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Abstract

Two salient limitations have long hindered the relevance of optimal transport
methods to machine learning. First, the O(n3) computational cost of standard
sample-based solvers (when used on batches of n samples) is prohibitive. Second,
the mass conservation constraint makes OT solvers too rigid in practice: because
they must match all points from both measures, their output can be heavily influ-
enced by outliers. A flurry of recent works has addressed these computational and
modeling limitations, but has resulted in two separate strains of methods: While
the computational outlook was much improved by entropic regularization, more
recent O(n) linear-time low-rank solvers hold the promise to scale up OT further.
In terms of modeling flexibility, the rigidity of mass conservation has been eased
for entropic regularized OT, thanks to unbalanced variants of OT that can penalize
couplings whose marginals deviate from those specified by the source and target
distributions. The goal of this paper is to merge these two strains, low-rank and
unbalanced, to achieve the promise of solvers that are both scalable and versa-
tile. We propose custom algorithms to implement these extensions for the linear
OT problem and its fused-Gromov-Wasserstein generalization, and demonstrate
their practical relevance to challenging spatial transcriptomics matching problems.
These algorithms are implemented in the ott-jax toolbox [Cuturi et al., 2022].

1 Introduction

Recent machine learning (ML) works have witnessed a flurry of activity around optimal transport
(OT) methods. The OT toolbox provides convenient, intuitive and versatile ways to quantify the
difference between two probability measures, either to quantify a distance (the Wasserstein and
Gromov-Wasserstein distances), or, in more elaborate scenarios, by computing a push-forward map
that can transform one measure into the other [Peyré and Cuturi, 2019]. Recent examples include,
e.g., single-cell omics [Bunne et al., 2021, 2022, Demetci et al., 2020, Nitzan et al., 2019, Cang et al.,
2023, Klein et al., 2023], attention mechanisms [Tay et al., 2020, Sander et al., 2022], self-supervised
learning[Caron et al., 2020, Oquab et al., 2023], and learning on graphs [Vincent-Cuaz et al., 2023].

On the challenges of using OT. Despite their long history in ML [Rubner et al., 2000], OT methods
have long suffered from various limitations, that arise from their statistical, computational, and
modelling aspects. The statistical argument is commonly referred to as the curse-of-dimensionality
of OT estimators: the Wasserstein distance between two probability densities, and its associated
optimal Monge map, is poorly approximated using samples as the dimension d of observation
grows [Dudley et al., 1966, Boissard and Le Gouic, 2014]. On the computational side, computing
OT between a pair of n samples involves solving a (generalized) matching problem, with a price
of O(n3) and above [Kuhn, 1955, Ahuja et al., 1993]. Finally, the original model for OT rests on a
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mass conservation constraint: all observations from either samples must be accounted for, including
outliers that are prevalent in machine learning datasets. Combined, these weaknesses have long
hindered the use of OT, until a more recent generation of solvers addressed these three crucial issues.

The Entropic Success Story. The winning approach, so far, to carry out that agenda has been
entropic regularization methods [Cuturi, 2013]. The computational virtues of the Sinkhorn algorithm
when solving OT [Altschuler et al., 2017, Peyré et al., 2016, Solomon et al., 2016, Le et al., 2021]
come with statistical efficiency [Genevay et al., 2019, Mena and Niles-Weed, 2019, Chizat et al.,
2020], and can also be seamlessly combined with unbalanced formulations by penalizing – rather
than constraint – mass conservation, both for the linear [Frogner et al., 2015, Chizat et al., 2018,
Séjourné et al., 2022, Fatras et al., 2021, Pham et al., 2020] and quadratic [Séjourné et al., 2021]
problems. These developments have all been implemented in popular OT packages [Feydy et al.,
2019, Flamary et al., 2021, Cuturi et al., 2022].

The Low-Rank Alternative. A recent strain of solvers relies instead on low-rank (LR) properties
of cost and coupling matrices [Forrow et al., 2018, Scetbon and Cuturi, 2020, Scetbon et al., 2021].
Much like entropic solvers, these LR solvers have a better statistical outlook [Scetbon and Cuturi,
2022] and extend to GW problems [Scetbon et al., 2022]. In stark contrast to entropic solvers,
however, LR solvers benefit from linear complexity O(nrd) w.r.t sample size n (using rank r and
cost dimension d) that can scale to ambitious tasks where entropic solvers fail [Klein et al., 2023].

The Need for Unbalanced Low-Rank Solvers. LR solvers do suffer, however, from a major practical
limitation: their inability to handle unbalanced problems. Yet, unbalancedness is a crucial ingredient
for OT to be practically relevant. This is exemplified by the fact that unbalancedness played a crucial
role in the seminal reference [Schiebinger et al., 2019], where it is used to model cell birth and death.

Our Contributions We propose in this work to lift this last limitation for LR solvers to:

• Incorporate unbalanced regularizers to define a LR linear solver (§ 3.1);
• Provide accelerated algorithms, inspired by some of the recent corrections proposed by [Séjourné

et al., 2022], to isolate translation terms that appear in dual subroutines (§ 3.2);
• Carry over and adapt these approaches to the GW (§ 3.3) and Fused-GW problems (§ 3.4);
• Carry out an exhaustive hyperparameter selection procedure within large scale OT tasks (spatial

transcriptomics, brain imaging), and demonstrate the benefits of our approach (§ 4).

2 Reminders on Low-Rank Transport and Unbalanced Transport

We consider two metric spaces (X , dX ) and (Y, dY), as well as a cost function c : X ⇥Y ! [0,+1[.
The simplex �+

n holds all positive n-vectors summing to 1. For n,m � 1, a 2 �+
n , and b 2 �+

m,
given points x1, . . . , xn 2 X and y1, . . . , ym 2 Y , we define two discrete probability measures µ
and ⌫ as µ :=

Pn
i=1 ai�xi , ⌫ :=

Pm
j=1 bj�yj where �z is the Dirac mass at z.

Cost matrices. For q � 1, consider first two square pairwise cost matrices, each encoding the
geometries of points within µ and ⌫, and a rectangular matrix that studies that across their support:

A := [dqX (xi, xi0)]1i,i0n, B := [dqY(yj , yj0)]1j,j0m , C := [c(xi, yj)]1in,
1jm

.

The Kantorovich Formulation of OT is defined as the following parameterized linear program:

OT(µ, ⌫) := min
P2⇧a,b

hC,P i , where ⇧a,b :=
�
P 2 Rn⇥m

+ , s.t. P1m = a, PT1n = b
 
. (1)

The Low-Rank Formulation of OT is best understood as a variant of (1) that rests on a low-rank
property for cost matrix C, and low-rank constraints for couplings P . More precisely, Scetbon
et al. [2021] propose to constraint the set of admissible couplings to those, within ⇧a,b, that have a
non-negative rank of r � 1. That set can be equivalently reparameterized as

⇧a,b(r) = {P 2 Rn⇥m
+ |P = Q diag(1/g)RT , Q 2 ⇧a,g, R 2 ⇧b,g, and g 2 �+

r }.
The low-rank optimal transport (LOT) problem simply uses that restriction in (1) to define :

LOTr(µ, ⌫) := min
P2⇧a,b(r)

hC,P i = min
Q2⇧a,g,R2⇧a,g,g2�+

r

hC,Q diag(1/g)Ri . (2)
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Scetbon et al. [2021] propose and prove the convergence of a mirror-descent scheme to solve (2),
and obtain linear time and memory complexities with respect to the number of samples, where each
iteration in that descent scales as (n+m)rd, where d is the rank of C.

The Unbalanced Formulation of OT starts from (1) as well, but proposes to do without ⇧a,b and its
marginal constraints [Frogner et al., 2015, Chizat et al., 2018], and rely instead on two regularizers:

UOT(µ, ⌫) := min
P2Rn⇥m

+

hC,P i+ ⌧1KL(P1m|a) + ⌧2KL(PT1n|b) (3)

where ⌧1, ⌧2 > 0 and KL(p|q) :=
P

i pi log(pi/qi) + qi � pi. This formulation is solved using
entropic regularization, with modified Sinkhorn updates [Frogner et al., 2015]. Proposing an efficient
algorithm able to merge (2) with (3) is the first goal of this paper.

Gromov-Wasserstein (GW) Considerations. The GW problem [Mémoli, 2011] is a generalization
of (1) where the energy QA,B is a quadratic function of P defined through inner cost matrices A, B:

QA,B(P ) :=
X

i,j,i0,j0

(Aii0 �Bjj0)
2PijPi0j0 =1T

mPTA�2P1m + 1T
nPB�2PT1n � 2hAPB,P i (4)

where � is the Hadamard product. To minimize (4), the default approach rests on entropic regulariza-
tion [Solomon et al., 2016, Peyré et al., 2016] and variants [Sato et al., 2020, Blumberg et al., 2020,
Xu et al., 2019, Li et al., 2023]. Scetbon et al. [2022] adapted the low-rank framework to minimize
QA,B over low-rank matrices P , achieving a linear-time complexity when A and B are themselves
low-rank. Independently, [Séjourné et al., 2021] proposed an unbalanced generalization that also
applies to GW and which can be implemented practically using entropic regularization. Finally, the
minimization of a composite objective involving the sum of QA,B with hC, ·i is known as the fused
GW problem [Vayer et al., 2018].

3 Unbalanced Low-Rank Transport

3.1 Unbalanced Low-rank Linear Optimal Transport

We incorporate unbalancedness to low-rank solvers [Scetbon et al., 2021, 2022], moving gradu-
ally from the linear problem to the more involved GW and FGW problem. Using the framework
of [Frogner et al., 2015, Chizat et al., 2018], we extend first the definition of LOT, introduced in (2),
to the unbalanced case by considering the following optimization problem:

ULOTr(µ, ⌫) := min
P : rk+(P )r

hC,P i+⌧1KL(P1m|a) + ⌧2KL(PT1n|b), (5)

where rk+(P ) denotes the non-negative rank of P . Therefore by denoting ⇧r := {(Q,R, g) 2
Rn⇥r

+ ⇥Rm⇥r
+ ⇥Rr

+: QT1n = RT1m = g}, and using the reparameterization of low-rank couplings,
we obtain the following equivalent formulation of ULOT:

ULOTr(µ, ⌫) = min
(Q,R,g)2⇧r

hC,Q diag(1/g)RT i| {z }
LC(Q,R,g)

+ ⌧1KL(Q1r|a) + ⌧2KL(R1r|b)| {z }
Ga,b(Q,R,g)

.
(6)

We introduce the more compact notation Ga,b(Q,R, g) := F⌧1,a(Q1r) + F⌧2,b(R1r), where
F⌧,z(s) := ⌧KL(s|z) for ⌧ > 0 and z � 0 coordinate-wise. To solve (6), and using this split,
we move away from mirror-descent and apply instead proximal gradient-descent for the KL diver-
gence. At each iteration, we consider a linear approximation of LC where a KL penalization is added
to the objective (as in the classical mirror descent scheme). However, we leave Ga,b intact at each
iteration. Borrowing notations from [Scetbon et al., 2021], we must solve at each iteration the convex
optimization problem:

(Qk+1, Rk+1, gk+1) := argmin
⇣2⇧r

1

�k
KL(⇣, ⇠k) + ⌧1KL(Q1r|a) + ⌧2KL(R1r|b) , (7)

where (Q0, R0, g0) 2 ⇧r is the initialization, and the triplet ⇠k := (⇠(1)k , ⇠(2)k , ⇠(3)k ) holds synthetic
costs matrices that are re-computed at each iteration k:

⇠(1)k := Qk � e��kCRk diag(1/gk), ⇠(2)k := Rk � e��kC
TQk diag(1/gk)), ⇠(3)k := gk � e�k!k/g

2
k ,
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with [!k]i := [QT
kCRk]i,i 2 Rr, and (�k)k�0 is a sequence of positive step sizes.

Reformulation using Duality. To solve (7), we apply Dykstra’s algorithm [1983], whose iterations
correspond to an alternating maximization on the dual formulation of (7):
Proposition 1. The convex optimization problem defined in (7) admits the following dual:

sup
f1,h1,f2,h2

Dk(f1, h1, f2, h2) := �F ?
⌧1,a(�f1)�

1

�k
he�k(f1�h1) � 1, ⇠(1)k i

� F ?
⌧2,b(�f2)�

1

�k
he�k(f2�h2) � 1, ⇠(2)k i �

1

�k
he��k(h1+h2) � 1, ⇠(3)k i

(8)

where h1, h2 2 Rr, f1 2 Rn, f2 2 Rm, F ?
⌧,z(·) := supy{hy, ·i � F⌧,z(y)} is the convex conjugate

of F⌧,z . In addition strong duality holds and the primal problem admits a unique minimizer.
Remark 1. While we stick to KL regularizers in this work for simplicity, it is worth noting that this
can be extended to more generic regularizers F⌧1,a and F⌧2,b, as considered by Chizat et al. [2018].

We use an alternating maximization scheme to solve (8). Starting from h(0)
1 = h(0)

2 = 0r, we apply
for ` � 0 the following updates (dropping iteration number k in (7) for simplicity):

f (`+1)
1 := arg sup

z
D(z, h(`)

1 , f (`)
2 , h(`)

2 ), f (`+1)
2 := arg sup

z
D(f (`+1)

1 , h(`)
1 , z, h(`)

2 ),

(h(`+1)
1 , h(`+1)

2 ) := arg sup
z1,z2

D(f (`+1)
1 , z1, f

(`+1)
2 , z2).

These maximizations can all be obtained in closed form, to result in the closed-form updates:

exp(�f (`+1)
1 ) =

 
a

⇠(1) exp(�h(`)
1 )

! ⌧1
⌧1+1/�

, exp(�f (`+1)
2 ) =

 
b

⇠(2) exp(�h(`)
2 )

! ⌧2
⌧2+1/�

g`+1 :=
⇣
⇠(3) � (⇠(1))T exp(�f (`+1)

1 )� (⇠(2))T exp(�f (`+1)
2 )

⌘1/3

exp(�h(`+1)
1 ) =

g`+1

(⇠(1))T exp(�f (`+1)
1 )

, exp(�h(`+1)
2 ) =

g`+1

(⇠(2))T exp(�f (`+1)
2 )

When using “scaling” representations for these dual variables, ` � 0, u(`)
i := exp(�f (`)

i ) and
v(`)i := exp(�h(`)

i ) for i 2 {1, 2}, we obtain a simple update, provided in the appendix (Alg. 5).

Initialization and Termination. We use the stopping criterion proposed in [Scetbon et al., 2021] to
terminate the algorithm, �(⇣, ⇣̃, �) := 1

�2 (KL(⇣, ⇣̃) + KL(⇣̃, ⇣)). Finding an efficient initialization
for that problem is challenging, and various choices have been implemented for instance in [Cuturi
et al., 2022]. We adopt the practical choices proposed in [Scetbon and Cuturi, 2022], using either
random subcoupling matrices or a k-means approach, and also follow them in adapting the choice of
�k at each iteration k of the outer loop. We summarize our proposal in Algorithm 1, which can be
seen as an extension of [Scetbon et al., 2021, Alg.2].

Convergence. The convergence proof for Dykstra’s algorithm, as implemented in Alg. 5 (see ap-
pendix), follows from [Bauschke and Combettes, 2008]). Scetbon et al. [2021] show the convergence
of their scheme towards a stationary point, w.r.t to the criterion �(·, ·, �), for fixed �. The stationary
convergence of our proposed algorithm can be directly derived from their result.

Complexity. Given ⇠, solving Eq. (7) requires a time and memory complexity of O((n + m)r).
However computing ⇠ requires in general O((n2 +m2)r) time and O(n2 +m2) memory. Scetbon
et al. [2021] propose to consider low-rank factorizations of the cost matrix C of the form C ' C1CT

2

where C1 2 Rn⇥d and C2 2 Rm⇥d. In that case computing ⇠ can be done in O((n+m)rd) time
and O((n+m)(r + d)) memory. Such factorizations are either known explicitly (e.g. when using
squared-Euclidean distances) or can be obtained as approximations using the algorithm in [Indyk
et al., 2019], which guarantees that for any distance matrix C 2 Rn⇥m and ↵ > 0 it can output
matrices C1 2 Rn⇥d, C2 2 Rm⇥d in O((m + n)poly( d↵ )) algebraic operations such that with
probability at least 0.99, kC �C1CT

2 k2F  kC �Cdk2F +↵kCk2F , where Cd denotes the best rank-d
approximation to C.

4



Algorithm 1 ULOT(C, a, b, r, �0, ⌧1, ⌧2, �)
Inputs: C, a, b, r, �0, ⌧1, ⌧2, �
Q,R, g  Initialization as proposed in [Scetbon and Cuturi, 2022]
repeat

Q̃ = Q, R̃ = R, g̃ = g,
rQ = CR diag(1/g), rR = C>Q diag(1/g),
!  D(QTCR), rg = �!/g2,
�  �0/max(krQk21, krRk21, krgk21),
⇠(1)  Q� exp(��rQ), ⇠(2)  R� exp(��rR), ⇠(3)  g � exp(��rg),
Q,R, g  ULR-Dykstra(a, b, ⇠, �, ⌧1, ⌧2, �) (Alg. 5)

until �((Q,R, g), (Q̃, R̃, g̃), �) < �;
Result: Q,R, g

3.2 Improvements on the Unbalanced Dykstra Algorithm

A well documented source of instability of unbalanced formulations of OT lies in the fact that the
total mass of the optimal unbalanced coupling is not known beforehand. Séjourné et al. [2022] have
proposed a technique to address this issue, with the benefit of reduced computational costs. They
propose first a dual objective that is translation invariant (TI). We take inspiration from this strategy
and adapt it to our problem, to propose the following variant of (8):

sup
f̃1,h̃1,f̃2,h̃2

 
DTI(f̃1, h̃1, f̃2, h̃2) := sup

�1,�22R
D(f̃1 + �1, h̃1 � �1, f̃2 + �2, h̃2 � �2)

!
(9)

It is clear from the reparameterization that both problems (8) and (9) have the same value and also that
(f̃1, h̃1, f̃2, h̃2) is solution of (9) if and only if (f̃1 + �?

1, h̃1 � �?
1, f̃2 + �?

2, h̃2 � �?
2) is solution of (8)

where (�?
1,�

?
2) solves DTI(f̃1, h̃1, f̃2, h̃2). To solve (9), we show that the variational formulation of

the translation invariant dual objective targeted inside (9) can be obtained in closed form.

Proposition 2. Let f̃1 2 Rn, f̃2 2 Rm and h̃1, h̃2 2 Rr, then the inner problem defined in (9) by
DTI(f̃1, h̃1, f̃2, h̃2) admits a unique solution (�?

1,�
?
2) and we have that

�?
1 :=

✓
1� ⌧1⌧2

(1/� + ⌧1)(1/� + ⌧2)

◆�1✓ ⌧1/�

1/� + ⌧1
c1 �

⌧1/�

1/� + ⌧1

⌧2
1/� + ⌧2

c2

◆
(10)

�?
2 :=

✓
1� ⌧1⌧2

(1/� + ⌧1)(1/� + ⌧2)

◆�1✓ ⌧2/�

1/� + ⌧2
c2 �

⌧1/�

1/� + ⌧1

⌧2
1/� + ⌧2

c1

◆
(11)

where

c1 := log

 
hexp(�f̃1/⌧1), ai

hexp(��(h̃1 + h̃2)), ⇠(3)i

!
, and c2 := log

 
hexp(�f̃2/⌧2), ai

hexp(��(h̃1 + h̃2)), ⇠(3)i

!
.

Using Proposition 2, we perform an alternate maximization scheme on the TI formulation of the
dual DTI. Indeed using Danskin’s theorem (under the assumption that �?

1,�
?
2 do not diverge), one

obtains a variant of Algorithm 5. That TI approach is summarized below in Algorithm 3, using
Algorithm 2 as a subroutine. We show in the experiments section (Exp. 1) that the TI approach has
better computational performance on a simple task.

Algorithm 2 compute-lambdas(a, b, ⇠(3), u1, v1, u2, v2, �, ⌧1, ⌧2)

Inputs: a, b, ⇠(3), u1, v1, u2, v2, �, ⌧1, ⌧2
ũ1  u�1/�/⌧1

1 , ũ2  u�1/�/⌧2
2

c1  log(hũ1, ai)� log(h⇠(3), v�1
1 � v�1

2 i), c2  log(hũ2, bi)� log(h⇠(3), v�1
1 � v�1

2 i)
Result: �?

1, �?
2 as in (10), (11)
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Algorithm 3 ULR-TI-Dykstra(a, b, ⇠, �, ⌧1, ⌧2, �)
Inputs: a, b, ⇠ = (⇠(1), ⇠(2), ⇠(3)), �, ⌧1, ⌧2, �
v1 = v2 = 1r, u1 = 1n, u2 = 1m

repeat

ṽ1 = v1, ṽ2 = v2, ũ1 = u1, ũ2 = u2

�1,�2  compute-lambdas(a, b, ⇠(3), u1, v1, u2, v2, �, ⌧1, ⌧2) (Alg. 2)

u1 =
⇣

a
⇠(1)v1

⌘ ⌧1
⌧1+1/�

exp(��1/⌧1)
⌧1

1/�+⌧1 , u2 =
⇣

b
⇠(2)v2

⌘ ⌧2
⌧2+1/�

exp(��2/⌧2)
⌧2

1/�+⌧2 ,

�1,�2  compute-lambdas(a, b, ⇠(3), u1, v1, u2, v2, �, ⌧1, ⌧2) (Alg. 2)
g = exp(�(�1 + �2))1/3

�
⇠(3) � (⇠(1))Tu1 � (⇠(2))Tu2

�1/3
, v1 = g

(⇠(1))Tu1
, v2 = g

(⇠(2))Tu2

until
1
� max(k log(ui/ũi)k1, k log(vi/ṽi)k1) < �;

Result: diag(u1)⇠
(1)
k diag(v1), diag(u2)⇠

(2)
k diag(v2), g

3.3 Unbalanced Low-rank Gromov-Wasserstein

The low-rank Gromov-Wasssertein (LGW) problem [Scetbon et al., 2022] between the two discrete
metric measure spaces (µ, dX ) and (⌫, dY), written for compactness using (a,A) and (b, B), reads

LGWr((a,A), (b, B)) = min
P2⇧a,b(r)

QA,B(P ), (12)

Building upon § 3.1 and leveraging the TI variant presented in § 3.2, we introduce the unbalanced
low-rank Gromov-Wasserstein (ULGW) problem. There is, however, a significant challenge that
appears when introducing unbalanced regularizers in (12): When P is constrained to be in ⇧a,b, the
first two terms of the RHS in (12) simplify to aTA�2a + bTB�2b. Hence, they are constant and
discarded when optimizing. In an unbalanced setting, these terms vary and must be accounted for:

ULGWr((a,A), (b, B)) := min
(Q,R,g)2⇧r

hA�2Q1r, Q1ri+ hB�2R1r, R1ri

� 2hAQ diag(1/g)RTB,Q diag(1/g)RT i+ ⌧1KL(Q1r|a) + ⌧2KL(R1r|b)
(13)

To solve the problem, we apply the same scheme as proposed for ULOT, that is a proximal gradi-
ent descent where we linearize QA,B and add a KL penalization while leaving the soft marginal
constraints unchanged. Therefore the algorithm to solve ULGW is the same as that solving ULOT,
however, the kernels ⇠k now take into account the quadratic terms of the original LGW problem.
More formally, at each iteration k of the outer loop, we propose to solve

(Qk+1, Rk+1, gk+1) := argmin
⇣2⇧r

1

�k
KL(⇣|⇠k) + ⌧1KL(Q1r|a) + ⌧2KL(R1r|b), (14)

where (Q0, R0, g0) 2 ⇧r is the initialization, (�k)k�0 a sequence of positive step sizes. Using
notation Pk = Qk diag(1/gk)RT

k , the synthetic cost matrices ⇠k := (⇠(1)k , ⇠(2)k , ⇠(3)k ) are updated as:

⇠(1)k := Qk � exp(�2�kA�2Qk1r1
T
r )� exp(�4�kAPkBRk diag(1/gk))) ,

⇠(2)k := Rk � exp(�2�kB�2Rk1r1
T
r )� exp(�4�kBPT

k AQk diag(1/gk))) ,

⇠(3)k := gk � exp(4�k!k/g
2
k) with [!k]i := [QT

kAPkBRk]i,i 2 Rr .

Note that (14) is the exact same optimization problem as (7), where only ⇠k has changed and therefore
can be solved using Algorithm 3. Algorithm 4 summarizes our strategy to solve (13).
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Algorithm 4 ULGW(A,B, a, b, r, �0, ⌧1, ⌧2, �)

Inputs: A,B, a, b, r, �0, ⌧1, ⌧2, �
Q,R, g  Initialization as proposed in [Scetbon and Cuturi, 2022]
repeat

Q̃ = Q, R̃ = R, g̃ = g,
rQ = 4AQ diag(1/g)RTBR diag(1/g) + 2A�2Q1r1T

r ,
rR = 4BR diag(1/g)QTAQ diag(1/g) + 2B�2R1r1T

r ,
!  D(QTAQ diag(1/g)RTBR), rg = �!/g2,
�  �0/max(krQk21, krRk21, krgk21),
⇠(1)  Q� exp(��rQ), ⇠(2)  R� exp(��rR), ⇠(3)  g � exp(��krg),
Q,R, g  ULR-TI-Dykstra(a, b, ⇠, �, ⌧1, ⌧2, �) (Alg. 3)

until �((Q,R, g), (Q̃, R̃, g̃), �) < �;
Result: Q,R, g

Convergence and Complexity. Similarly to linear ULOT, the unbalanced Dykstra algorithm is
guaranteed to converge [Bauschke and Lewis, 2000]. Because we use Algorithm 5, we retain exactly
the same complexity, both in terms of time of memory, to solve these inner problems. The slight
variation in kernel ⇠ compared to ULOT still retains the same O((n2 +m2)r) time and O(n2 +m2)
memory complexities. However, as in ULOT, we can take advantage of low-rank approximations
of both costs matrices A and B to reach linear complexity. Indeed, assuming A ' A1AT

2 and
B ' B1B2 where A1, A2 2 Rn⇥dX and B1, B2 2 Rm⇥dY , then the total time and memory
complexities become respectively O(mr(r + dY ) + nr(r + dX)) and O((n+m)(r + dX + dY )).
Again, when A and B are distance matrices, we use the algorithms from [Indyk et al., 2019].

3.4 Unbalanced Low-rank Fused-Gromov-Wasserstein

We finally focus on the increasingly impactful [Klein et al., 2023] fused-Gromov-Wasserstein problem,
which merges linear and quadratic objectives [Vayer et al., 2018]:

FGW(µ, ⌫) := min
P2⇧a,b

↵hC,P i+ ↵̄QA,B(P ) (15)

where ↵ 2 [0, 1] and ↵̄ := 1�↵ allows interpolating between the GW and linear OT geometries. This
problem remains a GW problem, where one replaces the 4-way cost M [i, i0, j, j0] := (Ai,i0 �Bj,j0)2

appearing in (4) by a composite interpolated cost between the OT and GW geometries, redefined as
M [i, i0, j, j0] = ↵Ci,j + ↵̄(Ai,i0 � Bj,j0)2. Our proposed unbalanced and low-rank version of the
FGW problem includes |P | := kPk1 the mass of P , to homogenize linear and quadratic terms,

ULFGWr(µ, ⌫) := min
P : rk+(P )r

↵|P |hC,P i+ ↵̄QA,B(P ) + ⌧1KL(P1m|a) + ⌧2KL(PT1n|b) ,

(16)
which is expanded through the explicit factorization of P , noticing that |P | = |g| := kgk1:

ULFGWr(µ, ⌫) := min
(Q,R,g)2⇧r

↵|g|LC(Q,R, g) + ↵̄QA,B(Q,R, g) + Ga,b(Q,R, g) (17)

Then by linearizing again H : (Q,R, g)! ↵|g|LC(Q,R, g) + ↵̄QA,B(Q,R, g) with an added KL
penalty and leaving Ga,b unchanged, we obtain at each iteration, the same optimization problem as
in (14) where the kernels ⇠k are now defined as

⇠k := (⇠(1)k , ⇠(2)k , ⇠(3)k ),

⇠(1)k := Qk � exp(��krQHk), ⇠
(2)
k := Rk � exp(��krQHk), ⇠

(3)
k := gk � exp(��krgHk)

rQHk := ↵|gk|CRk diag(1/gk) + ↵̄
�
2A�2Qk1r1

T
r + 4APkBRk diag(1/gk)

�

rRHk := ↵|gk|CTQk diag(1/gk) + ↵̄
�
2B�2Rk1r1

T
r + 4BPT

k AQk diag(1/gk)
�

rgHk := ↵
�
hC,Pki1r � |gk|!lin

k /g2k
�
� 4↵̄!quad

k /g2k

[!lin
k ]i := [QT

kCRk]i,i, [!quad
k ]i := [QT

kAPkBRk]i,i 8 i 2 {1, . . . , r} .

These steps are summarized in Alg. 6 (see appendix). These steps result in a quadratic complexity,
both in time and memory, with respect to the number of points n and m. However, these complexities
become linear when square matrices A,B and rectangular C all admit a low-rank factorization.
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(a) Gene Nrgn: measured vs. predicted expression (b) Gene Slc24a2: measured vs. predicted expression

Figure 1: Exp. 2: Spatial visualization of two mouse brain sections, contrasting observed vs.
predicted (using ULFGW) spatial distributions of expression levels, for two different genes.

4 Experiments

We focus first in Exp. 1 on demonstrating the empirical benefits of the TI variant of our algorithm
to solve linear ULOT, as implemented in Alg. 3 vs. Alg. 5; that algorithm is subsequently used as
an inner routine to solve all quadratic ULR problems. We compare in Exp. 2 unbalanced low-rank
(ULR) solvers to balanced low-rank (LR) counterparts on a spatial transcriptomics task, and follow
in Exp. 3 by comparing ULR solvers to entropic (E) counterparts on a smaller task, to accommodate
entropic solvers’ quadratic complexity. We conclude in Exp. 4 by comparing ULR solvers to [Thual
et al., 2022], which can learn a sparse transport coupling, in the unbalanced FGW setting.

Figure 2: Visualization of measured and predicted tissue regions
in the mouse brain in Exp. 2

Datasets. We consider two real-
world datasets, described in B.1,
and two synthetic datasets, that
are large enough to showcase our
solvers. The real-world datasets
consist of both a shared feature
space, used to compute the costs
matrices for the linear term in the
OT and FGW settings, as well
as geometries that are specific to
each source s and target t mea-
sures, and which are used to com-
pute the costs matrices for the
quadratic term in the GW and
FGW settings. In Exp. 1, we sim-
ply consider two isotropic Gaussians in d = 30 to evaluate the performance of the TI variant on a
liner problem. We use the mouse brain STARmap spatial transcriptomics data from [Shi et al., 2022]
for Exp. 2 and Exp. 3. We use data from the Individual Brain Charting dataset [Pinho et al., 2018],
to replicate the settings of [Thual et al., 2022], in Exp. 4.

Metrics. Following Klein et al. [2023], we evaluate maps by focusing on the two following metrics:
(i) pearson correlation ⇢ computed between the (ground truth) source s feature matrix F s 2 Rn⇥d,
and the barycentric projection of the target t to the source scaled by the target marginals bt. Writing
P as the transport matrix from source to target, this can be computed as Pdiag( 1

bt )F
t; (ii) F1 score

when assessing class transfer (among 11 possible classes), computed between the original source
vector of labels ls, taken in {1, · · · , 11}n, and the inferred labels for the same points, predicted
for each i by taking the argmaxj Bi,j , where B is a matrix of n ⇥ 11 row probabilities, each the
barycentric projection of the target t one-hot encoded labels Lt 2 {0, 1}m⇥11, B := Pdiag( 1

bt )L
t.

Experiment 1: Benchmarking The Translation Invariant Variant. We evaluate the effect of the
proposed TI procedure on the computational cost of ULR solvers: We compare the time taken when
solving unbalanced LR problems, with or without using the TI objective. In Figure 3, we compare
the execution time (using our ott-jax implementation, and a single NVIDIA GeForce RTX 2080
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Ti card) of unbalanced LR Sinkhorn on large and high dimensional Gaussian distributions. The
results presented are averaged over 10 random seeds with error bars. We use a � = 10�9 convergence
threshold and 1000 maximal number of iterations for Dykstra, in 64-bit precision. We observe that
the use of our proposed TI objective is consistently beneficial when solving ULR problems. See also
Appendix B.3 for additional experiments.

Figure 3: Execution time of unbalanced LR Sinkhorn, with (Alg. 3) or without (Alg. 5) the TI
variant. We fix the rank to r = 10; n points (displayed in thousands) are sampled from two Gaussian
distributions in d = 30 of means respectively �1.2 and 1.3, and standard deviations 1 and 0.2.
(left) displays large ⌧ (close to balanced), (right) is smaller ⌧ (more unbalanced). We use the same
convergence threshold for the outer loop, for all sample sizes. As n gets bigger, this results in a
relatively looser threshold, explaining why timings can slightly decrease w.r.t. n. What matters is,
therefore, the comparative performance of TI vs non-TI for a fixed n, not the behaviour w.r.t. n.

solver mass % val ⇢ test ⇢ F1 mac. F1 mic. F1 weig.

LOT 1.000 0.282 0.386 0.210 0.411 0.360
ULOT 0.889 0.301 0.409 0.200 0.425 0.363

LGW 1.000 0.227 0.288 0.487 0.716 0.692
ULGW 1.001 0.222 0.287 0.463 0.701 0.665

LFGW 1.000 0.365 0.443 0.576 0.720 0.714
ULFGW 0.443 0.379 0.463 0.582 0.733 0.724

Table 1: Exp.2, Results for spatial transcriptomics dataset
(brain coronal section from Shi et al. [2022]).

Experiment 2: ULOT vs. LOT on

Gene Expression / Cell Type Anno-

tation. We evaluate the accuracy of
ULOT solvers for a large-scale spatial
transcriptomics task, using gene ex-
pression mapping and cell type anno-
tation. We compare it to the balanced
LR alternative using the Pearson cor-
relation ⇢ as described in the metrics
section. We leverage two coronal sec-
tions of the mouse brain profiled by
STARmap spatial transcriptomics by
[Shi et al., 2022]. They consist of n ⇡ 40, 000 cells in both the source and target brain section.
Each cell is described by 1000 gene features, in addition to 2D spatial coordinates. As a result
A,B are ⇡ 40k ⇥ 40k, and the fused term C is a squared-Euclidean distance matrix on 30D PCA
space computed on the gene expression space. We selected 10 marker genes for the validation and
test sets from the HPF_CA cluster. We run an extensive grid search as reported in B.2, we pick
the best hyperparameters combination using performance on the 10 validation genes as a criterion,
and we report that metric on the other genes in Table 1, as well as qualitative results in Figure 1
and Figure 2. Clearly, ULFGW is the best performing solver across all metrics. Interestingly, the
ULOT does not consistently outperforms its balanced version, and unbalancedness seems to hurt
performance for the LGW solvers. Nevertheless, both solvers display inconsistent performance across
metrics, whereas the ULFGW and LFGW are consistently superior to the rest of the solvers. These
results highlight how the flexibility given by the FGW formulation to leverage common and disparate
geometries, paired with the unbalancedness relaxation, can provide state of the art algorithms for
matching problems in large-scale, real world biological problems.

Experiment 3: ULOT vs. UEOT. We compare the performance of ULOT solvers to their unbal-
anced entropic alternatives (UEOT). We use the same datasets as in Exp. 2, but must pick a smaller
subset (Olfactory bulb), to avoid OOM errors for entropic UGW solvers, since they cannot handle the
40k sizes considered in Exp. 2 (see B.1). This results in n ⇡ 20, 000 source and ⇡ 15, 000 target
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Figure 4: Visualization of measured and predicted right auditory click contrast map in Exp.4.

cells, and 1000 genes. Similar to Exp. 2, the fused term C is a squared-Euclidean distance matrix
on 30-D PCA space, computed on gene expressions. As done in Exp. 2, we select 10 marker genes

solver mass % val ⇢ test ⇢ F1 mac. F1 mic. F1 weig.

UEOT 1.012 0.368 0.479 0.511 0.763 0.751
LOT 1.000 0.335 0.440 0.511 0.760 0.751
ULOT 0.998 0.356 0.461 0.518 0.770 0.762

UEFGW 1.015 0.343 0.475 0.564 0.839 0.831

LFGW 1.000 0.348 0.453 0.512 0.762 0.753
ULFGW 0.339 0.368 0.491 0.556 0.826 0.818

Table 2: Exp. 3: Results for spatial transcriptomics dataset
(Olfactory bulb section from Shi et al. [2022]).

for the validation and 10 genes for the
test set, from cluster OB_1. We run an
extensive grid search, as in Exp. 2 and
B.2. Table 2 shows that ULFGW out-
performs entropic solvers w.r.t. Pear-
son correlation ⇢, but is worse when
considering F1 scores. On the other
hand, ULFGW confirms its superior-
ity compared to the balanced alterna-
tive LFGW. Taken together, these re-
sults suggest that while unbalanced
LR solvers are on par with unbalanced entropic solvers in terms of performance, in small data
regimes, they remain much faster and can unlock the applications of unbalanced OT to larger scales.

Experiment 4: ULOT to align brain meshes. In this experiment, we compare the performance of
our ULFGW solver to FUGW-sparse [Thual et al., 2022], an alternative approach to solve unbalanced
FGW problems, using a two-scale (corse/fine grid) approach to handle large sample sizes. This
method was demonstrated to be effective in aligning brain anatomies, encompassing both mesh
structures and functional signals associated with each vertex. For their empirical analysis, they use
the individual brain charting dataset [Pinho et al., 2018].

solver mass val ⇢ test ⇢

FUGW-sparse 0.999 0.492 0.472
LFGW 1.000 0.513 0.663

ULFGW 0.981 0.533 0.643

Table 3: Results on the brain
anatomy with functional signal data
from Pinho et al. [2018] in Exp.4.

In the absence of other information in the original paper, we
draw inspiration from Pinho et al.’s smaller scale notebook
implementations: We embed the n ⇡ 160, 000 vertices of the
fsaverage7 mesh, into a 30-d space, using an approximation
of the geodesic distances with landmark multi-dimensional
scaling [De Silva and Tenenbaum, 2004] where 2048 points
were used as anchors. Each vertex has an associated functional
signal that entails 22 features. For both the quadratic and linear
terms, we compute the costs based on the squared Euclidean
distance. The coarse grid for FUGW-sparse is built using one-
tenth of n, i.e. ⇡ 16k points. We evaluate all methods by comparing the performance of the best
hyperparameter combination, based on the average correlation between the barycentric projection
and ground-truth value of 5 features, across a test set of 5 contrast maps. In Table 3, we observe that
ULFGW and LFGW outperform FUGW-sparse. In this setting, there is no clear evidence that the
unbalanced version performs better than its balanced counterpart for low-rank methods. See also
Appendix B.2 for additional experimental details and results.

Conclusion. The practical success of OT methods to natural sciences demonstrates the relevance
of OT to their analysis pipelines. Practitioners must, however, often deal with the poor scalability
of OT algorithms, as well as their rigid assumptions w.r.t. mass conservation. While Low-rank OT
approaches hold the promise of scaling OT methods to large sizes, unbalanced formulations have
proved useful to relax mass conservation for entropic OT solvers. We have proposed in this paper
to merge these two strains, and demonstrated the practical relevance of these unbalanced low-rank
solvers on various challenging alignment tasks.
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