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Abstract

We consider the adversarial linear contextual bandit problem, where the loss vectors
are selected fully adversarially and the per-round action set (i.e. the context) is
drawn from a fixed distribution. Existing methods for this problem either require
access to a simulator to generate free i.i.d. contexts, achieve a sub-optimal regret no
better than Õ(T 5/6), or are computationally inefficient. We greatly improve these
results by achieving a regret of Õ(

√
T ) without a simulator, while maintaining

computational efficiency when the action set in each round is small. In the special
case of sleeping bandits with adversarial loss and stochastic arm availability, our
result answers affirmatively the open question by Saha et al. [2020] on whether
there exists a polynomial-time algorithm with poly(d)

√
T regret. Our approach

naturally handles the case where the loss is linear up to an additive misspecification
error, and our regret shows near-optimal dependence on the magnitude of the error.

1 Introduction

Contextual bandit is a widely used model for sequential decision making. The interaction between the
learner and the environment proceeds in rounds: in each round, the environment provides a context;
based on it, the learner chooses an action and receive a reward. The goal is to maximize the total
reward across multiple rounds. This model has found extensive applications in fields such as medical
treatment [Tewari and Murphy, 2017], personalized recommendations [Beygelzimer et al., 2011],
and online advertising [Chu et al., 2011].

Algorithms for contextual bandits with provable guarantees have been developed under various
assumptions. In the linear regime, the most extensively studied model is the stochastic linear
contextual bandit, in which the context can be arbitrarily distributed in each round, while the reward
is determined by a fixed linear function of the context-action pair. Near-optimal algorithms for
this setting have been established in, e.g., [Chu et al., 2011, Abbasi-Yadkori et al., 2011, Li et al.,
2019, Foster et al., 2020]. Another model, which is the focus of this paper, is the adversarial
linear contextual bandit, in which the context is drawn from a fixed distribution, while the reward is
determined by a time-varying linear function of the context-action pair. 3 A computationally efficient
algorithm for this setting is first proposed by Neu and Olkhovskaya [2020]. However, existing
research for this setting still faces challenges in achieving near-optimal regret and sample complexity
when the context distribution is unknown.

∗The authors are listed in alphabetical order.
†This work was done when Chen-Yu Wei was at MIT Institute for Data, Systems, and Society.
3Apparently, the stochastic and adversarial linear contextual bandits defined here are incomparable, and their

names do not fully capture their underlying assumptions. However, these are the terms commonly used in the
literature (e.g., [Abbasi-Yadkori et al., 2011, Neu and Olkhovskaya, 2020]).
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The algorithm by Neu and Olkhovskaya [2020] requires the learner to have full knowledge on the
context distribution, and access to an exploratory policy that induces a feature covariance matrix with
a smallest eigenvalue at least λ. Under these assumptions, their algorithm provides a regret guarantee
of Õ(

√
d log(|A|)T/λ)4, where d is the feature dimension, |A| is the maximum size of the action set,

and T is the number of rounds. These assumptions are relaxed in the work of Luo et al. [2021], who
studied a more general linear MDP setting. When specialized to linear contextual bandits, Luo et al.
[2021] only requires access to a simulator from which the learner can draw free i.i.d. contexts. Their
algorithm achieves a Õ((d log(|A|)T 2)1/3)) regret. The regret is further improved to the near-optimal
one Õ(

√
d log(|A|)T ) by Dai et al. [2023] through refined loss estimator construction.

All results that attain Õ(T 2/3) or Õ(
√
T ) regret bound discussed above rely on access to the simulator.

In their algorithms, the number of calls to the simulator significantly exceeds the number of interac-
tions between the environment and the learner, but this is concealed from the regret bound. Therefore,
their regret bounds do not accurately reflect the sample complexity of their algorithms. Another set
of results for linear MDPs [Luo et al., 2021, Dai et al., 2023, Sherman et al., 2023, Kong et al., 2023]
also consider the simulator-free scenario, essentially using interactions with the environment to fulfill
the original purpose of the simulator. When applying their techniques to linear contextual bandits,
their algorithms only achieve a regret bound of Õ(T 5/6) at best (see detailed analysis and comparison
in Appendix G).

Our result significantly improves the previous ones: without simulators, we develop an algorithm that
ensures a regret bound of order Õ(d2

√
T ), and it is computationally efficient as long as the size of

the action set is small in each round (similar to all previous work). Unlike previous algorithms which
always collect new contexts (through simulators or interactions with the environment) to estimate
the feature covariance matrix, we leverage the context samples the learner received in the past to
do this. Although natural, establishing a near-tight regret requires highly efficient use of context
samples, necessitating a novel way to construct the estimator of feature covariance matrix and a
tighter concentration bound for it. Additionally, to address the potentially large magnitude and the
bias of the loss estimator, we turn to the use of log-determinant (logdet) barrier in the follow-the-
regularized-leader (FTRL) framework. Logdet accommodates larger loss estimators and induces a
larger bonus term to cancel the bias of the loss estimator, both of which are crucial for our result.

Our setting subsumes sleeping bandits with stochastic arm availability [Kanade et al., 2009, Saha
et al., 2020] and combinatorial semi-bandits with stochastic action sets [Neu and Valko, 2014]. Our
result answers affirmatively the main open question left by Saha et al. [2020] on whether there exists
a polynomial-time algorithm with poly(d)

√
T regret for sleeping bandits with adversarial loss and

stochastic availability.

As a side result, we give a computationally inefficient algorithm that achieves an improved Õ(d
√
T )

regret without a simulator. While this is a direct extension from the EXP4 algorithm [Auer et al.,
2002], such a result has not been established to our knowledge, so we include it for completeness.

1.1 Related work

We review the literature of various contextual bandit problems, classifying them based on the nature
of the context and the reward function, specifically whether they are stochastic/fixed or adversarial.

Contextual bandits with i.i.d. contexts and fixed reward functions (S-S) Significant progress
has been made in contextual bandits with i.i.d. contexts and fixed reward functions, under general
reward function classes or policy classes [Langford and Zhang, 2007, Dudik et al., 2011, Agarwal
et al., 2012, 2014, Simchi-Levi and Xu, 2022, Xu and Zeevi, 2020]. In the work by Dudik et al.
[2011], Agarwal et al. [2012, 2014], the algorithms also use previously collected contexts to estimate
the inverse probability of selecting actions under the current policy. However, these results only
obtain regret bounds that polynomially depend on the number of actions. Furthermore, these results
rely on having a fixed reward function, making their techniques not directly applicable to our case.

4The linear contextual bandit problem formulation in Neu and Olkhovskaya [2020] is different from ours.
However, it can be reduced to our setting with dimension d|A|, where |A| is the maximum number of actions
in each round. The Õ(

√
d log(|A|)T/λ) bound reported here is obtained by adopting their techniques to our

setting.
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Table 1: Related works in the “S-A” category. CB stands for contextual bandits and SB stands for semi-bandits.
The relations among settings are as follows: Sleeping Bandit ⊂ Contextual SB ⊂ Linear CB, Linear CB ⊂ Linear
MDP, and Linear CB ⊂ General CB. The table compares our results with the Pareto frontier of the literature. For
algorithms dealing more general settings, we have carefully translated their techniques to Linear CB and reported
the resulting bounds. Σπ denotes the feature covariance matrix induced by policy π. |A| and |Π| are sizes of the
action set and the policy set.

Target Setting Algorithm Regret Simulator Computation Assumption

General CB Syrgkanis et al. [2016b] (log |Π|)1/3(|A|T )2/3 ✓ poly(|A|, log |Π|, T ) ERM Oracle

Linear MDP

Dai et al. [2023]
√
dT log |A| ✓ poly(|A|, d, T )

Dai et al. [2023]
Sherman et al. [2023]

d(log |A|)1/6T 5/6 poly(|A|, d, T )

Kong et al. [2023] (d7T 4)1/5 + poly
(
1
λ

)
T d ∃π,Σπ ⪰ λI

Linear CB
Algorithm 1 d2

√
T poly(|A|, d, T )

Algorithm 2 d
√
T T d

Contextual SB Neu and Valko [2014] (dT )2/3 poly(d, T )

Sleeping Bandit Saha et al. [2020]
√
2dT poly(d, T ) (|A| ≤ d)

Contextual bandits with adversarial contexts and fixed reward functions (A-S) In this category,
the most well-known results are in the linear setting [Chu et al., 2011, Abbasi-Yadkori et al., 2011,
Zhao et al., 2023]. Besides the linear case, previous work has investigated specific reward function
classes [Russo and Van Roy, 2013, Li et al., 2022, Foster et al., 2018]. Recently, Foster and Rakhlin
[2020] introduced a general approach to deal with general function classes with a finite number of
actions, which has since been improved or extended by Foster and Krishnamurthy [2021], Foster et al.
[2021], Zhang [2022]. This category of problems is not directly comparable to the setting studied in
this paper, but both capture a certain degree of non-stationarity of the environment.

Contextual bandits with i.i.d. contexts and adversarial reward functions (S-A) This is the
category which our work falls into. Several oracle efficient algorithms that require simulators have
been proposed for general policy classes [Rakhlin and Sridharan, 2016, Syrgkanis et al., 2016b].
The oracle they use (i.e., the empirical risk minimization, or ERM oracle), however, is not generally
implementable in an efficient manner. For the linear case, the first computationally efficient algorithm
is by Neu and Olkhovskaya [2020], under the assumption that the context distribution is known. This
is followed by Olkhovskaya et al. [2023] to obtain refined data-dependent bounds. A series of works
[Neu and Olkhovskaya, 2021, Luo et al., 2021, Dai et al., 2023, Sherman et al., 2023] apply similar
techniques to linear MDPs, but when specialized to linear contextual bandits, they all assume known
context distribution, or access to a simulator, or only achieves a regret no better than Õ(T 5/6). The
work of Kong et al. [2023] also studies linear MDPs; when specialized to contextual bandits, they
obtain a regret bound of Õ(T 4/5+poly( 1λ )) without a simulator but with a computationally inefficient
algorithm and an undesired inverse dependence on the smallest eigenvalue of the covariance matrix.
Related but simpler settings have also been studied. The sleeping bandit problem with stochastic arm
availability and adversarial reward [Kleinberg et al., 2010, Kanade et al., 2009, Saha et al., 2020] is a
special case of our problem where the context is always a subset of standard unit vectors. Another
special case is the combinatorial semi-bandit problem with stochastic action sets and adversarial
reward [Neu and Valko, 2014]. While these are special cases, the regret bounds in these works are all
worse than Õ(poly(d)

√
T ). Therefore, our result also improves upon theirs. 5

Contextual bandits with adversarial contexts and adversarial reward functions (A-A) When
both contexts and reward functions are adversarial, there are computational [Kanade and Steinke,
2014] and oracle-call [Hazan and Koren, 2016] lower bounds showing that no sublinear regret is
achievable unless the computational cost scales polynomially with the size of the policy set. Even for
the linear case, Neu and Olkhovskaya [2020] argued that the problem is at least as hard as online
learning a one-dimensional threshold function, for which sublinear regret is impossible. For this

5For combinatorial semi-bandit problems, our algorithm is not as computationally efficient as Neu and Valko
[2014], which can handle exponentially large action sets.
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challenging category, besides using the inefficient EXP4 algorithm, previous work makes stronger
assumptions on the contexts [Syrgkanis et al., 2016a] or resorts to alternative benchmarks such as
dynamic regret [Luo et al., 2018, Chen et al., 2019] and approximate regret [Emamjomeh-Zadeh
et al., 2021].

Lifting and exploration bonus for high-probability adversarial linear bandits Our technique is
related to those obtaining high-probability bounds for linear bandits. Early development in this line
of research only achieves computational efficiency when the action set size is small [Bartlett et al.,
2008] or only applies to special action sets such as two-norm balls [Abernethy and Rakhlin, 2009].
Recently, near-optimal high-probability bounds for general convex action sets have been obtained by
lifting the problem to a higher dimensional one, which allows for a computationally efficient way to
impose bonuses [Lee et al., 2020, Zimmert and Lattimore, 2022]. The lifting and the bonus ideas we
use are inspired by them, though for different purposes. However, due to the extra difficulty arising in
the contextual case, currently we only obtain a computationally efficient algorithm when the action
set size is small.

1.2 Computational Complexity

Our main algorithm is based on log-determinant barrier optimization similar to Foster et al. [2020],
Zimmert and Lattimore [2022]. Computing its action distribution is closely related to computing
the D-optimal experimental design [Khachiyan and Todd, 1990]. Per step, this is shown to require
Õ(|At|poly(d)) computational and Õ(log(|At|) poly(d)) memory complexity [Foster et al., 2020,
Proposition 1], where |At| is the action set size at round t. The computational bottleneck comes
from (approximately) maximizing a quadratic function over the action set. It is an open question
whether linear optimization oracles or other type of oracles can lead to efficient implementation of
our algorithm for continuous action sets.

In the literature, there are few linear context bandit algorithms that provably avoid |A| computation per
round. The LinUCB algorithm [Chu et al., 2011, Abbasi-Yadkori et al., 2011] suffers from the same
quadratic function maximization issue, and therefore is computationally comparable to our algorithm.
The SquareCB.Lin algorithm by Foster et al. [2020] is based on the same log-determinant barrier
optimization. Another recent algorithm by Zhang [2022] only admits an efficient implementation for
continuous action sets in the Bayesian setting but not in the frequentist setting (though they provided
an efficient heuristic implementation in their experiments). The Thompson sampling algorithm by
Agrawal and Goyal [2013], which has efficient implementation, also relies on well-specified Gaussian
prior. The only work that we know can avoids |A| computation in the frequentist setting is Zhu et al.
[2022], but their technique is only known to handle the A-S setting.

2 Preliminaries

We study the adversarial linear contextual bandit problem where the loss vectors are selected fully
adversarially and the per-round action set (i.e. the context) is drawn from a fixed distribution. The
learner and the environment interact in the following way. Let Bd2 be the L2-norm unit ball in Rd.

For t = 1, · · · , T ,

1. The environment decides an adversarial loss vector yt ∈ Bd2, and generates a random action
set (i.e., context) At ⊂ Bd2 from a fixed distribution D independent from anything else.

2. The learner observes At, and (randomly) chooses an action at ∈ At.

3. The learner receives the loss ℓt ∈ [−1, 1] with E[ℓt] = ⟨at, yt⟩.

A policy π is a mapping which, given any action set A ⊂ Rd, maps it to an element in the convex
hull of A. We use π(A) to refer to the element that it maps A to. The learner’s regret with respect to
policy π is defined as the expected performance difference between the learner and policy π:

Reg(π) = E

[
T∑
t=1

⟨at, yt⟩ −
T∑
t=1

⟨π(At), yt⟩

]
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where the expectation is taken over all randomness from the environment (yt and At) and from
the learner (at). The pseudo-regret (or just regret) is defined as Reg = maxπ Reg(π), where the
maximization is taken over all possible policies.

Notations For any matrix A, we use λmax(A) and λmin(A) to denote the maximum and minimum
eigenvalues of A, respectively. We use Tr(A) to denote the trace of matrix A. For any action set A,
let ∆(A) be the space of probability measures on A. Let Ft = σ(As, as,∀s ≤ t) be the σ-algebra at
round t. Define Et[·] = E[·|Ft−1]. Given a differentiable convex function F : Rd → R ∪ {∞}, the
Bregman divergence with respect to F is defined as DF (x, y) = F (x)− F (y)− ⟨∇F (y), x− y⟩.
Given a positive semi-definite (PSD) matrix A, for any vector x, define the norm generated by
A as ∥x∥A =

√
x⊤Ax. For any context A ⊂ Rd and p ∈ ∆(A), define µ(p) = Ea∼p[a] and

Cov(p) = Ea∼p[(a−µ(p))(a−µ(p))⊤]. For any a, define the lifted action aaa = (a, 1)⊤ and the lifted

covariance matrix Ĉov(p) = Ea∼p[aaaaaa⊤] = Ea∼p

[
aa⊤ a

a⊤ 1

]
=

[
Cov(p) + µ(p)µ(p)⊤ µ(p)

µ(p)⊤ 1

]
.

We use bold matrices to denote matrices in the lifted space (e.g., in Algorithm 1 and Definition 1).

3 Follow-the-Regularized-Leader with the Log-Determinant Barrier

In this section, we present our main algorithm, Algorithm 1. This algorithm can be viewed as
instantiating an individual Follow-The-Regularized-Leader (FTRL) algorithm on each action set
(Line 2), with all FTRLs sharing the same loss vectors. This perspective has been taken by previous
works Neu and Olkhovskaya [2020], Olkhovskaya et al. [2023] and simplifies the understanding
of the problem. The rationale comes from the following calculation due to Neu and Olkhovskaya
[2020]: for any policy π that may depend on Ft−1,
Et [⟨π(At), yt⟩] = EAt

[Eyt [⟨π(At), yt⟩ | Ft−1]] = EA0
[Eyt [⟨π(A0), yt⟩ | Ft−1]] = Et [⟨π(A0), yt⟩]

where A0 is a sample drawn from D independent of all interaction history. This allows us to calculate
the regret as

E

[
T∑
t=1

⟨πt(At)− π(At), yt⟩

]
= E

[
T∑
t=1

⟨πt(A0)− π(A0), yt⟩

]
(1)

where πt is the policy used by the learner at time t. Note that this view does not require the learner
to simultaneously “run” an algorithm on every action set since the learner only needs to calculate
the policy on A whenever At = A. In the regret analysis, in view of Eq. (1), it suffices to consider
a single fixed action set A0 drawn from D and bound the regret on it, even though the learner may
never execute the policy on it. This A0 is called a “ghost sample” in Neu and Olkhovskaya [2020].

3.1 The lifting idea and the execution of Algorithm 1

Our algorithm is built on the logdet-FTRL algorithm developed by Zimmert and Lattimore [2022] for
high-probability adversarial linear bandits, which lifts the original d-dimensional problem over the
feature space to a (d+ 1)× (d+ 1) one over the covariance matrix space, with the regularizer being
the negative log-determinant function. In our case, we instantiate an individual logdet-FTRL on each
action set. The motivation behind Zimmert and Lattimore [2022] to lift the problem to the space of
covariance matrix is that it casts the problem to one in the positive orthant, which allows for an easier
way to construct the bonus term that is crucial to compensate the variance of the losses, enabling a
high-probability bound in their case. In our case, we use the same technique to introduce the bonus
term, but the goal is to compensate the bias resulting from the estimation error in the covariance
matrix (see Section 3.4). This bias only appears in our contextual case but not in the linear bandit
problem originally considered in Zimmert and Lattimore [2022].

As argued previously, we can focus on the learning problem over a fixed action set A, and our
algorithm operates in the lifted space of covariance matrices HA = {Ĉov(p) : p ∈ ∆(A)} ⊂

R(d+1)×(d+1). For this space, we define the lifted loss γt =

[
0 1

2yt
1
2y

⊤
t 0

]
∈ R(d+1)×(d+1) so

that ⟨Ĉov(p), γt⟩ = Ea∼p[a⊤yt] = ⟨µ(p), yt⟩ and thus the loss value in the lifted space (i.e.,
⟨Ĉov(p), γt⟩) is the same as that in the original space (i.e., ⟨µ(p), yt⟩).
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Algorithm 1 Logdet-FTRL for linear contextual bandits

Definitions: F (HHH) = − log det (HHH), ηt =
1

64d
√
t
, αt =

d√
t
, βt =

100(d+1)3 log(3T )
t−1 .

1 for t = 1, 2, . . . do
2 For all A, defineHHHA

t = argmin
HHH∈HA

∑t−1
s=1⟨HHH, γ̂s − αsΣ̂̂Σ̂Σ

−1
s ⟩+ F (HHH)

ηt
.

3 For all A, define pAt ∈ ∆(A) such thatHHHA
t = Ĉov(pAt ).

4 Receive At and sample at ∼ pAt
t .

5 Observe ℓt ∈ [−1, 1] with E[ℓt] = a⊤t yt and construct ŷt = Σ̂−1
t (at − x̂t)ℓt, where

x̂t =
1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[a], Ĥt =
1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[
(a− x̂t)(a− x̂t)

⊤] , Σ̂t = Ĥt + βtI.

6 Define Ĥ̂ĤHt =
1
t−1

∑t−1
τ=1HHH

Aτ
t and Σ̂̂Σ̂Σt = Ĥ̂ĤHt + βtIII and γ̂t =

[
0 1

2 ŷt
1
2 ŷ

⊤
t 0

]
.

(If t = 1, define Σ̂−1
t and Σ̂̂Σ̂Σ−1

t as zeros).

In each round t, the FTRL on A outputs a lifted covariance matrixHHHA
t ∈ HA that corresponds to a

probability distribution pAt ∈ ∆(A) such that Ĉov(pAt ) =HHHA
t (Line 2 and Line 3). Upon receiving

At, the learner samples an action from pAt
t and the agent constructs the loss estimator ŷt (Line 5).

Similarly to the construction of γt, we define the lifted loss estimator γ̂t =

[
0 1

2 ŷt
1
2 ŷ

⊤
t 0

]
which

makes ⟨Ĉov(p), γ̂t⟩ = Ea∼p[a⊤ŷt] = ⟨µ(p), ŷt⟩. The lifted loss estimator, along with the bonus
term −αtΣ̂tΣ̂tΣ̂t−1, is then fed to the FTRL on all A’s. The purpose of the bonus term will be clear in
Section 3.4.

In the rest of this section, we use the following notation in addition to those defined in Algorithm 1.
Definition 1. Define xAt = Ea∼pAt [a], xt = EA∼D[x

A
t ], H

A
t = Ea∼pAt [(a− x̂t)(a− x̂t)

⊤], Ht =

EA∼D[H
A
t ], HHHt = EA∼D[HHH

A
t ]. Let pA⋆ ∈ ∆(A) be the action distribution used by the benchmark

policy on A, and define uA = Ea∼pA⋆ [a], u = EA∼D[u
A], UUUA = Ea∼pA⋆ [aaaaaa

⊤], UUU = EA∼D[UUU
A].

Notice that the xAt and uA defined here is equivalent to the πt(A) and π(A) in Eq. (1), respectively.

3.2 The construction of loss estimators and feature covariance matrix estimators

Our goal is to make ŷt in Line 5 an estimator of yt with controllable bias and variance. If the context
distribution is known (as in Neu and Olkhovskaya [2020]), then a standard unbiased estimator of yt is

ŷt = Σ−1
t atℓt, where Σt = EA∼DEa∼pAt

[
aa⊤

]
. (2)

To see its unbiasedness, notice that E[atℓt] = EA∼DEa∼pAt [aa
⊤yt] and thus E[ŷt] = yt. This ŷt,

however, can have a variance that is inversely related to the smallest eigenvalue of the covariance
matrix Σ̂t, which can be unbounded in the worst case. This is the main reason why Neu and
Olkhovskaya [2020] does not achieve the optimal bound, and requires the bias-variance-tradeoff
techniques in Dai et al. [2023] to close the gap. When the context distribution is unknown but the
learner has access to a simulator [Luo et al., 2021, Dai et al., 2023, Sherman et al., 2023, Kong et al.,
2023], the learner can draw free contexts to estimate the covariance matrix Σ̂t up to a very high
accuracy without interacting with the environment, making the problem close to the case of known
context distribution.

Challenges arise when the learner has no knowledge about the context distribution and there is no
simulator. In this case, there are two natural ways to estimate the covariance matrix under the current
policy. One is to draw new samples from the environment, treating the environment like a simulator.
This approach is essentially taken by all previous work studying linear models in the “S-A” category.
However, this is very expensive, and it causes the simulator-equipped bound

√
T in Dai et al. [2023]
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to deteriorate to the simulator-free bound T 5/6 at best (see Appendix G for details). The other is to use
the contexts received in time 1 to t to estimate the covariance matrix under the policy at time t. This
demands a very high efficiency in reusing the contexts samples, and existing ways of constructing
the covariance matrix and the accompanied analysis by Dai et al. [2023], Sherman et al. [2023] are
insufficient to achieve the near-optimal bound even with context reuse. This necessitates our tighter
construction of the covariance matrix estimator and tighter concentration bounds for it.

Our construction of the loss estimator (Line 5) is

ŷt = Σ̂−1
t (at − x̂t)ℓt where Σ̂t = EA∼D̂t

Ea∼pAt
[
(a− x̂t)(a− x̂t)

⊤]+ βtI (3)

where D̂t = Uniform{A1,A2, . . . ,At−1}, x̂t = EA∼D̂t
,Ea∼pAt [a], and βt = Õ(d3/t). Comparing

Eq. (3) with Eq. (2), we see that besides using the empirical context distribution D̂t in place of the
ground truth D and adding a small term βtI to control the smallest eigenvalue of the covariance
matrix, we also centralize the features by x̂t, an estimation of the mean features under the current
policy. The centralization is important in making the bias yt − ŷt appear in a nice form that can
be compensated by a bonus term. The estimator might seem problematic on first sight, because pAt
is strongly dependent on D̂t, which rules out canonical concentration bounds. We circumvent this
issue by leveraging the special structure of pt in Algorithm 1, which allows for a union bound over
a sufficient covering of all potential policies (Appendix C.3). The analysis on the bias of this loss
estimator is also non-standard, which is the key to achieve the near-optimal bound . In the next two
subsections, we explain how to bound the bias of this loss estimator (Section 3.3), and how the bonus
term can be used to compensate the bias (Section 3.4).

3.3 The bias of the loss estimator

Since the true loss vector is yt and we use the loss estimator ŷt in the update, there is a bias term
emerging in the regret bound at time t:

Et
[
⟨xA0
t − uA0 , yt − ŷt⟩

]
= Et [⟨xt − u, yt − ŷt⟩] = Et

[
(xt − u)

⊤
(
I − Σ̂−1

t (at − x̂t)a
⊤
t

)
yt

]
where definitions of xAt , u

A, xt, u can be found in Definition 1, and we use the definition of ŷt in
Eq. (3) in the last equality. Now taking expectation over At and at conditioned on Ft−1, we can
further bound the expectation in the last expression by

(xt − u)⊤
(
I − Σ̂−1

t Ht

)
yt − (xt − u)⊤Σ̂−1

t (xt − x̂t) x̂
⊤
t yt

≤ ∥xt − u∥Σ̂−1
t
∥(Σ̂t −Ht)yt∥Σ̂−1

t
+ ∥xt − u∥Σ̂−1

t
∥xt − x̂t∥Σ̂−1

t
(4)

(see Definition 1 for the definition of Ht). The two terms ∥(Σ̂t − Ht)yt∥Σ̂−1
t

and ∥xt −
x̂t∥Σ̂−1

t
in Eq. (4) are related to the error between the empirical context distribution D̂t =

Uniform{A1, . . . ,At−1} and the true distribution D. We handle them through novel analysis and
bound both of them by Õ

(√
d3/t

)
. See Lemma 13, Lemma 14, Lemma 18, and Lemma 19 for details.

The techniques we use in these lemmas surpass those in Dai et al. [2023], Sherman et al. [2023]. As a
comparison, a similar term as ∥(Σ̂t−Ht)yt∥Σ̂−1

t
is also presented in Eq. (16) of Dai et al. [2023] and

Lemma B.5 of Sherman et al. [2023] when bounding the bias. While their analysis uses off-the-shelf
matrix concentration inequalities, our analysis expands this expression by its definition, and applies
concentration inequalities for scalars on individual entries. Overall, our analysis is more tailored
for this specific expression. Previous works ensure that this term can be bounded by O(

√
β) after

collecting O(β−2) new samples (Lemma 5.1 of Dai et al. [2023] and Lemma B.1 of Sherman et al.
[2023]), we are able to bound it by O(1/

√
t) only using t samples that the learner received up to time

t. This essentially improves their O(β−2) sample complexity bound to O(β−1). See Appendix G for
detailed comparison with Dai et al. [2023] and Sherman et al. [2023].

Now we have bounded the regret due to bias of ŷt by the order of
√
d3/t∥xt − u∥Σ̂−1

t
. The next

problem is how to mitigate this term. This is also a problem in previous work [Luo et al., 2021, Dai
et al., 2023, Sherman et al., 2023], and it has become clear that this can be handled by incorporating
bonus in the algorithm.
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3.4 The bonus term

To handle a bias term in the form of ∥xt − u∥Σ̂−1
t

, we resort to the idea of bonus. To illustrate this,
suppose that instead of feeding ŷt to the FTRLs, we feed ŷt − bt for some bt. Then this would give
us a regret bound of the following form:

Reg = E

[
T∑
t=1

⟨xt − u, ŷt − bt⟩

]
+ E

[
T∑
t=1

⟨xt − u, yt − ŷt⟩

]
+ E

[
T∑
t=1

⟨xt − u, bt⟩

]

≲ Õ(d2
√
T ) + E

[
T∑
t=1

√
d3

t
∥xt − u∥Σ̂−1

t

]
+ E

[
T∑
t=1

⟨xt − u, bt⟩

]
(5)

where we assume that FTRL can give us Õ(d2
√
T ) bound for the loss sequence ŷt − bt. Our hope

here is to design a bt such that ⟨xt − u, bt⟩ provides a negative term that can be used to cancel the
bias term

√
d3/t∥xt − u∥Σ̂−1

t
in the following manner:

bias + bonus =
T∑
t=1

(√
d3

t
∥xt − u∥Σ̂−1

t
+ ⟨xt − u, bt⟩

)
≲ Õ(d2

√
T ). (6)

which gives us a Õ(d2
√
T ) overall regret by Eq. (5). This approach relies on two conditions to be

satisfied. First, we have to find a bt that makes Eq. (6) hold. Second, we have to ensure that the FTRL
algorithm achieves a Õ(d2

√
T ) bound under the loss sequence ŷt − bt.

To meet the first condition, we take inspiration from Zimmert and Lattimore [2022] and lift the
problem to the space of covariance matrix in R(d+1)×(d+1). Considering the bonus term αtΣ̂̂Σ̂Σ

−1
t in

the lifted space, we have

⟨HHHt −UUU,αtΣ̂̂Σ̂Σ
−1
t ⟩ = αtTr(HHHtΣ̂̂Σ̂Σ

−1
t )− αtTr(UUUΣ̂̂Σ̂Σ

−1
t ) (7)

Using Lemma 17 and Corollary 22, we can upper bound Eq. (7) by O (dαt)− αt

4 ∥u− x̂t∥2Σ̂−1
t

. This
gives

bias + bonus ≤
T∑
t=1

(√
d3

t
∥xt − u∥Σ̂−1

t
+ dαt −

αt
4
∥x̂t − u∥2

Σ̂−1
t

)

≤ Õ(d2
√
T ) +

T∑
t=1

√
d3

t
∥xt − x̂t∥Σ̂−1

t
+

T∑
t=1

(√
d3

t
∥x̂t − u∥Σ̂−1

t
− αt

4
∥x̂t − u∥2

Σ̂−1
t

)
.

Using Lemma 18 to bound the second term above by Õ(
∑
t d

3/t) = Õ(d3), and AM-GM to bound
the third term by Õ(

∑
t d

3/(tαt)) = Õ(d2
√
T ), we get Eq. (6), through the help of lifting.

To meet the second condition, we have to analyze the regret of FTRL under the loss ŷt − bt. The key
is to show that the bonus αtΣ̂̂Σ̂Σ−1

t introduces small stability term overhead. Thanks to the use of the
logdet regularizer and its self-concordance property, the extra stability term introduced by the bonus
can indeed be controlled by the order

√
T . The key analysis is in Lemma 27.

Previous works rely on exponential weights [Luo et al., 2021, Dai et al., 2023, Sherman et al.,
2023] rather than logdet-FTRL, which comes with the following drawbacks. 1) In Luo et al. [2021],
Sherman et al. [2023] where exponential weights is combined with standard loss estimators, the bonus
introduces large stability term overhead. Therefore, their bound can only be T 2/3 at best even with
simulators. 2) In Dai et al. [2023] where exponential weights is combined with magnitude-reduced
loss estimators, the loss estimator for action a can no longer be represented as a simple linear function
a⊤ŷt. Instead, it becomes a complex non-linear function. This restricts the algorithm’s potential to
leverage linear optimization oracle over the action set and achieve computational efficiency.

3.5 Overall regret analysis

With all the algorithmic elements discussed above, now we give a formal statement for our regret
guarantee and perform a complete regret analysis. Our main theorem is the following.
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Theorem 2. Algorithm 1 ensures Reg ≤ O(d2
√
T log T ).

Proof sketch. Let A0 be drawn from D independently from all the interaction history between the
learner and the environment. Recalling the definitions in Definition 1, we have

Reg = E

[
T∑
t=1

⟨at − uAt , yt⟩

]
= E

[
T∑
t=1

⟨HHHAt
t −UUUAt , γt⟩

]
= E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , γt⟩

]

≤ E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , γt − γ̂t⟩

]
︸ ︷︷ ︸

Bias

+E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t ⟩

]
︸ ︷︷ ︸

Bonus

+E

[
T∑
t=1

⟨HHHA0
t −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ

−1
t ⟩

]
︸ ︷︷ ︸

FTRL-Reg

Each term can be bounded as follows:

• Bias ≤ O(d2
√
T log T ) + 1

4

∑T
t=1 αt∥u− xt∥2Σ̂−1

t

(discussed in Section 3.3).

• Bonus ≤ O(d2
√
T log T )− 1

4

∑T
t=1 αt∥u− xt∥2Σ̂−1

t

(discussed in Section 3.4).

• FTRL-Reg ≤ O(d2
√
T log T ).

Combining all terms gives the desired bound. The complete proof is provided in Appendix D.

3.6 Handling Misspecification

In this subsection, we show how our approach naturally handles the case when the expectation of the
loss cannot be exactly realized by a linear function but with a misspecification error. In this case, we
assume that the expectation of the loss is given by E[ℓt|at = a] = ft(a) for some ft : Rd → [−1, 1],
and the realized loss ℓt still lies in [−1, 1]. We define the following notion of misspecification (slightly
more refined than that in Neu and Olkhovskaya [2020]):

Assumption 1 (misspecification).
√

1
T

∑T
t=1 infy∈Bd

2
supA∈supp(D) supa∈A(ft(a)− ⟨a, y⟩)2 ≤ ε.

Based on previous discussions, the design idea of Algorithm 1 is to 1) identify the bias of the loss
estimator, and 2) add necessary bonus to compensate the bias. When there is misspecification, this
design idea still applies. The difference is that now the loss estimator ŷt potentially has more bias due
to misspecification. Therefore, the bias becomes larger by an amount related to ε. Consequently, we
need to enlarge bonus (raising αt) to compensate it. Due to the larger bonus, we further need to tune
down the learning rate ηt to make the algorithm stable. Overall, to handle misspecification, when
ε is known, it boils down to using the same algorithm (Algorithm 1) with adjusted αt and ηt. The
case of unknown ε can be handled by the standard meta-learning technique Corral [Agarwal et al.,
2017, Foster et al., 2020, Luo et al., 2022]. We defer all details to Appendix E and only state the final
bound here.

Theorem 3. Under misspecification, there is an algorithm ensuring Reg ≤ Õ(d2
√
T +

√
dεT ),

without knowing ε in advance.

4 Linear EXP4

To tighten the d-dependence in the regret bound, we can use the computationally inefficient algorithm
EXP4 [Auer et al., 2002]. The original regret bound for EXP4 has a polynomial dependence on the
number of actions, but here we take the advantage of the linear structure to show a bound that only
depends on the feature dimension d. The algorithm is presented in Algorithm 2.
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Algorithm 2 Linear EXP4
input: Π, η, γ.
for t = 1, 2, . . . do

Receive At ⊂ Rd.
Construct νt ∈ ∆(At) such that maxa∈At

∥a∥2
G−1

t

≤ d, where Gt = Ea∼νt [aa⊤]. Set

Pt,π =
exp

(
−η
∑t−1
s=1 ℓ̂s,π

)
∑
π′∈Π exp

(
−η
∑t−1
s=1 ℓ̂s,π′

)
and define pt,a =

∑
π∈Π Pt,πI{π(At) = a} .

Sample at ∼ p̃t = (1− γ)pt + γνt and receive ℓt ∈ [−1, 1] with E[ℓt] = ⟨at, yt⟩.
Construct ∀π ∈ Π: ℓ̂t,π = ⟨π(At), H̃

−1
t atℓt⟩, where H̃t = Ea∼p̃t [aa⊤] .

To run Algorithm 2, we restrict ourselves to a finite policy class. The policy class we use in the
algorithm is the set of linear policies defined as

Π =

{
πθ : θ ∈ Θ, πθ(A) = argmin

a∈A
a⊤θ

}
(8)

where Θ is an 1-net of [−T, T ]d. The next theorem shows that this suffices to give us near-optimal
bounds for our problem. The proof is given in Appendix F.

Theorem 4. With γ = 2d
√
(log T )/T and η =

√
(log T )/T , Algorithm 2 with the policy class

defined in Eq. (8) guarantees Reg = O
(
d
√
T log T

)
.

Note that this result technically also holds in the “A-A” category with respect to the policy class
defined in Eq. (8). However, this policy class is not necessarily a sufficient cover of all policies of
interest when the contexts and losses are adversarial.

5 Conclusions

We derived the first algorithm that obtains
√
T regret in contextual linear bandits with stochastic

action sets in the absence of a simulator or prior knowledge on the distribution. As a side result, we
obtained the first computationally efficient poly(d)

√
T algorithm for adversarial sleeping bandits

with general stochastic arm availabilities. We believe the techniques in this paper will be useful for
improving results for simulator-free linear MDPs as well.
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A Summary of Notation

We summarize the notations that have been defined in Algorithm 1 and Definition 1.

βt = Θ

(
(d+ 1)3 log(T/δ)

t− 1

)
x̂t =

1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[a]

Ĥt =
1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[
(a− x̂t)(a− x̂t)

⊤]
Ĥ̂ĤHt =

1

t− 1

t−1∑
τ=1

Ea∼pAτ
t

[
aa⊤ a

a⊤ 1

]
=

[
Ĥt + x̂tx̂

⊤
t x̂t

x̂⊤t 1

]
Σ̂t = Ĥt + βtI

Σ̂̂Σ̂Σt = Ĥ̂ĤHt + βtIII =

[
Σ̂t + x̂tx̂

⊤
t x̂t

x̂⊤t 1 + βt

]
xt = EA∼DEa∼pAt [a]

Ht = EA∼DEa∼pAt
[
(a− x̂t)(a− x̂t)

⊤]
HHHt = EA∼DEa∼pAt

[
aa⊤ a

a⊤ 1

]

B Auxiliary Lemmas

Lemma 5 (FTRL regret bound, Lemma 18 of Dann et al. [2023a]). Let Ω ⊂ Rd be a convex set,
g1, . . . , gT ∈ Rd, and η1, . . . , ηT > 0. Then the FTRL update

wt = argmin
w∈Ω

{〈
w,

t−1∑
τ=1

gτ

〉
+

1

ηt
ψ(w)

}
ensures for any u ∈ Ω and η0 > 0,

T∑
t=1

⟨wt − u, gt⟩

≤ ψ(u)−minw∈Ω ψ(w)

η0
+

T∑
t=1

(ψ(u)− ψ(wt))

(
1

ηt
− 1

ηt−1

)
︸ ︷︷ ︸

Penalty

+

T∑
t=1

(
max
w∈Ω

⟨wt − w, gt⟩ −
Dψ(w,wt)

ηt

)
︸ ︷︷ ︸

Stability

.

When η0, η1, . . . , ηT is non-increasing, the penalty term can further be upper bounded by

Penalty ≤ ψ(u)−minw∈Ω ψ(w)

ηT
.

Lemma 6 (Bernstein’s inequality). Let X1, · · · , Xn be iid random variables; let E[X] be the
expectation and Var(X) be the variance of these random variables. If for any i, |Xi − E[Xi]| ≤ R,
then with probability of at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Xi − E[X]

∣∣∣∣∣ ≤
√

4Var(X) log 2
δ

n
+

4R log 2
δ

3n
.
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Lemma 7 (Hoeffding’s inequality). Let X1, · · · , Xn be iid random variables; let a ≤ Xi ≤ b and
let E[X] be the expectation. Then with probability of at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Xi − E[X]

∣∣∣∣∣ ≤ (b− a)

√
1

2n
log(

2

δ
)

Given F (X) = − log det(X), D2F (X) = X−1 ⊗ X−1 where ⊗ is the Kronecker prod-

uct. For any matrix A =
[
a1 a2 · · · an

]
, let vec(A) =


a1
...

an

 which vectorizes matrix

A to a column vector by stacking the columns A. The second order directional derivative
for F is D2F (X)[A,A] = vec(A)T

(
X−1 ⊗X−1

)
vec(A) = Tr(A⊤X−1AX−1). We define

∥A∥∇2F (X) =
√
Tr(A⊤X−1AX−1) and ∥A∥∇−2F (X) =

√
Tr(A⊤XAX). It is a pseudo-norm

and more discussion can be found in Appendix D of Zimmert et al. [2022]. In the following analysis,
we will only use one property of this pseudo-norm shown below which is similar to the Holder
inequality.
Lemma 8. For any two symmetric matrices A,B and positive definite matrix X ,

⟨A,B⟩ ≤ ∥A∥∇2F (X)∥B∥∇−2F (X)

Proof. Since (X ⊗X)−1 = X−1 ⊗X−1, from Holder inequality, we have

⟨A,B⟩ = ⟨vec(A), vec(B)⟩ ≤ ∥vec(A)∥X−1⊗X−1∥vec(B)∥(X−1⊗X−1)−1 = ∥A∥∇2F (X)∥B∥∇−2F (X)

C Concentration Inequalities

The goal of this section is to show Lemma 18 and Lemma 19, which are key to bound the bias
term. We first introduce a useful lemma from Dai et al. [2023], which will be used later to prove our
concentration bounds.

C.1 General Concentration Inequalities

Lemma 9 (Lemma A.4 in Dai et al. [2023]). Let H1, H2, . . . ,Hn be i.i.d. PSD matrices such that
E[Hi] = H , Hi ⪯ I almost surely and H ⪰ 1

dn log d
δ I . Then with probability 1− δ,

1

n

n∑
i=1

Hi −H ⪰ −
√
d

n
log

d

δ
H1/2

Corollary 10. Let H1, H2, . . . ,Hn be i.i.d. PSD matrices such that E[Hi] = H and Hi ⪯ cI almost
surely for some positive constant c. Let Ĥ = 1

n

∑n
i=1Hi, then with probability 1− δ,

Ĥ +
3c

2
· d
n
log

(
d

δ

)
I ⪰ 1

2
H (9)

Proof. A simple corollary of Lemma 9 under the condition of Lemma 9 is that

1

n

n∑
i=1

Hi −H ⪰ −
√
d

n
log

d

δ
H1/2 ⪰ −1

2
H − d

2n
log

(
d

δ

)
I

⇒ 1

n

n∑
i=1

Hi +
d

2n
log

(
d

δ

)
I ⪰ 1

2
H, (10)

where we use that H
1
2 ⪯ k

2H + 1
2k for any k > 0.
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Now consider the condition of this corollary. We first consider the case where d
n log(dδ ) ≤ 1. In this

case, we apply Eq. (10) with H ′
i =

1
2cHi +

d
2n log(dδ )I , which satisfies the condition for Eq. (10) to

hold. This gives

1

n

n∑
i=1

(
1

2c
Hi +

d

2n
log

(
d

δ

)
I

)
+

d

2n
log

(
d

δ

)
I ⪰ 1

2

(
1

2c
H +

d

2n
log

(
d

δ

)
I

)
⇒ Ĥ +

3c

2
· d
n
log

(
d

δ

)
I ⪰ 1

2
H

with probability at least 1 − δ. When d
n log(dδ ) > 1. Eq. (9) is trivial because 1

2H ⪯ c
2I ⪯

c
2 · dn log(dδ )I .

C.2 Concentration Inequalities under a Fixed Policy p

In this subsection, we establish concentration bounds for a fixed policy p (with pA ∈ ∆(A) denoting
the action distribution it uses over A) over i.i.d. contexts. The results in this subsection are preparation
for Appendix C.3 where we take union bounds over policies.

The setting and notation to be used in this subsection are defined in Definition 11.

Definition 11. Let {A1, . . . ,An} be i.i.d. context samples drawn from D. Let D̂ be the uniform
distribution over {A1, . . . ,An}.

Over this set of context samples, define for any policy p,

x(p) = EA∼DEa∼pA [a],
x̂(p) = EA∼D̂Ea∼pA [a],
H(p) = EA∼DEa∼pA

[
(a− x̂(p))(a− x̂(p))⊤

]
,

Ĥ(p) = EA∼D̂Ea∼pA
[
(a− x̂(p))(a− x̂(p))⊤

]
,

HHH(p) = EA∼DEa∼pA
[
aaaaaa⊤

]
,

Ĥ̂ĤH(p) = EA∼D̂Ea∼pA
[
aaaaaa⊤

]
,

Σ̂(p) = Ĥ(p) + βI,

Σ̂̂Σ̂Σ(p) = Ĥ̂ĤH(p) + βIII,

where β = 5d log(6d/δ)
n .

Lemma 12. Under the setting of Definition 11, for any fixed p, with probability at least 1− δ,

Ĥ(p) +
4d log(6d/δ)

n
I ⪰ 1

2
H(p),

Ĥ̂ĤH(p) +
3d log(d/δ)

n
III ⪰ 1

2
HHH(p).

Proof. In this proof, we use x̂, x, Ĥ,H, Ĥ̂ĤH,HHH to denote x̂(p), x(p), Ĥ(p), H(p), Ĥ̂ĤH(p),HHH(p) since
p is fixed throughout the proof.

Since ∥a∥ ≤ 1,HHH ⪯ 2I and Ĥ̂ĤH ⪯ 2I . Thus, we can directly apply Corollary 10 with c = 2 to get
with probability 1− δ

3

Ĥ̂ĤH +
3d log(3d/δ)

n
III ⪰ 1

2
HHH.
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To prove the first inequality, we first decompose H and Ĥ

H = EA∼DEa∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
+ (x− x̂)(x− x̂)⊤ (because EA∼DEa∼pA(a− x) = 0)

(11)

Ĥ = EA∼D̂Ea∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x)(a− x)⊤

]
− (x− x̂)(x− x̂)⊤

(because EA∼D̂Ea∼pA(a− x) = x̂− x)
(12)

From Hoeffding inequality (Lemma 7) and union bound, with probability 1− δ
3 , for all k ∈ [d], we

have

|e⊤k x− e⊤k x̂| ≤

√
1

2n
log

(
6d

δ

)
,

which implies that e⊤k (x− x̂)(x− x̂)⊤ek ≤ 1
2n log( 6dδ ) for all k, and thus

(x− x̂)(x− x̂)⊤ ⪯ 1

2n
log

(
6d

δ

)
I. (13)

By directly applying Corollary 10 with c = 2, we get with probability at least 1− δ
3 ,

EA∼D̂Ea∼pA
[
(a− x)(a− x)⊤

]
+

3d log(3d/δ)

n
I ⪰ 1

2
EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
Further using Eq. (11), Eq. (12) and Eq. (13), we get with probability at least 1− 2δ

3 ,

Ĥ +
4d log(6d/δ)

n
I ⪰ 1

2
H

Taking union bound for both inequality finishes the proof.

Lemma 13. Under the setting of Definition 11, for any fixed policy p, with probability at least
1−O(δ),

∥x(p)− x̂(p)∥2
Σ̂(p)−1 ≤ O

(
d log(d/δ)

n

)

Proof. In this proof, we use x̂, x, Ĥ,H, Ĥ̂ĤH,HHH, Σ̂, Σ̂̂Σ̂Σ to denote x̂(p), x(p), Ĥ(p), H(p), Ĥ̂ĤH(p),HHH(p),
Σ̂(p), Σ̂̂Σ̂Σ(p) since p is fixed throughout the proof.

We first rewrite H .

H = EA∼DEa∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
+ (x− x̂)(x− x̂)⊤ (because EA∼DEa∼pA(a− x) = 0)

(14)

To simplify analysis, we perform diagonalization. Suppose that EA∼DEa∼pA [(a − x)(a − x)⊤]
admits the following eigen-decomposition:

EA∼DEa∼pA [(a− x)(a− x)⊤] = V ΛV ⊤

where V is an orthogonal matrix and Λ is a diagonal matrix. By Lemma 12 and the definition of β in
Definition 11, we have with probability 1− δ,

Σ̂ ⪰ 1

2
H + ρI ⪰ 1

2
V ΛV ⊤ + ρI
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with some ρ = Θ
(
d log(d/δ)

n

)
, where the second inequality is by Eq. (14). Thus,

∥x− x̂∥2
Σ̂−1 = (x− x̂)⊤Σ̂−1(x− x̂)

≤ (x− x̂)⊤
(
1

2
V ΛV ⊤ + ρI

)−1

(x− x̂)

= (x̂− x)⊤V

(
1

2
Λ + ρI

)−1

V ⊤(x̂− x).

Define

∆k = e⊤k V
⊤(x̂− x) =

1

n

n∑
i=1

e⊤k V
⊤Ea∼pAi [a]︸ ︷︷ ︸

Define as Z(i)
k

− e⊤k V
⊤EA∼DEa∼pA [a]︸ ︷︷ ︸

Define as Zk

Since EAi∼D

[
Z

(i)
k

]
= Zk, by Bernstein’s inequality, with probability at least 1− δ, we have

|∆k| ≤ O


√

Var(Z
(i)
k ) log(d/δ)

n
+

log(d/δ)

n

 (15)

for all k, where
Var(Z

(i)
k ) = EA∼D

[(
e⊤k V

⊤Ea∼pA [a]− e⊤k V
⊤x
)2]

.

On the other hand,

Λkk = e⊤k EA∼DEa∼pA [V ⊤(a− x)(a− x)⊤V ]ek

= EA∼DEa∼pA
[(
e⊤k V

⊤a− e⊤k V
⊤x
)2]

.

From Jensen’s inequality,

Λkk = EA∼DEa∼pA
[(
e⊤k V

⊤a− e⊤k V
⊤x
)2] ≥ EA∼D

[(
e⊤k V

⊤Ea∼pA [a]− e⊤k V
⊤x
)2]

= Var(Z
(i)
k )

Thus,

∥x− x̂∥2
Σ̂−1 ≤ (x̂− x)⊤V

(
1

2
Λ + ρI

)−1

V ⊤(x̂− x)

=

d∑
k=1

(∆k)
2

1
2Λkk + ρ

≤ O

(
log(d/δ)

n

d∑
k=1

Var(Z
(i)
k ) + log(d/δ)

n

Λkk + ρ

)
(by Eq. (15))

≤ O
(
d log(d/δ)

n

)
. (Λkk ≥ Var(Z

(i)
k ) and ρ = Θ(d log(d/δ)n ))

Lemma 14. Under the setting of Definition 11, for any fixed policy p, with probability at least
1−O(δ),

∥(Σ̂(p)−H(p))y∥2
Σ̂(p)−1 ≤ O

(
d log(d/δ)

n

)
for any y ∈ Bd2.

Proof. In this proof, we use x̂, x, Ĥ,H, Ĥ̂ĤH,HHH, Σ̂, Σ̂̂Σ̂Σ to denote x̂(p), x(p), Ĥ(p), H(p), Ĥ̂ĤH(p),HHH(p),
Σ̂(p), Σ̂̂Σ̂Σ(p) since p is fixed throughout the proof.
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First, we re-write H and Ĥ:

H = EA∼DEa∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
+ (x− x̂)(x− x̂)⊤ (because EA∼DEa∼pA(a− x) = 0)

(16)

Ĥ = EA∼D̂Ea∼pA
[
(a− x̂)(a− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x+ x− x̂)(a− x+ x− x̂)⊤

]
= EA∼D̂Ea∼pA

[
(a− x)(a− x)⊤

]
− (x− x̂)(x− x̂)⊤

(because EA∼D̂Ea∼pA(a− x) = x̂− x)

Then, by definition (in Definition 11) and the calculation above,

Σ̂−H

= Ĥ −H + βI

=
1

n

n∑
i=1

Ea∼pAi

[
(a− x)(a− x)⊤

]
− EA∼DEa∼pA

[
(a− x)(a− x)⊤

]
︸ ︷︷ ︸

define this as Γ

−2(x− x̂)(x− x̂)⊤ + βI.

Using ∥a+ b+ c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2, we have

∥(Σ̂−H)y∥2
Σ̂−1 ≤ 3∥Γy∥2

Σ̂−1 + 12∥(x− x̂)(x− x̂)⊤y∥2
Σ̂−1 + β2∥y∥2

Σ̂−1

≤ 3∥Γy∥2
Σ̂−1 + 12∥x− x̂∥2

Σ̂−1 +O(β). (17)

The second and third term are bounded by O
(
d log(d/δ)

n

)
using Lemma 13 and the definition of β,

with probability at least 1−O(δ). Below, we further deal with the first term. To simplify analysis,
we perform diagonalization. Suppose that EA∼DEa∼pA [(a − x)(a − x)⊤] admits the following
eigen-decomposition:

EA∼DEa∼pA [(a− x)(a− x)⊤] = V ΛV ⊤

where V is an orthogonal matrix and Λ is a diagonal matrix. Then

∥Γy∥2Σ̂−1 = y⊤ΓΣ̂−1Γy = (V ⊤y)⊤(V ⊤ΓV )(V ⊤Σ̂V )−1(V ⊤ΓV )(V ⊤y). (18)

Below, we further deal with the V ⊤ΓV and V ⊤ΛV terms in Eq. (18). By Lemma 12, with probability
at least 1− δ,

Σ̂ ⪰ 1

2
H + ρI ⪰ 1

2
V ΛV ⊤ + ρI,

for some ρ = Θ
(
d log(d/δ)

n

)
, where we use Eq. (16) in the second inequality. Therefore,

V ⊤Σ̂V ⪰ 1

2
Λ + ρI. (19)

Next, denote ∆ = V ⊤ΓV . By definition, it can be written as the following:

∆ =
1

n

n∑
i=1

Ea∼pAi

[
V ⊤(a− x)(a− x)⊤V

]︸ ︷︷ ︸
defining this as Λ(i)

−EA∼DEa∼pA
[
V ⊤(a− x)(a− x)⊤V

]︸ ︷︷ ︸
=Λ

with Λ(i) being i.i.d. samples with mean E[Λ(i)] = Λ. While these are d× d matrices, we will apply
concentration inequalities to individual entries.

Let λikh = e⊤k Λ
(i)eh be the (k, h)-th entry of Λ(i). Notice that E[λikh] = e⊤k Λeh = Λkh, the

(k, h)-th entry of Λ.
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By Bernstein’s inequality, with probability at least 1− δ, we have

|∆kh| =

∣∣∣∣∣ 1n
n∑
i=1

(λikh − Λkh)

∣∣∣∣∣ ≤ O

(√
Var(λikh) log(d/δ)

n
+

log(d/δ)

n

)
. (20)

With the manipulations and notations above, we continue to bound Eq. (18) by

∥Γy∥2
Σ̂−1 = y′⊤∆(V ⊤Σ̂V )−1∆y′ (let y′ = V ⊤y)

≤ 2y′⊤∆(Λ + ρI)
−1

∆y′ (by Eq. (19))

≤ 2Tr
(
∆(Λ + ρI)

−1
∆
)

By direct expansion and the fact that Λ is diagonal,

Tr
(
∆(Λ + ρI)

−1
∆
)
=

d∑
k=1

(
∆(Λ + ρI)

−1
∆
)
kk

=

d∑
k=1

d∑
h=1

∆kh∆hk

Λhh + ρ

≤ O

(
d∑
k=1

d∑
h=1

1

Λhh + ρ

(
Var(λikh) log(d/δ)

n
+

log2(d/δ)

n2

))
(by Eq. (20))

≤ O

(
d∑
k=1

d∑
h=1

1

Λhh + ρ

E(λ2ikh) log(d/δ)
n

+
d2 log2(d/δ)

ρn2

)
(21)

By definition,

λikh = Ea∼pAi

[
ekV

⊤(a− x)(a− x)⊤V eh
]

and thus
d∑
k=1

λ2ikh ≤ Ea∼pAi

[
d∑
k=1

(
ekV

⊤(a− x)(a− x)⊤V eh
)2]

= Ea∼pAi

[
d∑
k=1

e⊤h V
⊤(a− x)(a− x)⊤V eke

⊤
k V

⊤(a− x)(a− x)⊤V eh

]
= Ea∼pAi

[
e⊤h V

⊤(a− x)(a− x)⊤(a− x)(a− x)⊤V eh
]

≤ Ea∼pAi

[
e⊤h V

⊤(a− x)(a− x)⊤V eh
]

= λihh

and
∑d
k=1 E[λ2ikh] ≤ E[λihh] = Λhh. Continuing from Eq. (21) and using that ρ = Θ

(
d log(d/δ)

n

)
,

Tr
(
∆(Λ + ρI)−1∆

)
≤ O

(
d∑

h=1

Λhh log(d/δ)

(Λhh + ρ)n
+
d2 log2(d/δ)

n2

)
≤ O

(
d log(d/δ)

n

)
.

This gives a bound on ∥Γy∥2
Σ̂−1

and finishes the proof after combining Eq. (17).

C.3 Union Bound over Policies

In Lemma 12, Lemma 13, and Lemma 14, we have obtained the desired concentration inequalities
under a fixed policy p. In this subsection, we proceed to take union bound over all policies that are
possibly used by Algorithm 1.
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The set of policies that could be generated by Algorithm 1 is the following:

P =

{
p : Ĉov(pA) = argmin

HHH∈HA
{⟨HHH,ZZZ⟩+ F (HHH)} , for ZZZ ∈ Z

}
where Z = [−T 2, T 2](d+1)×(d+1) ∩ S with S denoting the set of symmetric matrices. To see this,
notice that Algorithm 1 at round t corresponds to the policy defined above with ZZZ = ηt

∑t−1
s=1(γ̂s −

αsΣ̂̂Σ̂Σ
−1
s ).

Our goal is to construct a ϵ-cover P′ so that every policy p ∈ P can find a policy p′ ∈ P′ making
−ϵI ⪯ Ĉov(pA)− Ĉov(p′A) ⪯ ϵI on every action set A. The size of such a cover is bounded in the
Proposition below.

Lemma 15. There exists an ϵ-cover P′ of P with size log |P′| = O
(
d2 log d

ϵ

)
such that for any

p ∈ P, there exists an p′ ∈ P′ satisfying∥∥∥Ĉov(pA)− Ĉov(p′A)
∥∥∥
F
≤ ϵ

for all A.

Proof. It is straightforward to construct an ϵ
4 -cover C for Z = [−T 2, T 2](d+1)×(d+1)∩S in Frobenius

norm with size |C| = ( 24(d+1)2

ϵ )(d+1)2 (Exercise 27.6 of Lattimore and Szepesvári [2020]). Now
define P′ as

P′ =

{
p : Ĉov(pA) = argmin

HHH∈HA
{⟨HHH,ZZZ⟩+ F (HHH)} , for ZZZ ∈ C

}
(22)

Below, we show that this is a ϵ-cover for P.

Consider two policies p1 and p2 defined as the following:

Ĉov(pA1 ) = argmin
HHH∈HA

{⟨HHH,ZZZ1⟩+ F (HHH)}

Ĉov(pA2 ) = argmin
HHH∈HA

{⟨HHH,ZZZ2⟩+ F (HHH)}

with ∥ZZZ1−ZZZ2∥F ≤ ϵ
4 . Consider an arbitrary A and defineHHH1 = Ĉov(pA1 ),HHH2 = Ĉov(pA2 ). Below

we show ∥HHH1 −HHH2∥F ≤ ϵ.

Since F (HHH) is convex forHHH , from the first-order optimality condition for convex function, we have

⟨HHH1,ZZZ1⟩+ F (HHH1) ≤ ⟨HHH2,ZZZ1⟩+ F (HHH2)−DF (HHH2,HHH1)

= ⟨HHH2,ZZZ2⟩+ ⟨HHH2,ZZZ1 −ZZZ2⟩+ F (HHH2)−DF (HHH2,HHH1)

⟨HHH2,ZZZ2⟩+ F (HHH2) ≤ ⟨HHH1,ZZZ2⟩+ F (HHH1)−DF (HHH1,HHH2)

= ⟨HHH1,ZZZ1⟩+ ⟨HHH1,ZZZ2 −ZZZ1⟩+ F (HHH1)−DF (HHH1,HHH2)

Adding up these the two inequalities, we get

2min{DF (HHH1,HHH2), DF (HHH2,HHH1)} ≤ DF (HHH1,HHH2) +DF (HHH2,HHH1) ≤ ⟨ZZZ1 −ZZZ2,HHH2 −HHH1⟩
Since the second order directional derivative for F is D2F (HHH)[XXX,XXX] = Tr(XXXHHH−1XXXHHH−1) for any
symmetric matrixXXX , from the Taylor series, there existsHHH ′ that is a line segment betweenHHH1 and
HHH2 such that

∥HHH1 −HHH2∥2∇2F (HHH′) = 2min{DF (HHH1,HHH2), DF (HHH2,HHH1)} ≤ ⟨ZZZ1 −ZZZ2,HHH2 −HHH1⟩
≤ ∥ZZZ1 −ZZZ2∥∇−2F (HHH′)∥HHH1 −HHH2∥∇2F (HHH′) (Lemma 8)

Thus we have ∥HHH1−HHH2∥∇2F (HHH′) ≤ ∥ZZZ1−ZZZ2∥∇−2F (HHH′). Since ∥a∥2 ≤ 1,HHH ′ ⪯ 2III . The left-hand
side and right-hand side can be bounded as follows,

∥HHH1 −HHH2∥∇2F (HHH′) =
√
Tr ((HHH1 −HHH2)(HHH ′)−1(HHH1 −HHH2)(HHH ′)−1) ≥ 1

2
∥HHH1 −HHH2∥F

∥ZZZ1 −ZZZ2∥∇−2F (HHH′) =
√
Tr ((ZZZ1 −ZZZ2)HHH ′(ZZZ1 −ZZZ2)HHH ′) ≤ 2∥ZZZ1 −ZZZ2∥F ≤ ϵ

2
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Combining the three inequalities above, we conclude that

∥HHH1 −HHH2∥F ≤ 2∥HHH1 −HHH2∥∇2F (HHH′) ≤ 2∥ZZZ1 −ZZZ2∥∇−2F (HHH′) ≤ 4∥ZZZ1 −ZZZ2∥F ≤ ϵ.

−ϵIII ⪯HHH1 −HHH2 ⪯ ϵIII.

Lemma 16. Suppose that p, p′ are two policies such that for all action set A,∥∥∥Ĉov(pA)− Ĉov(p′A)
∥∥∥
F
≤ ϵ (23)

Then all quantities defined in Definition 11 under p and p′ are close. That is,

∥x(p)− x(p′)∥ ≤ ϵ (24)

∥x̂(p)− x̂(p′)∥ ≤ ϵ (25)

∥H(p)−H(p′)∥F ≤ 7ϵ (26)

∥Ĥ(p)− Ĥ(p′)∥F ≤ 7ϵ (27)

∥HHH(p)−HHH(p′)∥F ≤ ϵ (28)

∥Ĥ̂ĤH(p)− Ĥ̂ĤH(p′)∥F ≤ ϵ (29)

∥Σ̂(p)− Σ̂(p′)∥F ≤ 7ϵ (30)

∥Σ̂̂Σ̂Σ(p)− Σ̂̂Σ̂Σ(p′)∥F ≤ ϵ (31)

Proof. Eq. (28) and Eq. (29) are direct consequences of Eq. (23) sinceHHH(p) and Ĥ̂ĤH(p) are expec-
tations of Ĉov(pA) over distributions over A. Eq. (31) is directly implied by Eq. (29) because
Σ̂̂Σ̂Σ(p) = Ĥ̂ĤH(p) + βIII .

To show Eq. (24) and Eq. (25), observe that by the definition of x(p) andHHH(p),

HHH(p) = EA∼DEa∼pA

[
aa⊤ a

a⊤ 1

]
=

[
EA∼DEa∼pA [aa⊤] EA∼DEa∼pA [a]
EA∼DEa∼pA [a⊤] 1

]

=

[
EA∼DEa∼pA [aa⊤] x(p)

x(p)⊤ 1

]
Therefore, ∥x(p) − x(p′)∥ ≤ ∥HHH(p) − HHH(p′)∥F ≤ ϵ. Similarly, ∥x̂(p) − x̂(p′)∥ ≤ ∥Ĥ̂ĤH(p) −
Ĥ̂ĤH(p′)∥F ≤ ϵ.

If remains to show Eq. (26), Eq. (27) and Eq. (30). Next, we show Eq. (26):

H(p)−H(p′)

= EA∼D
[
Ea∼pA [(a− x̂(p))(a− x̂(p))⊤]− Ea∼p′A [(a− x̂(p′))(a− x̂(p′))⊤]

]
= EA∼D

[
Ea∼pA [aa⊤]− Ea∼p′A [aa⊤]

]
− x(p)x̂(p)⊤ − x̂(p)x(p)⊤ + x(p′)x̂(p′)⊤ + x̂(p′)x(p′)⊤ (using EA∼DEa∼pA [a] = x(p))

+ x̂(p)x̂(p)⊤ − x̂(p′)x̂(p′)⊤ (32)

Using the property

∥ab⊤ − cd⊤∥F ≤ ∥ab⊤ − cb⊤∥F + ∥cb⊤ − cd⊤∥F ≤ ∥a− c∥∥b∥+ ∥c∥∥b− d∥
we continue from Eq. (32) and bound

∥H(p)−H(p′)∥F
≤ ∥HHH(p)−HHH(p′)∥F + 2(∥x̂(p)− x̂(p′)∥+ ∥x(p)− x(p′)∥) + ∥x̂(p)− x̂(p′)∥+ ∥x̂(p)− x̂(p′)∥
≤ 7ϵ.

Eq. (27) can be shown in the same manner, which further implies Eq. (30) by the definition of Σ̂(p).
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Lemma 17. With probability 1− δ, for all t = 1, · · · , T ,

Ĥt +
50(d+ 1)3 log(3T/δ)

t− 1
I ⪰ 1

2
Ht,

Ĥ̂ĤHt +
50(d+ 1)3 log(3T/δ)

t− 1
III ⪰ 1

2
HHHt.

Proof. Notice that Ĥt, Ĥ̂ĤHt, Ht,HHHt corresponds to Ĥ(pt), Ĥ̂ĤH(pt), H(pt),HHH(pt) defined in Defini-
tion 11 with n = t− 1. To show the lemma, our strategy is to argue the following two facts: 1) the
two desired inequalities hold for all policies in the cover P′ (defined in Eq. (22)) with high probability.
This is simply by applying Lemma 12 with an union bound over policies in P′. 2) pt is sufficiently
close to the nearest element in P′ so the desired inequalities still approximately hold.

By Lemma 15, we can find p′ ∈ P′ such that for all A,∥∥∥Ĉov(pAt )− Ĉov(p′A)
∥∥∥
F
≤ ϵ.

By Lemma 16, it holds that

∥H(pt)−H(p′)∥F ≤ 7ϵ, ∥Ĥ(pt)− Ĥ(p′)∥F ≤ 7ϵ (33)

∥HHH(pt)−HHH(p′)∥F ≤ ϵ, ∥Ĥ̂ĤH(pt)− Ĥ̂ĤH(p′)∥F ≤ ϵ (34)

On the other hand, using Lemma 12 and union bound, with probability 1− δ, we have

Ĥ(p′) +
4d log(6d|P′|/δ)

n
I ⪰ 1

2
H(p′), (35)

Ĥ̂ĤH(p′) +
3d log(d|P′|/δ)

n
III ⪰ 1

2
HHH(p′). (36)

Combining Eq. (35) and Eq. (33), we get

Ĥ(pt) + 7ϵI +
4d log(6d|P′|/δ)

n
I ⪰ Ĥ(p′) +

4d log(6d|P′|/δ)
n

I ⪰ 1

2
H(p′) ⪰ 1

2
H(pt)−

7

2
ϵI

which implies the first inequality in the lemma by plugging in the choice of ϵ = 1
T 3 and the upper

bound of log |P′| in Lemma 16. The second inequality in the lemma can be obtained similarly by
combining Eq. (34) and Eq. (36).

Lemma 18. With probability of at least 1− δ, for all t = 1, · · · , T ,

∥xt − x̂t∥2Σ̂−1
t

≤ O
(
d3 log (dT/δ)

t

)

Proof. Notice that xt, x̂t, Σ̂t corresponds to x(pt), x̂(pt), Σ̂(pt) defined in Definition 11 with n =
t − 1. To show the lemma, our strategy is to argue the following two facts: 1) the two desired
inequalities hold for all policies in the cover P′ with high probability. This is simply by applying
Lemma 13 with an union bound over policies in P′. 2) pt is sufficiently close to the nearest element
in P′ so the desired inequalities still approximately hold.

By Lemma 15, we can find p′ ∈ P′ such that for all A,∥∥∥Ĉov(pAt )− Ĉov(p′A)
∥∥∥
F
≤ ϵ.

By Lemma 16, we have

∥x(p′)− x(pt)∥ ≤ ϵ, ∥x̂(p′)− x̂(pt)∥ ≤ ϵ, ∥Σ̂(p′)− Σ̂(pt)∥F ≤ 7ϵ (37)
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Thus,
∥x(pt)− x̂(pt)∥2Σ̂(pt)−1

=
(
∥x(pt)− x̂(pt)∥2Σ̂(pt)−1 − ∥x(p′)− x̂(p′)∥2

Σ̂(p′)−1

)
+ ∥x(p′)− x̂(p′)∥2

Σ̂(p′)−1

≤
(
∥x(pt)− x̂(pt)∥2Σ̂(pt)−1 − ∥x(p′)− x̂(p′)∥2

Σ̂(p′)−1

)
+O

(
d log(d|P′|/δ)

t− 1

)
(by Lemma 13 with an union bound over P′)

= θ⊤t Σ̂(pt)
−1θt − θ′⊤Σ̂(p′)−1θ′ +O

(
d log(d|P′|/δ)

t− 1

)
(define θt = x(pt)− x̂(pt) and θ′ = x(p′)− x̂(p′))

= (θt − θ′)⊤Σ̂(pt)
−1θt + θ′⊤

(
Σ̂(pt)

−1 − Σ̂(p′)−1
)
θt + θ′⊤Σ̂(p′)−1(θt − θ′) +O

(
d log(d|P′|/δ)

t− 1

)
≤ (θt − θ′)⊤

(
Σ̂(pt)

−1θt + Σ̂(p′)−1θ′
)
+ θ′⊤Σ̂(p′)−1

(
Σ̂(p′)− Σ̂(pt)

)
Σ̂(pt)

−1θt +O
(
d log(d|P′|/δ)

t− 1

)
The first two terms above can be bounded by the order of O(ϵt2) by Eq. (37). Using the choice
ϵ = 1

T 3 and recalling that log |P′| = O(d2 log(d/ϵ)) finishes the proof.

Lemma 19. With probability of at least 1− δ, for all t = 1, 2, . . . , T ,

∥(Σ̂t −Ht)yt∥2Σ̂−1
t

≤ O
(
d3 log (dT/δ)

t

)
Proof. Notice that xt, x̂t, Σ̂t corresponds to x(pt), x̂(pt), Σ̂(pt) defined in Definition 11 with n =
t − 1. To show the lemma, our strategy is to argue the following two facts: 1) the two desired
inequalities hold for all policies in the cover P′ with high probability. This is simply by applying
Lemma 13 with an union bound over policies in P′. 2) pt is sufficiently close to the nearest element
in P′ so the desired inequalities still approximately hold.

By Lemma 15, we can find p′ ∈ P′ such that for all A,∥∥∥Ĉov(pAt )− Ĉov(p′A)
∥∥∥
F
≤ ϵ.

By Lemma 16, we have

∥x(p′)− x(pt)∥ ≤ ϵ, ∥x̂(p′)− x̂(pt)∥ ≤ ϵ, ∥Σ̂(p′)− Σ̂(pt)∥F ≤ 7ϵ (38)
Thus, for any ∥yt∥2 ≤ 1,

∥(Σ̂(pt)−H(pt))yt∥2Σ̂(pt)−1

=
(
∥(Σ̂(pt)−H(pt))yt∥2Σ̂(pt)−1 − ∥(Σ̂(p′)−H(p′))yt∥2Σ̂(p′)−1

)
+ ∥(Σ̂(p′)−H(p′))yt∥2Σ̂(p′)−1

≤
(
∥(Σ̂(pt)−H(pt))yt∥2Σ̂(pt)−1 − ∥(Σ̂(p′)−H(p′))yt∥2Σ̂(p′)−1

)
+O

(
d log(d|P′|/δ)

t− 1

)
(by Lemma 14 with an union bound over P′)

= θ⊤t Σ̂(pt)
−1θt − θ′⊤Σ̂(p′)−1θ′ +O

(
d log(d|P′|/δ)

t− 1

)
(define θt = (Σ̂(pt)−H(pt))yt and θ′ = (Σ̂(p′)−H(p′))yt)

= (θt − θ′)⊤Σ̂(pt)
−1θt + θ′⊤

(
Σ̂(pt)

−1 − Σ̂(p′)−1
)
θt + θ′⊤Σ̂(p′)−1(θt − θ′) +O

(
d log(d|P′|/δ)

t− 1

)
≤ (θt − θ′)⊤

(
Σ̂(pt)

−1θt + Σ̂(p′)−1θ′
)
+ θ′⊤Σ̂(p′)−1

(
Σ̂(p′)− Σ̂(pt)

)
Σ̂(pt)

−1θt +O
(
d log(d|P′|/δ)

t− 1

)
The first two terms above can be bounded by the order of O(ϵt2) by Eq. (38). Plugging in the choice
of ϵ = 1

T 3 and recalling that log |P′| = O(d2 log(d/ϵ)) finishes the proof.
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D Regret Analysis

Consider the regret decomposition in Section 3.5.

Reg(u) = E

[
T∑
t=1

〈
at − uAt , yt

〉]
= E

[
T∑
t=1

〈
HHHAt
t −UUUAt , γt

〉]
= E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt

〉]

≤ E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
︸ ︷︷ ︸

Bias

+E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

Bonus

+E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

FTRL-Reg

where A0 is drawn from D and is independent from the interaction between the learning and the
environment. Recall that our algorithm is FTRL:

HHHA0
t = argmin

HHH∈HA0

{
t−1∑
s=1

〈
HHH, γ̂s − αsΣ̂̂Σ̂Σ

−1
s

〉
+
F (HHH)

ηt

}
.

The FTRL-Reg term can be handled by the standard FTRL analysis (Lemma 5). In order to deal
with the issue that F can be unbounded on the boundary of HA0 , we apply Lemma 5 with the regret
comparator UUU

A0 defined as

UUU
A0

=

(
1− 1

T 2

)
UUUA0 +

1

T 2
HHHA0

∗

whereHHHA0
∗ ≜ argminHHH∈HA0 F (HHH). Thus,

FTRL-Reg

≤ E

[
T∑
t=1

〈
HHHA0
t −UUU

A0
, γ̂t − αtΣ̂̂Σ̂Σ

−1
t

〉]
+ E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]

≤ E

[
F (UUU

A0
)−minHHH∈HA0 F (HHH)

ηT

]
︸ ︷︷ ︸

Penalty

+E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]
︸ ︷︷ ︸

Stability-1

+ E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]
︸ ︷︷ ︸

Stability-2

+E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]
︸ ︷︷ ︸

Error
(39)

In the rest of this section, we bound the following terms individually: Bias, Bonus, Penalty,
Stability-1, Stability-2, Error.

For any t = 2, · · · , T , let Et−1 be the event that the high-probability event in Lemma 17, Lemma 18,
and Lemma 19 happens for all 1, · · · , t− 1 and Et−1 be the opposite event of Et−1(i.e. any of these
three lemmas fails for any 1, · · · , t− 1). We have P[Et−1] = 1−O(δ) and P[Et−1] = O(δ). Let
E [· | Et−1] be the conditional expectation that event Et−1 happens and let EE

t = E[· | Ft−1, Et−1]

D.1 Bounding the Bias term

Lemma 20.

Bias = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
≤ 1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
δT 2 +

T∑
t=1

d3 log(T/δ)

αtt

)
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Proof. For any t, we have

EE
t

[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
= EE

t [⟨HHHt −UUU, γt − γ̂t⟩] (taking expectation over A0)

= EE
t [⟨xt − u, yt − ŷt⟩] (by the definition of lifting)

= EE
t

[
(xt − u)⊤

(
yt − Σ̂−1

t (at − x̂t)a
⊤
t yt

)]
(by the definition of ŷt)

= EE
t

[
(xt − u)⊤

(
yt − Σ̂−1

t (at − x̂t)(at − x̂t)
⊤yt

)]
− EE

t

[
(xt − u)⊤Σ̂−1

t (at − x̂t)x̂
⊤
t yt

]
= EE

t

[
(xt − u)⊤

(
I − Σ̂−1

t EA∼DEat∼pAt
[
(at − x̂t)(at − x̂t)

⊤]) yt]
− EE

t

[
(xt − u)⊤Σ̂−1

t

(
EA∼DEat∼pAt [at]− x̂t

)
x̂⊤t yt

]
(taking expectation over At and at)

= EE
t

[
(xt − u)⊤Σ̂−1

t

(
Σ̂t −Ht

)
yt

]
− EE

t

[
(xt − u)⊤Σ̂−1

t (xt − x̂t) x̂
⊤
t yt

]
(by the definition of Ht and xt)

≤ EE
t

[
(xt − u)⊤Σ̂−1

t

(
Σ̂t −Ht

)
yt

]
+ EE

t

[∣∣∣(xt − u)⊤Σ̂−1
t (xt − x̂t)

∣∣∣] (|x̂⊤t yt| ≤ 1)

≤ EE
t

[
∥xt − u∥Σ̂−1

t

(
∥(Σ̂t −Ht)yt∥Σ̂−1

t
+ ∥xt − x̂t∥Σ̂−1

t

)]
(Cauchy-Schwarz)

≤ O

(√
d3 log(T/δ)

t
∥xt − u∥Σ̂−1

t

)
(Lemma 19 and Lemma 18 given Et−1)

≤ αt
4
∥xt − u∥2

Σ̂−1
t

+O
(
d3 log(T/δ)

αtt

)
(AM-GM inequality)

On the other hand, since Σ̂t ⪰ 1
t I ⪰ 1

T I , for any t = 1, · · · , T ,

∥ŷt∥2 = ∥Σ−1
t (at − x̂t)a

⊤
t yt∥2 ≤ ∥Σ−1

t (at − x̂t)∥2 ≤ O(T )

Thus, we have trivial bound

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉 ∣∣∣ Et−1

]
= Et

[
⟨HHHt −UUU, γt − γ̂t⟩ | Et−1

]
= Et

[
⟨xt − u, yt − ŷt⟩ | Et−1

]
≤ O(T )

Therefore, we have

Bias = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉 ∣∣∣ Et−1

]
I{Et−1}

]
+ E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉 ∣∣∣ Et−1

]
I{Et−1}

]

≤ 1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
T∑
t=1

d3 log(T/δ)

αtt
+ δT 2

)

D.2 Bounding the Bonus term

We first prove the following useful technique lemma to bound the inner product of lifted matrices.

Lemma 21. Let GGG =

[
G+ gg⊤ g

g⊤ 1

]
, HHH =

[
H + hh⊤ h

h⊤ 1

]
where G and H are positive semi-

definite, andHHH ′ =HHH + vv⊤ where v =

[
0
√
β

]
∈ Rd+1. Then we have
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1. Tr
(
HHH−1GGG

)
= Tr(H−1G) + ∥g − h∥2H−1 + 1

2. Tr
(
(HHH ′)−1GGG

)
≥ 1

2(1+ β
1+β ∥h∥2

H−1)
∥g − h∥2H−1 − β2

(1+β)2 ∥h∥
2
H−1

Proof. From Theorem 2.1 of Lu and Shiou [2002], for any block matrix R =

[
A B

C D

]
if A is

invertible and its Schur complement SA = D − CA−1B is invertible, then

R−1 =

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA S−1

A

]

Using above equation, for the first equation, Since (H+hh⊤)−1 = H−1− H−1hh⊤H−1

1+h⊤H−1h
. The inverse

Schur complement of H + hh⊤ is 1 + h⊤H−1h. Thus

HHH−1 =

[
(I +H−1hh⊤)(H + hh⊤)−1 −H−1h

−h⊤H−1 1 + h⊤H−1h

]
=

[
H−1 −H−1h

−h⊤H−1 1 + h⊤H−1h

]
and

Tr(HHH−1GGG) = Tr
(
H−1G+H−1gg⊤ −H−1hg⊤

)
− h⊤H−1g + 1 + h⊤H−1h

= Tr
(
H−1G

)
+ g⊤H−1g − 2g⊤H−1h+ h⊤H−1h+ 1

= Tr(H−1G) + ∥g − h∥2H−1 + 1.

For the second equation, observe that

HHH ′ =

[
H + hh⊤ h

h⊤ 1 + β

]
= (1 + β)

[
1

1+β (H + hh⊤) 1
1+βh

1
1+βh

⊤ 1

]
= (1 + β)

[
H ′ + h′h′⊤ h′

h′⊤ 1

]
where h′ = 1

1+βh and H ′ = 1
1+βH + ( 1

1+β − 1
(1+β)2 )hh

⊤ = 1
1+βH + β

(1+β)2hh
⊤ ⪰ 0.

Applying the first equality, we have

Tr((HHH ′)−1GGG) =
1

1 + β

(
Tr((H ′)−1G) + ∥g − h′∥2H′−1 + 1

)
≥ 1

1 + β
∥g − h′∥2H′−1 .

Below, we continue to lower bound this term. By the same formula above, we have

H ′−1 =

(
1

1 + β
H +

β

(1 + β)2
hh⊤

)−1

= (1 + β)H−1 − βH−1hh⊤H−1

1 + β
1+βh

⊤H−1h
.

Thus
1

1 + β
∥g − h′∥2H′−1

≥ 1

2(1 + β)
∥g − h∥2H′−1 −

1

1 + β
∥h− h′∥2H′−1 (using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2)

=
1

2
(g − h)⊤

(
H−1 −

β
1+βH

−1hh⊤H−1

1 + β
1+βh

⊤H−1h

)
(g − h)− (h− h′)⊤

(
H−1 −

β
1+βH

−1hh⊤H−1

1 + β
1+βh

⊤H−1h

)
(h− h′)

≥ 1

2
∥g − h∥2H−1 −

β
1+β ((g − h)⊤H−1h)2

2
(
1 + β

1+β ∥h∥
2
H−1

) − β2

(1 + β)2
∥h∥2H−1 (using h− h′ = β

1+βh)

≥ 1

2
∥g − h∥2H−1 −

β
1+β ∥h∥

2
H−1

2
(
1 + β

1+β ∥h∥
2
H−1

)∥g − h∥2H−1 −
β2

(1 + β)2
∥h∥2H−1 (Cauchy-Schwarz)

=
1

2
(
1 + β

1+β ∥h∥
2
H−1

)∥g − h∥2H−1 −
β2

(1 + β)2
∥h∥2H−1 .
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Using Lemma 21, we are able to show Corollary 22 which bound part of the second term.

Corollary 22. Tr(UUUΣ̂̂Σ̂Σ−1
t ) ≥ 1

4∥u− x̂t∥2Σ̂−1
t

− 1
4 .

Proof. From Lemma 21, we have

Tr(UUUΣ̂̂Σ̂Σ−1
t ) ≥ 1

2
(
1 + βt

1+βt
∥x̂t∥2Σ̂−1

t

)∥u− x̂t∥2Σ̂−1
t

− β2
t

(1 + βt)2
∥x̂t∥2Σ−1

t
.

Since Σ̂t ⪰ βtI , Σ̂−1
t ⪯ 1

βt
I . Since ∥x̂t∥2 ≤ 1, we have ∥x̂t∥2Σ̂−1

t

≤ 1
βt

. Then

Tr(UUUΣ̂̂Σ̂Σ−1
t ) ≥ 1

2
(
1 + 1

1+βt

)∥u− x̂t∥2Σ̂−1
t

− βt
(1 + βt)2

≥ 1

4
∥u− x̂t∥2Σ̂−1

t
− βt

(2
√
βt)2

(βt ≥ 0)

=
1

4
∥u− x̂t∥2Σ̂−1

t
− 1

4
.

Lemma 23.

Bonus = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]

≤ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log (T/δ)

t
+ δT

T∑
t=1

αt

)
.

Proof. For any t, we have

EE
t

[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]
= EE

t

[
Tr
(
αt (HHHt −UUU) Σ̂̂Σ̂Σ−1

t

)]
(taking expectation over A0)

= EE
t

[
αtTr

(
HHHtΣ̂̂Σ̂Σ

−1
t

)
− αtTr

(
UUUΣ̂̂Σ̂Σ−1

t

)]
≤ αtTr

(
EE
t [HHHt] Σ̂̂Σ̂Σ

−1
t

)
− EE

t

[αt
4
∥u− x̂t∥2Σ̂−1

t

]
+

1

4
αt (Corollary 22)

≤ 2αt(d+ 2)− EE
t

[αt
4
∥u− x̂t∥2Σ̂−1

t

]
≤ 2αt(d+ 2)− EE

t

[αt
4
∥u− xt∥2Σ̂−1

t
− αt

4
∥x̂t − xt∥2Σ̂−1

t

]
≤ 2αt(d+ 2)− αt

4
∥u− xt∥2Σ̂−1

t
+O

(
d3αt log (T/δ)

t

)
(Lemma 18)

On the other hand, since Σ̂̂Σ̂Σt ⪰ 1
tIII ⪰ 1

T III , we have trivial bound

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉 ∣∣∣ Et−1

]
≤ O(αtT )
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Therefore, we have

Bonus = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]]

= E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉 ∣∣∣ Et−1

]
I{Et−1}

]
+ E

[
T∑
t=1

Et
[〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉 ∣∣∣ Et−1

]
I{Et−1}

]

≤ 2(d+ 2)

T∑
t=1

αt −
(1− δ)

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log(T/δ)

t
+ δT

T∑
t=1

αt

)

≤ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log (T/δ)

t
+ δT

T∑
t=1

αt

)

D.3 Bounding the Penalty term

Lemma 24. UUU
A0 , we have

F (UUU
A0

)−minHHH∈HA0 F (HHH)

ηT
≤ 2d log(T )

ηT

Proof. Since UUU
A0

=
(
1− 1

T 2

)
UUUA0 + 1

T 2HHH
A0
∗ , we have UUU

A0 ⪰ 1
T 2HHH

A0
∗ . Then

F (UUU
A0

)−minHHH∈HA0 F (HHH)

ηT
=

1

ηT
log

det(HHHA0
∗ )

det(UUU
A0

)
≤ 2d log(T )

ηT
.

D.4 Bounding the Stability-1 term

Zimmert and Lattimore [2022] gave a useful identity to bound the Bregman divergence. We restate it
in Lemma 25 for completeness.

Lemma 25. LetGGG =

[
G+ gg⊤ g

g⊤ 1

]
andHHH =

[
H + hh⊤ h

h⊤ 1

]
, we have

D(GGG,HHH) = D(G,H) + ∥g − h∥2H−1 ≥ ∥g − h∥2H−1

Proof.
D(GGG,HHH) = F (GGG)− F (HHH)− ⟨∇F (HHH),GGG−HHH⟩

= log

(
det(HHH)

det(GGG)

)
+Tr(HHH−1(GGG−HHH))

= log

(
det(HHH)

det(GGG)

)
+Tr(HHH−1GGG)− d− 1

= log

(
det(HHH)

det(GGG)

)
+Tr(HHH−1GGG)− d− 1

= log

(
det(H)

det(G)

)
+Tr(H−1G) + ∥g − h∥2H−1 − d (Lemma 21)

= D(G,H) + ∥g − h∥2H−1

≥ ∥g − h∥2H−1
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Lemma 26. For anyHHH ∈ HA0 , we have

Stability-1 = E

[
T∑
t=1

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]
≤ 2d

T∑
t=1

ηt +O(δT 2)

Proof. Recall thatHHHA0
t = Ĉov(pA0

t ) and Ĉov(p) =

[
Cov(p) + µ(p)µ(p)⊤ µ(p)

µ(p)⊤ 1

]
, we have

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt
≤
〈
xA0
t − µ(p), ŷt

〉
−

∥µ(p)− xA0
t ∥2

Cov(p
A0
t )−1

2ηt
(Lemma 25)

≤ ∥xA0
t − µ(p)∥

Cov(p
A0
t )−1∥ŷt∥Cov(p

A0
t )

−
∥µ(p)− xA0

t ∥2
Cov(p

A0
t )−1

2ηt

≤ ηt
2
∥ŷt∥2Cov(p

A0
t )

(AM-GM inequality)

=
ηt
2
∥Σ̂−1

t (at − x̂t)ℓt∥2Cov(p
A0
t )

≤ ηt
2
(at − x̂t)

⊤Σ̂−1
t Cov(pA0

t )Σ̂−1
t (at − x̂t) (|ℓt| ≤ 1)

=
ηt
2
Tr
(
(at − x̂t)(at − x̂t)

⊤Σ̂−1
t Cov(pA0

t )Σ̂−1
t

)
Since EA∼DEa∼pA

[
(a− x̂t)(a− x̂t)

⊤] = Ht, taking expectations over At, at and A0 conditioned
on Et−1, we have

EE
t

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]
≤ EE

t

[ηt
2
Tr
(
(at − x̂t)(at − x̂t)

⊤Σ̂−1
t Cov(pA0

t )Σ̂−1
t

)]
= EE

t

[ηt
2
Tr
(
HtΣ̂

−1
t EA0∼D

[
Cov(pA0

t )
]
Σ̂−1
t

)]
.

Notice that given Et−1,

Σ̂t ⪰
1

2
Ht =

1

2
EA∼D[Cov(p

A
t )] +

1

2
(x̂t − xt)(x̂t − xt)

⊤ ⪰ 1

2
EA∼D[Cov(p

A
t )]

Hence we continue to upper bound the last expression by

EE
t

[
ηtTr

(
HtΣ̂

−1
t Σ̂tΣ̂

−1
t

)]
≤ EE

t

[
ηt Tr

(
HtΣ̂

−1
t

)]
≤ 2ηtd.

On the other hand, since Σ̂t ⪰ 1
t I ⪰ 1

T I , we have trivial bound

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
≤ O(T )

Combining everything, we get

Stability-1 = E

[
T∑
t=1

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]

= E

[
T∑
t=1

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

]]

= E

[
T∑
t=1

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

+ E

[
T∑
t=1

Et

[〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

≤ 2d

T∑
t=1

ηt +O(δT 2).
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D.5 Bounding the Stability-2 term

Note that Lemma 8 does not require matrix A,B to be positive semi-definite. We will use it to prove
the following lemma based on Lemma 34 in Dann et al. [2023b].

Lemma 27. If ηtαt ≤ 1
64t , then

Stability-2 = E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]
≤ d

T∑
t=1

αt +O
(
δT 2

)

Proof. We first show that max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHH

A0
t )

2ηt
≤ αt

2 ∥Σ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

.

Define

G(HHH) =
〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

and λ = ∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

. Since Σ̂̂Σ̂Σt ⪰ 1
t I ,HHHA0

t ⪯ 2I , ηtαt ≤ 1
64t , we have

ηtλ = ηt∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

= ηtαt

√
Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t HHHA0

t Σ̂̂Σ̂Σ−1
t ) ≤ 2ηtαtt ≤

1

32
.

Let HHH ′ be the maximizer of G. Since G(HHHA0
t ) = 0, we have G(HHH ′) ≥ 0. It suffices to show

∥HHH ′ −HHHA0
t ∥∇2F (HHH

A0
t )

≤ 16ηtλ because from Lemma 8, it leads to

G(HHH ′) ≤ ∥HHHA0
t −HHH ′∥∇2F (HHH

A0
t )

∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

≤ 16ηtλαt∥Σ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

=
αt
2
∥Σ̂̂Σ̂Σ−1

t ∥∇−2F (HHH
A0
t )

To show ∥HHH ′ − HHHA0
t ∥∇2F (HHH

A0
t )

≤ 16ηtλ, it suffices to show that for all UUU such that ∥UUU −
HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ, G(UUU) ≤ 0. This is because given this condition, if ∥HHH ′ −
HHHA0
t ∥∇2F (HHH

A0
t )

> 16ηtλ, then there is a UUU in the line segment between HHHA0
t and HHH ′ such that

∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ. From the condition, G(UUU) ≤ 0 ≤ min{G(HHHA0
t ), G(HHH ′)} which

contradicts to the strictly concave of G.

Now consider anyUUU such that ∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ. By Taylor expansion, there existsUUU ′

in the line segment between UUU andHHHA0
t such that

G(UUU) ≤ ∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

− 1

4ηt
∥UUU −HHHA0

t ∥2∇2F (UUU ′)

We have ∥UUU ′ −HHHA0
t ∥∇2F (HHH

A0
t )

≤ ∥UUU −HHHA0
t ∥∇2F (HHH

A0
t )

= 16ηtλ ≤ 1
2 . From the Equation 2.2 in

page 23 of Nemirovski [2004] (also appear in Eq.(5) of Abernethy et al. [2009]) and log det is a
self-concordant function, we have ∥UUU −HHHA0

t ∥2∇2F (UUU ′) ≥
1
4∥UUU −HHHA0

t ∥2
∇2F (HHH

A0
t )

. Thus, we have

G(UUU) ≤ ∥UUU−HHHA0
t ∥∇2F (HHH

A0
t )

∥αtΣ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

− 1

16ηt
∥UUU−HHHA0

t ∥2
(HHH

A0
t )−1

= 16ηtλ
2− (16ηtλ)

2

16ηt
= 0

We have ∥Σ̂̂Σ̂Σ−1
t ∥∇−2F (HHH

A0
t )

=

√
Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t HHHA0

t Σ̂̂Σ̂Σ−1
t ) =

√
Tr((HHHA0

t Σ̂̂Σ̂Σ−1
t )2). Observe the fol-

lowing two facts: 1) all eigenvalues of HHHA0
t Σ̂̂Σ̂Σ−1

t are non-negative since HHHA0
t and Σ̂̂Σ̂Σ−1

t are both
positive semi-definite, 2) for a square matrix A with all non-negative eigenvalues, Tr(A2) ≤ Tr(A)2

because Tr(A2) =
∑
i λi(A

2) =
∑
i λi(A)

2 ≤ (
∑
i λi(A))

2. We have√
Tr((HHHA0

t Σ̂̂Σ̂Σ−1
t )2) ≤ Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t ).
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This allows us to conclude

EE
t

[αt
2
∥Σ̂̂Σ̂Σ−1

t ∥∇−2F (HHH
A0
t )

]
≤ αt

2
EE
t

[
Tr(HHHA0

t Σ̂̂Σ̂Σ−1
t )
]
≤ αtd

where we use that Σ̂̂Σ̂Σt ⪰ 1
2EA0∼D[HHH

A0
t ] given Et−1.

On the other hand, since Σ̂̂Σ̂Σt ⪰ 1
tIII ⪰ 1

T III , for any t = 1, · · · , T , we have trivial bound

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
≤ O(T )

Overall,

Stability-2 = E

[
T∑
t=1

max
HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]

≤ E

[
T∑
t=1

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH,−αtΣ̂̂Σ̂Σ−1

t

〉
− D(HHH,HHHA0

t )

2ηt

]]

= E

[
T∑
t=1

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

+ E

[
T∑
t=1

Et

[
max

HHH∈HA0

〈
HHHA0
t −HHH, γ̂t

〉
− D(HHH,HHHA0

t )

2ηt

∣∣∣∣ Et−1

]
I{Et−1}

]

≤ d

T∑
t=1

αt +O
(
δT 2

)
.

D.6 Bounding the Error term

Lemma 28.

Error = E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]
≤ O(1).

Proof. Since UUU
A0

=
(
1− 1

T 2

)
UUUA0 + 1

T 2HHH
A0
∗ , and Σ̂t ⪰ 1

T I, Σ̂̂Σ̂Σt ⪰
1
T III we have

Error = E

[
T∑
t=1

〈
UUU

A0 −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]

= E

[
1

T 2

T∑
t=1

〈
−UUUA0 +HHHA0

∗ , γ̂t − αtΣ̂̂Σ̂Σ
−1
t

〉]
≤ O(1).

D.7 Finishing up

Recall the regret decomposition at the beginning of Appendix D. From Lemma 24, Lemma 26,
Lemma 27, and Lemma 28, we have

FTRL-Reg = Penalty + Stability-1 + Stability-2 + Error

≤ O

(
d log(T )

ηT
+ d

T∑
t=1

ηt + d

T∑
t=1

αt + δT 2

)
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From Lemma 20 and Lemma 23, we can cancel out the additional regret induced by bias through the
well-designed bonus term. Namely,

Bias + Bonus =
1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
T∑
t=1

d3 log(T/δ)

αtt
+ δT 2

)

+ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log
T
δ

t
+ δ

T∑
t=1

αtT

)

= O

(
d

T∑
t=1

αt +

T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

d3αt log (T/δ)

t
+ δT 2

)

Thus, we have

Reg = Bias + Bonus + FTRL-Reg

= O

(
d log(T )

ηT
+ d

T∑
t=1

ηt + d

T∑
t=1

αt +

T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

d3αt log (T/δ)

t
+ δT 2

)

Recall that we have an additional condition in Lemma 27 such that for any t, ηtαt ≤ 1
64t . Picking

αt =
d√
t
, ηt =

1
64d

√
t

and δ = 1
T 2 , we get

Reg = O
(
d2
√
T log(T ) + d4 log(T )

)
= O(d2

√
T log(T ))

where we assume d2 ≤
√
T without loss of generality (otherwise the bound is vacuous).

E Handling Misspecification

In this section, we discuss how to handle misspecification as defined in Section 3.6. In Appendix E.1,
we study the case where the amount of misspecification ε is known by the learner. In Appendix E.2,
we use a blackbox approach to turn it into an algorithm that achieves almost the same regret bound
(up to log T factors) without knowning ε.

E.1 Known misspecification

As discussed in Section 3.6, when the amount of misspecification ε is known, we still use Algorithm 1,
but with differentαt and ηt. Throughout this subsection, we letαt = d√

t
+ ε√

d
and ηt = 1

64
(
d
√
t+ ε√

d
t
) ,

and point out the modifications of the analysis from Appendix D.

We start with the regret decomposition similar to that in Appendix D, but here we define

yt = argmin
y∈Bd

2

max
A∈supp(D)

max
a∈A

|ft(a)− ⟨a, y⟩|,

εt = max
A∈supp(D)

max
a∈A

|ft(a)− ⟨a, yt⟩|,

ct(a) = ft(a)− ⟨a, yt⟩.
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The regret decomposition goes as follows:

Reg(u) = E

[
T∑
t=1

(
ft(at)− ft(u

At)
)]

≤ E

[
T∑
t=1

〈
at − uAt , yt

〉]
+

T∑
t=1

εt

≤ E

[
T∑
t=1

〈
HHHAt
t −UUUAt , γt

〉]
+ εT = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt

〉]
+ εT

≤ E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
︸ ︷︷ ︸

Bias

+E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

Bonus

+ E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γ̂t − αtΣ̂̂Σ̂Σ

−1
t

〉]
︸ ︷︷ ︸

FTRL-Reg

+εT.

Now ŷt = Σ̂−1
t (at − x̂t)ℓt with E[ℓt] = a⊤t yt + ct(at).

For the Bias term, the proof is almost the same as Lemma 20. The only difference is that from the
fourth line, we have

Et
[
(xt − u)⊤

(
yt − Σ̂−1

t (at − x̂t)
(
a⊤t yt + ct(at)

))]
for some ct(at) such that |ct(at)| ≤ εt. This leads to an additional term of

EE
t

[
−(xt − u)⊤Σ̂−1

t (at − x̂t)ct(at)
]

≤ EE
t

[√
(xt − u)⊤Σ̂−1

t ct(at)2(at − x̂t)(at − x̂t)⊤Σ̂
−1
t (xt − u)

]
≤ EE

t

[√
(xt − u)⊤Σ̂−1

t EAt,at [ct(at)
2(at − x̂t)(at − x̂t)⊤] Σ̂

−1
t (xt − u)

]
≤ EE

t

[
εt

√
(xt − u)⊤Σ̂−1

t (EAt,at [(at − x̂t)(at − x̂t)⊤]) Σ̂
−1
t (xt − u)

]
≤ EE

t

[
εt

√
(xt − u)⊤Σ̂−1

t HtΣ̂
−1
t (xt − u)

]
≤ εt∥xt − u∥Σ̂−1

t

Plugging it into the proof of Lemma 20, we have

EE
t

[〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]
≤ O

(√
d3 log(T/δ)

t
+ εt

)
∥xt − u∥Σ̂−1

t

≤ αt
4
∥xt − u∥2

Σ̂−1
t

+O
(
d3 log(T/δ)

αtt
+
ε2t
αt

)
Other parts of the proof follow those in Lemma 20. Finally, we get

Bias = E

[
T∑
t=1

〈
HHHA0
t −UUUA0 , γt − γ̂t

〉]

≤ 1

4

T∑
t=1

αt∥xt − u∥2
Σ̂−1

t
+O

(
T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

ε2t
αt

+ δT 2

)
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The Bonus term will not be affected, according to Lemma 23, we have

Bonus ≤ 2(d+ 2)

T∑
t=1

αt −
1

4

T∑
t=1

αt∥u− xt∥2Σ̂−1
t

+O

(
T∑
t=1

d3αt log (T/δ))

t
+ δT 2

)

The Penalty term will not be affected, according to Lemma 24, we have

F (UUU
A0

)−minHHH∈HA0 F (HHH)

ηT
≤ 2d log(T )

ηT

Stability-1 term is also unchanged, as we assume that ℓt still lies in [−1, 1] even under misspecifica-
tion. We still have

Stability-1 ≤ O

(
d

T∑
t=1

ηt + δT 2

)

The Stability-2 term will not be affected as long as ηtαt ≤ 1
64t . According to Lemma 27, we have

Stability-2 ≤ O

(
d

T∑
t=1

αt + δT 2

)

The Error term is also unaffected. We still have Error = O(1).

Adding these terms together, the regret caused by bias and the negative term induced by bonus cancel
out. We have

Reg = O

(
d log(T )

ηT
+ d

T∑
t=1

(ηt + αt) +

T∑
t=1

d3 log(T/δ)

αtt
+

T∑
t=1

d3αt log (T/δ)

t
+

T∑
t=1

ε2t
αt

+ δT 2

)

Recall that we pick αt = d√
t
+ ε√

d
. ηt = 1

64d
√
t+64 ε√

d
t

and δ = 1
T 2 . This gives

Reg = O(d2
√
T log(T ) + d4 log(T ) +

√
dεT ) = O(d2

√
T log(T ) +

√
dεT )

where we assume d2 ≤
√
T without loss of generality.

E.2 Unknown misspecification

In this subsection, we use a model selection technique to convert the algorithm in Appendix E.1 which
requires knowledge on ε into an algorithm that achieves a similar regret bound without knowing ε.
Such a procedure to handle unknown misspecification/corruption has appeared in several previous
works [Foster et al., 2020, Wei et al., 2022], though we adopt the technique in Jin et al. [2023] to
handle the adversarial case.

The idea here is a black-box reduction which turns an algorithm that only deals with known ε to one
that handles unknown ε. More specifically, the reduction has two layers. The bottom layer takes as
input an arbitrary misspecification-robust algorithm that operates under known ε (e.g., Algorithm 1),
and outputs a stable misspecification-robust algorithm (formally defined later) that still operates
under known ε. The top layer follows the standard Corral idea and takes as input a stable algorithm
that operates under known ε, and outputs an algorithm that operates under unknown ε. Below, we
explain these two layers of reduction in details.

Bottom Layer (from an Arbitrary Algorithm to a Stable Algorithm) The input of the bottom
layer is an arbitrary misspecification-robust algorithm, formally defined as:
Definition 29. An algorithm is misspecification-robust if it takes θ as input, and achieves the following
regret for any random stopping time t′ ≤ T and any policy u:

E

 t′∑
t=1

(ft(at)− ft(u
At))

 ≤ E
[
c1
√
t′ + c2θ

]
+ Pr [ε1;t′ > θ]T

for problem-dependent and log(T ) factors c1, c2 ≥ 1 and ε1:t′ ≜
√
t′
∑t′

τ=1 ε
2
τ .
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Algorithm 3 STable Algorithm By Independent Learners and Instance SElection (STABILISE)
Input: ε and a base algorithm satisfying Definition 29.
Initialize: ⌈log2 T ⌉ instances of the base algorithm ALG1, . . . ,ALG⌈log2 T⌉, where ALGj is config-
ured with the parameter

θ = θj ≜ 2−jεT + 4
√
2−jT log T + 8 log(T ).

for t = 1, 2, . . . do
Receive wt.
if wt ≤ 1

T then
play an arbitrary policy πt
continue (without updating any instances)

Let jt be such that wt ∈ (2−jt−1, 2−jt ].
Let πt be the policy suggested by ALGjt .
Output πt.
If feedback is received, send it to ALGjt with probability 2−jt−1

wt
, and discard it otherwise.

In our case, c1 = Θ(d2 log T ) and c2 = Θ(
√
d). While the regret bound in Definition 29 might look

cumbersome, it is in fact fairly reasonable: if the guess θ is not smaller than the true amount of ε1:t′ ,
the regret should be of order d2

√
t′ +

√
dθ; otherwise, the regret bound is vacuous since T is its

largest possible value. The only extra requirement is that the algorithm needs to be anytime (i.e., the
regret bound holds for any stopping time t′), but even this is known to be easily achievable by using a
doubling trick over a fixed-time algorithm. It is then clear that Algorithm 1 (together with a doubling
trick) indeed satisfies Definition 29.

As mentioned, the output of the bottom layer is a stable robust algorithm. To characterize stability, we
follow Agarwal et al. [2017] and define a new learning protocol that abstracts the interaction between
the output algorithm of the bottom layer and the master algorithm from the top layer:

Protocol 1. In every round t, before the learner makes a decision, a probability wt ∈ [0, 1] is revealed
to the learner. After making a decision, the learner sees the desired feedback from the environment
with probability wt, and sees nothing with probability 1− wt.

One can convert any misspecification-robust algorithm (defined in Definition 29) into a stable
misspecification-robust algorithm (characterized in Theorem 30).

This conversion is achieved by a procedure that called STABILISE (see Algorithm 3 for details). The
high-level idea of STABILISE is as follows. Noticing that the challenge when learning in Protocol 1
is that wt varies over time, we discretize the value of wt and instantiate one instance of the input
algorithm to deal with one possible discretized value, so that it is learning in Protocol 1 but with a
fixed wt, making it straightforward to bound its regret based on what it promises in Definition 29.

More concretely, STABILISE instantiates O(log2 T ) instances {ALGj}⌈log2 T⌉
j=0 of the input algorithm

that satisfies Definition 29, each with a different parameter θj . Upon receiving wt from the environ-
ment, it dispatches round t to the j-th instance where j is such that wt ∈ (2−j−1, 2−j ], and uses the
policy generated by ALGj to interact with the environment (if wt ≤ 1

T , simply ignore this round).
Based on Protocol 1, the feedback for this round is received with probability wt. To equalize the
probability of ALGj receiving feedback as mentioned in the high-level idea, when the feedback is
actually obtained, STABILISE sends it to ALGj only with probability 2−j−1

wt
(and discards it other-

wise). This way, every time ALGj is assigned to a round, it always receives the desired feedback with
probability wt · 2−j−1

wt
= 2−j−1. This equalization step allows us to use the original guarantee of the

base algorithm (Definition 29) and run it as it is, without requiring it to perform extra importance
weighting steps as in Agarwal et al. [2017].

The choice of θj is crucial in making sure that STABILISE only has εT regret overhead instead of
εT

mint∈[T ] wt
. Since ALGj only receives feedback with probability 2−j−1, the expected total misspeci-

fication it experiences is on the order of 2−j−1εT . Therefore, its input parameter θj only needs to be
of this order instead of the total amount of misspecification εT .
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The formal guarantee of the conversion is stated in the following Theorem 30.

Theorem 30. If an algorithm is misspecification robust according to Definition 29 for some constants
(c1, c2), then Algorithm 3 ensures

Reg ≤ O
(
E
[
c′1
√
TρT

]
+ c′2εT

)
under Protocol 1, where ρT = 1

mint∈[T ] wt
, with c′1 = Θ((c1 + c2)

√
log T ).

Proof of Theorem 30. Define indicators

gt,j = I{wt ∈ (2−j−1, 2−j ]}
ht,j = I{ALGj receives the feedback for episode t}.

Now we consider the regret of ALGj . Notice that ALGj makes an update only when gt,jht,j = 1. By
the guarantee of the base algorithm (Definition 29), we have

E

[
T∑
t=1

(ft(at)− ft(u
At))gt,jht,j

]

≤ E

c1
√√√√ T∑

t=1

gt,jht,j + c2θj max
t≤T

gt,j

+ Pr


√√√√( T∑

t=1

gt,jht,j

)(
T∑
t=1

ε2t gt,jht,j

)
> θj

T.
(40)

We first bound the last term: Notice that E[ht,j |gt,j ] = 2−j−1gt,j by Algorithm 3. Therefore,

T∑
t=1

ε2t gt,jE[ht,j |gt,j ] = 2−j−1
T∑
t=1

ε2t gt,j ≤ 2−j−1ε2T (41)

T∑
t=1

gt,jE[ht,j |gt,j ] = 2−j−1
T∑
t=1

gt,j ≤ 2−j−1T (42)

By Freedman’s inequality, with probability at least 1− 1
T 2 ,

T∑
t=1

ε2t gt,jht,j −
T∑
t=1

ε2t gt,jE[ht,j |gt,j ]

≤ 2

√√√√ T∑
t=1

(εt)4gt,jE[ht,j |gt,j ] log(T ) + 4 log(T )

≤ 4

√√√√ T∑
t=1

ε2t gt,jE[ht,j |gt,j ] log(T ) + 4 log(T )

≤
T∑
t=1

ε2t gt,jE[ht,j |gt,j ] + 8 log(T ) (AM-GM inequality)

which gives

T∑
t=1

ε2t gt,jht,j ≤ 2

T∑
t=1

ε2t gt,jE[ht,j |gt,j ] + 8 log(T ) ≤ 2−jε2T + 8 log(T )

with probability at least 1− 1
T 2 using Eq. (41). Similarly,

T∑
t=1

gt,jht,j ≤ 2

T∑
t=1

gt,jE[ht,j |gt,j ] + 8 log(T ) ≤ 2−jT + 8 log(T )

38



with probability at least 1− 1
T 2 . Therefore, with probability at least 1− 2

T 2 ,√√√√( T∑
t=1

gt,jht,j

)(
T∑
t=1

ε2t gt,jht,j

)
≤
√
2−2jε2T 2 + 16 · 2−jT log T + 64 log2 T

≤ 2−jεT + 4
√
2−jT log T + 8 log(T )

≤ θj

Therefore, the last term in Eq. (40) is bounded by 2
T 2T ≤ 2

T .

Next, we deal with other terms in Eq. (40). Again, by E[ht,j |gt,j ] = 2−j−1gt,j , Eq. (40) implies

2−j−1E

[
T∑
t=1

(ft(at)− ft(u
At))gt,j

]
≤ E

c1
√√√√2−j−1

T∑
t=1

gt,j + c2θj max
t≤T

gt,j

+
2

T
.

which implies after rearranging:

E

[
T∑
t=1

(ft(at)− ft(u
At))gt,j

]

≤ E

c1
√√√√ 1

2−j−1

T∑
t=1

gt,j +

(
c2θj
2−j−1

)
max
t≤T

gt,j

+
2

T2−j−1

≤ E

c1
√√√√ T∑

t=1

2gt,j
wt

+ 4c2

(
εT +

√
T log T

2−j
+ log T

)
max
t≤T

gt,j

+
2

T2−j−1
.

(using that when gt,j = 1, 1
2−j−1 ≤ 2

wt
, and the definition of θj)

Now, summing this inequality over all j ∈ {0, 1, . . . , ⌈log2 T ⌉}, we get

E

[
T∑
t=1

(ft(at)− ft(u
At))I

{
wt >

1

T

}]

≤ O

E

c1
√√√√N

T∑
t=1

1

wt
+Nc2εT + c2

√
T log T

mint≤T wt
+ c2N log T

+ 1


≤ O

(
E
[
(c1 + c2)

√
T log(T )ρT

]
+ c2εT log T

)
where N ≤ O(log T ) is the number of ALGj’s that has been executed at least once.

On the other hand,

E

[
T∑
t=1

(ft(at)− ft(u
At))I

{
wt ≤

1

T

}]
< TE [I {ρT ≥ T}] ≤ E [ρT ] .

Combining the two parts and using the assumption c2 ≥ 1 finishes the proof.

Top Layer (from Known ε to Unknown ε) In this subsection, we use the algorithm that we
construct in Theorem 30 as a base algorithm, and further construct an algorithm with

√
T + ε regret

under unknown ε. The idea is to run multiple base algorithms, each with a different hypothesis on ε;
on top of them, run another multi-armed bandit algorithm to adaptively choose among them. The
goal is to let the top-level bandit algorithm perform almost as well as the best base algorithm. This
is the Corral idea outlined in Agarwal et al. [2017], Foster et al. [2020], Luo et al. [2022], and the
algorithm is presented in Algorithm 4.
Theorem 31. Using an algorithm constructed in Theorem 30 as a base algorithm, Algorithm 4
ensures Reg = O

(
c′1
√
T log3 T + c′2εT

)
without knowing ε.
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Algorithm 4 (A Variant of) Corral
Initialize: a log-barrier algorithm with each arm being an instance of an algorithm satisfying the
guarantee in Theorem 30. The hypothesis on εT is set to 2i for arm i (i = 1, 2, . . . ,M ≜ ⌈log2 T ⌉).
Initialize: ρ0,i =M, ∀i.

for t = 1, 2, . . . , T do
Let

wt = argmin
w∈∆(M),wi≥ 1

T ,∀i

{〈
w,

t−1∑
τ=1

(ẑτ − rτ )

〉
+

1

η

M∑
i=1

log
1

wi

}
where η = 1

4c′1
√
T

.
For all i, send wt,i to instance i.
Draw it ∼ wt.
Execute the at output by instance it
Receive the loss zt,it for action at (whose expectation is ft(at)) and send it to instance it.
Define for all i:

ẑt,i =
zt,iI[it = i]

wt,i
,

ρt,i = min
τ≤t

1

wτ,i
,

rt,i = c′1

(√
ρt,iT −

√
ρt−1,iT

)
.

The top-level bandit algorithm is an FTRL with log-barrier regularizer. We first state the standard
regret bound of FTRL under log-barrier regularizer, whose proof can be found in, e.g., Theorem 7 of
Wei and Luo [2018].

Lemma 32. The FTRL algorithm over a convex subset Ω of the (M−1)-dimensional simplex ∆(M):

wt = argmin
w∈Ω

{〈
w,

t−1∑
τ=1

ℓτ

〉
+

1

η

M∑
i=1

log
1

wi

}

ensures for all u ∈ Ω,

T∑
t=1

⟨w − u, ℓt⟩ ≤
M log T

η
+ η

T∑
t=1

M∑
i=1

w2
t,iℓ

2
t,i

as long as ηwt,i|ℓt,i| ≤ 1
2 for all t, i.

Proof of Theorem 31. The Corral algorithm is essential an FTRL with log-barrier regularizer. To
apply Lemma 32, we first verify the condition ηwt,i|ℓt,i| ≤ 1

2 where ℓt,i = ẑt,i − rt,i. By our choice
of η,

ηwt,i|ẑt,i| ≤ ηzt,i ≤
1

4
, (because c′1 ≥ 1)

ηwt,irt,i = ηc′1
√
Twt,i(

√
ρt,i −

√
ρt−1,i).
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The right-hand side of the last equality is non-zero only when ρt,i > ρt−1,i, implying that ρt,i = 1
wt,i

.
Therefore, we further bound it by

ηwt,irt,i ≤ ηc′1
√
T

1

ρt,i
(
√
ρt,i −

√
ρt−1,i)

= ηc′1
√
T

(
1

√
ρt,i

−
√
ρt−1,i

ρt,i

)
≤ ηc′1

√
T

(
1

√
ρt−1,i

− 1
√
ρt,i

)
( 1√

a
−

√
b
a ≤ 1√

b
− 1√

a
for a, b > 0)

(43)

≤ ηc′1
√
T (ρt,i ≥ 1)

=
1

4
(definition of η)

which can be combined to get the desired property ηwt,i|ẑt,i − rt,i| ≤ 1
2 .

Hence, by the regret guarantee of log-barrier FTRL (Lemma 32), we have

E

[
T∑
t=1

(zt,it − zt,i⋆)

]

≤ O

(
M log T

η
+ ηE

[
T∑
t=1

M∑
i=1

w2
t,i(ẑt,i − rt,i)

2

︸ ︷︷ ︸
term1

])
+ E

[
T∑
t=1

(
M∑
i=1

wt,irt,i − rt,i⋆

)
︸ ︷︷ ︸

term2

]

where i⋆ is the smallest i such that 2i upper bounds the true total misspecification amount εT .

Bounding term1:

term1 ≤ 2η

T∑
t=1

M∑
i=1

w2
t,i(ẑ

2
t,i + r2t,i)

where

2η

T∑
t=1

M∑
i=1

w2
t,iẑ

2
t,i = 2η

T∑
t=1

M∑
i=1

z2t,iI{it = i} ≤ O(ηT )

and

2η

T∑
t=1

M∑
i=1

w2
t,ir

2
t,i ≤ 4η

T∑
t=1

M∑
i=1

(c′1
√
T )2

(
1

√
ρt−1,i

− 1
√
ρt,i

)2

(continue from Eq. (43))

≤ 4ηc′21 T ×
T∑
t=1

M∑
i=1

(
1

√
ρt−1,i

− 1
√
ρt,i

)
( 1√

ρt−1,i
− 1√

ρt,i
≤ 1 and 1− a ≤ − ln a)

≤ 4ηc′21 TM
3
2 . (telescoping and using ρ0,i =M and ρT,i ≤ T )

Bounding term2:

term2 =

T∑
t=1

M∑
i=1

wt,irt,i −
T∑
t=1

rt,i⋆

≤ c′1
√
T

T∑
t=1

M∑
i=1

(
1

√
ρt−1,i

− 1
√
ρt,i

)
−
(
c′1
√
ρT,i⋆T − c′1

√
ρ0,i⋆T

)
(continue from Eq. (43) and using 1− a ≤ − ln a)

≤ O
(
c′1
√
TM

3
2

)
− c′1

√
ρT,i⋆T .
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Combining the two terms and using η = Θ
(

1
c′1

√
T+c′2

)
, M = Θ(log T ), we get

E

[
T∑
t=1

(ft(at)− zt,i⋆)

]
= E

[
T∑
t=1

(zt,it − zt,i⋆)

]

= O
(
c′1

√
T log3 T

)
− E

[
c′1
√
ρT,i⋆T

]
(44)

On the other hand, by the guarantee of the base algorithm (Theorem 30) and that εT ∈ [2i
⋆−1, 2i

⋆

],
we have

E

[
T∑
t=1

(zt,i⋆ − ft(u
At)

]
≤ E

[
c′1
√
ρT,i⋆T

]
+ c′2εT. (45)

Combining Eq. (44) and Eq. (45), we get

E

[
T∑
t=1

(ft(at)− ft(u
At))

]
≤ O

(
c′1

√
T log3 T

)
+ c′2εT,

which finishes the proof.

Proof of Theorem 3. As shown in Appendix E.1, our Algorithm 1 can be adapted to satisfy Defini-
tion 29 with c1 = Θ(d2 log T ) and c2 = Θ(

√
d). By a concatenation of Theorem 30 and Theorem 31,

we conclude that there is an algorithm that achieves

O
(
(c1 + c2)

√
T log2 T + c2εT log T

)
= O

(
d2
√
T log2 T +

√
dεT log T

)
.

regret under unknown ε.

F Analysis for Linear EXP4

Proof of Theorem 4. We first show that

∀π ∈ Π : Reg(π) ≜ E

[
T∑
t=1

a⊤t yt −
T∑
t=1

π(At)
⊤yt

]
≤ O

(
γT +

ln |Π|
η

+ ηdT

)
. (46)

The magnitude of the loss is bounded by

|ℓ̂t,π| =
∣∣∣〈π(At), H̃

−1
t atℓt

〉∣∣∣
≤ ∥π(At)∥H̃−1

t
∥at∥H̃−1

t

≤ 1

γ
∥π(At)∥G−1

t
∥at∥G−1

t
≤ d

γ
.

If γ ≥ 2dη, then we have |ℓ̂t,π| ≤ 1
2 and we can use the standard regret bound of exponential weights:

∀π ∈ Π : Reg(π) ≤ γT +
ln |Π|
η

+ η

T∑
t=1

E

[
Eat∼pt

[∑
π∈Π

Pt,π ℓ̂
2
t,π

]]
.

Let Ht = Ea∼pt [aa⊤]. Then we have H̃−1
t ⪯ 1

1−γH
−1
t , and thus

Eat∼pt

[∑
π∈Π

Pt,π ℓ̂
2
t,π

]
≤ Eat∼pt

[∑
π∈Π

Pt,π · ⟨π(At), H̃
−1
t at⟩2

]
= Eat∼ptEa∼pt

[
⟨a, H̃−1

t at⟩2
]

(by the definition of pt,a)

≤ 1

(1− γ)2
Tr
(
HtH

−1
t HtH

−1
t

)
= O(d) .
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Combining all proves Eq. (46).

Next, we show that there exists θ ∈ Θ such that

EA∼D

[
T∑
t=1

(πθ(A)− π⋆(A))⊤yt

]
≤ O(1). (47)

Let θ̂ be the closest element in Θ to
∑T
t=1 yt. By the definition of Θ and the assumption that ∥yt∥ ≤ 1,

we have
∥∥∥θ̂ −∑T

t=1 yt

∥∥∥ ≤ ϵ. Thus, for any A,

T∑
t=1

(πθ̂(A)− π⋆(A))⊤yt ≤
∑
a∈A

(πθ̂(A)− π⋆(A))⊤θ̂ + ϵ ≤ ϵ

where the last inequality is by the fact that πθ̂(A) = argmina∈A a
⊤θ̂. Taking expectation over A

gives Eq. (47).

Finally, combining Eq. (46) and Eq. (47), choosing ϵ = 1 and γ = 2dη = 2d
√

log T
T , we get

Reg = E

[
T∑
t=1

a⊤t yt −
T∑
t=1

π⋆(At)
⊤yt

]

= E

[
T∑
t=1

a⊤t yt −
T∑
t=1

πθ̂(At)
⊤yt

]
+ EA∼D

[
T∑
t=1

(πθ̂(A)− π⋆(A))⊤yt

]

= O
(
γT +

ln((2T )d)

η
+ ηdT + 1

)
= O

(
d
√
T log T

)
,

finishing the proof.

G Comparison with Dai et al. [2023] and Sherman et al. [2023]

We state the exponential weight algorithm adopted by Luo et al. [2021], Dai et al. [2023], Sherman
et al. [2023] in Algorithm 5, which is an algorithm that we know to achieve the prior-art regret bound
in our setting (though they studied a more general MDP setting).

Their algorithm proceeds in epochs (indexed by k), where every epoch consists of W rounds. The
policy on action set A in the k-th epoch is defined as

pAk (a) ∝ exp

(
−η

k−1∑
s=1

(a⊤ŷs − bs(a))

)

where ŷk is the loss estimator for epoch k, and bk(a) is a (non-linear) bonus. In all W rounds in
epoch k, the same policy is executed. The samples obtained in these W rounds are randomly divided
into two halfs. One half is used to estimate the covariance matrix Σ̂k, and the other half is used to
construct the loss estimator ŷk (see Line 5 of Algorithm 5).

43



Algorithm 5 Exponential weights with magnitude-reduced loss estimators

1 for k = 1, 2, . . . , TW do
2 For all A, define

pAk (a) =
exp

(
−η
∑k−1
s=1 (a

⊤ŷs − bs(a))
)

∑
a′∈A exp

(
−η
∑k−1
s=1 (a

′⊤ŷs − bs(a′))
) for all a ∈ A.

3 Randomly partition {(k − 1)W + 1, . . . , kW} into two equal parts Tk, T ′
k .

4 for t = (k − 1)W + 1, . . . , kW do
receive At, sample at ∼ pAt

k , and receive ℓt.

5 Define

Σ̂k = βI +
1

|Tk|
∑
t∈Tk

ata
⊤
t

ŷk = Σ̂−1
k

 1

|T ′
k |
∑
t∈T ′

k

atℓt


bk(a) = α∥a∥Σ̂−1

k
.

G.1 Regret Analysis Sketch

The regret analysis starts with a standard decomposition that is similar to ours. We abuse the notation
by defining yk = 1

W

∑kW
t=(k−1)W yt. Then

Reg =WE

T/W∑
k=1

pA0

k (a)⟨a− uA0 , yk⟩


=WE

T/W∑
k=1

pA0

k (a)
(
⟨a, ŷk⟩ − bk(a)

)
−
(
uA0 − bk(u

A0)
)

︸ ︷︷ ︸
EW-Reg

+WE

T/W∑
k=1

pA0

k (a)bk(a)− bk(u
A0)


︸ ︷︷ ︸

Bonus

+WE

T/W∑
k=1

pA0

k (a)⟨a− uA0 , yk − ŷk⟩


︸ ︷︷ ︸

Bias

.

Bounding the regret term follows the standard analysis of exponential weight:

EW-Reg ≤WE

 ln |A0|
η

+ η

T/W∑
k=1

∑
a∈A0

pA0

k (a)⟨a, ŷk⟩2 + η

T/W∑
k=1

∑
a∈A0

pA0

k (a)bk(a)
2


≤WE

 ln |A0|
η

+ η

T/W∑
k=1

∑
a∈A0

pA0

k (a)a⊤Σ̂−1
k HkΣ̂

−1
k a+ η

T/W∑
k=1

α2

β


where Hk = EA∼DEa∼pAk [aa

⊤]. Then they use the following fact to bound the stability term: as

long as W ≥ d
β2 , it holds with high probability that Σ̂−1

k HkΣ̂
−1
k ⪯ 2Σ̂−1

k . Thus EW-Reg can be
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further bounded by

EW-Reg ≲W

 ln |A0|
η

+ ηE

T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥2
Σ̂−1

k

+ η
T

W

α2

β


≤ W ln |A0|

η
+ ηdT + ηT

α2

β
.

By the definition of the bonus function bt, it holds that

Bonus =WE

α T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k

−WE

α T/W∑
k=1

∥uA0∥Σ̂−1
k

 .
Finally, the bias term can be bounded as follows:

Bias =WE

T/W∑
k=1

pA0

k (a)(a− uA0)⊤(yk − Σ̂−1
k Hkyk)


=WE

T/W∑
k=1

pA0

k (a)(a− uA0)⊤Σ̂−1
k (Σ̂k −Hk)yk


≤WE

T/W∑
k=1

pA0

k (a)∥a− uA0∥Σ̂−1
k
∥(Σ̂k −Hk)yk∥Σ̂−1

k

 .
The bias here has a similar form as in our case. They use the following fact to bound the bias: as
long as W ≥ d

β2 , it holds that ∥(Σ̂k −Hk)yk∥Σ̂−1
k

≤
√
βd. Therefore, the bias can further be upper

bounded by

Bias ≤WE

√βd T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k

+
√
βd

T/W∑
k=1

∥uA0∥Σ̂−1
k

 .
Combining the three parts, we get that the overall regret is of order

E

W ln |A0|
η

+ ηdT + ηT
α2

β
+W (α+

√
βd)

T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k

+W (
√
βd− α)

T/W∑
k=1

∥uA0∥Σ̂−1
k

 .
Choosing α ≈

√
βd, we further bound it by

E

W ln |A0|
η

+ ηdT +W
√
βd

T/W∑
k=1

∑
a∈A0

pA0

k (a)∥a∥Σ̂−1
k


≤ E

W ln |A0|
η

+ ηdT +W
√
βd

T/W∑
k=1

√∑
a∈A0

pA0

k (a)∥a∥2
Σ̂−1

k


≤ W ln |A0|

η
+ ηdT +

√
βdT.

Recall the constraint W ≥ d
β2 . Choosing W = d

β2 gives

d ln |A0|
ηβ2

+ ηdT +
√
βdT (48)

which gives d(ln |A0|)
1
6T

5
6 with the optimally chosen η and β.
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Remark Due to the restrictions on the magnitude of the loss estimator required by the exponential
weight algorithm, there is actually another constraint ηβ ≤ 1, which makes Eq. (48) be d(ln |A0|)

1
7T

6
7

at best. This is exactly the bound obtained by Sherman et al. [2023]. A more sophisticated way to
construct ŷk developed by Dai et al. [2023] removes this additional requirement and allows a bound
of d(ln |A0|)

1
6T

5
6 . The sub-optimal bound T

8
9 reported in Dai et al. [2023] is due to issues related to

MDPs, which are not presented in the contextual bandit case here.
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