
Supplementary Material
The supplementary material is organized as follows. We provide a detailed discussion on related
works in Section A. We give details of the definitions and notation in Section B.1. The notations are
also summarized in the Table 5 in section B. Then we give the proof of the main theorem (Theorem
3.2) followed by proofs of supporting lemmas in section C. We provide details of its instantiation for
finite VC-dimension hypothesis classes and the homogeneous linear separators case in Section C.3.
Then, we provide the technical details of the lower bound (Lemma 3.3). Then we provide details
of additional experiments in Section D. In Section D.4 we provide insights into auto-labeling using
PaCMAP [66] visualizations of auto-labeled regions in each round.

A Extended Related Work
There is a rich body of work on active learning on empirical and theoretical fronts [57, 12, 30, 28,
8, 54]. In active learning, the goal is to learn the best model in the given function class with fewer
labeled data than in classical passive learning. To this end, various active learning algorithms have
been developed and analyzed, e.g., uncertainty sampling [62, 45], disagreement region based [9, 27],
margin based [3, 4], importance sampling based [5] and others [6]. Active learning has been shown
to achieve exponentially smaller label complexity than passive learning in noiseless and low-noise
settings [13, 3, 27, 28, 4, 11, 30, 6, 34, 32]. This suggests, in these settings auto-labeling using active
learning followed by selective classification is expected to work well. However, in practice we do not
have favorable noise conditions and the hypothesis class could be misspecified i.e. it may not contain
the Bayes optimal classifier. In such cases, [31] proved lower bounds on the label complexity of active
learning that are order wise same as passive learning. These findings have motivated more refined
goals for active learning – abstain on hard to classify points and do well on the rest of the points.
This idea is captured by the Chow’s excess risk [7] and some of the recent works [60, 59, 47, 72]
have proved exponential savings in label complexity for active learning when the goal is to minimize
Chow’s excess risk. The classifier learned by these methods is equipped with the abstain option
and hence it can be readily applied for auto-labeling. However, the problem of misspecification of
the hypothesis class still remains. Nevertheless, it would be interesting future work to explore the
connections between auto-labeling and active learning with abstention. We also note that similar
works on learning with abstention are done in the context of passive learning [10].

Another closely related line of work is the selective classification where the goal is to equip a given
classifier with the option to abstain from the prediction in order to guarantee prediction quality. The
foundations for selective classification are laid down in [17, 67, 18, 68] where they give results on the
error rate in the prediction region and the coverage of a given classifier. However, they lack practical
algorithms to find the prediction region. A recent work [26] proposes a new disagreement-based
active learning strategy to learn a selective classifier.

Recent work studies a practical algorithm for threshold-based selective classification on deep neural
networks [25]. The algorithm estimates the prediction threshold using training samples and they
bound the error rate of the selective classifier using [23]. We note that their result is applicable to
a specific setting of a given classifier. In contrast, in the TBAL algorithm analyzed in this paper,
selective classification is done in each round and the classifiers are not given a priori but instead
learned via ERM on training data which is adaptively sampled in each round.

Another related work [49] studies an algorithm similar to TBAL for auto-labeling. Their emphasis is
on the cost of training incurred when these systems use large-scale model classes for auto-labeling.
They propose an algorithm to predict the training set size that minimizes the overall cost and provides
an empirical evaluation.

Well-calibrated uncertainty scores are essential to the success of threshold-based auto-labeling.
However, in practice, such scores are often hard to get. Moreover, neural networks can produce
overconfident (unreliable) scores [29]. Fortunately, there are plenty of methods in the literature to
deal with this problem [46, 69]. More recently, various approaches have been proposed for uncertainty
calibration for neural networks [24, 42, 65, 35, 40, 56]. A detailed study of calibration methods and
their impact on auto-labeling is beyond the scope of this work and left as future work.

There is another line of work emerging towards auto-labeling that does not rely on getting human
labels but instead uses potentially noisy but cheaply available sources to infer labels [51, 52, 22]. The
focus of this paper, however, is on analyzing the performance of TBAL algorithms [58, 2] that have
emerged recently as auto-labeling solutions in systems.

15

B Definitions and Notation
B.1 Basic Definitions
Let X be the instance space and p(x) be a density function supported on X . For any xi 2 X let yi
be its true label. Let X = {x1, . . . ,xN} be a set of N i.i.d samples drawn from X . Let set S ✓ X
denote a non-empty sub-region of X and S ✓ X \ S be a set of n > 0 i.i.d. samples.

Definition B.1. (Hypothesis Class with Abstain) We can think of the function g along with set T as
inducing an extended hypothesis class H(T,g). Let HT,g = H⇥ T . For any function (h, t) 2 H(T,g)

is defined as

(h, t)(x) :=

⇢
h(x) if g(h,x) � t
? o.w.

(3)

Here (h, t)(x) =? means the hypothesis (h, t) abstains in classifying the point x. Otherwise, it is
equal to h(x).

The subset S(h, t) ✓ S where (h, t) does not abstain and its complement S̄(h, t) where (h, t)
abstains, are defined as follows,

S(h, t) := {x 2 S : (h, t)(x) 6=?}, S̄(h, t) := {x 2 S : (h, t)(x) =?}

Probability Definitions. The probability P(S) of subset S ✓ X and the conditional probability of
any subset S 0 ✓ S are given as follows,

P(S) := P(S|X) :=

Z

x2S

p(x)dx, P(S 0|S) := P(S 0|X)

P(S|X)
, P(h, t|S) := P(S(h, t)|S)

The empirical probabilities of S and S0 ✓ S are defined as follows,

bP(S) := |S|
|X| ,

bP(S0|S) := |S0|
|S| ,

bP(h, t|S) := |S(h, t)|
|S|

Loss Functions. The loss functions are defined as follows,

`0�1(h,x, y) := 1(h(x) 6= y),

`?(h, t,x) := 1(g(h,x) � t),

`?0�1(h, t,x, y) := `0�1(h,x, y) · `?(h, t,x).

Error Definitions. Define the conditional error in set S ✓ X as follows,

E(h, t|S) := Ex|S [`
?

0�1(h, t,x, y)] =

Z

x2S

`?0�1(h, t,x, y) ·
p(x)

P(S)dx

Then, the conditional error in set S(h, t) i.e. the subset of S on which (h, t) does not abstain,

Ea(h, t|S) := E(h, t|S(h, t)) := Ex|S(h,t)[`
?

0�1(h, t,x, y)] =
E(h, t|S)
P(h, t|S)

Similarly, define their empirical counterparts as follows,

bE(h, t|S) := 1

|S|
X

xi2S

`?0�1(h, t,xi, yi),

bEa(h, t|S) := bE(h, t|S(h, t)) := 1

|S(h, t)|
X

xi2S(h,t)

`?0�1(h, t,xi, yi),

Note that,
X

xi2S

`?0�1(h, t,xi, yi) =
X

xi2S(h,t)

`?0�1(h, t,xi, yi) =
X

xi2S(h,t)

`0�1(h,xi, yi)

16

Symbol Definition

X feature space.
Y label space.
H hypothesis space.
h a hypothesis in H.
x, y x is an element in X and y is its true label.
S, S S ✓ X is a sub-region in X , S = {x1, . . . ,xn} i.i.d. samples in S .
Xpool unlabeled pool of data points.
X(i)

v , n(i)
v set of validation points at the beginning of ith round and n(i)

v = |X(i)
v |.

X(i)
a , n(i)

a set of auto-labeled points in ith round and n(i)
a = |X(i)

a |.
ĥi, t̂i ERM solution and auto-labeling thresholds respectively in ith round.
X (i) unlabeled region left at the beginning of ith round.
X(i) unlabeled pool left at the beginning of ith round.
m(i)

a number of auto-labeling mistakes in ith round.
k number of rounds of the TBAL algorithm.
Xpool(Ak) set of all auto-labeled points till the end of round k.
g confidence function g : H⇥ X 7! T . Where T ✓ R+, usually T = [0, 1]
HT,g Cartesian product of H and T the range of g.
N (k)

a
Pk

i=1 n
(i)
a .

`0�1(h,x, y) 1(h(x) 6= y).
`?(h, t,x) 1(g(h,x) � t) .
`?0�1(h, t,x, y) `0�1(h,x, y) · `?((h, t),x).
Rn(H, `0�1) E�,S

h
suph2H

1
n

Pn
i=1 �i`0�1(h,xi, yi)

i
.

Rn(HT,g, `?) E�,S

h
sup(h,t)2HT,g

1
n

Pn
i=1 �i`?(h, t,xi)

i
.

Rn(HT,g, `?0�1) E�,S

h
sup(h,t)2HT,g

1
n

Pn
i=1 �i`?0�1(h, t,xi, yi)

i
.

Rn(HT,g) Rn(H, `0�1) +Rn(HT,g, `?) .
E(h, t|S) Ex|S [`

?

0�1(h, t,x, y)].
bE(h, t|S) 1

|S|

P
|S|

i=1 `
?

0�1(h, t,xi, yi).
P(h, t|S) Ex|S [`?(h, t,x)].
bP(h, t|S) 1

|S|

P
|S|

i=1 `?(h, t,xi, yi).
Ea(h, t|S) E(h, t|S)/P(h, t|S).
bEa(h, t|S) bE(h, t|S)/bP(h, t|S).

Table 5: Glossary of variables and symbols used in this paper.

Rademacher Complexity. The Rademacher complexities for the function classes induced by the
H, T, g and the loss functions are defined as follows,

Rn

�
H, `0�1

�
:= E�,S

h
sup
h2H

1

n

nX

i=1

�i`0�1(h,xi, yi)
i
.

Rn

�
HT,g, `?

�
:= E�,S

h
sup

(h,t)2HT,g

1

n

nX

i=1

�i`?(h, t,xi)
i
.

Rn

�
HT,g, `?0�1

�
:= E�,S

h
sup

(h,t)2HT,g

1

n

nX

i=1

�i`
?

0�1(h, t,xi, yi)
i
.

Rn

�
HT,g

�
:= Rn

�
H, `0�1

�
+Rn

�
HT,g, `?

�

B.2 Glossary

The notation is summarized in Table 5 below. More detailed notation is in section B.1.

17

C Proofs
C.1 Proofs for the General Setup
We begin by restating the theorem here and then give the proof.

Theorem 3.2. (Overall Auto-Labeling Error and Coverage) Let k denote the number of rounds of
the TBAL Algorithm 1. Let n(i)

v , n(i)
a denote the number of validation and auto-labeled points at

epoch i and n(i) = |X(i)|. Let Xpool(Ak) be the set of auto-labeled points at the end of round k.
N (k)

a =
Pk

i=1 n
(i)
a denote the total number of auto-labeled points. Then, for any � 2 (0, 1), with

probability at least 1� �,

bE
⇣
Xpool(Ak)

⌘

kX

i=1

n(i)
a

N (k)
a

bEa
⇣
ĥi, t̂i|X(i)

v
| {z }

(a)

⌘
+

4

p0

�
R

n(i)
v

�
HT,g

�
+

2

p0

s
1

n(i)
v

log(
8k

�
)

| {z }
(b)

!

+
4

p0

kX

i=1

n(i)
a

N (k)
a

R
n(i)
a

�
HT,g

�
+

s
k

N (k)
a

log(
8k

�
)

| {z }
(c)

!
, and

bP(Xpool(Ak)) �
kX

i=1

P
�
X (i)(ĥi, t̂i)

�
� 2Rn(i)

�
HT,g

�
�
r

2k2

N
log
⇣8k

�

⌘
.

Proof. Recall the definition of auto-labeling error,

bE
⇣
Xpool(Ak)

⌘
=

kX

i=1

m(i)
a

N (k)
a

, m(i)
a = n(i)

a · bEa
�
ĥi, t̂i|X(i)

�
.

Here, m(i)
a is the number of auto-labeling mistakes made by the Algorithm in the ith round and

bEa
�
ĥi, t̂i|X(i)

�
is the auto-labeling error in that round. Note that we cannot observe these quantities

since the true labels for the auto-labeled points are not available. To estimate the auto-labeling error
of each round we make use of validation data. Using the validation data we first get an upper bound
on the true error rate of the auto-labeling region i.e. Ea

�
ĥi, t̂i|X (i)

�
in terms of the auto-labeling

error on the validation data bEa
�
ĥi, t̂i|X(i)

v
�

and then get an upper bound on empirical auto-labeling
error rate bEa

�
ĥi, t̂i|X(i)

�
using the true error rate of the auto-labeling region.

We get these bounds by application of Lemma C.1 with �3 = �/4k for each round and then
apply union bound over all k epochs. Note that we have to apply the lemma twice, first to get
the concentration bound w.r.t the validation data and second to get the concentration w.r.t to the
auto-labeled points.

Ea
�
ĥi, t̂i|X (i)

�
 bEa

�
ĥi, t̂i|X(i)

v

�
+

4

p0
R

n(i)
v

�
HT,g

�
+

2

p0

s
1

n(i)
v

log
⇣8k

�

⌘
.

bEa
�
ĥi, t̂i|X(i)

�
 Ea

�
ĥi, t̂i|X (i)

�
+

4

p0
R

n(i)
a

�
HT,g

�
+

2

p0

s
1

n(i)
a

log
⇣8k

�

⌘
.

Substituting Ea
�
ĥi, t̂i|X (i)

�
by its upper confidence bound on the validation data.

bEa
�
ĥi, t̂i|X(i)

�
 bEa

�
ĥi, t̂i|X(i)

v

�
+

2

p0
R

n(i)
v

�
HT,g

�
+

2

p0
R

n(i)
a

�
HT,g

�

+
2

p0

s
1

n(i)
v

log
⇣8k

�

⌘
+

2

p0

s
1

n(i)
a

log
⇣8k

�

⌘
.

18

Having an upper bound on the empirical auto-labeling error for ith round gives us an upper bound on
the number of auto-labeling mistakes m(i)

a made in that round. It allows us to upper bound the total
auto-labeling mistakes in all k rounds and thus the overall auto-labeling error as detailed below,

bE
⇣
Xpool(Ak)

⌘
=

kX

i=1

m(i)
a

N (k)
a

, m(i)
a = n(i)

a · bEa
�
ĥi, t̂i|X(i)

�
.

Since we have an upper bound on the empirical auto-labeling error in each round, we have an upper
bound for each m(i)

a , which are used as follows to get the bound on the auto-labeling error,

bE(Xpool(Ak)) =
kX

i=1

m(i)
a

N (k)
a

=
kX

i=1

n(i)
a

N (k)
a

· m
(i)
a

n(i)
a

=
kX

i=1

n(i)
a

N (k)
a

· bEa
⇣
ĥi, t̂i

��X(i)
⌘

kX

i=1

n(i)
a

N (k)
a

·
✓
Ea
�
ĥi, t̂i

��X (i)
�
+

4

p0
R

n(i)
a

�
HT,g

�
+

2

p0

s
1

n(i)
a

log
⇣8k

�

⌘◆

kX

i=1

n(i)
a

N (k)
a

·
✓
bEa
�
ĥi, t̂i

��X(i)
v

�
+

4

p0
R

n(i)
v

�
HT,g

�
+

2

p0

s
1

n(i)
v

log
⇣8k

�

⌘

+
4

p0
R

n(i)
a

�
HT,g

�
+

2

p0

s
1

n(i)
a

log
⇣8k

�

⌘◆

kX

i=1

n(i)
a

N (k)
a

·
✓
bEa
�
ĥi, t̂i

��X(i)
v

�
+

4

p0
R

n(i)
v

�
HT,g

�
+

4

p0
R

n(i)
a

�
HT,g

�
+

2

p0

s
1

n(i)
v

log
⇣8k

�

⌘◆
+

kX

i=1

n(i)
a

N (k)
a

·
✓

2

p0

s
1

n(i)
a

log
⇣8k

�

⌘◆

The last term is simplified as follows,
kX

i=1

n(i)
a

N (k)
a

·
✓

2

p0

s
1

n(i)
a

log
⇣8k

�

⌘◆
=

2

p0
·

kX

i=1

n(i)
a

N (k)
a

s
1

n(i)
a

log
⇣8k

�

⌘

=
2

p0
· 1

N (k)
a

kX

i=1

r
n(i)
a log

⇣8k
�

⌘

=
2

p0
·
r
log
⇣8k

�

⌘
·

kX

i=1

q
n(i)
a

N (k)
a

 2

p0
·
r
log
⇣8k

�

⌘
·
s

k

N (k)
a

=
2

p0
·
s

k

N (k)
a

log
⇣8k

�

⌘

The last inequality follows from the application of the inequality ||u||1
p
k||u||2 for any vector

u 2 Rk. Here we let u = [
p
n
(1)
a , . . . ,

p
n
(k)
a], and since 8i

q
n(i)
a > 0 so,

Pk
i=1

p
na

(i) = ||u||1

19

and N (k)
a = ||u||22.

Pk
i=1

q
n(i)
a

N (k)
a

=
||u||1
||u||22

p
k||u||2
||u||22

=

p
k

||u||2
=

s
k

N (k)
a

To get the bound on coverage we follow the same steps except that we can use all the unlabeled pool
of size n(i) to estimate the coverage in each round which gives us the bound in terms of n(i) and N
as follows,

bP(Xpool(Ak)) =
1

N

kX

i=1

n(i)
a

=
1

N

kX

i=1

n(i) · n
(i)
a

n(i)

=
1

N

kX

i=1

n(i) · bP(X(i)
a

��X(i))

=
1

N

kX

i=1

n(i) · bP(ĥi, t̂i
��X(i))

�
kX

i=1

n(i)

N

✓
P
�
ĥi, t̂i

��X (i)
�
� 2Rn(i)

�
HT,g

�
�
r

1

n(i)
log
⇣8k

�

⌘◆

�
kX

i=1

n(i)

N

✓
P
�
ĥi, t̂i

��X (i)
�
� 2Rn(i)

�
HT,g

�◆
�
r

k

N
log
⇣8k

�

⌘

We bound the first term as follows,
kX

i=1

n(i)

N
P
⇣
ĥi, t̂i

��X (i)
⌘
=

kX

i=1

n(i)

N
·
P
�
X (i)(ĥi, t̂i)

�

P
�
X (i)

�

�
kX

i=1

⇣
P
�
X (i)

�
�
r

1

N
log
⇣8k

�

⌘⌘
·
⇣P
�
X (ĥi, t̂i)

�

P
�
X (i)

�
⌘

�
kX

i=1

P
�
X (i)(ĥi, t̂i)

�
�
r

1

N
log
⇣8k

�

⌘

Substituting it back we get,

bP
�
Xpool(Ak)

�
�

kX

i=1

P
�
X (i)(ĥi, t̂i)

�
� 2Rn(i)

�
HT,g

�
� k

r
1

N
log
⇣8k

�

⌘
�
r

k

N
log
⇣8k

�

⌘

�
kX

i=1

P
�
X (i)(ĥi, t̂i)

�
� 2Rn(i)

�
HT,g

�
�
r

4k2

N
log
⇣8k

�

⌘

For the last step we use the inequality
p
a+

p
b

p
2(a+ b) for any a, b 2 R+.

Rademacher complexity and validation error trade-off. The bound contains validation errors
at different thresholds. We revisit the definition of validation error appearing in the bound. Let
Xv = {x1, . . . xnv} be the validation samples and yi be the label corresponding to xi. Given any
h 2 H and the confidence function g, we have different subsets Xv(h, t) of the validation points for

20

which the model’s confidence is higher than t. More precisely, Xv(h, t) = {xi 2 Xv : g(h, xi) � t}
and the validation error Êa(h, t|Xv) is computed on each of these subsets as follows, Êa(h, t|Xv) =

1
|Xv(h,t)|

P
xi2Xv(h,t)

1(h(xi) 6= yi) this error is different from the overall validation error which is
computed over the entire set of validation points Xv:

Ê(h|Xv) =
1

|Xv|
X

xi2Xv

1(h(xi) 6= yi).

The TBAL method computes Êa(h, t|Xv) at different thresholds (t) and selects the threshold at which
it is at most ✏. Thus even if the overall validation error Ê(h|Xv) is bad, there could still be regions
in the space where the conditional validation error Êa(h, t|Xv) is small. This can be easily seen in
Figure 2 in the paper. Here we are doing auto-labeling using a linear function class that has low
Rademacher complexity. All the models in this class have high overall validation error Ê(h|Xv) but
there are subsets where the conditional validation error Êa(h, t|Xv) is small and TBAL is able to
find those subsets. Thus we see that working with low Rademacher complexity classes might lead to
high overall validation error. However, it does not affect TBAL as long as there are regions of low
conditional validation error Êa(h, t|Xv). Furthermore, our upper bound on excess auto-labeling error
depends on Êa(h, t|Xv) which due to the TBAL procedure is at most ✏ and hence it is not in conflict
with the Rademacher complexity term.

Next, we state the result for uniform convergence between Ea
�
h, t
��S
�
, bEa
�
h, t
��S
�

and give its proof.

Lemma C.1. For any �3, p0 2 (0, 1), let S and S be defined as above. Let P(h, t|S) � p0 and
P̂(h, t|S) � p08(h, t) 2 HT,g , the following holds w.p. at least 1� �3/2

��Ea
�
h, t
��S
�
� bEa

�
h, t
��S
��� 4

p0
Rn

�
HT,g

�
+

2

p0

r
1

n
log(

2

�3
) 8(h, t) 2 HT,g. (4)

Proof. We begin with proving one side of the inequality and the other side is shown by following
the same steps. The proof is based on applying the uniform convergence results for bE(h, t|S) and
bP(h, t|S) from Lemma C.2. The main difficulty here is that ES [bEa

�
h, t
��S
�
] 6= Ea

�
h, t
��S
�
, so we

cannot directly get the above result from standard uniform convergence bounds.

We prove it, by using the results from the Lemma C.2 and restricting the region S such that it has
probability mass at least p0 .

By definitions of Ea
�
h, t
��S
�

and bEa
�
h, t
��S
�

we have,

E(h, t|S) = P(h, t|S) · Ea
�
h, t
��S
�

and bE(h, t|S) = P̂(h, t|S) · bEa
�
h, t
��S
�
.

Let ⇠1 =
p
(1/n) log(2/�1), ⇠2 =

p
(1/n) log(2/�2). From lemma C.2 we have,

E(h, t|S) bE(h, t|S) + 2Rn

�
HT,g

�
+ ⇠1 8(h, t) 2 HT,g w.p. 1� �1/2. (5)

P̂(h, t|S) P(h, t|S) + 2Rn

�
HT,g

�
+ ⇠2 8(h, t) 2 HT,g w.p. 1� �2/2. (6)

Plugging in the above definitions of errors in equation (5) we get,

P(h, t|S) · Ea
�
h, t
��S
�
 bP(h, t|S) · bEa

�
h, t
��S
�
+ 2Rn

�
HT,g

�
+ ⇠1. (7)

Ea
�
h, t
��S
�

bP(h, t|S)
P(h, t|S)

bEa
�
h, t
��S
�
+ 2

Rn

�
HT,g

�

P(h, t|S) +
⇠1

P(h, t|S) . (8)

Substituting bP(h, t|S) from equation 6 in the above equation, we get the following w.p. (1��1/2)(1�
�2/2), 8(h, t) 2 HT,g ,

Ea
�
h, t
��S
�

⇣P(h, t|S) + 2Rn

�
HT,g

�
+ ⇠2

P(h, t|S)

⌘
bEa
�
h, t
��S
�
+

2Rn

�
HT,g

�

P(h, t|S) +
⇠1

P(h, t|S) .

21

=
⇣
1 +

2Rn

�
HT,g

�

P(h, t|S) +
⇠2

P(h, t|S)

⌘
bEa
�
h, t
��S
�
+

2Rn

�
HT,g

�

P(h, t|S) +
⇠1

P(h, t|S) .

= bEa
�
h, t
��S
�
+

2Rn

�
HT,g

�

P(h, t|S) · bEa
�
h, t
��S
�
+

⇠2
P(h, t|S)

bEa
�
h, t
��S
�
+

2Rn

�
HT,g

�

P(h, t|S)

+
⇠1

P(h, t|S) .

Using upper bound bEa
�
h, t
��S
�
 1 in the second and third terms,

Ea
�
h, t
��S
�
 bEa

�
h, t
��S
�
+ 4

Rn

�
HT,g

�

P(h, t|S) +
⇠1 + ⇠2
P(h, t|S) 8(h, t) 2 HT,g w.p. � 1� (�1 + �2)/2.

Using P(h, t|S) � p0

Ea
�
h, t
��S
�
 bEa

�
h, t
��S
�
+

4

p0
Rn

�
HT,g

�
+

⇠1 + ⇠2
p0

8(h, t) 2 HT,g w.p. � 1� (�1 + �2)/2.

Letting �1 = �2 = �3 and ⇠1 = ⇠2 =
⇠·p0
2 gives ⇠ =

q
4

p2
0
n log

�
2
�3

�
and

Ea
�
h, t
��S
�
 bEa

�
h, t
��S
�
+

4

p0
Rn

�
HT,g

�
+ ⇠ 8(h, t) 2 HT,g w.p. � 1� �3.

This proves one side of the result, and the other side of the result follows similarly.

Lemma C.2. Let S ✓ X be a sub-region of X and S = {x1, . . . ,xn} be a set of n i.i.d samples in
S drawn from distribution Px. Let {y1, . . . yn} be the corresponding true labels, let Rn

�
HT,g

�
be

the rademacher complexity of class HT,g then for any �1, �2 2 (0, 1) we have,

|E(h, t|S)� bE(h, t|S)| 2Rn

�
HT,g

�
+

r
1

n
log(

2

�1
) 8(h, t) 2 HT,g w.p. 1� �1/2. (9)

|P(h, t|S)� P̂(h, t|S)| 2Rn

�
HT,g

�
+

r
1

n
log(

2

�2
) 8(h, t) 2 HT,g w.p. 1� �2/2. (10)

Proof. The proof is similar to the standard proofs for Rademacher complexity based generalization
error bound. Since we work with the modified loss function and hypothesis class to include the
abstain option, for completeness we give the proof here. The proofs for error and probability bounds
are very much the same except for the change in the loss function. We give the proof for the error
bound here.

The result follows by applying McDiarmid’s inequality on the function �(S) defined as below,

�(S) := sup
(h,t)2HT,g

E(h, t|S)� bES(h, t|S).

To apply McDiarmid’s inequality we first show that �(S) satisfies the bounded difference property
(Lemma C.4). This gives us,

E(h, t|S)� bES(h, t|S) �(S) ES [�(S)] +

r
1

n
log(

2

�1
) 8(h, t) 2 HT,g w.p. 1� �1

2
.

Using the bound on ES [�(S)] from Lemma C.3 we get,

E(h, t|S) bE(h, t|S) + 2Rn

�
HT,g

�
+

r
1

n
log(

2

�1
) 8(h, t) 2 HT,g w.p. 1� �1

2
.

Similarly, the bound for the other side is obtained which holds w.p. 1� �1/2, and combining both
we get eq. (9).
The bound of probabilities is obtained by following the same steps as above but with a different loss
function, `?, since P(h, t|S) is the probability mass of the region where (h, t) does not abstain.

22

Lemma C.3. Let S ✓ X be a sub-region of X and S = {x1, . . . ,xn} be a set of n i.i.d samples in S
drawn from distribution Px. Let {y1, . . . yn} be the corresponding true labels and let Rn

�
HT,g

�
be

the Rademacher complexity of the function class HT,g defined over n i.i.d. samples. Then we have,

ES

h
sup

(h,t)2HT,g

E(h, t|S)� bE(h, t|S)
i
 2Rn

�
HT,g

�
. (11)

Proof. Let S̃ = {x̃1, x̃2, . . . x̃n} be another set of independent draws from the same distribution as
of S and let the corresponding labels be {ỹ1, . . . ỹn}. These samples are usually termed as ghost
samples and do not need to be counted in the sample complexity.

ES

h
sup

(h,t)2HT,g

E(h, t|S)� bE(h, t|S)
i
= ES

h
sup

(h,t)2HT,g

ES̃

⇥bE(h, t|S̃)
⇤
� bE(h, t|S)

i
.

= ES

h
sup

(h,t)2HT,g

ES̃

⇥bE(h, t|S̃)� bE(h, t|S)
⇤i
.

 ES

h
ES̃

h
sup

(h,t)2HT,g

⇥bE(h, t|S̃)� bE(h, t|S)
⇤ii

.

= ES,S̃

h
sup

h2HT,g

⇥bE(h, t|S̃)� bE(h, t|S)
⇤i
.

= ES,S̃

h
sup

(h,t)2HT,g

h 1
n

nX

i=1

`?0�1(h, t, x̃i, ỹi)�
1

n

nX

i=1

`?0�1(h, t,xi, yi)
ii
.

= E�,S,S̃

h
sup

h2HT,g

h 1
n

nX

i=1

�i`
?

0�1(h, t, x̃i, ỹi)�
1

n

nX

i=1

�i`
?

0�1(h, t,xi, yi)
ii
.

 E�,S̃

h
sup

(h,t)2HT,g

1

n

nX

i=1

�i`
?

0�1(h, t, x̃i, ỹi)
i
+

E�,S

h
sup

(h,t)2HT,g

1

n

nX

i=1

�i`
?

0�1(h, t,xi, yi)
i
.

= 2Rn

�
HT,g, `?0�1

�
.

 2Rn

�
HT,g

�
.

In the last step, we used the upper bound on the Rademacher complexity from Lemma C.5.

Lemma C.4. (Bounded Difference) Let S be a set of i.i.d samples from Px then for �(S) :=
sup(h,t)2HT,g E(h, t|S)� bE(h, t|S), with probability at least 1� �,

�(S) ES [�(S)] +

s
1

|S| log(
1

�
) (12)

Proof. It is proved by showing that �(S) satisfies the conditions (in particular the bounded
difference assumption) needed for the application of McDiarmid Inequality. To see this, Let
S = {x1,x2, . . .xi, . . . ,xn} and let S0 = {x1,x2, . . .x0

i, . . . ,xn}, i.e. S and S0 may differ only on
the ith sample.

|�(S)� �(S0)| =
��� sup
(h,t)2HT,g

E(h, t|S)� bE(h, t|S)� sup
(h,t)2HT,g

E(h, t|S)� bE(h, t|S0)
���.

��� sup
(h,t)2HT,g

⇣
E(h, t|S)� bE(h, t|S)� E(h, t|S) + bE(h, t|S0)

⌘���.

=
��� sup
(h,t)2HT,g

⇣
bE(h, t|S)� bE(h, t|S0)

⌘���.

=
��� sup
(h,t)2HT,g

⇣ 1

|S|
X

zj2S

`?0�1(h, t,xj , yj)�
1

|S0|
X

zj2S0

`?0�1(h, t,xj , yj)
⌘���.

23

=
��� sup
(h,t)2HT,g

⇣ 1
n

X

j 6=i

�
`?0�1(h, t,xj , yj)� `?0�1(h, t,xj , yj)

�
+

1

n

�
`?0�1(h, t,xi, yi)� `?0�1(h, t,x

0

i, y
0

i)
�⌘���.

=
��� sup
(h,t)2HT,g

⇣ 1
n

�
`?0�1(h, t,xi, yi)� `?0�1(h, t,x

0

i, y
0

i)
�⌘���.

 1

n

The last step follows since `?0�1 is a 0-1 loss function so letting `?0�1(h, t,xi, yi) = 1 and
`?0�1(h, t,x

0

i, y
0

i) = 0 gives an upper bound on the difference. Thus we can apply McDiarmid
Inequality here and get the bound.

The relationship between the Rademacher complexities is obtained using the following Lemma C.5
due to [16].

Lemma C.5. ([16]) Let `0�1, `?, `?0�1 be the loss functions defined as above and the Rademacher
complexities on n i.i.d. samples S be Rn

�
H, `0�1

�
,Rn

�
HT,g, `?

�
,Rn

�
HT,g, `?0�1

�
respectively.

Then,
Rn

�
HT,g, `?0�1

�
 Rn

�
H, `0�1

�
+Rn

�
HT,g, `?

�
=: Rn

�
HT,g

�
. (13)

Detailed proof of this lemma can be found in [16]. The result follows by expressing `0�1 · `? as
(`0�1 + `? � 1)+ and then applying Talagrand’s contraction lemma [39].

C.2 Bounds for Finite VC-Dimension Classes
Here we specialize the auto-labeling error and coverage bounds to the setting of finite VC-dimension
classes and then instantiate for a specific setting of homogeneous linear classifiers and uniform
distribution.

Lemma C.6. [43] (Corollary 3.8 and 3.18). Let the VC-dimension of function class induced by F be
any class of functions from X 7! Y [{?}, and ` : Y [{?} 7! {0, 1} be a 0-1 function. Then,

Rn(F , `)

s
2V(F , `)

n
log
⇣ en

V(F , `)

⌘
. (14)

Corollary C.7. (Auto-Labeling Error and Coverage for Finite VC-dimension Classes) Let k denote
the number of rounds of TBAL algorithm 1. Let V(HT,g) = d Let Xpool(Ak) be the set of auto-labeled
points at the end of round k. N (k)

a =
Pk

i=1 n
(i)
a denote the total number of auto-labeled points. With

probability at least 1� �,

bE(Xpool(Ak))
kX

i=1

n(i)
a

N (k)
a

bEa(ĥi, t̂i|X(i)

v)| {z }
(a)

+
4

p0

s
2

n(i)
v

✓
2d log

⇣en(i)
v

d

⌘
+ log

⇣8k
�

⌘◆!

| {z }
(b)

+
4

p0

 s
2k

N (k)
a

✓
2d log

⇣eN (k)
a

d

⌘
+ log

⇣8k
�

⌘◆!

| {z }
c

and
bP(Xpool(Ak)) �

kX

i=1

P
�
X (i)(ĥi, t̂i)

�
� 2k

s
2

N

✓
2d log

⇣eN
d

⌘
+ log

⇣8k
�

⌘◆
.

24

Proof. The proof follows by substituting the Rademacher complexity bounds for finite VC dimension
function classes from Lemma C.6 in the general result from Theorem 3.2.

bE(Xpool(Ak))
kX

i=1

n(i)
a

N (k)
a

bEa(ĥi, t̂i|X(i)

v)| {z }
(a)

+
4

p0

�
R

n(i)
v

�
HT,g

�
+R

n(i)
a

�
HT,g

��

| {z }
(b)

+
4

p0

s
1

n(i)
v

log
⇣8k

�

⌘

| {z }
(c)

!
+

4

p0

s
k

N (k)
a

log
⇣8k

�

⌘

| {z }
(d)

We first simplify the terms dependent on n(i)
v as follows. Here we use the inequality

p
a +

p
b p

2(a+ b) for any a, b 2 R+.

R
n(i)
v

�
HT,g

�
+

s
1

n(i)
v

log
⇣8k

�

⌘

s
2d

n(i)
v

log
⇣en(i)

v

d

⌘
+

s
1

n(i)
v

log
⇣4k

�

⌘
,

s
2

n(i)
v

✓
2d log

⇣en(i)
v

d

◆
+ log

⇣8k
�

⌘◆
.

Next, we simplify the terms dependent on n(i)
a as follows. First, we substitute the Rademacher

complexity using the bound in Lemma C.6 and then apply the same steps as in the proof of Theorem

3.2 to bound
Pk

i=1

q
n(i)
a /N (k)

a by
q

k/N (k)
a followed by the application of

p
a+

p
b

p
2(a+ b)

to get the final term.

kX

i=1

n(i)
a

N (k)
a

R
n(i)
a

�
HT,g

�
+

s
k

N (k)
a

log(
8k

�
)

kX

i=1

n(i)
a

N (k)
a

s
2d

n(i)
a

log
⇣en(i)

a

d

⌘
+

s
k

N (k)
a

log
⇣8k

�

⌘

=
kX

i=1

q
n(i)
a

N (k)
a

s

2d log
⇣en(i)

a

d

⌘
+

s
k

N (k)
a

log
⇣8k

�

⌘

kX

i=1

q
n(i)
a

N (k)
a

s

2d log
⇣eN (k)

a

d

⌘
+

s
k

N (k)
a

log
⇣8k

�

⌘

s
2dk

N (k)
a

log
⇣eN (k)

a

d

⌘
+

s
k

N (k)
a

log
⇣8k

�

⌘

s
2k

N (k)
a

✓
2d log

⇣eN (k)
a

d

⌘
+ log

⇣8k
�

⌘◆
.

C.3 Homogeneous Linear Classifiers with Uniform Distribution
Here we instantiate Theorem 3.2 for the case of homogeneous linear separators under the uniform
distribution in the realizable setting. Formally, let Px be a uniform distribution supported on the
unit ball in Rd, X = {x 2 Rd : ||x|| 1}. Let W = {w 2 Rd : ||w||2 = 1} = Sd and
H = {x 7! sign(hw,xi) 8w 2 W}, the score function is given by g(h,x) = g(w,x) = |hw,xi|
and set T = [0, 1]. For simplicity, we will use W in place of H.

Corollary 3.4. (Overall Auto-Labeling Error and Coverage) Let ŵi, t̂i be the ERM solution and the
auto-labeling margin threshold respectively at epoch i. Let n(i)

v , n(i)
a denote the number of validation

and auto-labeled points at epoch i. Let the auto-labeling algorithm run for k-epochs. Then, for any

25

� 2 (0, 1), w.p. at least 1� �/2,

bE(Xpool(Ak))
kX

i=1

n(i)
a

N (k)
a

bEa(ŵi, t̂i|X(i)

v)| {z }
(a)

+
4

p0

s
2

n(i)
v

✓
2d log

⇣en(i)
v

d

◆
+ log

⇣8k
�

◆◆!

| {z }
(b)

+
4

p0

 s
2k

N (k)
a

✓
2d log

⇣eN (k)
a

d

◆
+ log

⇣8k
�

◆◆!

| {z }
c

and w.p. at least 1� �/2

bP(Xpool(Ak)) � 1�min
i

t̂i
p
4d/⇡ � 2k

s
2

N

✓
2d log

⇣eN
d

⌘
+ log

⇣8k
�

⌘◆
.

Proof. The bound on auto-labeling error follows directly from Theorem C.7 as the VC dimension for
this setting is d. For the coverage bound, we utilize the fact that the distribution Px is the uniform
distribution over the unit ball. This enables us to obtain explicit lower bounds on the coverage. The
details are given in Lemma C.8 and Lemma C.9.

Lemma C.8. Let the auto-labeling algorithm run for k-epochs and let ŵi, t̂i be the ERM solution
and the auto-labeling margin threshold respectively at epoch i. Let X (i) be the unlabeled region at
the beginning of epoch i, then we have,

kX

i=1

P
�
X (i)(ŵi, t̂i)

�
� 1�min

i
t̂i
p
4d/⇡. (15)

Proof. Let X (ŵi, ti) = {x 2 X : |hŵi,xi| � t̂i} denote the region that can be auto-labeled by
ŵi, t̂i. However, since in each round the remaining region is X (i) the actual auto-labeled region
of epoch i is X (i)

a = {x 2 X (i) : |hŵi,xi| � t̂i}. Let X̄ (ŵi, ti) denote the complement of set
X (ŵi, ti).
Now observe that Xa = [k

i=1X
(i)
a and X (ŵk, t̂k) ✓ Xa because any x 2 X (ŵk, t̂k) is either

auto-labeled in previous rounds i < k or if not then it will be auto-labeled in the kth round. More
specifically, any x 2 X (ŵk, t̂k) is either in [k�1

i=1 X
(i)
a and if not then it must be in X (k)

a . Thus the
sum of probabilities,

kX

i=1

P
�
X (i)(ŵi, t̂i)

�
=

kX

i=1

P(X (i)
a)

= P(Xa)

� min
i

P
�
X (ŵi, t̂i)

�

= 1�max
i

P
�
X̄ (ŵi, t̂i)

�

� 1�min
i

t̂i
p
4d/⇡

The last step used Lemma 4 from [3]) with �1 = t̂i and �2 = 0 to upper bound P(X̄ (ŵi, t̂i)) by
t̂i
p
4d/⇡. The lemma is stated as follows in Lemma C.9,

Lemma C.9. ([3] (Lemma 4)) Let d � 2 and let x = [x1, . . . xd] be uniformly distributed in the
d-dimensional unit ball. Given �1 2 [0, 1], �2 2 [0, 1], we have:

P
�
(x1, x2) 2 [0, �1]⇥ [�2, 1]

�
 �1

p
d

2
p
⇡

exp
⇣
� (d� 2)�2

2

2

⌘

26

C.4 Lower Bound
Lemma 3.3. Let c1, c2 and � > 0. Let xi 2 X be a set of n i.i.d. points from X with corresponding
true labels yi. Given (h, t) 2 HT,g, let E

⇥�
`?0�1(h, t,xi, yi) � E(h, t|X)

�2⇤
= �2

i > �2 for every

xi for �i > 0 and let
Pn

i �
2
i � c1 then for every ✏ 2 [0,

Pn
i=1 �2

ip
c1

] with nv < 12�2

✏2 log(4c2) the

following holds w.p. at least 1/4, Ea(h, t|X) > bEa(h, t|X) + ✏.

Proof. It follows by application of Feller’s result stated in lemma C.10.

Lemma C.10. (Feller, Lower Bound on Tail Probability of Sum of Independent Random Variables)
There exists positive universal constants c1 and c2 such that for any set of independent random
variables X1, . . . , Xm satisfying E[Xi] = 0 and |Xi| M , for every i 2 {1, . . . ,m}, if
Pm

i=1 E[(X)2i] � c1, then for every ✏ 2 [0,
Pm

i=1 E[(Xi)
2]}

M
p
c1

]

P(
mX

i=1

Xi > ✏) � c2 exp
⇣ �✏2

12
Pm

i=1 E[(Xi)2]

⌘
. (16)

27

D Additional Experiments
In this section, we discuss additional experiments on the role of hypothesis class in auto-labeling
datasets and experiments for studying the role of confidence function in auto-labeling. Finally,
we visualize PaCMAP embeddings of the CIFAR-10 and MNIST data points to get a sense of
auto-labeling regions in various rounds of the algorithm.

D.1 Additional Experiments on Role of the Hypothesis Class
First, we provide details of the datasets,

XOR is a synthetic dataset. Recall that it is created by uniformly drawing points from 4 circles, each
centered at the corners of a square of with side length 4 centered at the origin. Points in the diagonally
opposite balls belong to the same class. We generate a total of N = 10, 000 samples, out of which
we keep 8, 000 in Xpool and 2, 000 in the validation pool Xval.

MNIST [15] is a standard image dataset of hand-written digits. We randomly split the standard
training set into Xpool and the validation pool Xval of sizes 48,000 and 12,000 respectively. While
training a linear classifier on this dataset we flatten the 28⇥ 28 images to vectors of size 784.

(a) Output of TBAL and AL+SC on XOR dataset (b) Auto labeling performance of various methods

Figure 5: Comparison of Threshold-Based Auto-Labeling (TBAL) and Active-Learning followed
by Selective Classification (AL+SC) on XOR-dataset. Left figure (a) shows samples that were
auto-labeled, queried, and left unlabeled by these methods. Right figure (b) shows the auto-labeling
error and coverage achieved. The lines show the mean and the shaded region shows 1-standard
deviation estimated over 10 trials with different random seeds.

XOR Experiment. We run the TBAL algorithm 1 with an error tolerance of ✏a = 1%. we use 20% of
Nq as seed training data and keep query size nb as 5% of Nq . We compare it with active learning and
active learning followed by selective classification. The given function class and selective classifier
are both linear for all the algorithms. The results are shown in Figure 5. Clearly, there is no linear
classifier that can correctly classify this data. We note that there are multiple optimal classifiers in
the function class of linear classifiers and they will all incur an error of 25%. So, active learning
algorithms can only output models that make at least 25% error. If we naively use the output model
for auto-labeling, we can obtain near full coverage but incur 25% auto-labeling error. If we use the
model output by active learning with threshold-based selective classification, then it can attain lower
error in labeling. However, it can only label ⇡ 25% of the unlabeled data. In contrast, the TBAL
algorithm can label almost all of the data accurately, i.e., attain close to 100% coverage, with an error
close to 1% auto-labeling error.

MNIST Experiment. For training LeNet [37] we use SGD with a learning rate of 0.1, batch size
of 32, and train for 20 epochs. We use auto-labeling error threshold ✏a = 5%. We use 20% of Nq

as seed training data and keep query size nb as 5% of Nq. The results are presented in Figure 6
we observe that TBAL using less powerful models can still yield highly accurate datasets with a
significant fraction of points labeled by the models. This confirms the notion that bad models can
still provide good datasets.

D.2 Role of Confidence Function
The confidence function g is used to obtain uncertainty scores is an important factor in auto-labeling.
In particular, for threshold-based auto-labeling we expect the scores of correctly classified and
incorrectly classified points to be reasonably well separated and if this is not the case then the

28

(a) Auto-labeling MNIST data using a linear classifier.
The validation size used here is 12k.

(b) Auto-labeling MNIST data using LeNet classifier.
The validation size used here is 12k.

Figure 6: Auto-labeling performance on MNIST data using different models (hypothesis classes) as a function
of samples available for training. The left figure (a) shows the results with the linear classifier and the right figure
(b) shows the results with the LeNet classifier. The auto-labeling error threshold ✏a = 5% in both experiments
and the algorithms are given the same amount of validation data. The lines show the mean and the shaded region
shows 1-standard deviation estimated over 5 trials with different random seeds.

(a) Auto-labeling CIFAR-10 data using a small
network and softmax scores. Validation size = 10k.

(b) Auto-labeling CIFAR-10 data using a small
network and energy scores. Validation size = 10k.

Figure 7: Auto-labeling performance on CIFAR-10 data using a small network and different scoring functions.
The left figure (a) shows the results with softmax scores and the right figure (b) shows the results with the energy
score. The auto-labeling error threshold ✏a = 10% in both experiments and methods are given the same amount
of validation data. The lines show the mean and the shaded region shows 1-standard deviation estimated over 5
trials with different random seeds.

algorithm will struggle to find a good threshold even if the given classifier has good accuracy in
certain regions.

Setup. We perform auto-labeling on the CIFAR-10 dataset using a small CNN network with 2
convolution layers followed by 3 fully connected layers [48]. We use two different scores for
auto-labeling, a) Usual softmax output b) Energy score with temperature = 1 [38]. We vary the
maximum number of training samples Nq and keep 20% of Nq as seed samples and query points in
the batches of 10% of Nq. The model is trained for 50 epochs, using SGD with a learning rate of
0.05, batch size = 256, weight decay = 5e�4, and momentum=0.9, and use ✏a = 10%.

Results. The results with softmax scores and energy scores used as confidence functions can be
seen in Figures 8(a) and 8(b) respectively. We see that for both of these cases, TBAL does not
obtain a coverage of more than ⇡ 6%. We observe that using the energy score as the confidence
function performed marginally better than using the softmax scores. We note that this is the case
even though the test accuracies of the trained models were around 50% for most of the rounds.
Note that CIFAR-10 has 10 classes, so an accuracy of 50% is much better than random guessing
and one would expect to be able to auto-label a significant chunk of the data with such a model.
However, the softmax scores and energy scores are not well calibrated, and therefore, when used as
confidence functions, they result in a poor separation between correct and incorrect predictions by
the model. This can be seen in Figure 8 where neither of the softmax and energy scores provides a
good separation between the correct and incorrect predictions. We can also see that the energy score
is marginally better in terms of the separation, which allows it to achieve slightly better auto-labeling
coverage in comparison to using softmax scores. This suggests that more investigation is needed to
understand the properties of good confidence functions for auto-labeling which is left to future work.

29

(a) Histogram of scores in round 2. (b) Histogram of scores in round 6.

Figure 8: Histograms of scores computed on the validation data in a few rounds of TBAL run on CIFAR-10
with a small net. We picked two rounds where it auto-labeled the most i.e. around 800 points.

For a more detailed visualization of the rounds of TBAL for this experiment, see Figures 10 and 11
in the Appendix.
D.3 Detailed Results
In the main paper, we omitted AL, PL, and PL+SC for clarity and due to lack of space. We provide
results including these baselines in the following tables for IMDB, Tiny-ImageNet, and Unit-Ball
datasets.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 4.77 ±0.18 3.35 ±0.80 3.68 ±0.38 6.60 ±1.06 6.16 ±0.10 83.14 ±3.65 78.53 ±7.05 81.20 ±1.78 98.75 ±0.00 97.50 ±0.00

400 4.57 ±0.26 3.53 ±0.73 3.96 ±0.33 6.60 ±1.06 6.16 ±0.10 90.70 ±3.11 86.39 ±5.11 87.43 ±2.01 98.75 ±0.00 97.50 ±0.00

600 4.32 ±0.17 3.70 ±0.63 4.17 ±0.27 6.60 ±1.06 6.16 ±0.10 92.96 ±0.46 88.90 ±4.83 90.12 ±1.62 98.75 ±0.00 97.50 ±0.00

800 4.66 ±0.20 3.84 ±0.70 4.15 ±0.35 6.60 ±1.06 6.16 ±0.10 92.42 ±0.89 88.67 ±3.88 89.37 ±1.45 98.75 ±0.00 97.50 ±0.00

1000 4.67 ±0.16 3.90 ±0.68 4.21 ±0.35 6.60 ±1.06 6.16 ±0.10 92.89 ±0.91 89.79 ±3.09 90.18 ±1.39 98.75 ±0.00 97.50 ±0.00

Table 6: IMDB. Effect of variation of validation data size (Nv) without using a UCB (i.e., C1 = 0)
on error estimates. We keep training data size Nq fixed at 500 and use error threshold ✏a = 5%. We
report the mean and std. deviation over 10 runs with different random seeds.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 2.28 ±0.21 3.11 ±0.86 2.86 ±0.35 6.60 ±1.06 6.16 ±0.10 68.24 ±6.20 57.77 ±13.09 60.45 ±1.63 98.75 ±0.00 97.50 ±0.00

400 1.29 ±0.10 1.98 ±0.40 1.54 ±0.11 6.60 ±1.06 6.16 ±0.10 63.81 ±4.86 63.06 ±10.70 68.32 ±6.60 98.75 ±0.00 97.50 ±0.00

600 1.41 ±0.20 1.81 ±0.22 1.87 ±0.07 6.60 ±1.06 6.16 ±0.10 69.64 ±3.98 62.92 ±9.20 69.84 ±3.07 98.75 ±0.00 97.50 ±0.00

800 1.62 ±0.30 2.04 ±0.35 2.33 ±0.35 6.60 ±1.06 6.16 ±0.10 67.45 ±3.72 63.22 ±7.89 72.50 ±2.28 98.75 ±0.00 97.50 ±0.00

1000 1.64 ±0.23 1.97 ±0.26 1.93 ±0.13 6.60 ±1.06 6.16 ±0.10 70.28 ±2.82 66.11 ±8.00 73.04 ±2.06 98.75 ±0.00 97.50 ±0.00

Table 7: IMDB. Effect of variation of validation data size (Nv), using a UCB (i.e., C1 = 0.25) on error
estimates. We keep training data size Nq fixed at 500 and use error threshold ✏a = 5%. We report the mean and
std. deviation over 10 runs with different random seeds.

30

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 4.57 ±0.21 4.30 ±0.20 3.97 ±0.06 6.44 ±0.20 6.20 ±0.09 93.46 ±1.01 90.60 ±2.91 91.97 ±0.28 99.50 ±0.00 99.00 ±0.00

400 4.60 ±0.09 3.75 ±0.83 3.92 ±0.86 11.86 ±13.54 6.81 ±1.26 92.55 ±0.66 84.27 ±19.15 89.95 ±2.92 99.00 ±0.00 98.00 ±0.00

600 4.93 ±0.10 3.99 ±0.91 4.69 ±0.09 6.31 ±1.28 6.33 ±0.10 92.45 ±0.84 91.69 ±3.99 91.20 ±0.42 98.50 ±0.00 97.00 ±0.00

800 4.76 ±0.12 3.55 ±0.69 4.37 ±0.14 6.91 ±1.49 6.12 ±0.10 92.15 ±1.05 89.98 ±3.38 89.97 ±0.69 98.00 ±0.00 96.00 ±0.00

1000 4.49 ±0.06 4.19 ±0.31 4.25 ±0.29 5.65 ±0.25 6.14 ±0.11 92.25 ±0.96 92.28 ±2.13 89.47 ±0.70 97.50 ±0.00 95.00 ±0.00

Table 8: IMDB. Effect of variation of Nq , the maximum number of samples the algorithm can use for training,
without using a UCB (i.e., C1 = 0) on error estimates. We keep validation data size Nv fixed at 1000 and use
error threshold ✏a = 5%. We report the mean and std. deviation over 10 runs with different random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 1.67 ±0.29 2.15 ±0.45 1.59 ±0.10 6.44 ±0.20 6.20 ±0.09 73.30 ±3.49 57.17 ±11.09 57.39 ±4.15 99.50 ±0.00 99.00 ±0.00

400 1.63 ±0.19 1.61 ±0.29 1.76 ±0.13 11.86 ±13.54 6.81 ±1.26 72.59 ±3.16 64.53 ±16.61 58.48 ±1.79 99.00 ±0.00 98.00 ±0.00

600 1.67 ±0.21 1.83 ±0.30 1.67 ±0.08 6.31 ±1.28 6.33 ±0.10 71.38 ±2.15 70.50 ±5.68 65.71 ±2.14 98.50 ±0.00 97.00 ±0.00

800 1.67 ±0.27 1.90 ±0.31 1.79 ±0.09 6.91 ±1.49 6.12 ±0.10 69.10 ±4.51 65.74 ±10.14 73.21 ±2.57 98.00 ±0.00 96.00 ±0.00

1000 1.62 ±0.22 1.97 ±0.35 1.70 ±0.12 5.65 ±0.25 6.14 ±0.11 73.42 ±2.84 68.05 ±5.56 64.18 ±2.11 97.50 ±0.00 95.00 ±0.00

Table 9: IMDB. Effect of variation of Nq , the maximum number of samples the algorithm can use for training,
using a UCB (i.e., C1 = 0.25) on error estimates. We keep validation data size Nv fixed at 1000 and use error
threshold ✏a = 5%. We report the mean and std. deviation over 10 runs with different random seeds.

D.4 Auto Labeling Visualization
In this section, we visualize the process of TBAL. We use the dimensionality reduction method,
PaCMAP [66], to visualize the features of the samples. For neural network models, we visualize the
PaCMAP embeddings of the penultimate layer’s output and for linear models, we use PaCMAP on
the raw features. In these figures, each row corresponds to one TBAL round. Each figure shows a
few selected rounds of auto-labeling. Each figure has four columns (left to right), which show: a)
The samples that are labeled by TBAL in the round are shown in that row. b) The embeddings for
training samples in that round. c) The embeddings for validation data points in that round. d) The
score distribution for the validation dataset in that round.

In Figure 9 we see visualizations for auto-labeling on the MNIST data using linear models. In this
setting the data exhibits clustering structure in the PaCMAP embeddings learned on the raw features
and the confidence (probability) scores produced are also reasonably well calibrated which leads to
good auto-labeling performance.

The visualizations for the process of TBAL on CIFAR-10 using the small network (a small CNN
network with 2 convolution layers followed by 3 fully connected layers [48]) with energy scores
and soft-max scores for confidence functions are shown in Figures 10 and 11 respectively. We note
that both the energy scores and soft-max scores do not seem to be calibrated to the correctness of
the predicted labels which makes it difficult to identify subsets of unlabeled data where the current
hypothesis in each round could have potentially auto-labeled. We also note that the test accuracies
of the trained models were around 50% for most of the rounds of TBAL even though the small
network model is not a powerful enough model class for this dataset. Note that CIFAR-10 has 10
classes, so the accuracy of 50% is much better than random guessing and one would expect to be
able to auto-label a reasonably large chunk of the data with such a model if accompanied by a good
confidence function. This highlights the important role that the confidence function plays in a TBAL
system and more investigation is needed which is left to future work.

Note that, in our auto-labeling implementation we find class specific thresholds. In these figures,
we show the histograms of scores for all classes for simplicity. We want to emphasize that the
visualization figures in this section are 2D representations (approximation) of the high-dimensional
features (either of the penultimate layer or the raw features).

31

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 3.10 ±1.80 0.68 ±0.81 1.45 ±0.73 1.23 ±0.99 2.87 ±0.57 71.43 ±8.86 96.95 ±1.01 92.29 ±3.27 98.52 ±0.16 96.88 ±0.00

400 1.97 ±0.76 0.59 ±0.18 1.19 ±0.53 0.81 ±0.26 2.87 ±0.57 93.99 ±2.39 97.89 ±0.50 91.73 ±2.86 98.44 ±0.00 96.88 ±0.00

800 1.64 ±0.50 0.66 ±0.19 1.21 ±0.41 0.81 ±0.26 2.87 ±0.57 96.26 ±1.33 98.06 ±0.53 92.25 ±2.31 98.44 ±0.00 96.88 ±0.00

1200 1.39 ±0.39 0.67 ±0.19 1.11 ±0.30 0.81 ±0.26 2.87 ±0.57 96.67 ±0.84 98.10 ±0.45 91.98 ±2.20 98.44 ±0.00 96.88 ±0.00

1600 1.33 ±0.30 0.70 ±0.19 1.11 ±0.26 0.81 ±0.26 2.87 ±0.57 97.13 ±0.45 98.16 ±0.44 92.01 ±2.09 98.44 ±0.00 96.88 ±0.00

2000 1.28 ±0.34 0.71 ±0.21 1.07 ±0.25 0.81 ±0.26 2.87 ±0.57 97.15 ±0.54 98.20 ±0.34 91.86 ±2.17 98.44 ±0.00 96.88 ±0.00

Table 10: Unit Ball. Effect of variation of validation data size (Nv), without using a UCB (i.e., C1 = 0) on
error estimates. We keep training data size Nq fixed at 500 and use error threshold ✏a = 1%. We report the
mean and std. deviation over 10 runs with different random seeds.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 3.10 ±1.80 0.68 ±0.81 1.45 ±0.73 1.23 ±0.99 2.87 ±0.57 71.43 ±8.86 96.95 ±1.01 92.29 ±3.27 98.52 ±0.16 96.88 ±0.00

400 1.65 ±0.65 0.32 ±0.15 0.52 ±0.32 0.81 ±0.26 2.87 ±0.57 93.27 ±2.50 96.91 ±0.99 87.86 ±3.73 98.44 ±0.00 96.88 ±0.00

800 1.08 ±0.47 0.24 ±0.16 0.31 ±0.17 0.81 ±0.26 2.87 ±0.57 96.01 ±1.16 96.31 ±1.36 86.21 ±3.55 98.44 ±0.00 96.88 ±0.00

1200 0.78 ±0.27 0.17 ±0.11 0.18 ±0.14 0.81 ±0.26 2.87 ±0.57 96.82 ±0.84 95.96 ±1.40 84.65 ±4.14 98.44 ±0.00 96.88 ±0.00

1600 0.65 ±0.20 0.13 ±0.08 0.12 ±0.09 0.81 ±0.26 2.87 ±0.57 96.93 ±0.57 95.70 ±1.38 83.76 ±3.93 98.44 ±0.00 96.88 ±0.00

2000 0.54 ±0.16 0.21 ±0.11 0.21 ±0.10 0.81 ±0.26 2.87 ±0.57 97.23 ±0.42 96.36 ±1.13 85.72 ±3.47 98.44 ±0.00 96.88 ±0.00

Table 11: Unit-Ball. Effect of variation of validation data size (Nv), without using a UCB (i.e., C1 = 0.25)
on error estimates. We keep training data size Nq fixed at 500 and use error threshold ✏a = 1%. We report the
mean and std. deviation over 10 runs with different random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 1.53 ±0.27 1.16 ±0.35 1.14 ±0.29 16.93 ±2.48 12.53 ±2.24 75.31 ±7.06 31.69 ±10.78 51.47 ±10.46 99.69 ±0.00 99.38 ±0.00

200 1.25 ±0.21 1.04 ±0.25 0.98 ±0.17 7.85 ±1.69 7.08 ±1.82 96.24 ±0.88 73.27 ±8.68 76.05 ±8.19 99.38 ±0.00 98.75 ±0.00

400 1.20 ±0.20 0.94 ±0.17 1.03 ±0.15 1.81 ±0.58 3.25 ±0.81 97.70 ±0.19 96.48 ±1.74 91.08 ±2.63 98.75 ±0.00 97.50 ±0.00

600 1.21 ±0.26 0.44 ±0.13 1.09 ±0.18 0.44 ±0.14 2.25 ±0.56 97.56 ±0.20 98.11 ±0.02 93.19 ±1.60 98.12 ±0.00 96.25 ±0.00

800 1.13 ±0.20 0.12 ±0.05 1.02 ±0.18 0.12 ±0.05 1.76 ±0.50 97.25 ±0.19 97.49 ±0.01 93.23 ±1.01 97.50 ±0.00 95.00 ±0.00

1000 1.08 ±0.19 0.04 ±0.02 1.00 ±0.20 0.04 ±0.02 1.37 ±0.34 97.02 ±0.25 96.87 ±0.01 92.90 ±0.79 96.88 ±0.00 93.75 ±0.00

Table 12: Unit-Ball. Effect of variation of Nq , the maximum number of samples the algorithm can use for
training, without using a UCB (i.e., C1 = 0) on error estimates. We keep validation data size Nv fixed at 4000
and use error threshold ✏a = 1%. We report the mean and std. deviation over 10 runs with different random
seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 0.78 ±0.19 0.29 ±0.25 0.24 ±0.15 16.93 ±2.48 12.53 ±2.24 71.40 ±5.64 19.31 ±8.77 35.90 ±10.66 99.69 ±0.00 99.38 ±0.00

200 0.49 ±0.13 0.16 ±0.09 0.17 ±0.08 7.85 ±1.69 7.08 ±1.82 95.28 ±1.29 59.41 ±10.32 63.77 ±9.15 99.38 ±0.00 98.75 ±0.00

400 0.40 ±0.12 0.15 ±0.07 0.15 ±0.08 1.81 ±0.58 3.25 ±0.81 97.63 ±0.24 92.06 ±2.63 83.64 ±4.76 98.75 ±0.00 97.50 ±0.00

600 0.34 ±0.13 0.12 ±0.05 0.17 ±0.08 0.44 ±0.14 2.25 ±0.56 97.36 ±0.20 97.07 ±0.57 87.92 ±2.68 98.12 ±0.00 96.25 ±0.00

800 0.28 ±0.10 0.07 ±0.03 0.15 ±0.06 0.12 ±0.05 1.76 ±0.50 97.10 ±0.23 97.36 ±0.11 88.96 ±2.14 97.50 ±0.00 95.00 ±0.00

1000 0.25 ±0.10 0.03 ±0.02 0.19 ±0.08 0.04 ±0.02 1.37 ±0.34 96.90 ±0.21 96.84 ±0.03 89.61 ±1.49 96.88 ±0.00 93.75 ±0.00

Table 13: Unit-Ball. Effect of variation of Nq , the maximum number of samples the algorithm can use for
training, using a UCB (i.e., C1 = 0.25) on error estimates. We keep validation data size Nv fixed at 4000 and
use error threshold ✏a = 1%. We report the mean and std. deviation over 10 runs with different random seeds.

32

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

4000 13.88 ±5.42 13.31 ±10.79 12.55 ±7.23 34.34 ±0.32 31.46 ±0.20 0.72 ±0.55 0.48 ±0.04 0.69 ±0.39 95.00 ±0.00 90.00 ±0.00

6000 14.18 ±0.76 11.52 ±0.82 12.21 ±1.49 34.42 ±0.34 31.46 ±0.20 17.29 ±0.72 8.18 ±1.12 11.81 ±2.70 95.00 ±0.00 90.00 ±0.00

8000 13.97 ±0.14 11.31 ±0.51 12.22 ±0.61 34.42 ±0.34 31.46 ±0.20 36.36 ±1.78 23.40 ±1.15 29.99 ±0.97 95.00 ±0.00 90.00 ±0.00

10000 13.42 ±0.29 11.14 ±0.54 12.12 ±0.40 34.42 ±0.34 31.46 ±0.20 43.79 ±0.93 33.38 ±0.72 39.40 ±0.50 95.00 ±0.00 90.00 ±0.00

Table 14: Tiny-ImageNet. Effect of variation of validation data size (Nv), without using a UCB (i.e., C1 = 0)
on error estimates. We keep training data size Nq fixed at 10K and use error threshold ✏a = 10%. We report
the mean and std. deviation over 10 runs with different random seeds.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

4000 10.50 ±6.01 7.37 ±4.57 6.04 ±1.85 34.20 ±0.32 31.52 ±0.27 0.47 ±0.05 0.48 ±0.06 0.43 ±0.01 95.00 ±0.00 90.00 ±0.00

6000 10.61 ±0.62 7.71 ±1.03 8.53 ±1.70 34.42 ±0.34 31.46 ±0.20 10.16 ±1.10 4.31 ±1.10 7.13 ±1.18 95.00 ±0.00 90.00 ±0.00

8000 9.90 ±0.63 6.80 ±0.77 7.81 ±0.85 34.42 ±0.34 31.46 ±0.20 25.84 ±1.57 14.43 ±2.01 19.23 ±1.43 95.00 ±0.00 90.00 ±0.00

10000 8.97 ±0.36 6.87 ±0.48 7.32 ±0.49 34.42 ±0.34 31.46 ±0.20 32.19 ±1.34 21.96 ±1.35 27.01 ±0.98 95.00 ±0.00 90.00 ±0.00

Table 15: Tiny-ImageNet. Effect of variation of validation data size (Nv), using a UCB (i.e., C1 = 0.25) on
error estimates. We keep training data size Nq fixed at 10K and use error threshold ✏a = 10%. We report the
mean and std. deviation over 10 runs with different random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 14.02 ±0.26 11.49 ±0.80 12.17 ±0.35 52.34 ±1.16 42.94 ±0.26 24.34 ±0.86 14.41 ±1.00 25.13 ±0.58 99.00 ±0.00 98.00 ±0.00

4000 14.10 ±0.77 11.58 ±0.26 11.92 ±0.39 43.14 ±0.33 36.07 ±0.41 34.16 ±1.00 21.84 ±1.36 33.41 ±0.65 98.00 ±0.00 96.00 ±0.00

6000 13.55 ±0.17 11.33 ±0.35 12.31 ±0.16 38.73 ±0.59 33.51 ±0.19 37.80 ±1.05 28.59 ±1.53 38.14 ±0.85 97.00 ±0.00 94.00 ±0.00

8000 13.79 ±0.27 11.72 ±0.32 12.36 ±0.30 36.06 ±0.30 32.33 ±0.32 42.00 ±1.71 32.00 ±1.12 39.64 ±1.07 96.00 ±0.00 92.00 ±0.00

10000 13.26 ±0.35 11.42 ±0.28 12.14 ±0.45 34.27 ±0.21 31.47 ±0.17 43.63 ±0.38 33.80 ±0.82 39.23 ±0.37 95.00 ±0.00 90.00 ±0.00

Table 16: Tiny-ImageNet. Effect of variation of Nq , the maximum number of samples the algorithm can use
for training, without using a UCB (i.e., C1 = 0) on error estimates. We keep validation data size Nv fixed
at 10K and use error threshold ✏a = 10%. We report the mean and std. deviation over 5 runs with different
random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 9.22 ±1.04 7.42 ±0.71 7.48 ±0.32 52.34 ±1.16 42.94 ±0.26 17.51 ±1.16 9.33 ±0.66 17.02 ±1.32 99.00 ±0.00 98.00 ±0.00

4000 9.30 ±0.38 6.97 ±0.39 7.37 ±0.21 43.14 ±0.33 36.07 ±0.41 25.01 ±1.20 14.25 ±1.71 22.29 ±0.61 98.00 ±0.00 96.00 ±0.00

6000 9.12 ±0.22 6.85 ±0.26 7.49 ±0.35 38.73 ±0.59 33.51 ±0.19 28.06 ±0.75 17.51 ±0.36 25.60 ±0.34 97.00 ±0.00 94.00 ±0.00

8000 9.21 ±0.14 7.38 ±0.53 7.71 ±0.25 36.06 ±0.30 32.33 ±0.32 30.88 ±0.64 21.18 ±0.90 27.26 ±0.78 96.00 ±0.00 92.00 ±0.00

10000 8.95 ±0.23 7.10 ±0.26 7.42 ±0.36 34.27 ±0.21 31.47 ±0.17 32.31 ±1.21 22.34 ±0.61 27.36 ±0.59 95.00 ±0.00 90.00 ±0.00

Table 17: Tiny-ImageNet. Effect of variation of Nq , the maximum number of samples the algorithm can use
for training, using a UCB (i.e., C1 = 0.25) on error estimates. We keep validation data size Nv fixed at 10K
and use error threshold ✏a = 10%. We report the mean and std. deviation over 5 runs with different random
seeds.

33

Figure 9: Auto-labeling MNIST data using linear classifiers. Validation size = 12k. Maximum training samples
= 1600. Each round algorithm queries 160 samples. Coverage of auto-labeling is 62.9% with 98.0% accuracy.
For the rounds we show, the test error rates are 21.4%, 13.9%, 12.5%, 10.2%, and 9.8%, respectively. For four
columns (left to right), we show: a) The samples that are labeled by TBAL in this round. b) The embeddings
for training samples. c) The embeddings for validation data points. d) The score distribution for the validation
dataset.

34

Figure 10: Auto-labeling CIFAR-10 data using a small network and energy scores. Validation size = 10k.
Maximum training samples = 25k. Each round algorithm queries 2500 samples. Coverage of auto-labeling is
5.3% with 90.0% accuracy. For the rounds we show, the test error rates are 56.6%, 55.2%, 55.6%, 53.0%, and
49.3% respectively. For four columns (left to right), we show: a) The samples that are labeled by TBAL in this
round. b) The embeddings for training samples. c) The embeddings for validation data points. d) The score
distribution for the validation dataset.

35

Figure 11: Auto-labeling CIFAR-10 data using a small network and softmax scores. Validation size = 10k.
Maximum training samples = 25k. Each round algorithm queries 2500 samples. Coverage of auto-labeling is
2.3% with 91.0% accuracy. For the rounds visualized here in each row, the test error rates of the trained classifiers
are 56.6%, 59.1%, 52.8%, 50.5%, and 51.7% respectively. For four columns (left to right), we show: a) The
samples that are labeled by TBAL in this round. b) The embeddings for training samples. c) The embeddings
for validation data points. d) The score distribution for the validation dataset.

36

	Introduction
	Threshold-Based Auto-Labeling Algorithm
	Problem Setup
	Description of the algorithm
	Comparison between Auto-Labeling, Active Learning and Selective Classification

	Theoretical Analysis
	Linear Classifier Setting

	Experiments
	Role of Validation Data
	Role of Training Data Size

	Related Work
	Conclusion and Future Work
	Acknowledgments
	Extended Related Work
	Definitions and Notation
	 Basic Definitions
	Glossary

	Proofs
	Proofs for the General Setup
	Bounds for Finite VC-Dimension Classes
	Homogeneous Linear Classifiers with Uniform Distribution
	Lower Bound

	Additional Experiments
	Additional Experiments on Role of the Hypothesis Class
	Role of Confidence Function
	Detailed Results
	Auto Labeling Visualization

