
A Supplementary Material506

This Supplementary Material is structured as follows. We provide a formulation of our algorithm507

in Section B. To investigate the effectiveness of different components of our SUBP, we conduct508

ablation studies and provide additional experimental results in Section C. In Section D, we provide509

deployment results on the x86 platform of Intel(R) Xeon(R) Platinum 8260L CPU @ 2.30GHz to510

further explore the performance of 1×N sparse on different platforms. Finally, in Section E, we511

discuss the societal impact of our method.512

B Algorithm Formulation513

Algorithm 1: Overview of the SUBP method.

1 Input: An L-layer CNN model with weights W = {W i|1 ≤ i ≤ L}; block binary mask
matrices M = {M i

j,k ∈ {0, 1}|1 ≤ i ≤ L, 0 ≤ j ≤ Ci+1

N − 1, 0 ≤ k ≤ Ci − 1}; indices of
activate blocks with the top scores T; indices of regrow blocks based on importance sampling
G; target prune rate p; initial regrowing factor δ0; importance balance coefficient λ; sampling
attention balance factor τ ; training epochs Ttotal; start and end epoch in the pruning-regrowing
stage ts, te; training set D ;

2 Output: A sub-model satisfying the target prune rate p, its optimal weight values W∗ and binary
mask M∗ ;

3 Randomly initialize the model weights W;
4 Initialize {M i

j,k | ∀i,∀j,∀k} to 1 ;
5 Reformat W to B according to Section 3 ;
6 for each training epoch t ∈ [Ttotal] do
7 Sample a mini-batch from D and update the model weights W ;
8 if ts < t ≤ te then
9 Reset {M i

j,k | ∀i,∀j,∀k} to 1 ;
10 Compute the importance score S of block by Eq. 4 ;
11 Get the indices of activate blocks with the top scores by Eq. 5 ;
12 Prune the bottom-ranking block by set {M i

j,k|k /∈ T i
j } to 0;

13 Compute the importance sampling probabilities by

pij,k = exp
(

Si
j,k

τ

)
/
∑

m/∈T i
j

exp
(

Si
j,m

τ

)
;

14 Compute the regrowing factor by Eq. 6 ;
15 Get the indices of regrow blocks based on importance sampling by

Gi
j = Multinomial({pij,k|k /∈ T i

j }, δtCi) without replacement ;
16 Regrow the blocks by resetting {M i

j,k|k ∈ Gi
j} to 1 ;

C Ablation Analysis514

Table 4: Compare different design choices in the regrowing stages of the SUBP method. All the
experiments are based on the TinyImageNet with ResNet18(1×32). The random baseline is 57.0%.

Regrowing factor
Design choices δ0 = 0.1 δ0 = 0.2 δ0 = 0.3 δ0 = 0.4 Full
Top-1 57.6% 58.4% 57.9% 58.0% 58.5%

Decay scheduler for block regrowing
Design choices Default Constant Linear decay Cosine decay
Top-1 58.3% 57.5% 58.4% 58.3%

In Table 4, we investigate the effectiveness of different design choices in our block regrowing stage.515

All the experiments are based on the TinyImageNet with ResNet18(1×32). Compared to the random516
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baseline with 57.0% top-1 accuracy, our SUBP achieves consistent improvement under the different517

settings.518

We find that regrowing factor δ0 significantly impacts the final quality of the model. Intuitively, a519

larger regrowing factor can provide a more extensive sampling space during training and retain the520

model’s capacity to a greater extent. However, a sizeable regrowing factor may also cause drastic521

sub-model structure changes, affecting stability during training. As shown, the accuracy is improved522

by 0.8% as the δ0 increases from 0.1 to 0.2. When δ0 increases again, the model’s accuracy drops523

until δ0 is the full model size. This suggests that the relationship between the regrowing factor and524

the final quality of the model is varied, and selecting an appropriate regrowing factor in specific525

circumstances can improve the final quality.526

We also investigate the decay scheduler for the block regrowing stage. We compare several decay527

schedulers, including default (Eq. 6), constant, linear, and cosine. The experiments show SUBP has528

good robustness to different decay schedulers, as default, linear, and cosine decay schedulers all show529

similar performance. With a decay scheduler, the sampling space can be gradually decreased, and the530

sub-model under training can converge stably.531

D Deployment on x86 Platform532
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Figure 5: Network latency comparison between uniform 1×N sparse against non-uniform and dense
model with varying N and prune rates. The experiment is conducted using ResNet18 and set the input
shape as (4, 3, 224, 224) on the x86 platform of Intel(R) Xeon(R) Platinum 8260L CPU @ 2.30GHz
with single thread (left) and two threads (right). Best viewd in colors.

In order to further explore the performance of 1×N sparse DNNs on different platforms, as shown533

in Fig. 5, we also conducted corresponding experiments on the x86 platform of Intel(R) Xeon(R)534

Platinum 8260L CPU @ 2.30GHz and obtain the similar results in general: 1) The gain of vanilla535

convolution in multithreading scenarios is much greater than that of 1×N sparse convolution. 2) The536

inference speed of uniform 1×N is slightly faster than that of non-uniform in the case of multithread-537

ing, indicating the importance of workload balance again. However, unlike the performance on the538

arm platform of Apple M1 Pro CPU @ 3.20GHz, the 1×N sparse DNNs are significantly accelerated539

when N is set to 16 and 32 on the Platinum 8260L CPU @ 2.30GHz. We can also notice that in most540

cases, N=32 achieves a fast inference speed.541

E Societal Impact542

Our method can reduce the computational overhead of training and inferencing stages while achieving543

satisfactory accuracy on modern CNN models. This can facilitate the application of CNN models on544

edge devices and is of high value for the community and society to realize Green AI. At the same545

time, our 1×N sparse DNNs are based on new sparse operators, which can promote the progress of546

related hardware and algorithms to a certain extent.547
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