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Abstract

The rapid advancement of chat-based language models has led to remarkable
progress in complex task-solving. However, their success heavily relies on human
input to guide the conversation, which can be challenging and time-consuming.
This paper explores the potential of building scalable techniques to facilitate au-
tonomous cooperation among communicative agents, and provides insight into
their “cognitive” processes. To address the challenges of achieving autonomous
cooperation, we propose a novel communicative agent framework named role-
playing . Our approach involves using inception prompting to guide chat agents
toward task completion while maintaining consistency with human intentions. We
showcase how role-playing can be used to generate conversational data for studying
the behaviors and capabilities of a society of agents, providing a valuable resource
for investigating conversational language models. In particular, we conduct com-
prehensive studies on instruction-following cooperation in multi-agent settings.
Our contributions include introducing a novel communicative agent framework,
offering a scalable approach for studying the cooperative behaviors and capabili-
ties of multi-agent systems, and open-sourcing our library to support research on
communicative agents and beyond: https://github.com/camel-ai/camel.

1 Introduction

“What magical trick makes us intelligent? The trick is that there is no trick. The power of intelligence
stems from our vast diversity, not from any single, perfect principle.”

- Marvin Minsky, The Society of Mind, p. 308

Confronted with the complexities of real-world tasks, solving them often requires multiple steps.
The rapid progress of chat-based large-scale language models (LLMs) has yielded remarkable
achievements in complex task-solving [82, 84, 116, 89, 5, 10, 122, 13]. Nevertheless, it is worth
noting that their success is heavily reliant on human input to guide the conversation in the right
direction. This reliance necessitates users to provide relevant and precise prompts based on their
intentions and the chat agent’s feedback. This can be challenging, time-consuming, and sometimes
impossible. Crafting effective prompts often demands a deep understanding and expertise of a
particular domain of knowledge. Consider an individual who lacks trading expertise; they would find
it difficult to create suitable prompts for directing a chat agent to develop a trading application. This
predicament is raising a crucial question: can we replace human intervention with an autonomous
communicative agent capable of steering the conversation toward task completion with minimal
human supervision? To tackle this issue, it is crucial to conduct more research exploring the potential,
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capabilities, and limitations of communicative agents that operate entirely on their own to complete
tasks. Understanding how multiple agents interact with each other is important for anticipating the
future of artificial intelligence. The dynamics of collaborating or competing agents play a key role in
determining the success of AI systems [6, 26, 27, 84, 99, 9, 10].

This paper explores the potential of building scalable techniques to facilitate autonomous cooperation
among communicative agents and provide insight into their “cognitive” processes. Several challenges
arise when asking a society of agents to autonomously cooperate on completing tasks. Examples we
encountered in our preliminary analysis include role flipping, assistant repeating instructions, flake
replies, and infinite loop of messages. Therefore, it is critical to investigate ways to align these models
with human intentions and to explore means enabling their effective cooperation. To address these
issues, we propose a novel cooperative agent framework named role-playing to automate cooperation
between communicative agents. Specifically, our proposed approach involves using role-playing with
inception prompting to autonomously guide the communicative agents toward task completion. Only
a preliminary idea is needed from human to guide the conversations toward complex task-solving.

Our library, which we make publicly available, provides modular functionality, and includes imple-
mentations of different agents, examples of well-crafted prompts, and data explorers. We hope our
library serves as a ground for future research in various areas such as multi-agent systems, cooperative
AI, game theory simulations, social analysis, AI ethics, AI alignment, and beyond. In addition, our
role-playing method provides a highly scalable way to generate conversational data for studying the
behaviors and capabilities of chat agents. We showcase how role-playing can be used to let chat agents
communicate with each other for task completion and record their conversations for behavior analysis
and capability understanding. In particular, we consider two cooperative scenarios of role-playing
and generate two large conversational, task-oriented, and instruction-following datasets: AI Society
and Code. We also use our framework to collect two single-turn question-answer datasets, Math and
Science, for LLM ability emergence study. Furthermore, we generate a Misalignment dataset that is a
simulation of possible malicious applications which demonstrate the potential risks of an unaligned
autonomous agent system. The datasets offer a valuable resource for investigating conversational
language models, enabling them to comprehend and react to human language more effectively. Fur-
thermore, our role-playing offers a scalable method of creating conversational instruction-following
data, which can potentially enhance the development of more advanced language models. We show
that solutions derived from our role-playing framework outperform those generated in a single shot
by gpt-3.5-turbo [82] in both GPT4 and human evaluations. We also study knowledge emergence
in LLMs by fine-tuning LLaMA [117] on progressively growing datasets generated through our
framework. Additionally, we evaluate our code generation capabilities through benchmarking our
final model on HumanEval [18] and HumanEval+ [69].

Contributions. Our contributions are fourfold: (1) We introduce a novel cooperative agent frame-
work, role-playing , that allows communicative agents to collaborate autonomously toward completing
tasks while requiring minimal human intervention; (2) Our framework offers a scalable approach
for studying the cooperative behaviors and capabilities of multi-agent systems. It illuminates the
challenges of achieving autonomous cooperation, and provides strategies for addressing them. We
showcase the potential power of multi-agent collaboration for complex-task solving; (3) We demon-
strate the significant emergence of LLM training abilities by utilizing the datasets we have collected
from simulating four distinct agent collaboration scenarios; (4) We have open-sourced our library,
containing implementations of various agents, data generation pipelines, data analysis tools, and
collected datasets, to support research on communicative agents and beyond.

2 Related Work
Communicative Agents. Communication between agents has been studied for a long time [76,
77]. There are many ways to facilitate communication between agents, and with agents [29, 90,
97]. Among these, natural language is considered the most natural form of communication [97].
By enabling agents to function as communicators themselves, they become capable of solving
complex tasks [113, 85, 72, 3, 30, 111, 79, 41, 28, 102, 80, 106, 35, 49, 2, 51, 1, 55, 50, 65, 92].
Communication between AI agents can occur in a competitive setting [115, 108] or a cooperative
setting [40, 27, 11, 137, 70]. Cooperative AI refers to artificial intelligence systems that are designed
to work together with humans and other AI systems to achieve common goals [24, 125]. Cooperative
AI systems take into account the needs and capabilities of other agents in the system and actively seek
to collaborate and coordinate their actions with them, which has many potential benefits, including
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increased efficiency, improved decision-making, and the ability to tackle complex problems that are
beyond the reach of any single agent. However, designing effective cooperative AI systems is still an
active area of research, as it requires addressing a range of technical, ethical, and social challenges
[27]. Our work enables communicative agents to engage in a conversation and cooperate with each
other to solve assigned tasks. The agents, each assigned a distinct role, are expected to apply their
expertise and knowledge to solve their common task.

Instructional LLMs and Prompt Engineering. LLMs are trained on diverse text data and excel
in text completion, with various downstream NLP applications [12, 22, 47, 131, 117]. However,
InstructGPT suggests that LLMs may not align with user intent, proposing reinforcement learning
from human feedback (RLHF) [23] and Instruction Fine-Tuning (IFT) [121] to improve LLMs’
relevance and appropriateness to user instructions. Special types of instruction or prompting methods
, such as Chain-of-Thought (CoT) [123], zero-shot-CoT [61], and ReAct [126], have recently been
developed to enhance the performance of LLMs on reasoning, arithmetic and decision making
tasks [134, 118, 52, 73, 31, 103, 43, 64, 132, 46, 133, 105, 128, 25, 81, 109]. These techniques
underpin the impressive capabilities of recent dialogue LLMs [106, 116, 36, 9, 82, 13], which
aim to simulate human-like conversations and provide personalized and interactive experiences for
users, exhibiting the behavior of conversational AI agents [33]. However, generating instruction
datasets is a crucial challenge in building instruct-based LLMs, with existing datasets ranging
from crowdsourced to generated. Hand-crafted instruction instances are available in [120], while
leveraging previously crowdsourced NLP datasets is a less labor-intensive curation approach [121,
71, 78, 53]. LLMs have been explored for data generation in [101, 63, 68, 114], and Self-Instruct
[119] proposes a semi-automated process for instruction instance generation. Unnatural-Instruction
[48] collects instruction instances by prompting a language model with only three seed examples and
paraphrasing the generated instances to expand the dataset. There is also a large chunk of work that has
proposed methods for automatic dataset creation [67, 57, 19, 75, 20, 98, 59, 96, 129, 62, 130, 86, 8].
Another important challenge is prompt engineering. The quality of the prompt used to guide LLMs
significantly affects its performance [91, 12, 66]. While LMs pre-trained on large data can implicitly
learn tasks with few-shot prompting, hand-crafted prompts may not always suffice. Automated
prompt generation methods have been proposed, such as gradient-guided search [104], mining-based
and paraphrasing-based techniques [54], a meta-prompt [93], and automatic instruction selection and
generation [136]. In this work, we introduce a conversational LLM auto-prompting method called
Inception Prompting, which enables agents to prompt each other to solve tasks through Role-Playing.
The AI user continuously provides instructions to the AI assistant for task-solving. This enables us to
save the streaming instruction-solution pairs and create diverse, instructional, conversational, and
task-oriented datasets. These datasets can be used to analyze the behavior and capabilities of LLMs
and for future research for fine-tuning LLMs with conversational instructions.

AI Alignment. AI alignment is a field that aims to ensure that AI systems adhere to their intended
goals, interests, and values, as envisioned by their designers [4, 39, 110, 32, 38, 74, 10]. The first
attempt at AI alignment was made through the "Three Laws of Robotics," which was introduced
by Isaac Asimov in his science fiction stories [6]. Developing aligned AI systems is crucial for
achieving desired objectives while avoiding unintended consequences. Research in AI alignment
focuses on discouraging AI models from producing false, offensive, deceptive, or manipulative
information that could result in various harms [56, 112, 42, 37]. Achieving a high level of alignment
requires researchers to grapple with complex ethical, philosophical, and technical issues. We conduct
extensive experiments to study different role-playing situations, which probe the alignment of LLMs.

3 Methodology
In this paper, we focus on studying communicative agents under cooperative settings where they
share common interests. In particular, we study the assistant-user scenario, where a preliminary
idea is given at the start. Agents will conceptualize the idea into a specific task and complete it
autonomously through conversations.

3.1 Role-playing Framework

“What’s the most resilient parasite? An Idea. A single idea from the human mind can build cities. An
idea can transform the world and rewrite all the rules. Which is why I have to steal it.”

- Dom Cobb, Inception
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Idea: Develop a trading 
bot for the stock market

Human User

Role Assignment:

AI Assistant: 
Python Programmer

AI User:  
Stock Trader

Human Input

Task Specifier

AI Assistant

AI User

Specified Task: Develop 
a trading bot with a 
sentiment analysis tool 
that can monitor
social media platforms 
for positive or negative 
comments about a 
particular stock, and 
execute trades based on 
sentiment analysis 
results

Instruction: Install the necessary Python libraries for 
sentiment analysis and stock trading.
Input: None

Solution: To install the necessary Python libraries for 
sentiment analysis and stock trading, we can use pip, 
the package installer for Python. Here are the libraries 
we need to install:

1. tweepy - for accessing the Twitter API
2. textblob - for sentiment analysis
3. yfinance - for accessing Yahoo Finance API

To install these libraries, open the command prompt or 
terminal and enter the following commands:

pip install tweepy
pip install textblob
pip install yfinance

Next request.

Role Playing Session

Instruction: Import the necessary libraries in Python.
Input: None

Solution: Here's the code to import these libraries:
```
import tweepy
from textblob import TextBlob
import pandas as pd
import numpy as np
import yfinance as yf
```
Next request.

Figure 1: CAMEL Role-Playing Framework. Our role-playing setup starts with the human user
having an idea they want to implement, e.g. develop a trading bot for the stock market. The roles
involved in this task would be an AI assistant agent who is a python programmer and an AI user
agent who is a stock trader. The task is made more specific using our task specifier agent, leading
to a well-defined task for the assistant to solve. Both AI user and AI assistant are provided with
the specified task, after which they collaboratively communicate by chatting with each other in an
instruction-following fashion to solve the specified task.

Our proposed framework is a novel role-playing approach for studying multiple communicative
agents. Specifically, we concentrate on task-oriented role-playing that involves one AI assistant and
one AI user. After the multi-agent system receives a preliminary idea and the role assignment from
human users, a task-specifier agent will provide a detailed description to make the idea specific.
Afterwards, the AI assistant and AI user will cooperate on completing the specified task through
multi-turn conversations until the AI user determines the task is done. The AI user is responsible for
giving instructions to the AI assistant and directing the conversation toward task completion. On the
other hand, the AI assistant is designed to follow the instructions from the AI user and respond with
specific solutions. The whole role-playing framework is depicted in Figure 1.

Human Input and Task Specifying. The role-playing session will be instantiated from an idea and
selected roles by humans. As an example in Figure 1, a human has a preliminary idea to develop
a trading bot for the stock market. Humans may or may not have the knowledge about how the
idea can be realized. What is needed is only to designate the potential roles that can implement the
idea. For instance, a Python Programmer could collaborate with a Stock Trader to realize the idea
of developing a trading bot for the stock market. After the idea and roles are determined, the task
specifier agent will brainstorm a specific task that the AI Assistant role can help with the AI user role
to complete based on the input idea. An example of a specified task in this scenario could be: develop
a trading bot with a sentiment analysis tool that can monitor social media platforms for positive or
negative comments about a particular stock, and execute trades based on sentiment analysis results.
The main motivation for introducing a task specifier is that conversational agents usually require
a concrete task prompt for realizing the task which might be challenging or time-consuming for a
non-domain expert. Therefore, the task specifier agent serves as an enhanced imagination module
for the idea implementation. Please note that, when studying our framework at a large scale for AI
society and Code scenarios, we generate roles and ideas automatically by prompting LLMs instead of
relying on human inputs. For our generated Math and Science datasets we generated problem topics,
subtopics, and problems automatically by prompting LLMs.

AI Assistant-User Role Assignment. After the task specification, The AI assistant role and the AI
user role will be assigned to the user agent and the assistant agent correspondingly to complete the
specified task. In practice, a system message is passed to each agent declaring their role. We refer
to the assistant system prompt/message by PA and that of the user by PU . The system messages
are passed to the agents before the conversations start. Let F1 and F2 denote two large-scale auto-
regressive language models [82]. When the system message is passed to those models respectively, we
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obtain A FPA
1 and U  FPU

2 which are referred to as the assistant and user agents respectively.
In Figure 1, the AI assistant and the AI user are assigned the roles of a Python Programmer and a
Stock Trader at the beginning of the role-playing session respectively. The AI user serves as a task
planner, engaging in interactive planning to determine feasible steps for the AI assistant to execute.
Meanwhile, the AI assistant acts as a task executor, offering solutions, executing planned steps, and
providing responses to the AI user.

Conversation Towards Task-Solving. After the role assignment is completed, the AI assistant A
and AI user U will collaborate in an instruction-following manner to accomplish the task. In the
AI assistant-user scenario, the AI user is responsible for providing instructions, and the assistant
is expected to respond with a solution that fulfills the instructions. Formally, we denote the user
instruction message obtained at time t by It and the assistant solution by St. The set of conversational
messages obtained up until time t is denoted by Equation (1) shown below:

Mt = {(I0,S0), ..., (It,St)} = {(Ii,Si)}|ti=0 (1)

At the next time step, t + 1, the AI user U takes the historical conversation message set Mt and
provides a new instruction It+1, as shown in Equation (2). The produced instruction message It+1 is
then passed, along with message set Mt, to the AI assistant A. The AI assistant will then respond
with a solution, denoted by St+1 in Equation (3):

It+1 = U(Mt) (2) St+ 1 = A(Mt, It+ 1) (3)
After obtaining the solution St+1 to the instruction It+1, the message set is updated using Equation
(4) to obtain Mt+1:

Mt+1  Mt [ (It+1,St+1) (4)

Note that the formulation above not only models AI-AI communicative scenarios, but it can also be
easily extended to model human-AI communication or communication between more than two agents.
Specifically, we can use message-passing graphs to model communication between an arbitrary
number of agents. In Figure 1, we observe that the AI user initiates the installation and import of
essential Python libraries for sentiment analysis and stock trading by instructing the AI assistant
through conversations. This example is drawn from our experiments, and the entire conversation is
available in the Appendix.

Critic-In-The-Loop. To enhance the controllability of the role-playing framework, we introduce
a critic agent capable of selecting proposals from or providing feedback to the role-playing agents.
This enables tree-search-like decision-making for task-solving. In practice, the critic can be either an
AI agent or a human. The detailed implementation and case studies can be found in the Appendix.

3.2 Inception Prompting

Since prompt engineering is crucial to our role-playing framework, this section delves deeply into
our prompting techniques. Our prompt engineering occurs solely at the beginning of role-playing, for
task specification and role assignment. Once the conversation phase commences, the AI assistant
and AI user prompt each other automatically in a loop until termination. As such, we refer to our
technique as Inception Prompting. Our Inception prompt consists of three prompts: the task specifier
prompt PT , the assistant system prompt PA, and the user system prompt PU . As an example, we
consider the inception prompt of the AI Society scenario. The templates for these prompts of AI
Society role-playing are shown in Figure 2. The task specifier prompt contains information about
the roles of the AI assistant and AI user in the role-playing session. Therefore, the task specifier
agent can take a preliminary task/idea as input and generate a specific task using imagination. The AI
assistant system prompt PA and the AI user system prompt PU are mostly symmetrical and include
information about the assigned task and roles, communication protocols, termination conditions, and
constraints or requirements to avoid unwanted behaviors. The prompt designs for both roles are
crucial to achieve autonomous cooperation between agents. It is non-trivial to engineer prompts that
ensure agents act in alignment with our intentions. We take the prompt templates from the AI Society
in Figure 2 as an example to explain our key design choices. The prompts used for the Code scenario
follow a similar sprint as the AI society scenario, but with some additional engineering related to
programming languages. More details in the Appendix.
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AI Society Inception Prompt

Task Specifier Prompt:
Here is a task that <ASSISTANT_ROLE> will help <USER_ROLE> to complete: <TASK>.
Please make it more specific. Be creative and imaginative.
Please reply with the specified task in <WORD_LIMIT> words or less. Do not add anything else.

Assistant System Prompt:
Never forget you are a
<ASSISTANT_ROLE> and I am a
<USER_ROLE>. Never flip roles!
Never instruct me!
We share a common interest in
collaborating to successfully
complete a task.
You must help me to complete the
task.
Here is the task: <TASK>. Never
forget our task!
I must instruct you based on your
expertise and my needs to complete
the task.

I must give you one instruction at
a time.
You must write a specific solution
that appropriately completes the
requested instruction.
You must decline my instruction
honestly if you cannot perform the
instruction due to physical, moral,
legal reasons or your capability
and explain the reasons.
Unless I say the task is completed,
you should always start with:

Solution: <YOUR_SOLUTION>

<YOUR_SOLUTION> should be
specific, and provide preferable
implementations and examples for
task-solving.
Always end <YOUR_SOLUTION> with:
Next request.

User System Prompt:
Never forget you are a <USER_ROLE> and I am a <ASSISTANT_ROLE>.
Never flip roles! You will always instruct me.
We share a common interest in collaborating to successfully
complete a task.
I must help you to complete the task.
Here is the task: <TASK>. Never forget our task!
You must instruct me based on my expertise and your needs to
complete the task ONLY in the following two ways:

1. Instruct with a necessary input:
Instruction: <YOUR_INSTRUCTION>
Input: <YOUR_INPUT>
2. Instruct without any input:
Instruction: <YOUR_INSTRUCTION>
Input: None
The "Instruction" describes a task or question. The paired
"Input" provides further context or information for the
requested "Instruction".

You must give me one instruction at a time.
I must write a response that appropriately completes the
requested instruction.
I must decline your instruction honestly if I cannot perform
the instruction due to physical, moral, legal reasons or my
capability and explain the reasons.
You should instruct me not ask me questions.
Now you must start to instruct me using the two ways described
above.
Do not add anything else other than your instruction and the
optional corresponding input!
Keep giving me instructions and necessary inputs until you think
the task is completed.
When the task is completed, you must only reply with a single
word <CAMEL_TASK_DONE>.
Never say <CAMEL_TASK_DONE> unless my responses have solved your
task.

Figure 2: Inception Prompt of AI Society Role-Playing. This shows the task specifier prompt,
assistant system prompt, and user system prompt which are used for studying the AI society scenario.

Prompt Engineering. To delve deeper into the details in Figure 2, we start by chunking the various
parts of the AI assistant system prompt PA shown below:

• Never forget you are a <ASSISTANT_ROLE> and I am a <USER_ROLE>. This assigns
the chosen role to the assistant agent and provides it with information about the user’s role.

• Never flip roles! Never instruct me! This prevents agents from flipping roles. In
some cases, we have observed the assistant and the user switching roles, where the assistant
suddenly takes control and instructs the user, and the user follows those instructions.

• You must decline my instruction honestly if you cannot perform the
instruction due to physical, moral, legal reasons or your capability
and explain the reasons. This prohibits the agent from producing harmful, false, illegal,
and misleading information.

• Unless I say the task is completed, you should always start with:
Solution: <YOUR_SOLUTION>. <YOUR_SOLUTION> should be specific, and
provide preferable implementations and examples for task-solving. This
encourages the assistant always responds in a consistent format, avoiding any deviation from the
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structure of the conversation, and preventing vague or incomplete responses, which we refer to as
flake responses, such as "I will do something".

• Always end your solution with: Next request. This ensures that the assistant keeps
the conversation going by requesting a new instruction to solve.

For the AI user system prompt PU , we strive to maintain as much symmetry as possible with respect
to the AI assistant system prompt. Apart from the opposite role assignment, the user system prompt
differs from the assistant prompt in the following ways:

• You must instruct me ... to complete the task ONLY in the following two
ways: 1. Instruct with a necessary input: ...; 2. Instruct without
any input: ... This follows the typical data structure of instruction-following, which allows
the generated instruction-solution pairs to be easily used for fine-tuning LLMs.

• Keep giving me instructions and necessary inputs until you think the
task is completed. When the task is completed, you must only reply with
a single word <CAMEL_TASK_DONE>. We introduce an end-of-task token, namely,
<CAMEL_TASK_DONE>. This token is used once the user believes the task is done. This ensures
that the chat is terminated when the user is satisfied. Without doing so, the agents might fall into
a chatting loop where they keep on saying “thank you” to each other or “goodbye” indefinitely.

4 Experiments

In this section, we will discuss the various experiments that we conducted to arrive at our final design
choices. Specifically, we will examine the interesting observations, challenging issues, and several
examples we have encountered while enabling agents to communicate with each other under different
prompt design choices to achieve autonomous cooperation. In our experiments, we employed two
gpt-3.5-turbo agents, referred to as LLM agents for simplicity, with Inception Prompts, as described
in Section 3.2, to simulate assistant-user cooperation. For our analysis, we set our attention on AI
Society setting. We also gathered conversational data, named CAMEL AI Society and CAMEL Code
datasets and problem-solution pairs data named CAMEL Math and CAMEL Science and analyzed
and evaluated their quality. Moreover, we will discuss potential extensions of our framework and
highlight both the risks and opportunities that future AI society might present.

Data Generation Prompts of AI Society

AI Society

Assistant Role Generation Prompt:
You are a helpful assistant that can play many
different roles. Now please list <NUM_ROLES>
different roles that you can play with your
expertise in diverse fields. Sort them by
alphabetical order. No explanation required.

User Role Generation Prompt:
Please list <NUM_ROLES> most common and diverse
groups of internet users or occupations.
Use singular form. No explanation.
Sort them by alphabetical order. No explanation
required.

Task Generation Prompt:
List <NUM_TASKS> diverse tasks that <ASSISTANT_ROLE> can assist <USER_ROLE> cooperatively to
achieve together. Be concise. Be creative.

Figure 3: Data Generation Prompts. In order to maintain a scalable approach our data parameters
are generated using an LLM model to reduce human involvement in the generation process. The
generation prompts for both AI Society dataset are summarized in this figure.

4.1 Role-Playing for AI Society

To create our AI Society dataset, we have developed a scalable approach that follows a series of steps.
Firstly, we prompt the LLM agent to generate possible roles for the assistant and the user. We achieve
this by providing the LLM agent with specific prompts designed to elicit these roles. Next, we ask the
LLM agent to generate a range of possible tasks that can be solved through collaboration between the
assistant and user roles generated previously. After generating a range of possible tasks as described
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in the previous step, we then use the task specifier prompt passed to the LLM agent to make the task
more specific. The prompts for assistant role generation, user role generation, and task generation
are shown in Figure 5 (AI Society). For our AI society dataset, we generated 50 assistant roles, 50
user roles, and 10 tasks for each combination of roles yielding a total of 25,000 conversations. The
generated assistant roles and user roles for AI Society as well as details about the generation of Code,
Math and Science datasets can be found in the Appendix.

Challenges and Observations. In this section, we explore the four main challenges that we identified
during our analysis of the generated datasets. Our observations shed light on some interesting aspects
of cooperative AI and the difficulties that arise in its development.

• Role Flipping: One challenge we encountered was role flipping, where the assistant and user
switch roles during the conversation. This issue typically arises when the assistant starts providing
instructions or commands instead of following the user’s prompts, which can lead to confusion
and a reversal of roles. To avoid role flipping, it is crucial for the assistant not to ask questions, as
this can also contribute to the problem.

• Assistant Repeats Instruction: Another challenge that we observed was the assistant
simply repeating the user’s instructions without any role flipping occurring.

• Flake Replies: We also observed instances where the assistant agent responds with a flake
reply, often taking the form of "I will...". These messages do not contribute to the task at hand, as
the assistant promises to take action but ultimately fails to follow through.

• Infinite Loop of Messages: An interesting challenge that we encountered was when the
assistant and user engage in an infinite loop of meaningless conversation, such as repeatedly
thanking each other or saying goodbye without progressing the task. Interestingly, in some cases,
the assistant and user are aware that they are stuck in a loop, but are unable to break out of it.

The Appendix shows examples of each of the four challenges discussed above. Overall, our observa-
tions highlight the complexity of cooperative AI development and the need for continued exploration
and innovation to overcome the challenges we face. By identifying these issues, we hope to contribute
to the development of more effective and engaging cooperative AI systems.

Termination Conditions. The conversation between the assistant and user agents is designed to
follow a specific format to ensure consistent and accurate data generation. To ensure that both the
user and assistant adhere to their respective roles and responsibilities, certain conditions have been
set in place to terminate the chat if necessary. These conditions are outlined below:

• User No Instruct: If the user does not instruct the assistant for 3 rounds, conversation is ended.
• Assistant Instruct: If the assistant provides an instruction to the user, it indicates a role

reversal, and the conversation is terminated.
• End of Task Token: If the user believes that the task has been solved, they are expected to

say <CAMEL_TASK_DONE> to signify the completion of the task. Once this message is received,
the conversation is terminated.

• Assistant&User Token Limit: Given that gpt-3.5-turbo has a limitation on the number
of tokens, the conversation is terminated if either the assistant or the user reach the token limit.

• Maximum Number of Messages: To keep the cost of generated chats in check, we have set
a maximum limit of 40 messages. This limit guarantees a long enough conversation between
the user and assistant while also ensuring that the data generated is not too costly to produce.
The cost grows quadratically with the length of the conversation, making it essential to set a limit.

5 Evaluation

5.1 Agent Evaluation

In order to assess the performance of CAMEL (Cooperative Role-playing Communication), we
conduct two types of evaluations: (1) Human evaluation, and (2) GPT4 evaluation. We randomly
select 100 tasks from our AI Society dataset for evaluation and 100 tasks from our Code dataset.
Then, we employ the GPT4 model to summarize the content of the CAMEL conversation-based
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solution, presenting a consolidated final solution. Particularly, a GPT4 is used since it possesses a
larger token limit which is suitable for summarization. Summarization also makes CAMEL agents’
solution undetectable by its format, allowing for a more fair comparison. Subsequently, this solution
is compared with a single-shot solution generated by the gpt-3.5-turbo model for the same task.
Sample tasks are provided in the Appendix.

Human Evaluation. For this evaluation, we present both the CAMEL summarized agent solution
and the gpt-3.5-turbo single-shot solution side-by-side to human participants. The identity behind
each solution is not revealed. Participants are then asked to vote on whether one solution is superior
to the other or if they are equally good. A total of 453 responses were collected during this evaluation.
Note that, human evaluation is only done for AI Society, as assessing code is generally harder for
humans (without running the code).

GPT4 Evaluation. We engage a GPT4 agent to evaluate the effectiveness of Model 1 (CAMEL Agent
solution) versus Model 2 (gpt-3.5-turbo single-shot solution) for each task. More specifically, we
prompt GPT4 to score and decide which solution of the two solutions is better.

Results. The summarized results of each evaluation are outlined in Table 1 which showcases that the
CAMEL solution outperforms gpt-3.5-turbo single-shot solution in both the human evaluation
and the GPT4 evaluation by a big margin. It is also worth noting that both human evaluation and
GPT4 evaluation are highly aligned.

Table 1: Agent Evaluation Results: Results of the evaluations of the CAMEL agent against
gpt-3.5-turbo using both human evaluators and GPT4 consistently show that utilizing a multi-
agent cooperative approach is more effective than gpt-3.5-turbo’s single shot solution.

Dataset Evaluation Type Draw gpt-3.5-turbo Wins CAMEL Agents Win

AI Society Human Evaluation 13.3% 10.4% 76.3%
GPT4 Evaluation 4.0% 23.0% 73.0%

Code GPT4 Evaluation 0.0% 24.0% 76.0%

5.2 GPT4 for ChatBot Evaluation

In this section, we progressively fine-tune a LLaMA 7B model on our generated datasets. By
progressively incorporating diverse datasets like AI society, code, math, and science, we expect
fine-tuned model to demonstrate the ability to develop an increasingly sophisticated understanding of
these domains.

We initially start by training on AI society dataset, which aims to let the model learn about human
interactions and societal dynamics. As additional datasets were introduced, such as code, the model
gained knowledge of programming logic and syntax, enabling it to generate coherent and executable
code snippets. The inclusion of the math dataset further expanded the model’s capabilities, allowing
it to solve complex equations, reason about abstract concepts, and perform precise calculations.
Finally, exposure to the science dataset broadened the model’s understanding of scientific theories,
empirical observations, and experimental methods. The emergence of model capabilities is measured
by evaluating the quality of the model responses, before and after training on the new domain, on a
set of questions of varying difficulties from each domain. More precisely, the model is tested on 20
AI Society related tasks, 20 coding tasks, 20 math tasks and 60 science tasks.

Those results are highlighted in Table 2 where we see that each time we add a dataset, the model
performs better on the incorporated domain. Note that to measure the quality of the models’ responses,
we follow the evaluation from Section T, which involves prompting a GPT4 agent to score and decide
which solution is better. It is worth noting that an improvement on other domains is also observed in
some cases such as when we train on Code we improve on Science. This is because our Code dataset
contains problems that solve tasks in particular domains which include scientific domain. Similarly,
training on AI Society improves code as AI Society contains the role of a "programmer" and hence
coding related conversations. Finally, note that the draws observed in LLaMA-7B vs AI Society in
Math reflects equally bad solutions compared to the draws observed in AI Society + Code + Math vs
AI Society + Code + Math + Science where the draws are equally good solutions. This progression
from AI society to code to math to science highlights the potential of AI models to acquire a versatile
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and adaptable knowledge base, paralleling the way humans gain expertise in diverse subjects. Sample
tasks are provided in the Appendix.

Table 2: Emergence of Knowledge. By progressively fine-tuning LLaMA on datasets from different
domains, we observe the emergence of knowledge as the model transitions from AI society to code,
math, and science. This finding is indicated by the fact that Model 2 almost always performs better
than Model 1, especially on the added dataset.

Dataset Model 1 Model 2 Draw Model 1 Model 2AI Society Code Math Science AI Society Code Math Science
AI Society 3 0 6 14

Code 3 0 0 20
Math 3 9 5 6

Science 3 0 13 47
AI Society 3 3 3 4 8 8

Code 3 3 3 1 9 10
Math 3 3 3 5 8 7

Science 3 3 3 1 19 40
AI Society 3 3 3 3 3 5 6 9

Code 3 3 3 3 3 1 9 10
Math 3 3 3 3 3 1 3 16

Science 3 3 3 3 3 3 8 49
AI Society 3 3 3 3 3 3 3 3 1 16

Code 3 3 3 3 3 3 3 1 8 11
Math 3 3 3 3 3 3 3 10 5 5

Science 3 3 3 3 3 3 3 9 2 49
AI Society 3 3 3 3 0 0 20

Code 3 3 3 3 0 0 20
Math 3 3 3 3 0 0 20

Science 3 3 3 3 0 0 60

5.3 HumanEval(+)

Table 3: HumanEval(+) for Various Models. We test our CAMEL model, which is a LLaMa-7B
fine-tuned on all our datasets (AI Society, Code, Math, Science) on HumanEval and HumanEval+
benchmarks, where we show competitive pass@k scores with LLaMa-7B and Vicuna-7B.

HumanEval HumanEval+
pass@k [%] k = 1 k = 100 k = 1 k = 100

gpt-3.5-turbo 69.4 94.0 61.7 89.8
LLaMA-7B 10.5 36.5 - -
Vicuna-7B 11.0 42.9 9.9 34.7

CAMEL-7B 14.0 57.9 12.2 50.0

To evaluate the coding task-solving capabilities of our CAMEL model, specifically the LLaMA-
7B fine-tuned on our comprehensive datasets, we rely on HumanEval [18] and HumanEval+ [69].
The results, as depicted in table 3, clearly demonstrate the remarkable performance of CAMEL. It
surpasses not only the LLaMA-7B model but also Vicuna-7B [21] by a big margin. These findings
underscore the critical role played by the generated datasets in enhancing LLaMA’s ability to tackle
coding-related tasks.

6 Conclusion
In this paper, we explore the potential of autonomous cooperation among communicative agents
and propose a novel cooperative agent framework named role-playing . Our approach enables
communicative agents to collaborate autonomously toward completing tasks while requiring minimal
human intervention, leading to better solutions are per our thorough evaluations. Through our analysis,
we show that achieving autonomous cooperation is challenging due to issues like conversation
deviation, role flipping, and termination conditions. Our framework offers a scalable approach for
studying the cooperative behaviors and capabilities of multi-agent systems and provides strategies
for addressing these challenges. Furthermore, our open-sourced library includes implementations
of various agents, data generation pipelines, data analysis tools, and collected datasets, to support
research on communicative agents and beyond. Our contributions offer valuable insights into the
future of large language artificial intelligence models and cooperative AI systems.
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