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Abstract

We consider the adversarial linear contextual bandit problem, where the loss vectors1

are selected fully adversarially and the per-round action set (i.e. the context) is2

drawn from a fixed distribution. Existing methods for this problem either require3

access to a simulator to generate free i.i.d. contexts, achieve a sub-optimal regret no4

better than Õ(T 5/6), or are computationally inefficient. We greatly improve these5

results by achieving a regret of Õ(
√
T ) without a simulator, while maintaining6

computational efficiency when the action set in each round is small. In the special7

case of sleeping bandits with adversarial loss and stochastic arm availability, our8

result answers affirmatively the open question by [SGV20] on whether there exists9

a polynomial-time algorithm with poly(d)
√
T regret. Our approach naturally10

handles the case where the loss is linear up to an additive misspecification error,11

and our regret shows near-optimal dependence on the magnitude of the error.12

1 Introduction13

Contextual bandit is a widely used model for sequential decision making. The interaction between the14

learner and the environment proceeds in rounds: in each round, the environment provides a context;15

based on it, the learner chooses an action and receive a reward. The goal is to maximize the total16

reward across multiple rounds. This model has found extensive applications in fields such as medical17

treatment [TM17], personalized recommendations [BLL+11], and online advertising [CLRS11].18

Algorithms for contextual bandits with provable guarantees have been developed under various19

assumptions. In the linear regime, the most extensively studied model is the stochastic linear20

contextual bandit, in which the context can be arbitrarily distributed in each round, while the reward21

is determined by a fixed linear function of the context-action pair. Near-optimal algorithms for22

this setting have been established in, e.g., [CLRS11, AYPS11, LWZ19, FGMZ20]. Another model,23

which is the focus of this paper, is the adversarial linear contextual bandit, in which the context is24

drawn from a fixed distribution, while the reward is determined by a time-varying linear function of25

the context-action pair. 1 A computationally efficient algorithm for this setting is first proposed by26

[NO20]. However, existing research for this setting still faces challenges in achieving near-optimal27

regret and sample complexity when the context distribution is unknown.28

The algorithm by [NO20] requires the learner to have full knowledge on the context distribution, and29

access to an exploratory policy that induces a feature covariance matrix with a smallest eigenvalue30

at least λ. Under these assumptions, their algorithm provides a regret guarantee of Õ(
√
dT/λ),31

1Apparently, the stochastic and adversarial linear contextual bandits defined here are incomparable, and their
names do not fully capture their underlying assumptions. However, these are the terms commonly used in the
literature (e.g., [AYPS11, NO20]).
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Table 1: Related works in the “S-A” category. CB stands for contextual bandits and SB stands for
semi-bandits. The relations among settings are as follows: Sleeping Bandit ⊂ Contextual SB ⊂ Linear
CB, Linear CB ⊂ Linear MDP, and Linear CB ⊂ General CB. The table compares our results with
the Pareto frontier of the literature. For algorithms dealing more general settings, we have carefully
translated their techniques to Linear CB and reported the resulting bounds. Σπ denotes the feature
covariance matrix induced by policy π. |A| and |Π| are sizes of the action set and the policy set.

Target Setting Algorithm Regret Simulator Computation Assumption
General CB [SLKS16] (log |Π|)1/3(|A|T )2/3 ✓ poly(|A|, log |Π|, T ) ERM Oracle

Linear MDP
[DLWZ23]

√
dT log |A| ✓ poly(|A|, d, T )

[DLWZ23, SKM23] d(log |A|)1/6T 5/6 poly(|A|, d, T )
[KZWL23] (d7T 4)1/5 + poly

(
1
λ

)
T d ∃π,Σπ ⪰ λI

Linear CB
Algorithm 1 d2

√
T poly(|A|, d, T )

Algorithm 2 d
√
T T d

Contextual SB [NV14] (dT )2/3 poly(d, T )
Sleeping Bandit [SGV20]

√
2dT poly(d, T ) (|A| ≤ d)

where d is the feature dimension and T is the number of rounds. These assumptions are relaxed in32

the work of [LWL21], who studied a more general linear MDP setting. When specialized to linear33

contextual bandits, [LWL21] only requires access to a simulator from which the learner can draw34

free i.i.d. contexts. Their algorithm achieves a Õ((dT )2/3)) regret. The regret is further improved to35

the near-optimal one Õ(d
√
T ) by [DLWZ23] through refined loss estimator construction.36

All results that attain Õ(T 2/3) or Õ(
√
T ) regret bound discussed above rely on access to the simulator.37

In their algorithms, the number of calls to the simulator significantly exceeds the number of interac-38

tions between the environment and the learner, but this is concealed from the regret bound. Therefore,39

their regret bounds do not accurately reflect the sample complexity of their algorithms. Another set40

of results for linear MDPs [LWL21, DLWZ23, SKM23, KZWL23] also consider the simulator-free41

scenario, essentially using interactions with the environment to fulfill the original purpose of the42

simulator. When applying their techniques to linear contextual bandits, their algorithms only achieve43

a regret bound of Õ(T 5/6) at best (see detailed analysis and comparison in Appendix G).44

Our result significantly improves the previous ones: without simulators, we develop an algorithm that45

ensures a regret bound of order Õ(d2
√
T ), and it is computationally efficient as long as the size of46

the action set is small in each round (similar to all previous work). Unlike previous algorithms which47

always collect new contexts (through simulators or interactions with the environment) to estimate48

the feature covariance matrix, we leverage the context samples the learner received in the past to49

do this. Although natural, establishing a near-tight regret requires highly efficient use of context50

samples, necessitating a novel way to construct the estimator of feature covariance matrix and a51

tighter concentration bound for it. Additionally, to address the potentially large magnitude and the52

bias of the loss estimator, we turn to the use of log-determinant (logdet) barrier in the follow-the-53

regularized-leader (FTRL) framework. Logdet accommodates larger loss estimators and induces a54

larger bonus term to cancel the bias of the loss estimator, both of which are crucial for our result.55

Our setting subsumes sleeping bandits with stochastic arm availability [KMB09, SGV20] and combi-56

natorial semi-bandits with stochastic action sets [NV14]. Our result answers affirmatively the main57

open question left by [SGV20] on whether there exists a polynomial-time algorithm with poly(d)
√
T58

regret for sleeping bandits with adversarial loss and stochastic availability.59

As a side result, we give a computationally inefficient algorithm that achieves an improved Õ(d
√
T )60

regret without a simulator. While this is a direct extension from the EXP4 algorithm [ACBFS02],61

such a result has not been established to our knowledge, so we include it for completeness.62

1.1 Related work63

We review the literature of various contextual bandit problems, classifying them based on the nature64

of the context and the reward function, specifically whether they are stochastic/fixed or adversarial.65
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Contextual bandits with i.i.d. contexts and fixed reward functions (S-S) Significant progress has66

been made in contextual bandits with i.i.d. contexts and fixed reward functions, under general reward67

function classes or policy classes [LZ07, DHK+11, ADK+12, AHK+14, SLX22]. In [DHK+11,68

ADK+12, AHK+14], the algorithms also use previously collected contexts to estimate the inverse69

probability of selecting actions under the current policy. However, these results only obtain regret70

bounds that polynomially depend on the number of actions. Furthermore, these results rely on having71

a fixed reward function, making their techniques not directly applicable to our case even if we allow72

poly-action dependence. For the linear case, [HYF22] provides a reduction from the original problem73

to one with a fixed action set and fixed reward function. Our work can be viewed as a generalization74

of their result to the adversarial reward setting.75

Contextual bandits with adversarial contexts and fixed reward functions (A-S) In this category,76

the most well-known results are in the linear setting [CLRS11, AYPS11, ZHZ+23]. Besides the linear77

case, previous work has investigated specific reward function classes [RVR13, LKFS22, FAD+18].78

Recently, [FR20] introduced a general approach to deal with general function classes with a finite79

number of actions, which has since been improved or extended by [FK21, FRSLX21, Zha22]. This80

category of problems is not directly comparable to the setting studied in this paper, but both capture a81

certain degree of non-stationarity of the environment.82

Contextual bandits with i.i.d. contexts and adversarial reward functions (S-A) This is the83

category which our work falls into. Several oracle efficient algorithms that require simulators have84

been proposed for general policy classes [RS16, SLKS16]. The oracle they use (i.e., the empirical risk85

minimization, or ERM oracle), however, is not generally implementable in an efficient manner. For86

the linear case, the first computationally efficient algorithm is by [NO20], under the assumption that87

the context distribution is known. This is followed by [OMvE+23] to obtain refined data-dependent88

bounds. A series of works [NO21, LWL21, DLWZ23, SKM23] apply similar techniques to linear89

MDPs, but when specialized to linear contextual bandits, they all assume known context distribution,90

or access to a simulator, or only achieves a regret no better than Õ(T 5/6). The work of [KZWL23]91

also studies linear MDPs; when specialized to contextual bandits, they obtain a regret bound of92

Õ(T 4/5 + poly( 1λ )) without a simulator but with a computationally inefficient algorithm and an93

undesired inverse dependence on the smallest eigenvalue of the covariance matrix. Related but94

simpler settings have also been studied. The sleeping bandit problem with stochastic arm availability95

and adversarial reward [KNMS10, KMB09, SGV20] is a special case of our problem where the96

context is always a subset of standard unit vectors. Another special case is the combinatorial semi-97

bandit problem with stochastic action sets and adversarial reward [NV14]. While these are special98

cases, the regret bounds in these works are all worse than Õ(poly(d)
√
T ). Therefore, our result also99

improves upon theirs. 2100

Contextual bandits with adversarial contexts and adversarial reward functions (A-A) When101

both contexts and reward functions are adversarial, there are computational [KS14] and oracle-call102

[HK16] lower bounds showing that no sublinear regret is achievable unless the computational cost103

scales polynomially with the size of the policy set. Even for the linear case, [NO20] argued that104

the problem is at least as hard as online learning a one-dimensional threshold function, for which105

sublinear regret is impossible. For this challenging category, besides using the inefficient EXP4106

algorithm, previous work makes stronger assumptions on the contexts [SKS16] or resorts to alternative107

benchmarks such as dynamic regret [LWAL18, CLLW19] and approximate regret [EZWLK21].108

Lifting and exploration bonus for high-probability adversarial linear bandits Our technique109

is related to those obtaining high-probability bounds for linear bandits. Early development in this110

line of research only achieves computational efficiency when the action set size is small [BDH+08]111

or only applies to special action sets such as two-norm balls [AR09]. Recently, near-optimal high-112

probability bounds for general convex action sets have been obtained by lifting the problem to113

a higher dimensional one, which allows for a computationally efficient way to impose bonuses114

[LLWZ20, ZL22]. The lifting and the bonus ideas we use are inspired by them, though for different115

purposes. However, due to the extra difficulty arising in the contextual case, currently we only obtain116

a computationally efficient algorithm when the action set size is small.117

2For combinatorial semi-bandit problems, our algorithm is not as computationally efficient as [NV14], which
can handle exponentially large action sets.
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1.2 Computational Complexity118

Our main algorithm is based on log-determinant barrier optimization similar to [FGMZ20, ZL22].119

Computing its action distribution is closely related to computing the D-optimal experimental design120

[KT90]. Per step, this is shown to require Õ(|At|poly(d)) computational and Õ(log(|At|)poly(d))121

memory complexity [FGMZ20, Prop 1], where |At| is the action set size at round t. The computa-122

tional bottleneck comes from (approximately) maximizing a quadratic function over the action set. It123

is an open question whether linear optimization oracles or other type of oracles can lead to efficient124

implementation of our algorithm for continuous action sets.125

On the other hand, we are unaware of any linear context bandit algorithm that provably avoids |A|126

computation per round while maintaining a o(|A|) regret dependence in the frequentist setting. The127

LinUCB algorithm [CLRS11, AYPS11] suffers from the same quadratic function maximization issue,128

and therefore is computationally comparable to our algorithm. The SquareCB.Lin algorithm by129

[FGMZ20] is based on the same log-determinant barrier optimization. Another recent algorithm by130

[Zha22] only admits an efficient implementation for continuous action sets in the Bayesian setting131

but not in the frequentist setting (though they provided an efficient heuristic implementation in their132

experiments). The Thompson sampling algorithm by [AG13], which has efficient implementation,133

also relies on well-specified Gaussian prior.134

2 Preliminaries135

We study the adversarial linear contextual bandit problem where the loss vectors are selected fully136

adversarially and the per-round action set (i.e. the context) is drawn from a fixed distribution. The137

learner and the environment interact in the following way. Let Bd2 be the L2-norm unit ball in Rd.138

For t = 1, · · · , T ,139

1. The environment decides an adversarial loss vector yt ∈ Bd2, and generates a random action140

set (i.e., context) At ⊂ Bd2 from a fixed distribution D independent from anything else.141

2. The learner observes At, and (randomly) chooses an action at ∈ At.142

3. The learner receives the loss ℓt ∈ [−1, 1] with E[ℓt] = ⟨at, yt⟩.143

A policy π is a mapping which, given any action set A ⊂ Rd, maps it to an element in the convex hull144

of A (denoted as conv(A)). We use π(A) ∈ conv(A) to refer to the element that it maps A to. The145

learner’s regret with respect to policy π is defined as the expected performance difference between146

the learner and policy π:147

Reg(π) = E

[
T∑
t=1

⟨at, yt⟩ −
T∑
t=1

⟨π(At), yt⟩

]

where the expectation is taken over all randomness from the environment (yt and At) and from148

the learner (at). The pseudo-regret (or just regret) is defined as Reg = maxπ Reg(π), where the149

maximization is taken over all possible policies.150

Notations For any matrix A, we use λmax(A) and λmin(A) to denote the maximum and minimum151

eigenvalues of A, respectively. We use Tr(A) to denote the trace of matrix A. For any action set A,152

let ∆(A) be the space of probability measures on A. Let Ft = σ(As, as,∀s ≤ t) be the σ-algebra at153

round t. Define Et[·] = E[·|Ft−1]. Given a differentiable convex function F : Rd → R ∪ {∞}, the154

Bregman divergence with respect to F is defined as DF (x, y) = F (x)− F (y)− ⟨∇F (y), x− y⟩.155

Given a positive semi-definite (PSD) matrix A, for any vector x, define the norm generated by156

A as ∥x∥A =
√
x⊤Ax. For any context A ⊂ Rd and p ∈ ∆(A), define µ(p) = Ea∼p[a] and157

Cov(p) = Ea∼p[(a−µ(p))(a−µ(p))⊤]. For any a, define the lifted action aaa = (a, 1)⊤ and the lifted158

covariance matrix Ĉov(p) = Ea∼p[aaaaaa⊤] = Ea∼p

[
aa⊤ a

a⊤ 1

]
=

[
Cov(p) + µ(p)µ(p)⊤ µ(p)

µ(p)⊤ 1

]
.159

We use bold matrices to denote matrices in the lifted space (e.g., in Algorithm 1 and Definition 1).160

4



Algorithm 1 Logdet-FTRL for linear contextual bandits

Definitions: F (HHH) = − log det (HHH), ηt =
1

64d
√
t
, αt =

d√
t
, βt =

100(d+1)3 log(3T )
t−1 .

1 for t = 1, 2, . . . do
2 For all A, defineHHHA

t = argmin
HHH∈HA

∑t−1
s=1⟨HHH, γ̂s − αsΣ̂̂Σ̂Σ

−1
s ⟩+ F (HHH)

ηt
.

3 For all A, define pAt ∈ ∆(A) such thatHHHA
t = Ĉov(pAt ).

4 Receive At and sample at ∼ pAt
t .

5 Observe ℓt ∈ [−1, 1] with E[ℓt] = a⊤t yt and construct ŷt = Σ̂−1
t (at − x̂t)ℓt, where

x̂t =
1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[a], Ĥt =
1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[
(a− x̂t)(a− x̂t)

⊤] , Σ̂t = Ĥt + βtI.

6 Define Ĥ̂ĤHt =
1
t−1

∑t−1
τ=1HHH

Aτ
t and Σ̂̂Σ̂Σt = Ĥ̂ĤHt + βtIII .

(If t = 1, define Σ̂−1
t and Σ̂̂Σ̂Σ−1

t as zeros).

3 Follow-the-Regularized-Leader with the Log-Determinant Barrier161

In this section, we present our main algorithm, Algorithm 1. This algorithm can be viewed as162

instantiating an individual Follow-The-Regularized-Leader (FTRL) algorithm on each action set163

(Line 2), with all FTRLs sharing the same loss vectors. This perspective has been taking by previous164

works [NO20, OMvE+23] and simplifies the understanding of the problem. The rationale comes165

from the following calculation due to [NO20]: for any policy π that may depend on Ft−1,166

Et [⟨π(At), yt⟩] = EAt [Eyt [⟨π(At), yt⟩ | Ft−1]] = EA0 [Eyt [⟨π(A0), yt⟩ | Ft−1]] = Et [⟨π(A0), yt⟩]
where A0 is a sample drawn from D independent of all interaction history. This allows us to calculate167

the regret as168

E

[
T∑
t=1

⟨πt(At)− π(At), yt⟩

]
= E

[
T∑
t=1

⟨πt(A0)− π(A0), yt⟩

]
(1)

where πt is the policy used by the learner at time t. Note that this view does not require the learner169

to simultaneously “run” an algorithm on every action set since the learner only needs to calculate170

the policy on A whenever At = A. In the regret analysis, in view of Eq. (1), it suffices to consider171

a single fixed action set A0 drawn from D and bound the regret on it, even though the learner may172

never execute the policy on it. This A0 is called a “ghost sample” in [NO20].173

3.1 The lifting idea and the execution of Algorithm 1174

Our algorithm is built on the logdet-FTRL algorithm developed by [ZL22] for high-probability175

adversarial linear bandits, which lifts the original d-dimensional problem over the feature space to176

a (d + 1) × (d + 1) one over the covariance matrix space, with the regularizer being the negative177

log-determinant function. In our case, we instantiate an individual logdet-FTRL on each action set.178

The motivation behind [ZL22] to lift the problem to the space of covariance matrix is that it casts the179

problem to one in the positive orthant, which allows for an easier way to construct the bonus term that180

is crucial to compensate the variance of the losses, enabling a high-probability bound in their case. In181

our case, we use the same technique to introduce the bonus term, but the goal is to compensate the182

bias resulting from the estimation error in the covariance matrix (see Section 3.4). This bias only183

appears in our contextual case but not in the linear bandit problem originally considered in [ZL22].184

As argued previously, we can focus on the learning problem over a fixed action set A, and our185

algorithm operates in the lifted space of covariance matrices HA = {Ĉov(p) : p ∈ ∆(A)} ⊂186

R(d+1)×(d+1). For this space, we define the lifted loss γt =

[
0 1

2yt
1
2y

⊤
t 0

]
∈ R(d+1)×(d+1) so that187

⟨Ĉov(p), γt⟩ = Ea∼p[a⊤yt] = ⟨µ(p), yt⟩ and thus the loss value in the lifted space is the same as188

that in the original space.189
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In each round t, the FTRL on A outputs a lifted covariance matrixHHHA
t ∈ HA that corresponds to a190

probability distribution pAt ∈ ∆(A) such that Ĉov(pAt ) =HHHA
t (Line 2 and Line 3). Upon receiving191

At, the learner samples an action from pAt
t and the agent constructs the loss estimator ŷt (Line 5).192

Similarly to the construction of γt, we define the lifted loss estimator γ̂t =

[
0 1

2 ŷt
1
2 ŷ

⊤
t 0

]
which193

makes ⟨Ĉov(p), γ̂t⟩ = Ea∼p[a⊤ŷt] = ⟨µ(p), ŷt⟩. The lifted loss estimator is then fed to the FTRL194

on all A’s.195

In the rest of this section, we use the following notation in addition to those defined in Algorithm 1.196

Definition 1. Define xAt = Ea∼pAt [a], xt = EA∼D[x
A
t ], H

A
t = Ea∼pAt [(a− x̂t)(a− x̂t)

⊤], Ht =197

EA∼D[H
A
t ], HHHt = EA∼D[HHH

A
t ]. Let the regret comparator on A be pA⋆ ∈ ∆(A), and define198

uA = Ea∼pA⋆ [a], u = EA∼D[u
A], UUUA = Ea∼pA⋆ [aaaaaa

⊤], UUU = EA∼D[UUU
A]. Notice that the xAt and199

uA defined here is equivalent to the πt(A) and π(A) in Eq. (1), respectively.200

3.2 The construction of loss estimators and feature covariance matrix estimators201

Our goal is to make ŷt in Line 5 an estimator of yt with controllable bias and variance. If the context202

distribution is known (as in [NO20]), then a standard unbiased estimator of yt is203

ŷt = Σ̂−1
t atℓt, where Σ̂t = EA∼DEa∼pAt

[
aa⊤

]
. (2)

To see its unbiasedness, notice that E[atℓt] = EA∼DEa∼pAt [aa
⊤yt] and thus E[ŷt] = yt. This ŷt,204

however, can have a variance that is inversely related to the smallest eigenvalue of the covariance205

matrix Σ̂t, which can be unbounded in the worst case. This is the main reason why [NO20] does206

not achieve the optimal bound, and requires the bias-variance-tradeoff techniques in [DLWZ23] to207

close the gap. When the context distribution is unknown but the learner has access to a simulator208

[LWL21, DLWZ23, SKM23, KZWL23], the learner can draw free contexts to estimate the covariance209

matrix Σ̂t up to a very high accuracy without interacting with the environment, making the problem210

close to the case of known context distribution.211

Challenges arise when the learner has no knowledge about the context distribution and there is no212

simulator. In this case, there are two natural ways to estimate the covariance matrix under the current213

policy. One is to draw new samples from the environment, treating the environment like a simulator.214

This approach is essentially taken by all previous work studying linear models in the “S-A” category.215

However, this is very expensive, and it causes the simulator-equipped bound
√
T in [DLWZ23] to216

deteriorate to the simulator-free bound T 5/6 at best (see Appendix G for details). The other is to use217

the contexts received in time 1 to t to estimate the covariance matrix under the policy at time t. This218

demands a very high efficiency in reusing the contexts samples, and existing ways of constructing the219

covariance matrix and the accompanied analysis by [DLWZ23, SKM23] are insufficient to achieve220

the near-optimal bound even with context reuse. This necessitates our tighter construction of the221

covariance matrix estimator and tighter concentration bounds for it.222

Our construction of the loss estimator (Line 5) is223

ŷt = Σ̂−1
t (at − x̂t)ℓt where Σ̂t = EA∼D̂t

Ea∼pAt
[
(a− x̂t)(a− x̂t)

⊤]+ βtI (3)

where D̂t = Uniform{A1,A2, . . . ,At−1}, x̂t = EA∼D̂t
,Ea∼pAt [a], and βt = Õ(d3/t). Comparing224

Eq. (3) with Eq. (2), we see that besides using the empirical context distribution D̂t in place of the225

ground truth D and adding a small term βtI to control the smallest eigenvalue of the covariance226

matrix, we also centralize the features by x̂t, an estimation of the mean features under the current227

policy. The centralization is important in making the bias yt − ŷt appear in a nice form that can228

be compensated by a bonus term. The estimator might seem problematic on first sight, because pAt229

is strongly dependent on D̂t, which rules out canonical concentration bounds. We circumvent this230

issue by leveraging the special structure of pt in Algorithm 1, which allows for a union bound over231

a sufficient covering of all potential policies (Appendix C.3). The analysis on the bias of this loss232

estimator is also non-standard, which is the key to achieve the near-optimal bound . In the next two233

subsections, we explain how to bound the bias of this loss estimator (Section 3.3), and how the bonus234

term can be used to compensate the bias (Section 3.4).235
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3.3 The bias of the loss estimator236

Since the true loss vector is yt and we use the loss estimator ŷt in the update, there is a bias term237

emerging in the regret bound at time t:238

Et
[
⟨xA0
t − uA0 , yt − ŷt⟩

]
= Et [⟨xt − u, yt − ŷt⟩] = Et

[
(xt − u)

⊤
(
I − Σ̂−1

t (at − x̂t)a
⊤
t

)
yt

]
where definitions of xAt , u

A, xt, u can be found in Definition 1, and we use the definition of ŷt in239

Eq. (3) in the last equality. Now taking expectation over At and at conditioned on Ft−1, we can240

further bound the expectation in the last expression by241

(xt − u)⊤
(
I − Σ̂−1

t Ht

)
yt − (xt − u)⊤Σ̂−1

t (xt − x̂t) x̂
⊤
t yt

≤ ∥xt − u∥Σ̂−1
t
∥(Σ̂t −Ht)yt∥Σ̂−1

t
+ ∥xt − u∥Σ̂−1

t
∥xt − x̂t∥Σ̂−1

t
(4)

(see Definition 1 for the definition of Ht). The two terms ∥(Σ̂t − Ht)yt∥Σ̂−1
t

and ∥xt −242

x̂t∥Σ̂−1
t

in Eq. (4) are related to the error between the empirical context distribution D̂t =243

Uniform{A1, . . . ,At−1} and the true distribution D. We handle them through novel analysis and244

bound both of them by Õ
(√

d3/t
)
. See Lemma 13 and Lemma 14 for details. The techniques we245

use in these two lemmas surpass those in [DLWZ23, SKM23]. As a comparison, a similar term as246

∥(Σ̂t −Ht)yt∥Σ̂−1
t

is also presented in Eq. (16) of [DLWZ23] and Lemma B.5 of [SKM23] when247

bounding the bias. While they ensure that this term can be bounded by O(
√
β) after collecting248

O(β−2) new samples (Lemma 5.1 of [DLWZ23] and Lemma B.1 of [SKM23]), we are able to bound249

it by O(1/
√
t) only using t samples that the learner received up to time t. This essentially improves250

their O(β−2) sample complexity bound to O(β−1), and can be directly used to obtain an improved251

result for their linear MDP problem. See Appendix G for detailed comparison.252

Now we have bounded the regret due to bias of ŷt by the order of
√
d3/t∥xt − u∥Σ̂−1

t
. The next253

problem is how to mitigate this term. This is also a problem in previous work [LWL21, DLWZ23,254

SKM23], and it has become clear that this can be handled by incorporating bonus in the algorithm.255

3.4 The bonus term256

To handle a bias term in the form of ∥xt − u∥Σ̂−1
t

, we resort to the idea of bonus. To illustrate this,257

suppose that instead of feeding ŷt to the FTRLs, we feed ŷt − bt for some bt. Then this would give258

us a regret bound of the following form:259

Reg = E

[
T∑
t=1

⟨xt − u, ŷt − bt⟩

]
+ E

[
T∑
t=1

⟨xt − u, yt − ŷt⟩

]
+ E

[
T∑
t=1

⟨xt − u, bt⟩

]

≲ Õ(d2
√
T ) + E

[
T∑
t=1

√
d3

t
∥xt − u∥Σ̂−1

t

]
+ E

[
T∑
t=1

⟨xt − u, bt⟩

]
(5)

where we assume that FTRL can give us Õ(d2
√
T ) bound for the loss sequence ŷt − bt. Our hope260

here is to design a bt such that ⟨xt − u, bt⟩ provides a negative term that can be used to cancel the261

bias term
√
d3/t∥xt − u∥Σ̂−1

t
in the following manner:262

bias + bonus =
T∑
t=1

(√
d3

t
∥xt − u∥Σ̂−1

t
+ ⟨xt − u, bt⟩

)
≲ Õ(d2

√
T ). (6)

which gives us a Õ(d2
√
T ) overall regret by Eq. (5). This approach relies on two conditions to be263

satisfied. First, we have to find a bt that makes Eq. (6) hold. Second, we have to ensure that the FTRL264

algorithm achieves a Õ(d2
√
T ) bound under the loss sequence ŷt − bt.265

To meet the first condition, we take inspiration from [ZL22] and lift the problem to the space of266

covariance matrix in R(d+1)×(d+1). Considering the bonus term αtΣ̂̂Σ̂Σ
−1
t in the lifted space, we have267

⟨HHHt −UUU,αtΣ̂̂Σ̂Σ
−1
t ⟩ = αtTr(HHHtΣ̂̂Σ̂Σ

−1
t )− αtTr(UUUΣ̂̂Σ̂Σ

−1
t ) (7)
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Using Lemma 15 and Corollary 20, we can upper bound Eq. (7) by O (dαt) − αt

4 ∥u − x̂t∥2Σ̂−1
t

.268

Though the negative part does not match the bias
√

d3

t ∥xt − u∥Σ̂−1
t

, cancellation still happens since269

bias + bonus ≤
T∑
t=1

(√
d3

t
∥xt − u∥Σ̂−1

t
+ dαt −

αt
4
∥x̂t − u∥2

Σ̂−1
t

)

≤ Õ(d2
√
T ) +

T∑
t=1

√
d3

t
∥xt − x̂t∥Σ̂−1

t
+

T∑
t=1

(√
d3

t
∥x̂t − u∥Σ̂−1

t
− αt

4
∥x̂t − u∥2

Σ̂−1
t

)
.

Using Lemma 16 to bound the second term above by Õ(d3), and AM-GM to bound the third term by270

Õ(
∑
t d

3/(tαt)) = Õ(d2
√
T ), we get Eq. (6), through the help of lifting.271

To meet the second condition, we have to analyze the regret of FTRL under the loss ŷt − bt. The key272

is to show that the bonus αtΣ̂̂Σ̂Σ−1
t introduces small stability term overhead. Thanks to the use of the273

logdet regularizer and its self-concordance property, the extra stability term introduced by the bonus274

can indeed be controlled by the order
√
T . The key analysis is in Lemma 25.275

Previous works rely on exponential weights [LWL21, DLWZ23, SKM23] rather than logdet-FTRL,276

which comes with the following drawbacks. 1) In [LWL21, SKM23] where exponential weights is277

combined with standard loss estimators, the bonus introduces large stability term overhead. Therefore,278

their bound can only be T 2/3 at best even with simulators. 2) In [DLWZ23] where exponential weights279

is combined with magnitude-reduced loss estimators, the loss estimator for action a can no longer280

be represented as a simple linear function a⊤ŷt. Instead, it becomes a complex non-linear function.281

This restricts the algorithm’s potential to leverage linear optimization oracle over the action set and282

achieve computational efficiency.283

3.5 Overall regret analysis284

With all the algorithmic elements discussed above, now we give a formal statement for our regret285

guarantee and perform a complete regret analysis. Our main theorem is the following.286

Theorem 2. Algorithm 1 ensures Reg ≤ O(d2
√
T log T ).287

Proof sketch. Let A0 be drawn from D independently from all the interaction history between the288

learner and the environment. Recalling the definitions in Definition 1, we have289

Reg = E

[
T∑
t=1

⟨at − uAt , yt⟩

]
= E

[
T∑
t=1

⟨HHHAt
t −UUUAt , γt⟩

]
= E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , γt⟩

]

≤ E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , γt − γ̂t⟩

]
︸ ︷︷ ︸

Bias

+E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t ⟩

]
︸ ︷︷ ︸

Bonus

+E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ

−1
t ⟩

]
︸ ︷︷ ︸

FTRL-Reg

Each term can be bounded as follows:290

• Bias ≤ O(d2
√
T log T ) + 1

4

∑T
t=1 αt∥u− xt∥2Σ̂−1

t

(discussed in Section 3.3).291

• Bonus ≤ O(d2
√
T log T )− 1

4

∑T
t=1 αt∥u− xt∥2Σ̂−1

t

(discussed in Section 3.4).292

• FTRL-Reg ≤ O(d2
√
T log T ).293

Combining all terms gives the desired bound. The complete proof is provided in Appendix D.294

3.6 Handling Misspecification295

In this subsection, we show how our approach naturally handles the case when the expectation of the296

loss cannot be exactly realized by a linear function but with a misspecification error. In this case, we297

assume that the expectation of the loss is given by E[ℓt|at = a] = ft(a) for some ft : Rd → [−1, 1].298

We define the following notion of misspecification (slightly more refined than that in [NO20]):299

Assumption 1 (misspecification).
√

1
T

∑T
t=1 infy∈Bd

2
supA∈supp(D) supa∈A(ft(a)− ⟨a, y⟩)2 ≤ ε.300
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Based on previous discussions, the design idea of Algorithm 1 is to 1) identify the bias of the loss301

estimator, and 2) add necessary bonus to compensate the bias. When there is misspecification, this302

design idea still applies. The difference is that now the loss estimator ŷt potentially has more bias due303

to misspecification. Therefore, the bias becomes larger by an amount related to ε. Consequently, we304

need to enlarge bonus (raising αt) to compensate it. Due to the larger bonus, we further need to tune305

down the learning rate ηt to make the algorithm stable. Overall, to handle misspecification, when ε is306

known, it boils down to using the same algorithm (Algorithm 1) with adjusted αt and ηt. The case307

of unknown ε can be handled by the standard meta-learning technique Corral [ALNS17, FGMZ20].308

We defer all details to Appendix E and only state the final bound here.309

Theorem 3. Under misspecification, there is an algorithm ensuring Reg ≤ Õ(d2
√
T +

√
dεT ).310

4 Linear EXP4311

To tighten the d-dependence in the regret bound, we can use the computationally inefficient algorithm312

EXP4 [ACBFS02]. The original regret bound for EXP4 has a polynomial dependence on the number313

of actions, but here we take the advantage of the linear structure to show a bound that only depends314

on the feature dimension d. The algorithm is presented in Algorithm 2.315

Algorithm 2 Linear EXP4
input: Π, η, γ.
for t = 1, 2, . . . do

Receive At ⊂ Rd.
Construct νt ∈ ∆(At) such that maxa∈At

∥a∥2
G−1

t

≤ d, where Gt = Ea∼νt [aa⊤]. Set

Pt,π =
exp

(
−η
∑t−1
s=1 ℓ̂s,π

)
∑
π′∈Π exp

(
−η
∑t−1
s=1 ℓ̂s,π′

)
and define pt,a =

∑
π∈Π Pt,πI{π(At) = a} .

Sample at ∼ p̃t = (1− γ)pt + γνt and receive ℓt ∈ [−1, 1] with E[ℓt] = ⟨at, yt⟩.
Construct ∀π ∈ Π: ℓ̂t,π = ⟨π(At), H̃

−1
t atℓt⟩, where H̃t = Ea∼p̃t [aa⊤] .

To run Algorithm 2, we restrict ourselves to a finite policy class. The policy class we use in the316

algorithm is the set of linear policies defined as317

Π =

{
πθ : θ ∈ Θ, πθ(A) = argmin

a∈A
a⊤θ

}
(8)

where Θ is an 1-net of [−T, T ]d. The next theorem shows that this suffices to give us near-optimal318

bounds for our problem. The proof is given in Appendix F.319

Theorem 4. With γ = 2d
√
(log T )/T and η =

√
(log T )/T , Algorithm 2 with the policy class320

defined in Eq. (8) guarantees Reg = O
(
d
√
T log T

)
.321

Note that this result technically also holds in the “A-A” category with respect to the policy class322

defined in Eq. (8). However, this policy class is not necessarily a sufficient cover of all policies of323

interest when the contexts and losses are adversarial.324

5 Conclusions325

We derived the first algorithm that obtains
√
T regret in contextual linear bandits with stochastic326

action sets in the absence of a simulator or strong assumptions on the distribution. As a side result,327

we obtained the first computationally efficient poly(d)
√
T algorithm for adversarial sleeping bandits328

with general stochastic arm availabilities. We believe the techniques in this paper will be useful for329

improving results for simulator-free linear MDPs as well.330
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A Summary of Notation516

We summarize the notations that have been defined in Algorithm 1 and Definition 1.517

βt = Θ

(
(d+ 1)3 log(T/δ)

t− 1

)
x̂t =

1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[a]

Ĥt =
1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[
(a− x̂t)(a− x̂t)

⊤]
Ĥ̂ĤHt =

1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[
aa⊤ a

a⊤ 1

]
=

[
Ĥt + x̂tx̂

⊤
t x̂t

x̂⊤t 1

]
Σ̂t = Ĥt + βtI

Σ̂̂Σ̂Σt = Ĥ̂ĤHt + βtIII =

[
Σ̂t + x̂tx̂

⊤
t x̂t

x̂⊤t 1 + βt

]
xt = EA∼DEa∼pAt [a]

Ht = EA∼DEa∼pAt
[
(a− x̂t)(a− x̂t)

⊤]
HHHt = EA∼DEa∼pAt

[
aa⊤ a

a⊤ 1

]

B Auxiliary Lemmas518

Lemma 5 (FTRL regret bound, Lemma 18 of [DWZ23a]). Let Ω ⊂ Rd be a convex set, g1, . . . , gT ∈519

Rd, and η1, . . . , ηT > 0. Then the FTRL update520

wt = argmin
w∈Ω

{〈
w,

t−1∑
τ=1

gτ

〉
+

1

ηt
ψ(w)

}
ensures for any u ∈ Ω and η0 > 0,521

T∑
t=1

⟨wt − u, gt⟩

≤ ψ(u)−minw∈Ω ψ(w)

η0
+

T∑
t=1

(ψ(u)− ψ(wt))

(
1

ηt
− 1

ηt−1

)
︸ ︷︷ ︸

Penalty

+

T∑
t=1

(
max
w∈Ω

⟨wt − w, gt⟩ −
Dψ(w,wt)

ηt

)
︸ ︷︷ ︸

Stability

.

When η0, η1, . . . , ηT is non-increasing, the penalty term can further be upper bounded by522

Penalty ≤ ψ(u)−minw∈Ω ψ(w)

ηT
.

Lemma 6 (Bernstein’s inequality). Let X1, · · · , Xn be iid random variables; let E[X] be the523

expectation and Var(X) be the variance of these random variables. If for any i, |Xi − E[Xi]| ≤ R,524

then with probability of at least 1− δ,525 ∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ ≤
√

4Var(X) log 2
δ

n
+

4R log 2
δ

3n
.
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Lemma 7 (Hoeffding’s inequality). Let X1, · · · , Xn be iid random variables; let a ≤ Xi ≤ b and526

let E[X] be the expectatio. Then with probability of at least 1− δ,527 ∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ ≤ (b− a)

√
1

2n
log(

2

δ
)

Given F (X) = − log det(X), D2F (X) = X−1 ⊗ X−1 where ⊗ is the Kronecker prod-528

uct. For any matrix A =
[
a1 a2 · · · an

]
, let vec(A) =


a1
...
an

 which vectorizes matrix529

A to a column vector by stacking the columns A. The second order directional derivative530

for F is D2F (X)[A,A] = vec(A)T
(
X−1 ⊗X−1

)
vec(A) = Tr(A⊤X−1AX−1). We define531

∥A∥∇2F (X) =
√
Tr(A⊤X−1AX−1) and ∥A∥∇−2F (X) =

√
Tr(A⊤XAX). It is a pseudo-norm,532

and more discussion can be found in Appendix D of [ZAK22]. In the following analysis, we will533

only use one property of this pseudo-norm which is similar to the Holder inequality.534

Lemma 8. For any two symmetric matrices A,B and positive definite matrix X ,535

⟨A,B⟩ ≤ ∥A∥∇2F (X)∥B∥∇−2F (X)

Proof. Since (X ⊗X)−1 = X−1 ⊗X−1, from Holder inequality, we have536

⟨A,B⟩ = ⟨vec(A), vec(B)⟩ ≤ ∥vec(A)∥X−1⊗X−1∥vec(B)∥(X−1⊗X−1)−1 = ∥A∥∇2F (X)∥B∥∇−2F (X)

537

C Concentration Inequalities538

The goal of this section is to show Lemma 16 and Lemma 17, which are key to bound the bias539

term. We first introduce a useful lemma from [DLWZ23], which will be used later to prove our540

concentration bounds.541

C.1 General Concentration Inequalities542

Lemma 9 (Lemma A.4 in [DLWZ23]). Let H1, H2, . . . ,Hn be i.i.d. PSD matrices such that543

E[Hi] = H , Hi ⪯ I almost surely and H ⪰ 1
dn log d

δ I . Then with probability 1− δ,544

1

n

n∑
i=1

Hi −H ⪰ −
√
d

n
log

d

δ
H1/2

Corollary 10. Let H1, H2, . . . ,Hn be i.i.d. PSD matrices such that E[Hi] = H and Hi ⪯ cI almost545

surely for some positive constant c. Let Ĥ = 1
n

∑n
i=1Hi, then with probability 1− δ,546

Ĥ +
3c

2
· d
n
log

(
d

δ

)
I ⪰ 1

2
H (9)

Proof. A simple corollary of Lemma 9 under the condition of Lemma 9 is that547

1

n

n∑
i=1

Hi −H ⪰ −
√
d

n
log

d

δ
H1/2 ⪰ −1

2
H − d

2n
log

(
d

δ

)
I

⇒ 1

n

n∑
i=1

Hi +
d

2n
log

(
d

δ

)
I ⪰ 1

2
H, (10)

where we use that H
1
2 ⪯ k

2H + 1
2k for any k > 0.548
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Now consider the condition of this corollary. We first consider the case where d
n log(dδ ) ≤ 1. In this549

case, we apply Eq. (10) with H ′
i =

1
2cHi +

d
2n log(dδ )I , which satisfies the condition for Eq. (10) to550

hold. This gives551

1

n

n∑
i=1

(
1

2c
Hi +

d

2n
log

(
d

δ

)
I

)
+

d

2n
log

(
d

δ

)
I ⪰ 1

2

(
1

2c
H +

d

2n
log

(
d

δ

)
I

)
⇒ Ĥ +

3c

2
· d
n
log

(
d

δ

)
I ⪰ 1

2
H

with probability at least 1 − δ. When d
n log(dδ ) > 1. Eq. (9) is trivial because 1

2H ⪯ c
2I ⪯552

c
2 · dn log(dδ )I .553

554

C.2 Concentration Inequalities under a Fixed Policy p555

In this subsection, we establish concentration bounds for a fixed policy p (with pA ∈ ∆(A) denoting556

the action distribution it uses over A) over i.i.d. contexts. The results in this subsection are preparation557

for Appendix C.3 where we take union bounds over policies.558

The setting and notation to be used in this subsection are defined in Definition 11.559

Definition 11. Let {A1, . . . ,An} be i.i.d. context samples drawn from D. Let D̂ be the uniform560

distribution over {A1, . . . ,An}.561

Over this set of context samples, define for any policy p,562

x(p) = EA∼DEa∼pA [a],
x̂(p) = EA∼D̂Ea∼pA [a],
H(p) = EA∼DEa∼pA

[
(a− x̂(p))(a− x̂(p))⊤

]
,

Ĥ(p) = EA∼D̂Ea∼pA
[
(a− x̂(p))(a− x̂(p))⊤

]
,

HHH(p) = EA∼DEa∼pA
[
aaaaaa⊤

]
,

Ĥ̂ĤH(p) = EA∼D̂Ea∼pA
[
aaaaaa⊤

]
,

Σ̂(p) = Ĥ(p) + βI,

Σ̂̂Σ̂Σ(p) = Ĥ̂ĤH(p) + βIII,

where β = 5d log(6d/δ)
n .563

Lemma 12. Under the setting of Definition 11, for any fixed p, with probability at least 1− δ,564

Ĥ(p) +
4d log(6d/δ)

n
I ⪰ 1

2
H(p),

Ĥ̂ĤH(p) +
3d log(d/δ)

n
III ⪰ 1

2
HHH(p).

Proof. In this proof, we use x̂, x, Ĥ,H, Ĥ̂ĤH,HHH to denote x̂(p), x(p), Ĥ(p), H(p), Ĥ̂ĤH(p),HHH(p) since565

p is fixed throughout the proof.566

Since ∥a∥ ≤ 1,HHH ⪯ 2I and Ĥ̂ĤH ⪯ 2I . Thus, we can directly apply Corollary 10 with c = 2 to get567

with probability 1− δ
3568

Ĥ̂ĤH +
3d log(3d/δ)

n
III ⪰ 1

2
HHH.
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To prove the first inequality, we first decompose H and Ĥ569

H = EA∼DEa∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
+ (x− x̂)(x− x̂)⊤ (because EA∼DEa∼pA(a− x) = 0)

(11)

Ĥ = EA∼D̂Ea∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x)(a− x)⊤

]
− (x− x̂)(x− x̂)⊤

(because EA∼D̂Ea∼pA(a− x) = x̂− x)
(12)

From Hoeffding inequality (Lemma 7) and union bound, with probability 1− δ
3 , for all k ∈ [d], we570

have571

|e⊤k x− e⊤k x̂| ≤

√
1

2n
log

(
6d

δ

)
,

which implies that e⊤k (x− x̂)(x− x̂)⊤ek ≤ 1
2n log( 6dδ ) for all k, and thus572

(x− x̂)(x− x̂)⊤ ⪯ 1

2n
log

(
6d

δ

)
I. (13)

By directly applying Corollary 10 with c = 2, we get with probability at least 1− δ
3 ,573

EA∼D̂Ea∼pA
[
(a− x)(a− x)⊤

]
+

3d log(3d/δ)

n
I ⪰ 1

2
EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
Further using Eq. (11), Eq. (12) and Eq. (13), we get with probability at least 1− 2δ

3 ,574

Ĥ +
4d log(6d/δ)

n
I ⪰ 1

2
H

Taking union bound for both inequality finishes the proof.575

Lemma 13. Under the setting of Definition 11, for any fixed policy p, with probability at least576

1−O(δ),577

∥x(p)− x̂(p)∥2
Σ̂(p)−1 ≤ O

(
d log(d/δ)

n

)

Proof. In this proof, we use x̂, x, Ĥ,H, Ĥ̂ĤH,HHH, Σ̂, Σ̂̂Σ̂Σ to denote x̂(p), x(p), Ĥ(p), H(p), Ĥ̂ĤH(p),HHH(p),578

Σ̂(p), Σ̂̂Σ̂Σ(p) since p is fixed throughout the proof.579

We first rewrite H .580

H = EA∼DEa∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
+ (x− x̂)(x− x̂)⊤ (because EA∼DEa∼pA(a− x) = 0)

(14)

To simplify analysis, we perform diagonalization. Suppose that EA∼DEa∼pA [(a − x)(a − x)⊤]581

admits the following eigen-decomposition:582

EA∼DEa∼pA [(a− x)(a− x)⊤] = V ΛV ⊤

where V is an orthogonal matrix and Λ is a diagonal matrix. By Lemma 12 and the definition of β in583

Definition 11, we have with probability 1− δ,584

Σ̂ ⪰ 1

2
H + ρI ⪰ 1

2
V ΛV ⊤ + ρI
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with some ρ = Θ
(
d log(d/δ)

n

)
, where the second inequality is by Eq. (14). Thus,585

∥x− x̂∥2
Σ̂−1 = (x− x̂)⊤Σ̂−1(x− x̂)

≤ (x− x̂)⊤
(
1

2
V ΛV ⊤ + ρI

)−1

(x− x̂)

= (x̂− x)⊤V

(
1

2
Λ + ρI

)−1

V ⊤(x̂− x).

Define586

∆k = e⊤k V
⊤(x̂− x) =

1

n

n∑
i=1

e⊤k V
⊤Ea∼pAi [a]︸ ︷︷ ︸

Define as Z(i)
k

− e⊤k V
⊤EA∼DEa∼pA [a]︸ ︷︷ ︸

Define as Zk

Since EAi∼D

[
Z

(i)
k

]
= Zk, by Bernstein’s inequality, with probability at least 1− δ, we have587

|∆k| ≤ O


√

Var(Z
(i)
k ) log(d/δ)

n
+

log(d/δ)

n

 (15)

for all k, where588

Var(Z
(i)
k ) = EA∼D

[(
e⊤k V

⊤Ea∼pA [a]− e⊤k V
⊤x
)2]

.

On the other hand,589

Λkk = e⊤k EA∼DEa∼pA [V ⊤(a− x)(a− x)⊤V ]ek

= EA∼DEa∼pA
[(
e⊤k V

⊤a− e⊤k V
⊤x
)2]

.

From Jensen’s inequality,590

Λkk = EA∼DEa∼pA
[(
e⊤k V

⊤a− e⊤k V
⊤x
)2] ≥ EA∼D

[(
e⊤k V

⊤Ea∼pA [a]− e⊤k V
⊤x
)2]

= Var(Z
(i)
k )

Thus,591

∥x− x̂∥2
Σ̂−1 ≤ (x̂− x)⊤V

(
1

2
Λ + ρI

)−1

V ⊤(x̂− x)

=

d∑
k=1

(∆k)
2

1
2Λkk + ρ

≤ O

(
log(d/δ)

n

d∑
k=1

Var(Z
(i)
k ) + log(d/δ)

n

Λkk + ρ

)
(by Eq. (15))

≤ O
(
d log(d/δ)

n

)
. (Λkk ≥ Var(Z

(i)
k ) and ρ = Θ(d log(d/δ)n ))

592

Lemma 14. Under the setting of Definition 11, for any fixed policy p, with probability at least593

1−O(δ),594

∥(Σ̂(p)−H(p))y∥2
Σ̂(p)−1 ≤ O

(
d log(d/δ)

n

)
for any y ∈ Bd2.595

Proof. In this proof, we use x̂, x, Ĥ,H, Ĥ̂ĤH,HHH, Σ̂, Σ̂̂Σ̂Σ to denote x̂(p), x(p), Ĥ(p), H(p), Ĥ̂ĤH(p),HHH(p),596

Σ̂(p), Σ̂̂Σ̂Σ(p) since p is fixed throughout the proof.597
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First, we re-write H and Ĥ:598

H = EA∼DEa∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
+ (x− x̂)(x− x̂)⊤ (because EA∼DEa∼pA(a− x) = 0)

(16)

Ĥ = EA∼D̂Ea∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x)(a− x)⊤

]
− (x− x̂)(x− x̂)⊤

(because EA∼D̂Ea∼pA(a− x) = x̂− x)

Then, by definition (in Definition 11) and the calculation above,599

Σ̂−H

= Ĥ −H + βI

=
1

n

n∑
i=1

Ea∼pAi

[
(a− x)(a− x)⊤

]
− EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
︸ ︷︷ ︸

define this as Γ

−2(x− x̂)(x− x̂)⊤ + βI.

Using ∥a+ b+ c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2, we have600

∥(Σ̂−H)y∥2
Σ̂−1 ≤ 3∥Γy∥2

Σ̂−1 + 12∥(x− x̂)(x− x̂)⊤y∥2
Σ̂−1 + β2∥y∥2

Σ̂−1

≤ 3∥Γy∥2
Σ̂−1 + 12∥x− x̂∥2

Σ̂−1 +O(β). (17)

The second and third term are bounded by O
(
d log(d/δ)

n

)
using Lemma 13 and the definition of β,601

with probability at least 1−O(δ). Below, we further deal with the first term. To simplify analysis,602

we perform diagonalization. Suppose that EA∼DEa∼pA [(a − x)(a − x)⊤] admits the following603

eigen-decomposition:604

EA∼DEa∼pA [(a− x)(a− x)⊤] = V ΛV ⊤

where V is an orthogonal matrix and Λ is a diagonal matrix. Then605

∥Γy∥2Σ̂−1 = y⊤ΓΣ̂−1Γy = (V ⊤y)⊤(V ⊤ΓV )(V ⊤Σ̂V )−1(V ⊤ΓV )(V ⊤y). (18)

Below, we further deal with the V ⊤ΓV and V ⊤ΛV terms in Eq. (18). By Lemma 12, with probability606

at least 1− δ,607

Σ̂ ⪰ 1

2
H + ρI ⪰ 1

2
V ΛV ⊤ + ρI,

for some ρ = Θ
(
d log(d/δ)

n

)
, where we use Eq. (16) in the second inequality. Therefore,608

V ⊤Σ̂V ⪰ 1

2
Λ + ρI. (19)

Next, denote ∆ = V ⊤ΓV . By definition, it can be written as the following:609

∆ =
1

n

n∑
i=1

Ea∼pAi

[
V ⊤(a− x)(a− x)⊤V

]︸ ︷︷ ︸
defining this as Λ(i)

−EA∼DEa∼pA
[
V ⊤(a− x)(a− x)⊤V

]︸ ︷︷ ︸
=Λ

with Λ(i) being i.i.d. samples with mean E[Λ(i)] = Λ. While these are d× d matrices, we will apply610

concentration inequalities to individual entries.611

Let λikh = e⊤k Λ
(i)eh be the (k, h)-th entry of Λ(i). Notice that E[λikh] = e⊤k Λeh = Λkh, the612

(k, h)-th entry of Λ.613
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By Bernstein’s inequality, with probability at least 1− δ, we have614

|∆kh| =

∣∣∣∣∣ 1n
n∑
i=1

(λikh − Λkh)

∣∣∣∣∣ ≤ O

(√
Var(λikh) log(d/δ)

n
+

log(d/δ)

n

)
. (20)

With the manipulations and notations above, we continue to bound Eq. (18) by615

∥Γy∥2
Σ̂−1 = y′⊤∆(V ⊤Σ̂V )−1∆y′ (let y′ = V ⊤y)

≤ 2y′⊤∆(Λ + ρI)
−1

∆y′ (by Eq. (19))

≤ 2Tr
(
∆(Λ + ρI)

−1
∆
)

By direct expansion and the fact that Λ is diagonal,616

Tr
(
∆(Λ + ρI)

−1
∆
)
=

d∑
k=1

(
∆(Λ + ρI)

−1
∆
)
kk

=

d∑
k=1

d∑
h=1

∆kh∆hk

Λhh + ρ

≤ O

(
d∑
k=1

d∑
h=1

1

Λhh + ρ

(
Var(λikh) log(d/δ)

n
+

log2(d/δ)

n2

))
(by Eq. (20))

≤ O

(
d∑
k=1

d∑
h=1

1

Λhh + ρ

E(λ2ikh) log(d/δ)
n

+
d2 log2(d/δ)

ρn2

)
(21)

By definition,617

λikh = Ea∼pAi

[
ekV

⊤(a− x)(a− x)⊤V eh
]

and thus618

d∑
k=1

λ2ikh ≤ Ea∼pAi

[
d∑
k=1

(
ekV

⊤(a− x)(a− x)⊤V eh
)2]

= Ea∼pAi

[
d∑
k=1

e⊤h V
⊤(a− x)(a− x)⊤V eke

⊤
k V

⊤(a− x)(a− x)⊤V eh

]
= Ea∼pAi

[
e⊤h V

⊤(a− x)(a− x)⊤(a− x)(a− x)⊤V eh
]

≤ Ea∼pAi

[
e⊤h V

⊤(a− x)(a− x)⊤V eh
]

= λihh

and
∑d
k=1 E[λ2ikh] ≤ E[λihh] = Λhh. Continuing from Eq. (21) and using that ρ = Θ

(
d log(d/δ)

n

)
,619

Tr
(
∆(Λ + ρI)−1∆

)
≤ O

(
d∑

h=1

Λhh log(d/δ)

(Λhh + ρ)n
+
d2 log2(d/δ)

n2

)
≤ O

(
d log(d/δ)

n

)
.

This gives a bound on ∥Γy∥2
Σ̂−1

and finishes the proof after combining Eq. (17).620

621

C.3 Union Bound over Policies622

In Lemma 12, Lemma 13, and Lemma 14, we have obtained the desired concentration inequalities623

under a fixed policy p. In this subsection, we proceed to take union bound over all policies that are624

possibly used by Algorithm 1.625
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The set of policies that could be generated by Algorithm 1 is the following:626

P =

{
p : Ĉov(pA) = argmin

HHH∈HA
{⟨HHH,ZZZ⟩+ F (HHH)} , for ZZZ ∈ Z

}
where Z = [−T 2, T 2](d+1)×(d+1) ∩ S with S denoting the set of symmetric matrices. To see this,627

notice that Algorithm 1 at round t corresponds to the policy defined above with ZZZ = ηt
∑t−1
s=1(γ̂s −628

αsΣ̂̂Σ̂Σ
−1
s ).629

Our goal is to construct a ϵ-cover P′ so that every policy p ∈ P can find a policy p′ ∈ P′ making630

−ϵI ⪯ Ĉov(pA)− Ĉov(p′A) ⪯ ϵI on every action set A. The size of such a cover is bounded in the631

Proposition below.632

Proposition 1. There exists an ϵ-cover P′ of P with size log |P′| = O
(
d2 log d

ϵ

)
such that for any633

p ∈ P, there exists an p′ ∈ P′ satisfying634 ∥∥∥Ĉov(pA)− Ĉov(p′A)
∥∥∥
F
≤ ϵ

for all A.635

Proof. It is straightforward to construct an ϵ
4 -cover C for Z = [−T 2, T 2](d+1)×(d+1)∩S in Frobenius636

norm with size |C| = ( 24(d+1)2

ϵ )(d+1)2 (Exercise 27.6 of [LS20]). Now define P′ as637

P′ =

{
p : Ĉov(pA) = argmin

HHH∈HA
{⟨HHH,ZZZ⟩+ F (HHH)} , for ZZZ ∈ C

}
(22)

Below, we show that this is a ϵ-cover for P.638

Consider two policies p1 and p2 defined as the following:639

Ĉov(pA1 ) = argmin
HHH∈HA

{⟨HHH,ZZZ1⟩+ F (HHH)}

Ĉov(pA2 ) = argmin
HHH∈HA

{⟨HHH,ZZZ2⟩+ F (HHH)}

with ∥ZZZ1−ZZZ2∥F ≤ ϵ
4 . Consider an arbitrary A and defineHHH1 = Ĉov(pA1 ),HHH2 = Ĉov(pA2 ). Below640

we show ∥HHH1 −HHH2∥F ≤ ϵ.641

Since F (HHH) is convex forHHH , from the first-order optimality condition for convex function, we have642

⟨HHH1,ZZZ1⟩+ F (HHH1) ≤ ⟨HHH2,ZZZ1⟩+ F (HHH2)−DF (HHH2,HHH1)

= ⟨HHH2,ZZZ2⟩+ ⟨HHH2,ZZZ1 −ZZZ2⟩+ F (HHH2)−DF (HHH2,HHH1)

⟨HHH2,ZZZ2⟩+ F (HHH2) ≤ ⟨HHH1,ZZZ2⟩+ F (HHH1)−DF (HHH1,HHH2)

= ⟨HHH1,ZZZ1⟩+ ⟨HHH1,ZZZ2 −ZZZ1⟩+ F (HHH1)−DF (HHH1,HHH2)

Adding up these the two inequalities, we get643

2min{DF (HHH1,HHH2), DF (HHH2,HHH1)} ≤ DF (HHH1,HHH2) +DF (HHH2,HHH1) ≤ ⟨ZZZ1 −ZZZ2,HHH2 −HHH1⟩
Since the second order directional derivative for F is D2F (HHH)[XXX,XXX] = Tr(XXXHHH−1XXXHHH−1) for any644

symmetric matrixXXX , from the Taylor series, there existsHHH ′ that is a line segment betweenHHH1 and645

HHH2 such that646

∥HHH1 −HHH2∥2∇2F (HHH′) = 2min{DF (HHH1,HHH2), DF (HHH2,HHH1)} ≤ ⟨ZZZ1 −ZZZ2,HHH2 −HHH1⟩
≤ ∥ZZZ1 −ZZZ2∥∇−2F (HHH′)∥HHH1 −HHH2∥∇2F (HHH′) (Lemma 8)

Thus we have ∥HHH1−HHH2∥∇2F (HHH′) ≤ ∥ZZZ1−ZZZ2∥∇−2F (HHH′). Since ∥a∥2 ≤ 1,HHH ′ ⪯ 2III . The left-hand647

side and right-hand side can be bounded as follows,648

∥HHH1 −HHH2∥∇2F (HHH′) =
√
Tr ((HHH1 −HHH2)(HHH ′)−1(HHH1 −HHH2)(HHH ′)−1) ≥ 1

2
∥HHH1 −HHH2∥F

∥ZZZ1 −ZZZ2∥∇−2F (HHH′) =
√
Tr ((ZZZ1 −ZZZ2)HHH ′(ZZZ1 −ZZZ2)HHH ′) ≤ 2∥ZZZ1 −ZZZ2∥F ≤ ϵ

2
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Combining the three inequalities above, we conclude that649

∥HHH1 −HHH2∥F ≤ 2∥HHH1 −HHH2∥∇2F (HHH′) ≤ 2∥ZZZ1 −ZZZ2∥∇−2F (HHH′) ≤ 4∥ZZZ1 −ZZZ2∥F ≤ ϵ.
650

−ϵIII ⪯HHH1 −HHH2 ⪯ ϵIII.

651

Proposition 2. Suppose that p, p′ are two policies such that for all action set A,652 ∥∥∥Ĉov(pA)− Ĉov(p′A)
∥∥∥
F
≤ ϵ (23)

Then all quantities defined in Definition 11 under p and p′ are close. That is,653

∥x(p)− x(p′)∥ ≤ ϵ (24)

∥x̂(p)− x̂(p′)∥ ≤ ϵ (25)

∥H(p)−H(p′)∥F ≤ 7ϵ (26)

∥Ĥ(p)− Ĥ(p′)∥F ≤ 7ϵ (27)

∥HHH(p)−HHH(p′)∥F ≤ ϵ (28)

∥Ĥ̂ĤH(p)− Ĥ̂ĤH(p′)∥F ≤ ϵ (29)

∥Σ̂(p)− Σ̂(p′)∥F ≤ 7ϵ (30)

∥Σ̂̂Σ̂Σ(p)− Σ̂̂Σ̂Σ(p′)∥F ≤ ϵ (31)

Proof. Eq. (28) and Eq. (29) are direct consequences of Eq. (23) sinceHHH(p) and Ĥ̂ĤH(p) are expec-654

tations of Ĉov(pA) over distributions over A. Eq. (31) is directly implied by Eq. (29) because655

Σ̂̂Σ̂Σ(p) = Ĥ̂ĤH(p) + βIII .656

To show Eq. (24) and Eq. (25), observe that by the definition of x(p) andHHH(p),657

HHH(p) = EA∼DEa∼pA

[
aa⊤ a

a⊤ 1

]
=

[
EA∼DEa∼pA [aa⊤] EA∼DEa∼pA [a]
EA∼DEa∼pA [a⊤] 1

]

=

[
EA∼DEa∼pA [aa⊤] x(p)

x(p)⊤ 1

]
Therefore, ∥x(p) − x(p′)∥ ≤ ∥HHH(p) − HHH(p′)∥F ≤ ϵ. Similarly, ∥x̂(p) − x̂(p′)∥ ≤ ∥Ĥ̂ĤH(p) −658

Ĥ̂ĤH(p′)∥F ≤ ϵ.659

If remains to show Eq. (26), Eq. (27) and Eq. (30). Next, we show Eq. (26):660

H(p)−H(p′)

= EA∼D
[
Ea∼pA [(a− x̂(p))(a− x̂(p))⊤]− Ea∼p′A [(a− x̂(p′))(a− x̂(p′))⊤]

]
= EA∼D

[
Ea∼pA [aa⊤]− Ea∼p′A [aa⊤]

]
− x(p)x̂(p)⊤ − x̂(p)x(p)⊤ + x(p′)x̂(p′)⊤ + x̂(p′)x(p′)⊤ (using EA∼DEa∼pA [a] = x(p))

+ x̂(p)x̂(p)⊤ − x̂(p′)x̂(p′)⊤ (32)

Using the property661

∥ab⊤ − cd⊤∥F ≤ ∥ab⊤ − cb⊤∥F + ∥cb⊤ − cd⊤∥F ≤ ∥a− c∥∥b∥+ ∥c∥∥b− d∥
we continue from Eq. (32) and bound662

∥H(p)−H(p′)∥F
≤ ∥HHH(p)−HHH(p′)∥F + 2(∥x̂(p)− x̂(p′)∥+ ∥x(p)− x(p′)∥) + ∥x̂(p)− x̂(p′)∥+ ∥x̂(p)− x̂(p′)∥
≤ 7ϵ.

Eq. (27) can be shown in the same manner, which further implies Eq. (30) by the definition of Σ̂(p).663

664
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Lemma 15. With probability 1− δ, for all t = 1, · · · , T ,665

Ĥt +
50(d+ 1)3 log(3T/δ)

t− 1
I ⪰ 1

2
Ht,

Ĥ̂ĤHt +
50(d+ 1)3 log(3T/δ)

t− 1
III ⪰ 1

2
HHHt.

Proof. Notice that Ĥt, Ĥ̂ĤHt, Ht,HHHt corresponds to Ĥ(pt), Ĥ̂ĤH(pt), H(pt),HHH(pt) defined in Defini-666

tion 11 with n = t− 1. To show the lemma, our strategy is to argue the following two facts: 1) the667

two desired inequalities hold for all policies in the cover P′ (defined in Eq. (22)) with high probability.668

This is simply by applying Lemma 12 with an union bound over policies in P′. 2) pt is sufficiently669

close to the nearest element in P′ so the desired inequalities still approximately hold.670

By Proposition 1, we can find p′ ∈ P′ such that for all A,671 ∥∥∥Ĉov(pAt )− Ĉov(p′A)
∥∥∥
F
≤ ϵ.

By Proposition 2, it holds that672

∥H(pt)−H(p′)∥F ≤ 7ϵ, ∥Ĥ(pt)− Ĥ(p′)∥F ≤ 7ϵ (33)

∥HHH(pt)−HHH(p′)∥F ≤ ϵ, ∥Ĥ̂ĤH(pt)− Ĥ̂ĤH(p′)∥F ≤ ϵ (34)

On the other hand, using Lemma 12 and union bound, with probability 1− δ, we have673

Ĥ(p′) +
4d log(6d|P′|/δ)

n
I ⪰ 1

2
H(p′), (35)

Ĥ̂ĤH(p′) +
3d log(d|P′|/δ)

n
III ⪰ 1

2
HHH(p′). (36)

Combining Eq. (35) and Eq. (33), we get674

Ĥ(pt) + 7ϵI +
4d log(6d|P′|/δ)

n
I ⪰ Ĥ(p′) +

4d log(6d|P′|/δ)
n

I ⪰ 1

2
H(p′) ⪰ 1

2
H(pt)−

7

2
ϵI

which implies the first inequality in the lemma by plugging in the choice of ϵ = 1
T 3 and the upper675

bound of log |P′| in Proposition 2. The second inequality in the lemma can be obtained similarly by676

combining Eq. (34) and Eq. (36).677

678

Lemma 16. With probability of at least 1− δ, for all t = 1, · · · , T ,679

∥xt − x̂t∥2Σ̂−1
t

≤ O
(
d3 log (dT/δ)

t

)

Proof. Notice that xt, x̂t, Σ̂t corresponds to x(pt), x̂(pt), Σ̂(pt) defined in Definition 11 with n =680

t − 1. To show the lemma, our strategy is to argue the following two facts: 1) the two desired681

inequalities hold for all policies in the cover P′ with high probability. This is simply by applying682

Lemma 13 with an union bound over policies in P′. 2) pt is sufficiently close to the nearest element683

in P′ so the desired inequalities still approximately hold.684

By Proposition 1, we can find p′ ∈ P′ such that for all A,685 ∥∥∥Ĉov(pAt )− Ĉov(p′A)
∥∥∥
F
≤ ϵ.

By Proposition 2, we have686

∥x(p′)− x(pt)∥ ≤ ϵ, ∥x̂(p′)− x̂(pt)∥ ≤ ϵ, ∥Σ̂(p′)− Σ̂(pt)∥F ≤ 7ϵ (37)
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Thus,687

∥x(pt)− x̂(pt)∥2Σ̂(pt)−1

=
(
∥x(pt)− x̂(pt)∥2Σ̂(pt)−1 − ∥x(p′)− x̂(p′)∥2

Σ̂(p′)−1

)
+ ∥x(p′)− x̂(p′)∥2

Σ̂(p′)−1

≤
(
∥x(pt)− x̂(pt)∥2Σ̂(pt)−1 − ∥x(p′)− x̂(p′)∥2

Σ̂(p′)−1

)
+O

(
d log(d|P′|/δ)

t− 1

)
(by Lemma 13 with an union bound over P′)

= θ⊤t Σ̂(pt)
−1θt − θ′⊤Σ̂(p′)−1θ′ +O

(
d log(d|P′|/δ)

t− 1

)
(define θt = x(pt)− x̂(pt) and θ′ = x(p′)− x̂(p′))

= (θt − θ′)⊤Σ̂(pt)
−1θt + θ′⊤

(
Σ̂(pt)

−1 − Σ̂(p′)−1
)
θt + θ′⊤Σ̂(p′)−1(θt − θ′) +O

(
d log(d|P′|/δ)

t− 1

)
≤ (θt − θ′)⊤

(
Σ̂(pt)

−1θt + Σ̂(p′)−1θ′
)
+ θ′⊤Σ̂(p′)−1

(
Σ̂(p′)− Σ̂(pt)

)
Σ̂(pt)

−1θt +O
(
d log(d|P′|/δ)

t− 1

)
The first two terms above can be bounded by the order of O(ϵt2) by Eq. (37). Using the choice688

ϵ = 1
T 3 and recalling that log |P′| = O(d2 log(d/ϵ)) finishes the proof.689

690

Lemma 17. With probability of at least 1− δ, for all t = 1, 2, . . . , T ,691

∥(Σ̂t −Ht)yt∥2Σ̂−1
t

≤ O
(
d3 log (dT/δ)

t

)
Proof. Notice that xt, x̂t, Σ̂t corresponds to x(pt), x̂(pt), Σ̂(pt) defined in Definition 11 with n =692

t − 1. To show the lemma, our strategy is to argue the following two facts: 1) the two desired693

inequalities hold for all policies in the cover P′ with high probability. This is simply by applying694

Lemma 13 with an union bound over policies in P′. 2) pt is sufficiently close to the nearest element695

in P′ so the desired inequalities still approximately hold.696

By Proposition 1, we can find p′ ∈ P′ such that for all A,697 ∥∥∥Ĉov(pAt )− Ĉov(p′A)
∥∥∥
F
≤ ϵ.

By Proposition 2, we have698

∥x(p′)− x(pt)∥ ≤ ϵ, ∥x̂(p′)− x̂(pt)∥ ≤ ϵ, ∥Σ̂(p′)− Σ̂(pt)∥F ≤ 7ϵ (38)
Thus, for any ∥yt∥2 ≤ 1,699

∥(Σ̂(pt)−H(pt))yt∥2Σ̂(pt)−1

=
(
∥(Σ̂(pt)−H(pt))yt∥2Σ̂(pt)−1 − ∥(Σ̂(p′)−H(p′))yt∥2Σ̂(p′)−1

)
+ ∥(Σ̂(p′)−H(p′))yt∥2Σ̂(p′)−1

≤
(
∥(Σ̂(pt)−H(pt))yt∥2Σ̂(pt)−1 − ∥(Σ̂(p′)−H(p′))yt∥2Σ̂(p′)−1

)
+O

(
d log(d|P′|/δ)

t− 1

)
(by Lemma 14 with an union bound over P′)

= θ⊤t Σ̂(pt)
−1θt − θ′⊤Σ̂(p′)−1θ′ +O

(
d log(d|P′|/δ)

t− 1

)
(define θt = (Σ̂(pt)−H(pt))yt and θ′ = (Σ̂(p′)−H(p′))yt)

= (θt − θ′)⊤Σ̂(pt)
−1θt + θ′⊤

(
Σ̂(pt)

−1 − Σ̂(p′)−1
)
θt + θ′⊤Σ̂(p′)−1(θt − θ′) +O

(
d log(d|P′|/δ)

t− 1

)
≤ (θt − θ′)⊤

(
Σ̂(pt)

−1θt + Σ̂(p′)−1θ′
)
+ θ′⊤Σ̂(p′)−1

(
Σ̂(p′)− Σ̂(pt)

)
Σ̂(pt)

−1θt +O
(
d log(d|P′|/δ)

t− 1

)
The first two terms above can be bounded by the order of O(ϵt2) by Eq. (38). Plugging in the choice700

of ϵ = 1
T 3 and recalling that log |P′| = O(d2 log(d/ϵ)) finishes the proof.701

702
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D Regret Analysis703

Consider the regret decomposition in Section 3.5.704

Reg(u) = E

[
T∑
t=1

〈
at − uAt , yt

〉]
= E

[
T∑
t=1

〈
HHHAt
t −UUUAt , γt

〉]
= E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt

〉]

≤ E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
︸ ︷︷ ︸

Bias

+E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

Bonus

+E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

FTRL-Reg

where A0 is drawn from D and is independent from the interaction between the learning and the705

environment. Recall that our algorithm is FTRL:706

HHHA0
t = argmin

HHH∈HA0

{
t−1∑
s=1

〈
HHH, γ̂s − αsΣ̂̂Σ̂Σ

−1
s

〉
+
F (HHH)

ηt

}
.

The FTRL-Reg term can be handled by the standard FTRL analysis (Lemma 5). In order to deal707

with the issue that F can be unbounded on the boundary of HA0 , we apply Lemma 5 with the regret708

comparator UUU
A0 defined as709

UUU
A0

=

(
1− 1

T 2

)
UUUA0 +

1

T 2
HHHA0

∗

whereHHHA0
∗ ≜ argminHHH∈HA0 F (HHH). Thus,710

FTRL-Reg

≤ E

[
T∑
t=1

〈
HHHA0
t −UUU

A0
, γ̂t − αtΣ̂̂Σ̂Σ

−1
t

〉]
+ E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]

≤ E

[
F (UUU

A0
)−minHHH∈HA0 F (HHH)

ηT

]
︸ ︷︷ ︸

Penalty

+E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]
︸ ︷︷ ︸

Stability-1

+ E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]
︸ ︷︷ ︸

Stability-2

+E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]
︸ ︷︷ ︸

Error
(39)

In the rest of this section, we bound the following terms individually: Bias, Bonus, Penalty,711

Stability-1, Stability-2, Error.712

For any t = 2, · · · , T , let Et−1 be the event that the high-probability event in Lemma 15, Lemma 16,713

and Lemma 17 happens for all 1, · · · , t− 1 and Et−1 be the opposite event of Et−1(i.e. any of these714

three lemmas fails for any 1, · · · , t− 1). We have P[Et−1] = 1−O(δ) and P[Et−1] = O(δ). Let715

E [· | Et−1] be the conditional expectation that event Et−1 happens and let EE
t = E[· | Ft−1, Et−1]716

D.1 Bounding the Bias term717

Lemma 18.

Bias = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
≤ 1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
δT 2 +

T∑
t=1

d3 log(T/δ)

αtt

)
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Proof. For any t, we have718

EE
t

[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
= EE

t [⟨HHHt −UUU, γt − γ̂t⟩] (taking expectation over A0)

= EE
t [⟨xt − u, yt − ŷt⟩] (by the definition of lifting)

= EE
t

[
(xt − u)⊤

(
yt − Σ̂−1

t (at − x̂t)a
⊤
t yt

)]
(by the definition of ŷt)

= EE
t

[
(xt − u)⊤

(
yt − Σ̂−1

t (at − x̂t)(at − x̂t)
⊤yt

)]
− EE

t

[
(xt − u)⊤Σ̂−1

t (at − x̂t)x̂
⊤
t yt

]
= EE

t

[
(xt − u)⊤

(
I − Σ̂−1

t EA∼DEat∼pAt
[
(at − x̂t)(at − x̂t)

⊤]) yt]
− EE

t

[
(xt − u)⊤Σ̂−1

t

(
EA∼DEat∼pAt [at]− x̂t

)
x̂⊤t yt

]
(taking expectation over At and at)

= EE
t

[
(xt − u)⊤Σ̂−1

t

(
Σ̂t −Ht

)
yt

]
− EE

t

[
(xt − u)⊤Σ̂−1

t (xt − x̂t) x̂
⊤
t yt

]
(by the definition of Ht and xt)

≤ EE
t

[
(xt − u)⊤Σ̂−1

t

(
Σ̂t −Ht

)
yt

]
+ EE

t

[∣∣∣(xt − u)⊤Σ̂−1
t (xt − x̂t)

∣∣∣] (|x̂⊤t yt| ≤ 1)

≤ EE
t

[
∥xt − u∥Σ̂−1

t

(
∥(Σ̂t −Ht)yt∥Σ̂−1

t
+ ∥xt − x̂t∥Σ̂−1

t

)]
(Cauchy-Schwarz)

≤ O

(√
d3 log(T/δ)

t
∥xt − u∥Σ̂−1

t

)
(Lemma 17 and Lemma 16 given Et−1)

≤ αt
4
∥xt − u∥2

Σ̂−1
t

+O
(
d3 log(T/δ)

αtt

)
(AM-GM inequality)

On the other hand, since Σ̂t ⪰ 1
t I ⪰ 1

T I , for any t = 1, · · · , T ,719

∥ŷt∥2 = ∥Σ−1
t (at − x̂t)a

⊤
t yt∥2 ≤ ∥Σ−1

t (at − x̂t)∥2 ≤ O(T )

Thus, we have trivial bound720

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉 ∣∣∣ Et−1

]
= Et

[
⟨HHHt −UUU, γt − γ̂t⟩ | Et−1

]
= Et

[
⟨xt − u, yt − ŷt⟩ | Et−1

]
≤ O(T )

Therefore, we have721

Bias = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉 ∣∣∣ Et−1

]
I{Et−1}

]
+ E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉 ∣∣∣ Et−1

]
I{Et−1}

]

≤ 1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
T∑
t=1

d3 log(T/δ)

αtt
+ δT 2

)
722

D.2 Bounding the Bonus term723

We first prove the following useful technique lemma to bound the inner product of lifted matrices.724

Lemma 19. Let GGG =

[
G+ gg⊤ g

g⊤ 1

]
, HHH =

[
H + hh⊤ h

h⊤ 1

]
where G and H are positive semi-725

definite, andHHH ′ =HHH + vv⊤ where v =

[
0√
β

]
∈ Rd+1. Then we have726
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1. Tr
(
HHH−1GGG

)
= Tr(H−1G) + ∥g − h∥2H−1 + 1727

2. Tr
(
(HHH ′)−1GGG

)
≥ 1

2(1+ β
1+β ∥h∥2

H−1)
∥g − h∥2H−1 − β2

(1+β)2 ∥h∥
2
H−1728

Proof. From Theorem 2.1 of [LS02], for any block matrix R =

[
A B

C D

]
if A is invertible and its729

Schur complement SA = D − CA−1B is invertible, then730

R−1 =

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA S−1

A

]

Using above equation, for the first equation, Since (H+hh⊤)−1 = H−1− H−1hh⊤H−1

1+h⊤H−1h
. The inverse731

Schur complement of H + hh⊤ is 1 + h⊤H−1h. Thus732

HHH−1 =

[
(I +H−1hh⊤)(H + hh⊤)−1 −H−1h

−h⊤H−1 1 + h⊤H−1h

]
=

[
H−1 −H−1h

−h⊤H−1 1 + h⊤H−1h

]
and733

Tr(HHH−1GGG) = Tr
(
H−1G+H−1gg⊤ −H−1hg⊤

)
− h⊤H−1g + 1 + h⊤H−1h

= Tr
(
H−1G

)
+ g⊤H−1g − 2g⊤H−1h+ h⊤H−1h+ 1

= Tr(H−1G) + ∥g − h∥2H−1 + 1.

For the second equation, observe that734

HHH ′ =

[
H + hh⊤ h

h⊤ 1 + β

]
= (1 + βt)

[
1

1+β (H + hh⊤) 1
1+βh

1
1+βh

⊤ 1

]
= (1 + βt)

[
H ′ + h′h′⊤ h′

h′⊤ 1

]
where h′ = 1

1+βh and H ′ = 1
1+βH + ( 1

1+β − 1
(1+β)2 )hh

⊤ = 1
1+βH + β

(1+β)2hh
⊤ ⪰ 0.735

Applying the first equality, we have736

Tr((HHH ′)−1GGG) =
1

1 + β

(
Tr((H ′)−1G) + ∥g − h′∥2H′−1 + 1

)
≥ 1

1 + β
∥g − h′∥2H′−1 .

Below, we continue to lower bound this term. By the same formula above, we have737

H ′−1 =

(
1

1 + β
H +

β

(1 + β)2
hh⊤

)−1

= (1 + β)H−1 − βH−1hh⊤H−1

1 + β
1+βh

⊤H−1h
.

Thus738

1

1 + β
∥g − h′∥2H′−1

≥ 1

2(1 + β)
∥g − h∥2H′−1 −

1

1 + β
∥h− h′∥2H′−1 (using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2)

=
1

2
(g − h)⊤

(
H−1 −

β
1+βH

−1hh⊤H−1

1 + β
1+βh

⊤H−1h

)
(g − h)− (h− h′)⊤

(
H−1 −

β
1+βH

−1hh⊤H−1

1 + β
1+βh

⊤H−1h

)
(h− h′)

≥ 1

2
∥g − h∥2H−1 −

β
1+β ((g − h)⊤H−1h)2

2
(
1 + β

1+β ∥h∥
2
H−1

) − β2

(1 + β)2
∥h∥2H−1 (using h− h′ = β

1+βh)

≥ 1

2
∥g − h∥2H−1 −

β
1+β ∥h∥

2
H−1

2
(
1 + β

1+β ∥h∥
2
H−1

)∥g − h∥2H−1 −
β2

(1 + β)2
∥h∥2H−1 (Cauchy-Schwarz)

=
1

2
(
1 + β

1+β ∥h∥
2
H−1

)∥g − h∥2H−1 −
β2

(1 + β)2
∥h∥2H−1 .

739
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Using Lemma 19, we are able to show Corollary 20 which bound part of the second term.740

Corollary 20. Tr(UUUΣ̂̂Σ̂Σ−1
t ) ≥ 1

4∥u− x̂t∥2Σ̂−1
t

− 1
4 .741

Proof. From Lemma 19, we have742

Tr(UUUΣ̂̂Σ̂Σ−1
t ) ≥ 1

2
(
1 + βt

1+βt
∥x̂t∥2Σ̂−1

t

)∥u− x̂t∥2Σ̂−1
t

− β2
t

(1 + βt)2
∥x̂t∥2Σ−1

t
.

Since Σ̂t ⪰ βtI , Σ̂−1
t ⪯ 1

βt
I . Since ∥x̂t∥2 ≤ 1, we have ∥x̂t∥2Σ̂−1

t

≤ 1
βt

. Then743

Tr(UUUΣ̂̂Σ̂Σ−1
t ) ≥ 1

2
(
1 + 1

1+βt

)∥u− x̂t∥2Σ̂−1
t

− βt
(1 + βt)2

≥ 1

4
∥u− x̂t∥2Σ̂−1

t
− βt

(2
√
βt)2

(βt ≥ 0)

=
1

4
∥u− x̂t∥2Σ̂−1

t
− 1

4
.

744

Lemma 21.

Bonus = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]

≤ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log (T/δ)

t
+ δT

T∑
t=1

αt

)
.

Proof. For any t, we have745

EE
t

[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]
= EE

t

[
Tr
(
αt (HHHt −UUU) Σ̂̂Σ̂Σ−1

t

)]
(taking expectation over A0)

= EE
t

[
αtTr

(
HHHtΣ̂̂Σ̂Σ

−1
t

)
− αtTr

(
UUUΣ̂̂Σ̂Σ−1

t

)]
≤ αtTr

(
EE
t [HHHt] Σ̂̂Σ̂Σ

−1
t

)
− EE

t

[αt
4
∥u− x̂t∥2Σ̂−1

t

]
+

1

4
αt (Corollary 20)

≤ 2αt(d+ 2)− EE
t

[αt
4
∥u− x̂t∥2Σ̂−1

t

]
≤ 2αt(d+ 2)− EE

t

[αt
4
∥u− xt∥2Σ̂−1

t
− αt

4
∥x̂t − xt∥2Σ̂−1

t

]
≤ 2αt(d+ 2)− αt

4
∥u− xt∥2Σ̂−1

t
+O

(
d3αt log (T/δ)

t

)
(Lemma 16)

On the other hand, since Σ̂̂Σ̂Σt ⪰ 1
tIII ⪰ 1

T III , we have trivial bound746

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉 ∣∣∣ Et−1

]
≤ O(αtT )
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Therefore, we have747

Bonus = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉 ∣∣∣ Et−1

]
I{Et−1}

]
+ E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉 ∣∣∣ Et−1

]
I{Et−1}

]

≤ 2(d+ 2)

T∑
t=1

αt −
(1− δ)

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log(T/δ)

t
+ δT

T∑
t=1

αt

)

≤ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log (T/δ)

t
+ δT

T∑
t=1

αt

)
748

D.3 Bounding the Penalty term749

Lemma 22. UUU
A0 , we have750

F (UUU
A0

)−minHHH∈HA0 F (HHH)

ηT
≤ 2d log(T )

ηT

Proof. Since UUU
A0

=
(
1− 1

T 2

)
UUUA0 + 1

T 2HHH
A0
∗ , we have UUU

A0 ⪰ 1
T 2HHH

A0
∗ . Then751

F (UUU
A0

)−minHHH∈HA0 F (HHH)

ηT
=

1

ηT
log

det(HHHA0
∗ )

det(UUU
A0

)
≤ 2d log(T )

ηT
.

752

D.4 Bounding the Stability-1 term753

[ZL22] gave a useful identity to bound the Bregman divergence. We restate it in Lemma 23 for754

completeness.755

Lemma 23. LetGGG =

[
G+ gg⊤ g

g⊤ 1

]
andHHH =

[
H + hh⊤ h

h⊤ 1

]
, we have756

D(GGG,HHH) = D(G,H) + ∥g − h∥2H−1 ≥ ∥g − h∥2H−1

Proof.
D(GGG,HHH) = F (GGG)− F (HHH)− ⟨∇F (HHH),GGG−HHH⟩

= log

(
det(HHH)

det(GGG)

)
+Tr(HHH−1(GGG−HHH))

= log

(
det(HHH)

det(GGG)

)
+Tr(HHH−1GGG)− d− 1

= log

(
det(HHH)

det(GGG)

)
+Tr(HHH−1GGG)− d− 1

= log

(
det(H)

det(G)

)
+Tr(H−1G) + ∥g − h∥2H−1 − d (Lemma 19)

= D(G,H) + ∥g − h∥2H−1

≥ ∥g − h∥2H−1
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757

Lemma 24. For anyHHH ∈ HA0 , we have758

Stability-1 = E

[
T∑
t=1

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]
≤ 2d

T∑
t=1

ηt +O(δT 2)

Proof. Recall thatHHHA0
t = Ĉov(pA0

t ) and Ĉov(p) =

[
Cov(p) + µ(p)µ(p)⊤ µ(p)

µ(p)⊤ 1

]
, we have759

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt
≤
〈
xA0
t − µ(p), ŷt

〉
−

∥µ(p)− xA0
t ∥2

Cov(p
A0
t )−1

2ηt
(Lemma 23)

≤ ∥xA0
t − µ(p)∥

Cov(p
A0
t )−1∥ŷt∥Cov(p

A0
t )

−
∥µ(p)− xA0

t ∥2
Cov(p

A0
t )−1

2ηt

≤ ηt
2
∥ŷt∥2Cov(p

A0
t )

(AM-GM inequality)

=
ηt
2
∥Σ̂−1

t (at − x̂t)ℓt∥2Cov(p
A0
t )

≤ ηt
2
(at − x̂t)

⊤Σ̂−1
t Cov(pA0

t )Σ̂−1
t (at − x̂t) (|ℓt| ≤ 1)

=
ηt
2
Tr
(
(at − x̂t)(at − x̂t)

⊤Σ̂−1
t Cov(pA0

t )Σ̂−1
t

)
Since EA∼DEa∼pA

[
(a− x̂t)(a− x̂t)

⊤] = Ht, taking expectations over At, at and A0 conditioned760

on Et−1, we have761

EE
t

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]
≤ EE

t

[ηt
2
Tr
(
(at − x̂t)(at − x̂t)

⊤Σ̂−1
t Cov(pA0

t )Σ̂−1
t

)]
= EE

t

[ηt
2
Tr
(
HtΣ̂

−1
t EA0∼D

[
Cov(pA0

t )
]
Σ̂−1
t

)]
.

Notice that given Et−1,762

Σ̂t ⪰
1

2
Ht =

1

2
EA∼D[Cov(p

A
t )] +

1

2
(x̂t − xt)(x̂t − xt)

⊤ ⪰ 1

2
EA∼D[Cov(p

A
t )]

Hence we continue to upper bound the last expression by763

EE
t

[
ηtTr

(
HtΣ̂

−1
t Σ̂tΣ̂

−1
t

)]
≤ EE

t

[
ηt Tr

(
HtΣ̂

−1
t

)]
≤ 2ηtd.

On the other hand, since Σ̂t ⪰ 1
t I ⪰ 1

T I , we have trivial bound764

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
≤ O(T )

Combining everything, we get765

Stability-1 = E

[
T∑
t=1

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]

= E

[
T∑
t=1

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]]

= E

[
T∑
t=1

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

+ E

[
T∑
t=1

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

≤ 2d

T∑
t=1

ηt +O(δT 2).
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766

D.5 Bounding the Stability-2 term767

Note that Lemma 8 does not require matrix A,B to be positive semi-definite. We will use it to prove768

the following lemma based on Lemma 34 in [DWZ23b].769

Lemma 25. If ηtαt ≤ 1
64t , then770

Stability-2 = E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]
≤ d

T∑
t=1

αt +O
(
δT 2

)

Proof. We first show that max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHH

A0
t )

2ηt
≤ αt

2 ∥Σ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

.771

Define772

G(HHH) =
〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

and λ = ∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

. Since Σ̂̂Σ̂Σt ⪰ 1
t I ,HHHA0

t ⪯ 2I , ηtαt ≤ 1
64t , we have773

ηtλ = ηt∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

= ηtαt

√
Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t HHHA0

t Σ̂̂Σ̂Σ−1
t ) ≤ 2ηtαtt ≤

1

32
.

Let HHH ′ be the maximizer of G. Since G(HHHA0
t ) = 0, we have G(HHH ′) ≥ 0. It suffices to show774

∥HHH ′ −HHHA0
t ∥∇2F (HHH

A0
t )

≤ 16ηtλ because from Lemma 8, it leads to775

G(HHH ′) ≤ ∥HHHA0
t −HHH ′∥∇2F (HHH

A0
t )

∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

≤ 16ηtλαt∥Σ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

=
αt
2
∥Σ̂̂Σ̂Σ−1

t ∥∇−2F (HHH
A0
t )

To show ∥HHH ′ − HHHA0
t ∥∇2F (HHH

A0
t )

≤ 16ηtλ, it suffices to show that for all UUU such that ∥UUU −776

HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ, G(UUU) ≤ 0. This is because given this condition, if ∥HHH ′ −777

HHHA0
t ∥∇2F (HHH

A0
t )

> 16ηtλ, then there is a UUU in the line segment between HHHA0
t and HHH ′ such that778

∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ. From the condition, G(UUU) ≤ 0 ≤ min{G(HHHA0
t ), G(HHH ′)} which779

contradicts to the strictly concave of G.780

Now consider anyUUU such that ∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ. By Taylor expansion, there existsUUU ′781

in the line segment between UUU andHHHA0
t such that782

G(UUU) ≤ ∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

− 1

4ηt
∥UUU −HHHA0

t ∥2∇2F (UUU ′)

We have ∥UUU ′ −HHHA0
t ∥∇2F (HHH

A0
t )

≤ ∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ ≤ 1
2 . From the Equation 2.2 in783

page 23 of [Nem04] (also appear in Eq.(5) of [AHR09]) and log det is a self-concordant function,784

we have ∥UUU −HHHA0
t ∥2∇2F (UUU ′) ≥

1
4∥UUU −HHHA0

t ∥2
∇2F (HHH

A0
t )

. Thus, we have785

G(UUU) ≤ ∥UUU−HHHA0
t ∥∇2F (HHH

A0
t )

∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

− 1

16ηt
∥UUU−HHHA0

t ∥2
(HHH

A0
t )−1

= 16ηtλ
2− (16ηtλ)

2

16ηt
= 0

We have ∥Σ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

=

√
Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t HHHA0

t Σ̂̂Σ̂Σ−1
t ) =

√
Tr((HHHA0

t Σ̂̂Σ̂Σ−1
t )2). Observe the fol-786

lowing two facts: 1) all eigenvalues of HHHA0
t Σ̂̂Σ̂Σ−1

t are non-negative since HHHA0
t and Σ̂̂Σ̂Σ−1

t are both787

positive semi-definite, 2) for a square matrix A with all non-negative eigenvalues, Tr(A2) ≤ Tr(A)2788

because Tr(A2) =
∑
i λi(A

2) =
∑
i λi(A)

2 ≤ (
∑
i λi(A))

2. We have789 √
Tr((HHHA0

t Σ̂̂Σ̂Σ−1
t )2) ≤ Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t ).
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This allows us to conclude790

EE
t

[αt
2
∥Σ̂̂Σ̂Σ−1

t ∥∇−2F (HHH
A0
t )

]
≤ αt

2
EE
t

[
Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t )
]
≤ αtd

where we use that Σ̂̂Σ̂Σt ⪰ 1
2EA0∼D[HHH

A0
t ] given Et−1.791

On the other hand, since Σ̂̂Σ̂Σt ⪰ 1
tIII ⪰ 1

T III , for any t = 1, · · · , T , we have trivial bound792

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
≤ O(T )

Overall,793

Stability-2 = E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]

≤ E

[
T∑
t=1

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]]

= E

[
T∑
t=1

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

+ E

[
T∑
t=1

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

≤ d

T∑
t=1

αt +O
(
δT 2

)
.

794

D.6 Bounding the Error term795

Lemma 26.

Error = E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]
≤ O(1).

Proof. Since UUU
A0

=
(
1− 1

T 2

)
UUUA0 + 1

T 2HHH
A0
∗ , and Σ̂t ⪰ 1

T I, Σ̂̂Σ̂Σt ⪰
1
T III we have796

Error = E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]

= E

[
1

T 2

T∑
t=1

〈
UUU

A0 −HHHA0
∗ , γ̂t − αtΣ̂̂Σ̂Σ

−1
t

〉]
≤ O(1).

797

D.7 Finishing up798

Recall the regret decomposition at the beginning of Appendix D. From Lemma 22, Lemma 24,799

Lemma 25, and Lemma 26, we have800

FTRL-Reg = Penalty + Stability-1 + Stability-2 + Error

≤ O

(
d log(T )

ηT
+ d

T∑
t=1

ηt + d

T∑
t=1

αt + δT 2

)
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From Lemma 18 and Lemma 21, we can cancel out the additional regret induced by bias through the801

well-designed bonus term. Namely,802

Bias + Bonus =
1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
T∑
t=1

d3 log(T/δ)

αtt
+ δT 2

)

+ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log
T
δ

t
+ δ

T∑
t=1

αtT

)

= O

(
d

T∑
t=1

αt +

T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

d3αt log (T/δ)

t
+ δT 2

)

Thus, we have803

Reg = Bias + Bonus + FTRL-Reg

= O

(
d log(T )

ηT
+ d

T∑
t=1

ηt + d

T∑
t=1

αt +

T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

d3αt log (T/δ)

t
+ δT 2

)

Recall that we have an additional condition in Lemma 25 such that for any t, ηtαt ≤ 1
64t . Picking804

αt =
d√
t
, ηt =

1
64d

√
t

and δ = 1
T 2 , we get805

Reg = O
(
d2
√
T log(T ) + d4 log(T )

)
= O(d2

√
T log(T ))

where we assume d2 ≤
√
T without loss of generality (otherwise the bound is vacuous).806

E Handling Misspecification807

In this section, we discuss how to handle misspecification as defined in Section 3.6. In Appendix E.1,808

we study the case where the amount of misspecification ε is known by the learner. In Appendix E.2,809

we use a blackbox approach to turn it into an algorithm that achieves almost the same regret bound810

(up to log T factors) without knowning ε.811

E.1 Known misspecification812

As discussed in Section 3.6, when the amount of misspecification ε is known, we still use Algorithm 1,813

but with differentαt and ηt. Throughout this subsection, we letαt = d√
t
+ ε√

d
and ηt = 1

64
(
d
√
t+ ε√

d
t
) ,814

and point out the modifications of the analysis from Appendix D.815

We start with the regret decomposition similar to that in Appendix D, but here we define816

yt = argmin
y∈Bd

2

max
A∈supp(D)

max
a∈A

|ft(a)− ⟨a, y⟩|,

εt = max
A∈supp(D)

max
a∈A

|ft(a)− ⟨a, yt⟩|,

ct(a) = ft(a)− ⟨a, yt⟩.
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The regret decomposition goes as follows:817

Reg(u) = E

[
T∑
t=1

(
ft(at)− ft(u

At)
)]

≤ E

[
T∑
t=1

〈
at − uAt , yt

〉]
+

T∑
t=1

εt

≤ E

[
T∑
t=1

〈
HHHAt
t −UUUAt , γt

〉]
+ εT = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt

〉]
+ εT

≤ E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
︸ ︷︷ ︸

Bias

+E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

Bonus

+ E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

FTRL-Reg

+εT.

Now ŷt = Σ̂−1
t (at − x̂t)ℓt with E[ℓt] = a⊤t yt + ct(at).818

For the Bias term, the proof is almost the same as Lemma 18. The only difference is that from the819

fourth line, we have820

Et
[
(xt − u)⊤

(
yt − Σ̂−1

t (at − x̂t)
(
a⊤t yt + ct(at)

))]
for some ct(at) such that |ct(at)| ≤ εt. This leads to an additional term of821

EE
t

[
−(xt − u)⊤Σ̂−1

t (at − x̂t)ct(at)
]

≤ EE
t

[√
(xt − u)⊤Σ̂−1

t ct(at)2(at − x̂t)(at − x̂t)⊤Σ̂
−1
t (xt − u)

]
≤ EE

t

[√
(xt − u)⊤Σ̂−1

t EAt,at [ct(at)
2(at − x̂t)(at − x̂t)⊤] Σ̂

−1
t (xt − u)

]
≤ EE

t

[
εt

√
(xt − u)⊤Σ̂−1

t (EAt,at [(at − x̂t)(at − x̂t)⊤]) Σ̂
−1
t (xt − u)

]
≤ EE

t

[
εt

√
(xt − u)⊤Σ̂−1

t HtΣ̂
−1
t (xt − u)

]
≤ εt∥xt − u∥Σ̂−1

t

Plugging it into the proof of Lemma 18, we have822

EE
t

[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
≤ O

(√
d3 log(T/δ)

t
+ εt

)
∥xt − u∥Σ̂−1

t

≤ αt
4
∥xt − u∥2

Σ̂−1
t

+O
(
d3 log(T/δ)

αtt
+
ε2t
αt

)
Other parts of the proof follow those in Lemma 18. Finally, we get823

Bias = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]

≤ 1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

ε2t
αt

+ δT 2

)
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The Bonus term will not be affected, according to Lemma 21, we have824

Bonus ≤ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log (T/δ))

t
+ δT 2

)

The Penalty term will not be affected, according to Lemma 22, we have825

F (UUU
A0

)−minHHH∈HA0 F (HHH)

ηT
≤ 2d log(T )

ηT

Stability-1 term is also unchanged, as we assume that ℓt still lies in [−1, 1] even under misspecifica-826

tion. We still have827

Stability-1 ≤ O

(
d

T∑
t=1

ηt + δT 2

)

The Stability-2 term will not be affected as long as ηtαt ≤ 1
64t . According to Lemma 25, we have828

Stability-2 ≤ O

(
d

T∑
t=1

αt + δT 2

)

The Error term is also unaffected. We still have Error = O(1).829

Adding these terms together, the regret caused by bias and the negative term induced by bonus cancel830

out. We have831

Reg = O

(
d log(T )

ηT
+ d

T∑
t=1

(ηt + αt) +

T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

d3αt log (T/δ)

t
+

T∑
t=1

ε2t
αt

+ δT 2

)

Recall that we pick αt = d√
t
+ ε√

d
. ηt = 1

64d
√
t+64 ε√

d
t

and δ = 1
T 2 . This gives832

Reg = O(d2
√
T log(T ) + d4 log(T ) +

√
dεT ) = O(d2

√
T log(T ) +

√
dεT )

where we assume d2 ≤
√
T without loss of generality.833

E.2 Unknown misspecification834

In this subsection, we use a model selection technique to convert the algorithm in Appendix E.1 which835

requires knowledge on ε into an algorithm that achieves a similar regret bound without knowing ε.836

Such a procedure to handle unknown misspecification/corruption has appeared in several previous837

works [FGMZ20, WDZ22], though we adopt the technique in an unpublished concurrent work838

[Ano23] to handle the adversarial case. 3839

The idea here is a black-box reduction which turns an algorithm that only deals with known ε to one840

that handles unknown ε. This is similar to [WDZ22] but additionally handles adversarial losses using841

a different approach.842

More specifically, the reduction has two layers. The bottom layer takes as input an arbitrary843

misspecification-robust algorithm that operates under known ε (e.g., Algorithm 1), and outputs844

a stable misspecification-robust algorithm (formally defined later) that still operates under known845

ε. The top layer follows the standard Corral idea and takes as input a stable algorithm that operates846

under known ε, and outputs an algorithm that operates under unknown ε. Below, we explain these847

two layers of reduction in details.848

3Since [Ano23] has not been published, for completeness, we restate all their results in Appendix E.2. The
goal is to use their reduction idea to handle the unknown misspecification case. We do not claim our contribution
in the reduction idea.
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Algorithm 3 STable Algorithm By Independent Learners and Instance SElection (STABILISE)
Input: ε and a base algorithm satisfying Definition 27.
Initialize: ⌈log2 T ⌉ instances of the base algorithm ALG1, . . . ,ALG⌈log2 T⌉, where ALGj is config-
ured with the parameter

θ = θj ≜ 2−jεT + 4
√
2−jT log T + 8 log(T ).

for t = 1, 2, . . . do
Receive wt.
if wt ≤ 1

T then
play an arbitrary policy πt
continue (without updating any instances)

Let jt be such that wt ∈ (2−jt−1, 2−jt ].
Let πt be the policy suggested by ALGjt .
Output πt.
If feedback is received, send it to ALGjt with probability 2−jt−1

wt
, and discard it otherwise.

Bottom Layer (from an Arbitrary Algorithm to a Stable Algorithm) The input of the bottom849

layer is an arbitrary misspecification-robust algorithm, formally defined as:850

Definition 27. An algorithm is misspecification-robust if it takes θ as input, and achieves the following851

regret for any random stopping time t′ ≤ T and any policy u:852

E

 t′∑
t=1

(ft(at)− ft(u
At))

 ≤ E
[
c1
√
t′ + c2θ

]
+ Pr [ε1;t′ > θ]T

for problem-dependent and log(T ) factors c1, c2 ≥ 1 and ε1:t′ ≜
√
t′
∑t′

τ=1 ε
2
τ .853

In our case, c1 = Θ(d2 log T ) and c2 = Θ(
√
d). While the regret bound in Definition 27 might look854

cumbersome, it is in fact fairly reasonable: if the guess θ is not smaller than the true amount of ε1:t′ ,855

the regret should be of order d2
√
t′ +

√
dθ; otherwise, the regret bound is vacuous since T is its856

largest possible value. The only extra requirement is that the algorithm needs to be anytime (i.e., the857

regret bound holds for any stopping time t′), but even this is known to be easily achievable by using a858

doubling trick over a fixed-time algorithm. It is then clear that Algorithm 1 (together with a doubling859

trick) indeed satisfies Definition 27.860

As mentioned, the output of the bottom layer is a stable robust algorithm. To characterize stability,861

we follow [ALNS17] and define a new learning protocol that abstracts the interaction between the862

output algorithm of the bottom layer and the master algorithm from the top layer:863

Protocol 1. In every round t, before the learner makes a decision, a probability wt ∈ [0, 1] is revealed864

to the learner. After making a decision, the learner sees the desired feedback from the environment865

with probability wt, and sees nothing with probability 1− wt.866

One can convert any misspecification-robust algorithm (defined in Definition 27) into a stable867

misspecification-robust algorithm (characterized in Theorem 28).868

This conversion is achieved by a procedure that called STABILISE (see Algorithm 3 for details). The869

high-level idea of STABILISE is as follows. Noticing that the challenge when learning in Protocol 1870

is that wt varies over time, we discretize the value of wt and instantiate one instance of the input871

algorithm to deal with one possible discretized value, so that it is learning in Protocol 1 but with a872

fixed wt, making it straightforward to bound its regret based on what it promises in Definition 27.873

More concretely, STABILISE instantiates O(log2 T ) instances {ALGj}⌈log2 T⌉
j=0 of the input algorithm874

that satisfies Definition 27, each with a different parameter θj . Upon receiving wt from the environ-875

ment, it dispatches round t to the j-th instance where j is such that wt ∈ (2−j−1, 2−j ], and uses the876

policy generated by ALGj to interact with the environment (if wt ≤ 1
T , simply ignore this round).877

Based on Protocol 1, the feedback for this round is received with probability wt. To equalize the878

probability of ALGj receiving feedback as mentioned in the high-level idea, when the feedback is879
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actually obtained, STABILISE sends it to ALGj only with probability 2−j−1

wt
(and discards it other-880

wise). This way, every time ALGj is assigned to a round, it always receives the desired feedback with881

probability wt · 2−j−1

wt
= 2−j−1. This equalization step allows us to use the original guarantee of the882

base algorithm (Definition 27) and run it as it is, without requiring it to perform extra importance883

weighting steps as in [ALNS17].884

The choice of θj is crucial in making sure that STABILISE only has εT regret overhead instead of885
εT

mint∈[T ] wt
. Since ALGj only receives feedback with probability 2−j−1, the expected total misspeci-886

fication it experiences is on the order of 2−j−1εT . Therefore, its input parameter θj only needs to be887

of this order instead of the total amount of misspecification εT .888

The formal guarantee of the conversion is stated in the following Theorem 28.889

Theorem 28. If an algorithm is misspecification robust according to Definition 27 for some constants890

(c1, c2), then Algorithm 3 ensures891

Reg ≤ O
(
E
[
c′1
√
TρT

]
+ c′2εT

)
under Protocol 1, where ρT = 1

mint∈[T ] wt
, with c′1 = Θ((c1 + c2)

√
log T ).892

Proof of Theorem 28. Define indicators893

gt,j = I{wt ∈ (2−j−1, 2−j ]}
ht,j = I{ALGj receives the feedback for episode t}.

Now we consider the regret of ALGj . Notice that ALGj makes an update only when gt,jht,j = 1. By894

the guarantee of the base algorithm (Definition 27), we have895

E

[
T∑
t=1

(ft(at)− ft(u
At))gt,jht,j

]

≤ E

c1
√√√√ T∑

t=1

gt,jht,j + c2θj max
t≤T

gt,j

+ Pr


√√√√( T∑

t=1

gt,jht,j

)(
T∑
t=1

ε2t gt,jht,j

)
> θj

T.
(40)

We first bound the last term: Notice that E[ht,j |gt,j ] = 2−j−1gt,j by Algorithm 3. Therefore,896

T∑
t=1

ε2t gt,jE[ht,j |gt,j ] = 2−j−1
T∑
t=1

ε2t gt,j ≤ 2−j−1ε2T (41)

T∑
t=1

gt,jE[ht,j |gt,j ] = 2−j−1
T∑
t=1

gt,j ≤ 2−j−1T (42)

By Freedman’s inequality, with probability at least 1− 1
T 2 ,897

T∑
t=1

ε2t gt,jht,j −
T∑
t=1

ε2t gt,jE[ht,j |gt,j ]

≤ 2

√√√√ T∑
t=1

(εt)4gt,jE[ht,j |gt,j ] log(T ) + 4 log(T )

≤ 4

√√√√ T∑
t=1

ε2t gt,jE[ht,j |gt,j ] log(T ) + 4 log(T )

≤
T∑
t=1

ε2t gt,jE[ht,j |gt,j ] + 8 log(T ) (AM-GM inequality)
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which gives898

T∑
t=1

ε2t gt,jht,j ≤ 2

T∑
t=1

ε2t gt,jE[ht,j |gt,j ] + 8 log(T ) ≤ 2−jε2T + 8 log(T )

with probability at least 1− 1
T 2 using Eq. (41). Similarly,899

T∑
t=1

gt,jht,j ≤ 2

T∑
t=1

gt,jE[ht,j |gt,j ] + 8 log(T ) ≤ 2−jT + 8 log(T )

with probability at least 1− 1
T 2 . Therefore, with probability at least 1− 2

T 2 ,900 √√√√( T∑
t=1

gt,jht,j

)(
T∑
t=1

ε2t gt,jht,j

)
≤
√
2−2jε2T 2 + 16 · 2−jT log T + 64 log2 T

≤ 2−jεT + 4
√
2−jT log T + 8 log(T )

≤ θj

Therefore, the last term in Eq. (40) is bounded by 2
T 2T ≤ 2

T .901

Next, we deal with other terms in Eq. (40). Again, by E[ht,j |gt,j ] = 2−j−1gt,j , Eq. (40) implies902

2−j−1E

[
T∑
t=1

(ft(at)− ft(u
At))gt,j

]
≤ E

c1
√√√√2−j−1

T∑
t=1

gt,j + c2θj max
t≤T

gt,j

+
2

T
.

which implies after rearranging:903

E

[
T∑
t=1

(ft(at)− ft(u
At))gt,j

]

≤ E

c1
√√√√ 1

2−j−1

T∑
t=1

gt,j +

(
c2θj
2−j−1

)
max
t≤T

gt,j

+
2

T2−j−1

≤ E

c1
√√√√ T∑

t=1

2gt,j
wt

+ 4c2

(
εT +

√
T log T

2−j
+ log T

)
max
t≤T

gt,j

+
2

T2−j−1
.

(using that when gt,j = 1, 1
2−j−1 ≤ 2

wt
, and the definition of θj)

Now, summing this inequality over all j ∈ {0, 1, . . . , ⌈log2 T ⌉}, we get904

E

[
T∑
t=1

(ft(at)− ft(u
At))I

{
wt >

1

T

}]

≤ O

E

c1
√√√√N

T∑
t=1

1

wt
+Nc2εT + c2

√
T log T

mint≤T wt
+ c2N log T

+ 1


≤ O

(
E
[
(c1 + c2)

√
T log(T )ρT

]
+ c2εT log T

)
where N ≤ O(log T ) is the number of ALGj’s that has been executed at least once.905

On the other hand,906

E

[
T∑
t=1

(ft(at)− ft(u
At))I

{
wt ≤

1

T

}]
< TE [I {ρT ≥ T}] ≤ E [ρT ] .

Combining the two parts and using the assumption c2 ≥ 1 finishes the proof.907
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Algorithm 4 (A Variant of) Corral
Initialize: a log-barrier algorithm with each arm being an instance of an algorithm satisfying the
guarantee in Theorem 28. The hypothesis on εT is set to 2i for arm i (i = 1, 2, . . . ,M ≜ ⌈log2 T ⌉).
Initialize: ρ0,i =M, ∀i.

for t = 1, 2, . . . , T do
Let

wt = argmin
w∈∆(M),wi≥ 1

T ,∀i

{〈
w,

t−1∑
τ=1

(ẑτ − rτ )

〉
+

1

η

M∑
i=1

log
1

wi

}
where η = 1

4c′1
√
T

.
For all i, send wt,i to instance i.
Draw it ∼ wt.
Execute the at output by instance it
Receive the loss zt,it for action at (whose expectation is ft(at)) and send it to instance it.
Define for all i:

ẑt,i =
zt,iI[it = i]

wt,i
,

ρt,i = min
τ≤t

1

wτ,i
,

rt,i = c′1

(√
ρt,iT −

√
ρt−1,iT

)
.

Top Layer (from Known ε to Unknown ε) In this subsection, we use the algorithm that we908

construct in Theorem 28 as a base algorithm, and further construct an algorithm with
√
T + ε regret909

under unknown ε. The idea is to run multiple base algorithms, each with a different hypothesis910

on ε; on top of them, run another multi-armed bandit algorithm to adaptively choose among them.911

The goal is to let the top-level bandit algorithm perform almost as well as the best base algorithm.912

This is the Corral idea outlined in [ALNS17, FGMZ20, LZZZ22], and the algorithm is presented in913

Algorithm 4.914

Theorem 29. Using an algorithm constructed in Theorem 28 as a base algorithm, Algorithm 4915

ensures Reg = O
(
c′1
√
T log3 T + c′2εT

)
without knowing ε.916

The top-level bandit algorithm is an FTRL with log-barrier regularizer. We first state the standard917

regret bound of FTRL under log-barrier regularizer, whose proof can be found in, e.g., Theorem 7 of918

[WL18].919

Lemma 30. The FTRL algorithm over a convex subset Ω of the (M−1)-dimensional simplex ∆(M):920

wt = argmin
w∈Ω

{〈
w,

t−1∑
τ=1

ℓτ

〉
+

1

η

M∑
i=1

log
1

wi

}

ensures for all u ∈ Ω,921

T∑
t=1

⟨w − u, ℓt⟩ ≤
M log T

η
+ η

T∑
t=1

M∑
i=1

w2
t,iℓ

2
t,i

as long as ηwt,i|ℓt,i| ≤ 1
2 for all t, i.922

Proof of Theorem 29. The Corral algorithm is essential an FTRL with log-barrier regularizer. To923

apply Lemma 30, we first verify the condition ηwt,i|ℓt,i| ≤ 1
2 where ℓt,i = ẑt,i − rt,i. By our choice924
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of η,925

ηwt,i|ẑt,i| ≤ ηzt,i ≤
1

4
, (because c′1 ≥ 1)

ηwt,irt,i = ηc′1
√
Twt,i(

√
ρt,i −

√
ρt−1,i).

The right-hand side of the last equality is non-zero only when ρt,i > ρt−1,i, implying that ρt,i = 1
wt,i

.926

Therefore, we further bound it by927

ηwt,irt,i ≤ ηc′1
√
T

1

ρt,i
(
√
ρt,i −

√
ρt−1,i)

= ηc′1
√
T

(
1

√
ρt,i

−
√
ρt−1,i

ρt,i

)
≤ ηc′1

√
T

(
1

√
ρt−1,i

− 1
√
ρt,i

)
( 1√

a
−

√
b
a ≤ 1√

b
− 1√

a
for a, b > 0)

(43)

≤ ηc′1
√
T (ρt,i ≥ 1)

=
1

4
(definition of η)

which can be combined to get the desired property ηwt,i|ẑt,i − rt,i| ≤ 1
2 .928

Hence, by the regret guarantee of log-barrier FTRL (Lemma 30), we have929

E

[
T∑
t=1

(zt,it − zt,i⋆)

]

≤ O

(
M log T

η
+ ηE

[
T∑
t=1

M∑
i=1

w2
t,i(ẑt,i − rt,i)

2

︸ ︷︷ ︸
term1

])
+ E

[
T∑
t=1

(
M∑
i=1

wt,irt,i − rt,i⋆

)
︸ ︷︷ ︸

term2

]

where i⋆ is the smallest i such that 2i upper bounds the true total misspecification amount εT .930

Bounding term1:931

term1 ≤ 2η

T∑
t=1

M∑
i=1

w2
t,i(ẑ

2
t,i + r2t,i)

where932

2η

T∑
t=1

M∑
i=1

w2
t,iẑ

2
t,i = 2η

T∑
t=1

M∑
i=1

z2t,iI{it = i} ≤ O(ηT )

and933

2η

T∑
t=1

M∑
i=1

w2
t,ir

2
t,i ≤ 4η

T∑
t=1

M∑
i=1

(c′1
√
T )2

(
1

√
ρt−1,i

− 1
√
ρt,i

)2

(continue from Eq. (43))

≤ 4ηc′21 T ×
T∑
t=1

M∑
i=1

(
1

√
ρt−1,i

− 1
√
ρt,i

)
( 1√

ρt−1,i
− 1√

ρt,i
≤ 1 and 1− a ≤ − ln a)

≤ 4ηc′21 TM
3
2 . (telescoping and using ρ0,i =M and ρT,i ≤ T )
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Bounding term2:934

term2 =

T∑
t=1

M∑
i=1

wt,irt,i −
T∑
t=1

rt,i⋆

≤ c′1
√
T

T∑
t=1

M∑
i=1

(
1

√
ρt−1,i

− 1
√
ρt,i

)
−
(
c′1
√
ρT,i⋆T − c′1

√
ρ0,i⋆T

)
(continue from Eq. (43) and using 1− a ≤ − ln a)

≤ O
(
c′1
√
TM

3
2

)
− c′1

√
ρT,i⋆T .

Combining the two terms and using η = Θ
(

1
c′1

√
T+c′2

)
, M = Θ(log T ), we get935

E

[
T∑
t=1

(ft(at)− zt,i⋆)

]
= E

[
T∑
t=1

(zt,it − zt,i⋆)

]

= O
(
c′1

√
T log3 T

)
− E

[
c′1
√
ρT,i⋆T

]
(44)

On the other hand, by the guarantee of the base algorithm (Theorem 28) and that εT ∈ [2i
⋆−1, 2i

⋆

],936

we have937

E

[
T∑
t=1

(zt,i⋆ − ft(u
At)

]
≤ E

[
c′1
√
ρT,i⋆T

]
+ c′2εT. (45)

Combining Eq. (44) and Eq. (45), we get938

E

[
T∑
t=1

(ft(at)− ft(u
At))

]
≤ O

(
c′1

√
T log3 T

)
+ c′2εT,

which finishes the proof.939

Proof of Theorem 3. As shown in Appendix E.1, our Algorithm 1 can be adapted to satisfy Defini-940

tion 27 with c1 = Θ(d2 log T ) and c2 = Θ(
√
d). By a concatenation of Theorem 28 and Theorem 29,941

we conclude that there is an algorithm that achieves942

O
(
(c1 + c2)

√
T log2 T + c2εT log T

)
= O

(
d2
√
T log2 T +

√
dεT log T

)
.

regret under unknown ε.943

F Analysis for Linear EXP4944

Proof of Theorem 4. We first show that945

∀π ∈ Π : Reg(π) ≜ E

[
T∑
t=1

a⊤t yt −
T∑
t=1

π(At)
⊤yt

]
≤ O

(
γT +

ln |Π|
η

+ ηdT

)
. (46)

The magnitude of the loss is bounded by946

|ℓ̂t,π| =
∣∣∣〈π(At), H̃

−1
t atℓt

〉∣∣∣
≤ ∥π(At)∥H̃−1

t
∥at∥H̃−1

t

≤ 1

γ
∥π(At)∥G−1

t
∥at∥G−1

t
≤ d

γ
.

If γ ≥ 2dη, then we have |ℓ̂t,π| ≤ 1
2 and we can use the standard regret bound of exponential weights:947

∀π ∈ Π : Reg(π) ≤ γT +
ln |Π|
η

+ η

T∑
t=1

E

[
Eat∼pt

[∑
π∈Π

Pt,π ℓ̂
2
t,π

]]
.
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Let Ht = Ea∼pt [aa⊤]. Then we have H̃−1
t ⪯ 1

1−γH
−1
t , and thus948

Eat∼pt

[∑
π∈Π

Pt,π ℓ̂
2
t,π

]
≤ Eat∼pt

[∑
π∈Π

Pt,π · ⟨π(At), H̃
−1
t at⟩2

]
= Eat∼ptEa∼pt

[
⟨a, H̃−1

t at⟩2
]

(by the definition of pt,a)

≤ 1

(1− γ)2
Tr
(
HtH

−1
t HtH

−1
t

)
= O(d) .

Combining all proves Eq. (46).949

Next, we show that there exists θ ∈ Θ such that950

EA∼D

[
T∑
t=1

(πθ(A)− π⋆(A))⊤yt

]
≤ O(1). (47)

Let θ̂ be the closest element in Θ to
∑T
t=1 yt. By the definition of Θ and the assumption that ∥yt∥ ≤ 1,951

we have
∥∥∥θ̂ −∑T

t=1 yt

∥∥∥ ≤ ϵ. Thus, for any A,952

T∑
t=1

(πθ̂(A)− π⋆(A))⊤yt ≤
∑
a∈A

(πθ̂(A)− π⋆(A))⊤θ̂ + ϵ ≤ ϵ

where the last inequality is by the fact that πθ̂(A) = argmina∈A a
⊤θ̂. Taking expectation over A953

gives Eq. (47).954

Finally, combining Eq. (46) and Eq. (47), choosing ϵ = 1 and γ = 2dη = 2d
√

log T
T , we get955

Reg = E

[
T∑
t=1

a⊤t yt −
T∑
t=1

π⋆(At)
⊤yt

]

= E

[
T∑
t=1

a⊤t yt −
T∑
t=1

πθ̂(At)
⊤yt

]
+ EA∼D

[
T∑
t=1

(πθ̂(A)− π⋆(A))⊤yt

]

= O
(
γT +

ln((2T )d)

η
+ ηdT + 1

)
= O

(
d
√
T log T

)
,

finishing the proof.956

G Comparison with [DLWZ23, SKM23]957

We state the exponential weight algorithm adopted by [LWL21, DLWZ23, SKM23] in Algorithm 5,958

which is an algorithm that we know to achieve the prior-art regret bound in our setting (though they959

studied a more general MDP setting).960

Their algorithm proceeds in epochs (indexed by k), where every epoch consists of W rounds. The961

policy on action set A in the k-th epoch is defined as962

pAk (a) ∝ exp

(
−η

k−1∑
s=1

(a⊤ŷs − bs(a))

)
where ŷk is the loss estimator for epoch k, and bk(a) is a (non-linear) bonus. In all W rounds in963

epoch k, the same policy is executed. The samples obtained in these W rounds are randomly divided964

into two halfs. One half is used to estimate the covariance matrix Σ̂k, and the other half is used to965

construct the loss estimator ŷk (see Line 5 of Algorithm 5).966
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Algorithm 5 Exponential weights with magnitude-reduced loss estimators

1 for k = 1, 2, . . . , TW do
2 For all A, define

pAk (a) =
exp

(
−η
∑k−1
s=1 (a

⊤ŷs − bs(a))
)

∑
a′∈A exp

(
−η
∑k−1
s=1 (a

′⊤ŷs − bs(a′))
) for all a ∈ A.

3 Randomly partition {(k − 1)W + 1, . . . , kW} into two equal parts Tk, T ′
k .

4 for t = (k − 1)W + 1, . . . , kW do
receive At, sample at ∼ pAt

k , and receive ℓt.

5 Define

Σ̂k = βI +
1

|Tk|
∑
t∈Tk

ata
⊤
t

ŷk = Σ̂−1
k

 1

|T ′
k |
∑
t∈T ′

k

atℓt


bk(a) = α∥a∥Σ̂−1

k
.

G.1 Regret Analysis Sketch967

The regret analysis starts with a standard decomposition that is similar to ours. We abuse the notation968

by defining yk = 1
W

∑kW
t=(k−1)W yt. Then969

Reg =WE

T/W∑
k=1

pA0

k (a)⟨a− uA0 , yk⟩


=WE

T/W∑
k=1

pA0

k (a)
(
⟨a, ŷk⟩ − bk(a)

)
−
(
uA0 − bk(u

A0)
)

︸ ︷︷ ︸
EW-Reg

+WE

T/W∑
k=1

pA0

k (a)bk(a)− bk(u
A0)


︸ ︷︷ ︸

Bonus

+WE

T/W∑
k=1

pA0

k (a)⟨a− uA0 , yk − ŷk⟩


︸ ︷︷ ︸

Bias

.

Bounding the regret term follows the standard analysis of exponential weight:970

EW-Reg ≤WE

 ln |A0|
η

+ η

T/W∑
k=1

∑
a∈A0

pA0

k (a)⟨a, ŷk⟩2 + η

T/W∑
k=1

∑
a∈A0

pA0

k (a)bk(a)
2


≤WE

 ln |A0|
η

+ η

T/W∑
k=1

∑
a∈A0

pA0

k (a)a⊤Σ̂−1
k HkΣ̂

−1
k a+ η

T/W∑
k=1

α2

β


where Hk = EA∼DEa∼pAk [aa

⊤]. Then they use the following fact to bound the stability term: as971

long as W ≥ d
β2 , it holds with high probability that Σ̂−1

k HkΣ̂
−1
k ⪯ 2Σ̂−1

k . Thus EW-Reg can be972
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further bounded by973

EW-Reg ≲W

 ln |A0|
η

+ ηE

T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥2
Σ̂−1

k

+ η
T

W

α2

β


≤ W ln |A0|

η
+ ηdT + ηT

α2

β
.

By the definition of the bonus function bt, it holds that974

Bonus =WE

α T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k

−WE

α T/W∑
k=1

∥uA0∥Σ̂−1
k

 .
Finally, the bias term can be bounded as follows:975

Bias =WE

T/W∑
k=1

pA0

k (a)(a− uA0)⊤(yk − Σ̂−1
k Hkyk)


=WE

T/W∑
k=1

pA0

k (a)(a− uA0)⊤Σ̂−1
k (Σ̂k −Hk)yk


≤WE

T/W∑
k=1

pA0

k (a)∥a− uA0∥Σ̂−1
k
∥(Σ̂k −Hk)yk∥Σ̂−1

k

 .
The bias here has a similar form as in our case. They use the following fact to bound the bias: as976

long as W ≥ d
β2 , it holds that ∥(Σ̂k −Hk)yk∥Σ̂−1

k
≤

√
βd. Therefore, the bias can further be upper977

bounded by978

Bias ≤WE

√βd T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k

+
√
βd

T/W∑
k=1

∥uA0∥Σ̂−1
k

 .
Combining the three parts, we get that the overall regret is of order979

E

W ln |A0|
η

+ ηdT + ηT
α2

β
+W (α+

√
βd)

T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k

+W (
√
βd− α)

T/W∑
k=1

∥uA0∥Σ̂−1
k

 .
Choosing α ≈

√
βd, we further bound it by980

E

W ln |A0|
η

+ ηdT +W
√
βd

T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k


≤ E

W ln |A0|
η

+ ηdT +W
√
βd

T/W∑
k=1

√∑
a∈A0

pA0

k (a)∥a∥2
Σ̂−1

k


≤ W ln |A0|

η
+ ηdT +

√
βdT.

Recall the constraint W ≥ d
β2 . Choosing W = d

β2 gives981

d ln |A0|
ηβ2

+ ηdT +
√
βdT (48)

which gives d(ln |A0|)
1
6T

5
6 with the optimally chosen η and β.982
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Remark Due to the restrictions on the magnitude of the loss estimator required by the exponential983

weight algorithm, there is actually another constraint ηβ ≤ 1, which makes Eq. (48) be d(ln |A0|)
1
7T

6
7984

at best. This is exactly the bound obtained by [SKM23]. A more sophisticated way to construct ŷk985

developed by [DLWZ23] removes this additional requirement and allows a bound of d(ln |A0|)
1
6T

5
6 .986

The sub-optimal bound T
8
9 reported in [DLWZ23] is due to issues related to MDPs, which is not987

presented in the contextual bandit case here.988
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