
A Experiment Setup

We first elaborate on the setups for all the experiments, including retrieval and embedding arith-
metic, uni-modal classification, multi-modal classification, and Contrastive Captioner (CoCa) image
captioning and retrieval, in each separate section.

A.1 Cross-modal Retrieval and SIMAT

Dataset Here, we hold the Flickr30k and MS COCO, two representative vision-language benchmark
datasets. Flickr30k contains 30K image-text pairs as a train split4, 1k for validation and test splits5.
For MS COCO, we adopt the 2017 version of it from the COCO Database6. MS COCO contains
118k image-text pairs for train split and 5k for both validation and test splits. When there are multiple
captions for one image, we always select the first caption to construct an image-text pair. To validate
the multi-modal embedding arithmetic, we use the SIMAT dataset [88]. SIMAT is a benchmark
created for evaluating the text-driven image transformation performance of multi-modal embedding.
It contains 6k images, 18k transformation queries that have pairs of (source word, target word,
source image, target image), and 645 captions constructed with subject-relation-object triplets that
have at least two corresponding images. The goal of SIMAT task is to retrieve an image, which is
well-modified by a specific text transform to match with the ground truth transform target images.

Model Description For retrieval and embedding arithmetic tasks, we adopt CLIP ViT-B/32 check-
point of OpenAI official lease7 as our backbone model. For cross-modal retrieval with disjointly pre-
trained uni-modal models, we utilize ResNet-50 [74] with a pre-trained checkpoint of torchvision
as an image encoder and BERT-base-uncased from HuggingFace as a text encoder. To match
the dimensions of these two uni-modal models, we add a projection head on top of each encoder,
respectively.

Baseline Methods First, we consider the zero-shot inference of CLIP (ZS) [19] as a strong baseline
(in the case of retrieval with uni-modal pre-trained models, we just project the image and text
embeddings to shared vector space with randomly initialized matrix, and perform similarity-based
inference as ZS.), and embedding shift (ES) [27] which computes a delta vector (difference between
mean vectors of image and text embeddings) and then manually modifies the modality gap along
with delta vector direction without explicit training. Then, a vanilla fine-tuning (FT) with standard
contrastive loss (Eq. 1 of main paper) and its higher-temperature variants (τ = {0.05, 0.01}) are
considered. Additionally, we take account of two uni-modal mixup-based contrastive learning
methods i-Mix [50] and Un-Mix [51] those mix images in the input space. While the original
implementation of i-Mix takes a randomly sampled image as a mixture component, we take a flipped
batch sample as a mixture component for computational efficiency like as Un-Mix. So the only
difference between i-Mix and Un-Mix is whether we construct the final objective as a sum of normal
and mixed sample contrastive loss [51] or sorely mixed sample contrastive loss ([50]).

Metric As a standard metric for retrieval tasks, we report top-1 recall (R1) and top-5 recall (R5) on
both image-to-text and text-to-image directions. For SIMAT task, following the original paper [88],
we performed the OSCAR-based evaluation and reported the SIMAT score in the original paper. It
measures the similarity between the transformed image and text captions via OSCAR framework [91].

Implementation Detail We fine-tune CLIP with eval() mode stable training8 and under FP16
precision for computational efficiency. On both Flickr30k and MS COCO, we train each method
over 9 epochs with batch size 128 via Adam optimizer (β1 = 0.9, β2 = 0.98, and ϵ = 1e− 6). As
shared hyperparameters, we search for the best initial learning rate from {1e-6, 3e-6, 5e-6, 7e-6, 1e-5}
and weight decay from {1e-2, 2e-2, 5e-2, 1e-1, 2e-1} for all training methods (Initial learning rate
is decayed in each epoch by the exponential scheduler with decaying parameter 0.9). To construct
our complete objective m3-Mix, we weighing the LCLIP and Lm2-Mix and uni-modal geodesic Mixup

4https://www.kaggle.com/hsankesara/flickr-image-dataset
5https://github.com/BryanPlummer/flickr30k_entities
6https://cocodataset.org/#download
7https://github.com/openai/CLIP
8https://github.com/openai/CLIP/issues/150/
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variants (LV/L/V L-Mix). Specifically, we pivot the weight of LCLIP as 1.0 and sweep the weighting
coefficient of other loss components for each dataset generally from {0.0, 0.01, 0.1, 0.2, 0.3, 0.5}9.
The parameter α of Beta distribution Beta(α, α) that determines the mixture ratio is set to 0.5 for the
multi-modal Mixup and 2.0 for uni-modal Mixups. For embedding shift (ES) [27], we sweep λ from
-0.1 to 0.1 by 0.01 and report the best results among them. While the search range of ES from official
implementation is from -2.5 to 2.5 by 0.125, we observe the finer search range gives better results.

A.2 Uni-modal Classification

Dataset We consider three common transfer learning benchmark datasets, OxfordPets [75],
SVHN [76], and CLEVR [77], to validate the general few-shot adaptation capability. For eval-
uation of robustness on distribution shift, we consider the ImageNet-1k as a source dataset (models
are adapted to) and ImageNetV2 [78], ImageNet-A [79], ImageNet-R [80], and ImageNet-Sketch [81]
as target evaluation datasets those are considered as different kinds of natural distribution shift from
ImageNet.

Model Description For uni-modal few/zero-shot classifications, we also adopt CLIP ViT-B/32 as
the default backbone for ours and baseline fine-tuning methods in our manuscript and also evaluate
CLIP ViT-B/16 and CyCLIP ResNet50 in Section C of this Supplementary Material.

Baseline Methods As standard baselines, we first consider zero-shot CLIP (ZS) and vanilla fine-
tuning (FT) with contrastive loss. Then, we perform exhaustive ablation (V -, L-, V L-, and m2-Mix)
as well as our complete objective m3-Mix with its high-temperature variant. To further compare
our approach with state-of-the-art fine-tuning methods, we consider MaPLe [64] that optimizes the
continuous prompts inside the text and image encoders of CLIP, and the contrastive loss extended
version of uni-modal fine-tune methods: LP-FT [11] which trains classification head and full modal
separately in a two-stage manner, and WiSE-FT [10] which performs parameter-space ensemble
between the pre-trained checkpoint and fine-tuned checkpoint. Additionally, we consider the ES and
our m3-Mix as the plug-in methods to improve the above three state-of-the-art fine-tuning methods
that are denoted as method names w/ ES or m3-Mix in Tab. 4 and 5 of the main paper.

Metric For both the few-shot adaptation and distribution shift setting, we report top-1 accuracy as
the In-Distribution Accuracy (ID Acc.) and Out-Of-Distribution Accuracy (OOD Acc.), respectively.

Implementation Detail In this paper, we propose new contrastive losses m2-Mix and m3-Mix
which consume the image-text paired instances. However, the above datasets provide class name
labels only and do not have captions corresponding to each image. To make CL methods amendable
for this setting, we adopt a common prompt ’a photo of classname’ that wraps the class name
with a short context and use this as captions of images. Different from image-caption-based contrastive
learning on Flickr30k and MS COCO, a batch of ImageNet-1K contains multiple samples that are
assigned to the same class. We construct the label map for contrastive loss by regarding all of
the samples from a class as positives. Following [82, 64], we perform the tasks under the same
few-shot evaluation protocol: 16-shot training samples per class and inference on the entire test set.
To construct the contrastive loss, we first compute the pivot classifier embedding by forwarding all
possible class category names to the text encoder. Then, we calculate the pairwise similarity between
in-batch image embedding and pivot embedding and construct the label matrix by reflecting the
fact that there are many positive images corresponding to a text embedding (for each class). To
implement the contrastive loss with multi-modal Mixup, we mix the in-batch image embedding
and text embedding and contrast the resulting mixed embedding with image and pivot embedding,
respectively.

About training configuration, in the distribution shift setting, we train all methods (except MaPLe) on
20 epochs with batchsize 100 via AdamW optimizer with default parameters. Due to MaPLe’s huge
memory requirements, we set the batchsize to 4 and train a single epoch. As shared hyperparameters,
we pivot the initial learning rate to 1e-6 and search for the best maximum learning rate from {1e-6,
3e-6, 5e-6, 7e-6, 1e-5} and weight decay from {0, 1e-3, 5e-3, 1e-2, 5e-2 1e-1} for all training methods
(except MaPLe’s learning rate sweep from {5e-3, 1e-3, 5e-4, 1e-4}). Here we use the one-cycle

9We scheduled the strength of sum of the Mixup-based loss terms by L_mix/epoch

18



cosine learning rate scheduler. For the few-shot adaptation in a general setting, we train each method
over 200 epochs (40 epochs for MaPLe) with the same batchsize, optimizer, and hyperparameter
sweep range. In both two settings, we use the same data augmentation procedure (random resize crop
and random flip) [82, 64] for all methods. Note that for LP-FT, we train both the linear head and
full models during half of the entire epochs, and we do not use data augmentation in the linear head
training phase following the authors’ proposal. For our methods, weighting coefficient of m2-Mix
and uni-modal mixups are explored over {0.01, 0.1, 0.2, 0.3, 0.4, 0.5}, and the parameters of Beta
distribution are swept over {0.2, 0.5}.

A.3 Multi-modal Classification

Dataset To evaluate the multi-modal representation learning under video emotional classification,
we consider the CMU-MOSEI [92], a popular benchmark for multi-modal sentiment analysis. CMU-
MOSEI consists of three modalities textual (T), visual (V), and audio (A), and contains 23,453
YouTube video clips about diverse movie reviews, and each clip is annotated with ordinal labels
ranging from -3 (strong negative) to 3 (strong positive). In the training phase, three modalities are
fully available to all methods, and only one or two modalities are given in the evaluation phase to
measure the robustness under modality missing as well as the informativeness of individual-modality
representations.

Model Description and Baseline Methods To construct backbone architecture, following Poklukar
et al. [84], we adopt the Multimodal Transformer (MulT) [86] as a joint-modal encoder which
enables the commutation among modalities with cross-modal attention block. To enhance the explicit
alignment between modalities, Poklukar et al. [84] propose Geometric Multimodal Contrastive
Learning (GMC). In addition to the joint encoder. GMC introduces lightweight modality-specific
encoders constructed by a single Gated Recurrent Unit [93] followed by a linear projection layer,
then performs contrastive learning between joint representation (from a joint encoder) and uni-modal
representation (from modality-specific encoders). We set the MulT as a standard baseline, GMC as
a contrastive learning-enhanced baseline, and then plug our m2-Mix to GMC objective to validate
whether our method can give additional benefits to multi-modal representation learning.

While MulT learns the joint encoder only with standard classification loss (i.e., cross-entropy loss;
Lce), GMC learns joint and modality-specific encoders with the objective function Lce +LGMC where
LGMC deals with the sum of all one-to-joint contrastive losses. On top of GMC, Lm2-Mix is integrated
with a trade-off hyperparameter β: Lce + LGMC + βLm2-Mix.

Metric As mentioned earlier, in the inference time, each method can encounter partial modalities
among T, V, and A. To this end, we evaluate each method under 7 environments sorted by the available
modalities: (T), (V), (A), (T,V), (T,A), (V,A), (T,V,A). Then, we measure the classification accuracy,
F1-score (in supplementary material), uniformity, and alignment.

Implementation Detail We train all methods over 40 epochs with batchsize 128 via Adam optimizer
with the default configuration. Following [84], we set the learning rate to 1e-3 and do not apply the
weight decay. The trade-off parameter β and the parameter α of Beta distribution Beta(α, α) are
optimized among {0.1, 0.2, 0.3, 0.4, 0.5} and {0.5, 1.0, 1.5, 2.0}, respectively. Those are selected
β = 0.2 and α = 2.0. To implement the contrastive loss with m2-Mix, we randomly sample two
modalities for each training epoch and mix them to build a mixed representation. Then, we compute
(1) the positive similarity between paired mixed and joint representation and (2) the negative similarity
between non-paired mixed and joint representation. Finally, we compute the modified Lm2-Mix as a
negative logarithm of the sum of positive similarities over the sum of negative similarities. Different
from the CLIP fine-tuning cases, we use the multi-modal mixed representation as both positive
and negative pairs with the target joint representation because our goal in this task is to align the
embedding between the joint and other modalities. For inference with partial modalities, we average
the representations from given modalities to make a single embedding that is sent to the classifier
head for a fair comparison with [86, 84].
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A.4 Multi-modal Mixup for Contrastive Captioner

Dataset To demonstrate the effectiveness of the multi-modal Mixup on a state-of-the-art vision-
language model, Contrastive Captioner (CoCa), we perform cross-modal retrieval on Flickr30k and
MS COCO, and image captioning task on MS COCO (that of 2014).

Model Description and Baseline Methods We adopt LAION-2B pre-trained CoCa ViT-L/14
from OpenCLIP library as our backbone model, and consider three learning objectives for CoCa
fine-tuning: (1) autoregressive captioning loss (Cap), (2) contrastive loss and captioning loss (CL +
Cap), and (3) contrastive loss, Lm2-Mix, and captioning loss (CL w/ Lm2-Mix+ Cap).

Metric For image-text retrieval, we adopt top-1 and top-5 recalls likewise CLIP retrieval setup. For
image captioning, five standard metrics: BLEU-4 [94], METEOR [95], ROUGE-L [96], CIDEr [97],
and SPICE [98] are evaluated.

Implementation Detail For all three methods, we train the model on MS COCO over one epoch
with OpenCLIP10-provided hyperparameter configuration, i.e., 128 as batch size, 1e-5 as learning
rate, 0.1 as weight decay, and 1000 as learning rate warm-up steps. After fine-tuning on MS COCO,
we evaluate the model on MS COCO for fine-tuned image-text retrieval and image captioning, and on
Flickr30k for zero-shot transferred image-text retrieval. Here, we adopt CLIP_benchmark11 library
for easy evaluation. For training of CL + Cap, we weight LCL as 1.0 and LCap as 2.0. Our m2-Mix
related parameters are explored over {0.1, 0.2, 0.3, 0.4, 0.5, 1.0} for Beta distribution parameter and
{0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.7, 1.0} for Lm2-Mix weighting coefficient.

10https://github.com/mlfoundations/open_clip
11https://github.com/LAION-AI/CLIP_benchmark
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B Pseudo Code

Algorithm 1: PyTorch-style Implementation Code for Geodesic Multi-Modal Mixup
# X,Y : image batch, text batch
# f,g : learnable image encoder and text encoder
# t1, t2 : trainable temperature parameters
# alpha1, alpha2 : parameters for Beta Distribution
# args.{m2mix, vmix, lmix, vlmix} : weighting parameters
def ce(logits,targets):

return (-targets*nn.LogSoftmax(dim=-1)(logits)).sum()
def cross_entropy_2D(logits,targets):

return ((ce(logits,targets)+ce(logits.T,targets.T))/2).mean()
def geodesic_mix(lambda,a,b):

theta = torch.acos( (a*b).sum(dim=[1])).view(a.shape[0],1)
n1 = torch.sin(lambda*theta)/torch.sin(theta)*a
n2 = torch.sin((1-lambda)*theta)/torch.sin(theta)*b
return n1+n2

def ContrastiveLoss(X,Y,f,g,t1,t2,args)
I = torch.eye(X.shape[0])
I_R = torch.flip(I,dims=[0])
I_X, I_XD = I+I_R, 1-(I+I_R)
If, Tf = f(X), g(Y) # L2 normalized features
logits = If@Tf.T # Original logit
loss = cross_entropy_2D(logits/t1,I) # 2D Cross Entropy
if args.m2mix:

lambda = random.betavariate(alpha2,alpha2)
mix = geodesic_mix(lambda,If,Tf)
logits2_i = mix@Tf.T
logits2_i = logits*I + logits2_i*(1-I)
logits2_t = mix@If.T
logits2_t = logits.T*I + logits2_t*(1-I)
loss += args.m2mix*(ce(logits2_i/t2,I) + ce(logits2_t/t2,I))/2

if args.vmix:
lambda = random.betavariate(alpha1,alpha1)
mix = geodesic_mix(lambda,If,If.flip())
logits2 = mix@Tf.T
logits2 = logits2*I_X + logits*I_XD
loss += args.vmix*cross_entropy_2D(logits2/t1,lambda*I +
(1-lambda)*I_R)

# L-Mix is omitted
if args.vlmix:

lambda = random.betavariate(alpha1,alpha1)
mix_I = geodesic_mix(lambda,If,If.flip())
mix_T = geodesic_mix(lambda,Tf,Tf.flip())
logits2 = mix_I@mix_T.T
logits2 = logits2*I + logits*(1-I)
loss += args.vlmix*cross_entropy_2D(logits2/t1,I)

return loss
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C Additional Results

C.1 Mixed Embedding Analysis

In Fig. 8, we post examples of image-retrieval results by our m2-Mix. Big images and text on the left
denote the original image and text pair. The right top and bottom denote the top-3 retrieved images
from the original image embedding and mixed embedding, respectively. Overall, retrieved images by
m2-Mixed embedding contain more rich semantics that is derived from both image and text.

Figure 8: Retrieved images by original image embedding and mixed embedding on Flickr30k.

C.2 Additional Results on Uni-modal Classification

This section provides results of 16-shot uni-modal classification on four new datasets (EuroSAT [99],
FGVC Aircraft [100], UCF101 [101], Stanford Cars [102]) with two different models (CLIP ViT-B/16
and CyCLIP [33] ResNet50) that are lacking in the main paper. We perform fine-tuning of them
from their official checkpoint relase1213 with the same hyperparameter sweep range described in A
of Supplementary. In Table 11, our m2-Mix brings consistent performance gain across all datasets
and models with some significant boosting on the FGVC Aircraft and Stanford Cars datasets. Thus,
m2-Mix is a general approach that can enhance the representation learning on various settings.

Next, in Figure 9 and 10, we perform ablation on the parameter α of Beta distribution, which
stochastically determines the mixing ratio between two modalities. Red and Blue colors denote
a constant parameter and a linear scheduling parameter, respectively. We see that lower value α
(U-shaped Beta distribution) generally achieves better performance than larger values (uniform or
reversed U-shaped) on the two classification datasets.

Linear scheduling of Beta parameters drives promising results in some cases, e.g., 1.0− > 0.1 and
2.0− > 0.1 in Stanford Cars. It seems crucial to enforce that the shape of Beta distribution ends up
with a U-shape for the success of scheduling variants. That is, the small-to-many mixing fashion is
better than that of half-to-half for the geodesic multi-modal Mixup on classification.

12https://github.com/openai/CLIP
13https://github.com/goel-shashank/CyCLIP
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Table 11: Few-shot classification results with CLIP-VIT-B/16 and CyCLIP-RN50 models. We
follow the same few-shot evaluation protocol and contrastive learning strategy with Sec 5.4. in our
manuscript. m2-Mix consistently outperforms the baseline methods across four datasets. Especially,
on Aircraft, m2-Mix achieves 8.5% and 4.7% gain over FT in CLIP and CyCLIP, respectively, and
5.2% gain over FT in CyCLIP on Cars.

Model Method Dataset
EuroSAT Aircraft UCF101 Cars

CLIP (ViT-B/16) ZS 48.41 24.81 67.46 65.33
FT 94.03 60.61 86.36 88.58
FT w/ m2-Mix 94.33 69.07 86.94 90.36

CyCLIP (RN50) FT 84.98 48.19 67.25 67.02
FT w/ m2-Mix 85.22 52.96 68.97 72.22

Figure 9: Few-shot classification results on FGVC Aircraft dataset. We varied the parameter of Beta
distribution, constant (red) or scheduled (blue), to simulate diverse situations of mixed samples. It
always achieves better performance than FT (60.61), even under varying parameters.

Figure 10: Few-shot classification results on Stanford Cars dataset. We varied the parameter of Beta
distribution, constant (red) or scheduled (blue), to simulate diverse situations of mixed samples. It
generally achieves better performance than FT (88.58), even under varying parameters.

C.3 Additional Results on Multi-modal Classification

In addition to classification accuracy (in the main paper), we additionally present the F1-score (in
Tab. 12) for diagnosis on classification results. While GMC with m2-Mix is outperformed by GMC
in two of three single-modality cases, it shows superior results on two-modality-given cases based on
explicit enforcement of bi-to-joint alignment during training.
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Table 12: Classification F1-score on CMU-MOSEI under complete and partial observation modalities.
We report the mean performance and standard deviation of five runs.

Method Test-time Observed Modalities

Full(T+V+A) T V A T+V T+A V+A

MulT 0.8056±0.004 0.6909±0.051 0.5678±0.107 0.6021±0.151 0.6453±0.096 0.6657±0.097 0.5922±0.111
GMC 0.8054±0.001 0.7846±0.006 0.6548±0.008 0.6910±0.008 0.7747±0.009 0.7810±0.003 0.6978±0.004
GMC+m2-Mix 0.8086±0.001 0.7882±0.005 0.6522±0.006 0.6875±0.0080 0.7814±0.004 0.7840±0.004 0.6988±0.003

(a) MulT (b) GMC (c) GMC+m2-Mix

Figure 11: t-SNE [85] for CMU-MOSEI, which has textual (T), visual (V), and audio (A) modalities.
Top row represents when the only textual (T) information is given, and the bottom row corresponds
to when the textual (T) and visual (V) information are given. The pink and green color denotes the
embedding of partial and joint modality.

Fig. 11 shows the embedding t-SNE of each method given one (top row) or two (bottom row)
modalities in test-time. Compared with MulT, GMC strongly aligns the embedding of partial and
joint modality based on its explicit enforcement, and the alignment is further enhanced by the
aid of m2-Mix, which results in superior performance (in Tab. 7 of the main paper, Tab. 12 of
supplementary) when only partial (missing modality) information is given during test-time. These
results justify the use of our m2-Mix for robust multi-modal representation learning under missing
modality scenarios.
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C.4 Effect of m2-Mix on Contrastive Learning

This section provides a more detailed analysis of m2-Mix. Specifically, we present (i) the proportion
of negative pairs (original and mixed) that exceed the similarity between that of positive pairs (See
Fig. 12 - 15), and (ii) the similarity comparison between positive and original negative pairs with and
without Lm2-Mix (See Fig. 16 and 17). All results are from cross-modal retrieval with CLIP ViT-B/32
on Flickr30k and MS COCO.

Fig. 12 - 15 show the average proportion of in-batch negative pairs’ similarities that exceeds the
similarities of positive pairs during training iterations (dataset: MS COCO - Fig. 12 and 13, Flickr30k
- Fig. 14 and 15, similarity computation: I-to-mixed - Fig. 12 and 14, T -to-mixed - Fig. 13 and 15).

Figure 12: Hard negative proportion by I-to-
mixed samples’ similarities on MS COCO.

Figure 13: Hard negative proportion by T -to-
mixed samples’ similarities on MS COCO.

Figure 14: Hard negative proportion by I-to-
mixed samples’ similarities on Flickr30k.

Figure 15: Hard negative proportion by T -to-
mixed samples’ similarities on Flickr30k.

When we train our model with learning objective LCLIP + Lm2-Mix, the similarities of negative pairs
by our m2-Mix significantly higher than not only original negatives’ similarities but also positive
similarities. Especially in the early training iterations, the proportion is about one in Fig 12 - 14, i.e.,
almost all of the in-batch negative pairs have higher similarities than positive ones. These results
advocate our assumption in proof of Proposition 4.2. (of the main paper and Proposition 1 of this
supplementary). That is, m2-Mix-generated negative pairs empirically have higher similarities than
positive ones. Even though such a hard negative proportion is decaying as the training progresses (by
pursuing alignment), it still has not vanished to zero, i.e., uniformity is encouraged until the end of
training while the magnitude is getting weaker.

Next, in Fig. 16 left and 17 left, we present the in-batch averaged pairwise similarity from normal
negative pairs and positive pairs, which contribute to the computation of LCLIP. We evaluate the
similarities under two scenarios whether our Lm2-Mix is adopted together with LCLIP (dashed line) or
not (solid line). Among negative pair similarities, we only consider that of the top-1 hardest negative
pair that is related to the definition of relative alignment (Eq. 2 in the main paper) and contrastive
loss in an asymptotic scheme (Theorem 4.2. in the main paper).

25



As we can see in both Fig. 16 and 17, the top-1 original negatives’ similarities and positives’
similarities are increased by using m2-Mix, even though the hard negatives generated by m2-Mix
are not explicitly consumed in LCLIP. Consequently, the alignment is strongly enhanced (left side
of Fig. 16 and 17). The results can be summarized as follows: (1) Whether Lm2-Mix is used or not,
the similarities between positive pairs are larger than that of original negative pairs during the whole
training time. (2) However, if Lm2-Mix is used with LCLIP, the top-1 negative similarities are increased.
(3) As a result, the similarities between positive pairs are increased to decrease the contrastive loss
LCLIP (which converges asymptotically to triplet loss).

Figure 16: In-batch averaged pairwise similarity and alignment comparison over training iterations
with and without m2-Mix on MS COCO. (Left) similarities of original negative pairs (top-1 highest)
and that of positive pairs. (Right) alignment comparison.

Figure 17: In-batch averaged pairwise similarity and alignment comparison over training iterations
with and without m2-Mix on Flickr30k. (Left) similarities of original negative pairs (top-1 highest)
and that of positive pairs. (Right) alignment comparison.

These empirical results imply that our Lm2-Mix implicitly helps the alignment in LCLIP, and by
minimizing LCLIP + Lm2-Mix, we can deal with both alignment and uniformity better (Proposition
4.2. of main paper).
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D Proof

Theorem D.1 (Hardness of m2-Mixed samples). Let’s assume that two random variables x1

and x2 follow the Md(µ1, κ) and Md(µ2, κ), von Mises–Fisher distribution with mean direction
µ1, µ2 and concentration parameter κ in Rd, respectively. Let x̃ = x1 + x2 and d = 2. Then,
DKL(p(x1)||p(x̃)) ≤ DKL(p(x1)||p(x2)) for sufficiently large κ.

Proof of Theorem D.1. Let Md(µ, κ) = Cd(κ) exp(κµ
Tx), where Cd(κ) =

κd/2−1

(2π)(d/2)Id/2−1(κ)
. Let

x1 ∼ M2(µ1, κ) and x2 ∼ M2(µ1, κ), and I denotes the modified Bessel function. From [103],
x̃ ∼ M2(µ̃, κ̃) where µ̃ = µ1 + µ2 and κ̃ = A−1(A(κ)A(κ)), approximately, where A(κ) = I1(κ)

I0(κ)

and A−1 is its inverse. From [104], DKL(p(x1)||p(x2)) = κA(κ)(1 − cos(µ1 − µ2)). Sim-
ilarly, DKL(p(x1)||p(x̃)) = log I0(κ̃) − log I0(κ) + κ̃A(κ̃)(1 − cos(µ1 − µ2)). From [105]
and [106], I0(κ) ≈ exp(κ)√

2πκ
(1 + 1

8κ ) and I1(κ) ≈ exp(κ)√
2πκ

(1− 3
8κ ) for sufficiently large κ. Therefore,

DKL(p(x1)||p(x̃)) ≤ DKL(p(x1)||p(x2)) for sufficiently large κ.

Proposition D.2 (Limiting behavior of LCLIP with m2-Mix). For sufficiently large M , as the tem-
perature of contrastive loss τ → 0+, the LCLIP and Lm2-Mix converge to the triplet loss with
zero-margin (i.e., corresponding to negative Alignment) and negative Uniformity, respectively. That
is: limτ→0+ LCLIP + Lm2-Mix ≃ −(Alignment + Uniformity)

Proof of Proposition D.2. As noted in Section 3., given a training batch {xi, yi}Mi=1 of image-text
pairs and image and text encoders f(·; θ1) and g(·; θ2), and the L2-normalized image-text embeddings
are (I, T ) = {f(xi; θ1), g(yi; θ2)}Mi=1. Then, for θ = {θ1, θ2} and a scalar τ > 0, a standard
contrastive loss adopted by CLIP is formulated as:

C(I, T ; θ) =
1

M

M∑
i=1

− log
exp((Ii · Ti)/τ)∑M

j=1 exp ((Ii · Tj)/τ)
(6)

Although the actual loss function is constructed by averaging two-way contrastive losses, i.e.,
LCL = 1

2 (C(I, T ; θ) + C(T, I; θ)), here, we consider only one-way contrastive loss C(I, T ; θ) for
simplicity. It is easily shown the derivation of the other side by changing the order of I and T .

During pre-training, the temperature τ of CLIP converges to 0.01, which is a significantly small value
that makes the pair-wise similarities sharp. Thus, it will be reasonable to consider an extreme case:
when τ → 0+. In this case, we can approximate the C(I, T ; θ) as follow:

C(I, T ; θ) = lim
τ→0+

1

M

M∑
i=1

− log
exp(Ii · Ti/τ)∑M

j=1 exp (Ii · Tj/τ)
(7)

= lim
τ→0+

1

M

M∑
i=1

−(Ii · Ti)/τ + log

exp (Ii · Ti/τ) +
∑
j ̸=i

exp (Ii · Tj/τ)


= lim

τ→0+

1

M

M∑
i=1

log

1 +∑
j ̸=i

exp ((Ii · Tj)− (Ii · Ti)/τ)


= lim

τ→0+

1

M

M∑
i=1

log

1 + ∑
j∈J (i,I,T )

exp ((Ii · Tj)− (Ii · Ti)/τ)


(where J (i, I, T ) := {j|(Ii · Tj) > (Ii · Ti)})

= lim
τ→0+

1

M

M∑
i=1

1

τ
max

[
max

j
(Ii · Tj)− (Ii · Ti), 0

]
≃ lim

τ→0+
−Alignment(I, T ; θ)

(when maxj(Ii · Tj)− (Ii · Ti) > 0 and M is sufficiently large)
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where maxj(Ii · Tj) denotes the maximum similarity among negative pairs. From this derivation, we
show that the multi-modal contrastive loss only considers the top-1 hardest negative pairs to positive
ones like a triplet loss. As a result, minimizing this loss function is equivalent to maximizing the
relative alignment that we newly defined in this paper (in Section 3. Eq. 2 of main paper), e.g., for
sufficiently large M , minimize

θ
C(I, T ; θ) ≡ maximize

θ
Alignment(I, T ; θ). Note that, however,

if there are no hard negatives that have higher similarity than positives, the above loss term does not
give a meaningful learning signal because the loss already approaches zero. This issue is resolved by
m2-Mix, which generates hard negatives explicitly.

Next, when we consider the m2-Mix-based contrastive loss under same case (τ → 0+), we can obtain
another approximation like below:

Cm2-Mix(I, T ; θ) = lim
τ→0+

1

M

M∑
i=1

− log
exp(Ii · Ti/τ)

exp (Ii · Ti/τ) +
∑

j ̸=i exp (Ii ·mλ(Ii, Tj)/τ)
(8)

= lim
τ→0+

1

M

M∑
i=1

−(Ii · Ti)/τ + log

exp (Ii · Ti/τ) +
∑
j ̸=i

exp (Ii ·mλ(Ii, Tj)/τ)


= lim

τ→0+

1

M

M∑
i=1

log

1 +∑
j ̸=i

exp ((Ii ·mλ(Ii, Tj)− (Ii · Ti))/τ)


= lim

τ→0+

1

M

M∑
i=1

log

1 +∑
j ̸=i

exp (Ii ·mλ(Ii, Tj)/τ)


(by assuming Ii ·mλ(Ii, Tj) > Ii · Ti for all j ̸= i)

= lim
τ→0+

1

M

M∑
i=1

log
∑
j ̸=i

exp (Ii ·mλ(Ii, Tj)/τ)

≃ lim
τ→0+

−Uniformity(I,mλ(Ii, Tj); θ) (for sufficiently large M )

Where mλ(·, ·) is the geodesic Mixup operation with mixing ratio λ. Based on above Eq. 8, we argue
that our m2-Mix asymptotically maximizes the uniformity given sufficiently in-batch large samples
M , i.e., minimize

θ
Cm2-Mix(I, T ; θ) ≡ maximize

θ
Uniformity(I,mλ(Ii, Tj); θ).

To complete the proof, consider the two-side contrastive losses LCLIP = 1
2 (C(I, T ; θ) + C(T, I; θ))

and Lm2-Mix = 1
2 (Cm2-Mix(I, T ; θ)+Cm2-Mix(T, I; θ)). Then, by minimizing the combination of the

standard contrastive loss LCLIP(θ) (Eq. 7) and Lm2-Mix(θ) (Eq. 8), we can approximately maximize
both Alignment and Uniformity.

E Limitation

In this work, we observed that uniformity and alignment (our modified formulation) are both
somewhat correlated with downstream performance, so we argued that uniformity and alignment are
crucial in multi-modal representation learning as well as uni-modal representation learning [25, 26].
However, those two metrics are not absolute ones for various situations, e.g., when the modality-
specific unique information is important, the higher uniformity and alignment can cause the loss of
modality-specific information. The increased computational cost for additional contrastive loss terms
is another limitation.
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