has that $\Omega_{x}(g)=\|g\|^{2}$, which incurs a compute (resp. storage) cost of $\Theta(|B| c)$ (resp. $\Theta(1)$).
More interestingly, when $2 c \ll d$, this approach is strictly better than both the naive approach and the ghost clipping technique when applied with $Z_{x}(\gamma, \beta)=\phi_{x}(\gamma, \beta)$. In the former case, it is straightforward to see that we incur a compute (resp. storage) cost of $\Theta(|B| c)$ (resp. $\Theta(|B| c)$). To analyze the latter case, let $D_{x} \in \mathbb{R}^{d \times d}$ be a diagonal matrix given by

$$
\left[D_{x}\right]_{i i}=\left[\frac{u_{x}-\operatorname{Mean}\left(u_{x}\right)}{\sqrt{\operatorname{Var}\left(u_{x}\right)+\varepsilon}}\right]_{i} \quad i=1, \ldots, d
$$

and observe that

$$
\phi_{x}(\gamma, \beta)=\underbrace{\left[\begin{array}{cc}
D_{x} \mathcal{Q} & \mathcal{Q}
\end{array}\right]}_{=: U_{x}}\left[\begin{array}{l}
\gamma \\
\beta
\end{array}\right] .
$$

Consequently, the classic ghost clipping technique yields the decomposition

$$
\Omega_{x}(g)=\left\langle U_{x} U_{x}^{*}, g g^{*}\right\rangle=\left\langle D_{x} \mathcal{Q} \mathcal{Q}^{*} D_{x}+\mathcal{Q} \mathcal{Q}^{*}, g g^{*}\right\rangle
$$

for $g \in \mathbb{R}^{d}$, which is incurs a steep compute (resp. storage) cost of $\Theta\left(d^{2} c+d^{2}|B|\right)$ (resp. $\Theta\left(d^{2}\right)$) for general \mathcal{Q} and $2 c \ll d$.

F Additional Experiments

F. 1 Effect of Batch Size on Fully-Connected Layers

Figure 4 presents numerical results for the same set of experiments as in Subsection 5.1 but for different batch sizes $|B|$ instead of the output dimension q.

Figure 4: Runtime and memory cost graphs for fully-connected layer computations with bias dimensions $m=\left\{2^{1}, 2^{2}, \ldots, 2^{11}\right\}$ and batch sizes $|B|=250,500,1000$.

Similar to Subsection 5.1, the results in Figure 4 are more favorable towards Adjoint compared to GhostClip.

