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Abstract

Creating large-scale high-quality labeled datasets is a major bottleneck in
supervised machine learning workflows. Threshold-based auto-labeling (TBAL),
where validation data obtained from humans is used to find a confidence threshold
above which the data is machine-labeled, reduces reliance on manual annotation.
TBAL is emerging as a widely-used solution in practice. Given the long shelf-life
and diverse usage of the resulting datasets, understanding when the data obtained
by such auto-labeling systems can be relied on is crucial. This is the first
work to analyze TBAL systems and derive sample complexity bounds on the
amount of human-labeled validation data required for guaranteeing the quality of
machine-labeled data. Our results provide two crucial insights. First, reasonable
chunks of unlabeled data can be automatically and accurately labeled by seemingly
bad models. Second, a hidden downside of TBAL systems is potentially prohibitive
validation data usage. Together, these insights describe the promise and pitfalls
of using such systems. We validate our theoretical guarantees with extensive
experiments on synthetic and real datasets1.

1 Introduction
Machine learning (ML) models with millions or even billions of parameters are used to obtain
state-of-the-art performance in many applications, e.g., object identification [53], machine
translation [63], and fraud detection [71]. Such large-scale models require training on large-scale
labeled datasets. As an outcome, the typical supervised ML workflow begins with the construction of
a large-scale high quality dataset. Datasets with up to millions of labeled data points have played a
pivotal role in the advancement of computer vision. However, collecting labeled data is an expensive
and time consuming process. A common approach is to rely on the services of crowdsourcing
platforms such as Amazon Mechanical Turk (AMT) to get groundtruth labels.

Even with crowdsourcing, obtaining labels for the entire dataset is expensive. To reduce costs, data
labeling systems that partially rely on using a model’s predictions as labels have been developed.
Such systems date back to teacher-less training [21]. Modern examples include Amazon Sagemaker
Ground Truth [58] and others [61, 55, 2, 64]. These approaches can be broadly termed auto-labeling.

Auto-labeling systems aim to label unlabeled data using predictions from ML models that are often
trained on small amounts of human labeled data which can produce incorrect labels. The shelf
life of datasets is longer than those of models, e.g., ImageNet continues to be a benchmark for
many computer vision tasks [14] fifteen years after its initial development. As a result, to reliably
train new models on auto-labeled datasets and deploy them, we need a thorough understanding of
how reliable the datasets output by these auto-labeling systems are. Unfortunately, many widely
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Figure 1: High-level workflow threshold-based auto-labeling (TBAL). Box (B) shows the key component
estimating the auto-labeling region using validation data and auto-labeling points in it.

used commercial auto-labeling systems [58, 55] are largely opaque with limited public information
on their functionality. It is therefore unclear whether the quality of the datasets obtained can be
trusted. To address this, we study the high level workflow of a popular threshold-based auto-labeling
(TBAL) system (see Figure 1). We emphasize that our goal is to understand such systems and their
performance—not to promote them as a superior alternative to other approaches. Our goal is:

Goal. Develop a fundamental understanding of TBAL systems. This is crucial since there is a
lack of theoretical understanding of the reliability of these systems despite their wide adoption.

The TBAL systems we study (Figure 1) work iteratively. At a high level, in each iteration, the
system trains a model on currently available human labeled data and decides to label certain parts
of unlabeled data using the trained model by finding high-accuracy regions using validation data. It
then collects human labels on a small portion of unlabeled data that is deemed helpful for training the
current model in the next iteration. The validation data is created by sampling i.i.d. points from the
unlabeled pool and querying human labels for them. In addition to training data, the validation data
is a major driver of the cost and accuracy of auto-labeling and will be a key component in our study.

Our Contributions. We study TBAL systems (Figure 1) and make the following contributions:

• Provide the first theoretical characterization of TBAL systems, developing tradeoffs between
the quantity of manually labeled data and the quantity and quality of auto-labeled data (Section 3).

• Empirical results validating our theoretical understanding on real and synthetic data (Section 4).

Our results reveal two important insights. Promisingly, even poor quality models are capable of
reliably labeling at least some data when we have access to sufficient validation data and a good
confidence function that can accurately quantify the confidence of a given model on any data point.
On the downside, in certain scenarios, the quantity of the validation data required to reach a certain
quantity and quality of auto-labeled data can be high.

2 Threshold-Based Auto-Labeling Algorithm

We begin with the problem setup and describe the TBAL algorithm that is inspired by the commercial
systems [58]. Then we provide experiments and theoretical analysis shedding light on the pros and
cons of TBAL. We emphasize that TBAL is not our proposal and our goal is to understand the
effectiveness of such an auto-labeling system.

2.1 Problem Setup
Notation. Let the instance and label spaces be X and Y = {1, . . . , k}. We assume that there is
some deterministic but unknown function f∗ : X 7→ Y that assigns true label y = f∗(x) to any
x ∈ X . We also assume that there is a noiseless oracle O that can provide the true label y ∈ Y for
any given x ∈ X . Let Xpool ⊆ X denote a sufficiently large pool of unlabeled data to be labeled.

The goal of an auto-labeling algorithm is to produce accurate labels ỹi ∈ Y for points xi ∈ Xpool

while minimizing the number of queries to the oracle. Let [m] := {1, 2, . . . ,m}, A ⊆ [N ] be the set
of indices of auto-labeled points, and Xpool(A) be these points. The auto-labeling error Ê(Xpool(A))
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and the coverage P̂(Xpool(A)) are defined as

Ê(Xpool(A)) :=
1

Na

∑
i∈A

1(ỹi ̸= f∗(xi)) and P̂(Xpool(A)) :=
|A|
N

=
Na

N
, (1)

where Na denotes the size of auto-labeled set A. TBAL algorithm aims to auto-label the dataset so
that Ê(Xpool(A)) ≤ ϵa while maximizing coverage P̂(Xpool(A)) for any given ϵa ∈ (0, 1).

Algorithm 1 Threshold-based Auto-Labeling (TBAL)
Input: Unlabeled pool Xpool, auto labeling error

threshold ϵa, seed data size ns, batch size for active
query nb, labeled validation data pool Dval.

Output: Dout = {(xi, ỹi) : ∀xi ∈ Xpool}
1: X

(1)
u = Xpool;D

(1)
val = Dval

2: D
(1)
query = randomly_query_batch(X(1)

u , ns)

3: Remove queried points from X
(1)
u

4: D
(0)
train = ϕ; i = 1;Dout = D

(1)
out = D

(1)
query

5: while X
(i)
u ̸= ϕ do

6: D
(i)
train = D

(i−1)
train ∪D

(i)
query

7: ĥi = empirical_risk_min(H, D
(i)
train)

8: t̂i = Estimate Threshold(X(i)
u , D

(i)
val, ϵa, ĥi, n0)

9: D
(i)
auto = {(x, ĥi(x)) : x ∈ X

(i)
u , g(ĥi,x) ≥ t̂i}

10: X
(i+1)
u = {x : x ∈ X

(i)
u , g(ĥi,x) < t̂i}

11: D
(i+1)
val = {(x, y) : (x, y) ∈ D

(i)
val, g(ĥi,x) < t̂i}

12: D
(i+1)
query = active_query_batch(ĥi, X

(i+1)
u , nb)

13: Remove queried points from X
(i+1)
u

14: Dout = Dout ∪D
(i)
auto ∪D

(i+1)
query

15: i = i+ 1
16: end while

Algorithm 2 Estimate Threshold

Input: X
(i)
u , D

(i)
val, ϵa, ĥi, n0

Output: Threshold t̂i
1: Ti = {g(ĥi,x) : (x, y) ∈ D

(i)
val}

2: for t ∈ Ti do
3: Nt = |{x ∈ X

(i)
v : g(ĥi,x) ≥ t}|

4: end for
5: T̃i = {t : t ∈ Ti, Nt ≥ n0} ∪ {∞}
6: t̂i = min{t ∈ T̃i : Êa(ĥi, t|X(i)

v ) + C1σ̂i ≤ ϵa}

Hypothesis Class and Confidence
Function. A TBAL algorithm is given
a fixed hypothesis space H and a
confidence function g : H × X 7→ T ⊆
R+ that quantifies the confidence of h ∈
H on any data point x ∈ X . Confidence
functions include prediction probabilities
and margin scores. For example, when H
is a set of unit-norm homogeneous linear
classifiers, i.e. hw(x) = sign(wTx)
with w ∈ {w ∈ Rd : ||w||2 =
1}, a reasonable confidence function is
g(hw,x) = |wTx|.
Note that the target f∗ might not
be in the hypothesis space H. Our
analysis (Section 3) shows that the TBAL
algorithm can work well, i.e., accurately
label a reasonable fraction of unlabeled
data with simpler hypothesis classes that
do not contain the target hypothesis f∗.
We illustrate this with a simple example
in Section 2.3 and Figure 2. Note as well
that the features x could be raw features
or representations from self-supervised
techniques, pre-trained models, etc. We
analyze TBAL in settings (i) with no
assumptions on the features and (ii) when
the features are linearly separable.

2.2 Description of the algorithm
The TBAL algorithm is given in
Algorithm 1. It starts with an unlabeled
pool Xpool and an auto-labeling error
threshold ϵ. For ease of exposition, the
algorithm is given the labeled validation
set Dval of size Nv separately. In
practice, it is created by selecting points
at random from Xpool. The algorithm starts with an initial batch of ns random data points and obtains
oracle labels for these. The algorithm works in an iterative manner using the following steps.

1. Oracle labeled data obtained in each iteration i is added to the training pool D(i)
train. It is used to

train a model ĥi by performing empirical risk minimization (ERM).
2. Find the region where ĥi can auto-label accurately. The algorithm estimates a threshold t̂i on the

confidence score above which it can auto-label with the desired auto-labeling accuracy on the
validation data (see Algorithm 2). Thresholds that have too little validation data are discarded,
since their estimates are unreliable. The minimum threshold is found such that the sum of the
estimated error Êa(ĥi, t|X(i)

v ) (see eq. (2)) and an upper confidence bound using the standard
deviation of the estimated error, is at most the given auto-labeling error threshold.

3. Auto-label the points in the pool, X(i)
u , which have confidence g(ĥi,x) > t̂i. These are added

to the set Dout and removed from the unlabeled pool. The validation points that fall in the
auto-labeled region are also removed from the validation set so that in the next round the validation
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Figure 2: Comparison of TBAL, active learning (AL) followed by selective classification (AL+SC) and passive
learning (PL) followed b selective classification (PL+SC) on the Circles dataset (Sec. 2.3) using linear classifiers
and confidence functions. (a) Samples auto-labeled, queried, and left unlabeled. (b) The auto-labeling error and
coverage achieved by the algorithms. (50 trials.)

set and the unlabeled pool are from the same region and the same distribution. Removing the
auto-labeled points from Xpool is a crucial step in the TBAL algorithm that enables it to focus only
on the remaining unlabeled regions in the next iteration.

4. If there are points left in Xpool, the algorithm selects points using some active querying strategy
[57], obtains human labels for them, and adds them to the training pool. Note that the auto-labeled
data is not added into the training set.

This process continues until there are no data points left to be labeled. The algorithm then outputs the
labeled dataset, which is a mixture of human- and machine-labeled points.

2.3 Comparison between Auto-Labeling, Active Learning and Selective Classification

What is the difference between TBAL and methods such as active learning and selective classification?

Active learning. The goal of active learning [57] (AL) is to find the best model in hypothesis class H
by training with less labeled data compared to passive learning. This is usually achieved by obtaining
labels for the most informative points. Note that the end goal is to output a model from the function
class whose predictions on new data as good as the best model in the function class could.

Selective Classification. The goal of selective classification (SC) [17] is to find the best combination
of the hypothesis and selection functions to minimize error and maximize coverage of selection
regions.

Auto-Labeling. The output of an auto-labeling procedure is a labeled dataset (not a model). When the
hypothesis class is of lower complexity, it is often not possible to find a good classifier. The goal
of an auto-labeling system is to label as much of the unlabeled data as accurately as possible with a
given function class and with limited labeled data from humans.

Is active learning alone enough to auto-label data? AL has been found to be effective in reducing
the number of labels needed to learn versus passive learning, particularly in low-noise cases [28].
Doing auto-labeling using AL followed by SC may be effective in such settings. However, in
real-world scenarios, noise levels may be higher and the hypothesis class could be misspecified. In
these instances, using the model learned through active learning to automatically label all data may
result in a high number of errors.

We illustrate this difference between AL, SC, and auto-labeling through an example. Suppose the
data consists of two concentric circles, one for each class, with the same number of points per class
(Figure 2(a)). This setting is not linearly separable. We run TBAL, AL, and AL followed by SC
with an error tolerance of ϵa = 1% and linear classifiers and confidence functions. The results are
shown in Figure 2. Note that the multiple optimal linear classifiers will all incur an error of 50%. AL
algorithms can only output models that make at least 50% error. If we naively use the output model
for auto-labeling, we can obtain near full coverage but incur around 50% auto-labeling error. If we
use the model output by AL with threshold-based SC, labeling error is reduced. However, it can only
label ≈ 25% of the unlabeled data. In contrast, TBAL can label almost all of the data accurately
(close to 100% coverage) with less than 1% auto-labeling error.

4



3 Theoretical Analysis
The performance of the TBAL (Algorithm 1) depends on many factors including the hypothesis class,
the accuracy of the confidence function, the data sampling strategy, and the size of the training and
validation data. In particular, the amount of validation data plays a critical role in determining the
accuracy of the confidence function, which in turn affects the accuracy and coverage.

We derive bounds on the auto-labeling error and the coverage for Algorithm 1 in terms of the size of
the validation data, the number of auto-labeled points N (k)

a , and the Rademacher complexity of the
extended hypothesis class HT,g induced by the confidence function g. Our first result, Theorem (3.2),
applies to general settings and makes no assumptions on the particular form of the hypothesis class,
the data distribution, and the confidence function. We then instantiate and specialize the results for a
specific setting in Section 3.1. We introduce some notation to aid in stating our results,

Definition 3.1. (Hypothesis Class with Abstain) The function g, set T and H induce an extended
hypothesis class HT,g := H × T . Any function (h, t) ∈ HT,g is defined as (h, t)(x) = h(x) if
g(h,x) ≥ t and ⊥ otherwise. Here (h, t)(x) =⊥ means (h, t) abstains in classifying the point x.

Error Definitions. Let S ⊆ X denote a non-empty sub-region of X and S ⊆ S be a finite set of
i.i.d. samples from S. The subset S(h, t) ⊆ S denotes the regions where (h, t) does not abstain
i.e. S(h, t) := {x ∈ S : (h, t)(x) ̸=⊥}, and the conditional probability mass associated with it is
P(h, t|S) := P(S(h, t)|S), and its empirical counterpart P̂(h, t|S) := |S(h, t)|/|S|. We use P(S) to
denote the probability mass of set S and P(S ′|S) for the conditional probability of subset S ′ ⊆ S
given S. The population level and empirical auto-labeling errors are defined as follows:

Ea(h, t|S) := Ex|S [ℓ
⊥
0−1(h, t,x, y)]/P(h, t|S),

Êa(h, t|S) := (
∑

xi∈S(h,t) ℓ
⊥
0−1(h, t,xi, yi))/|S(h, t)| (2)

Here ℓ⊥0−1(h, t,x, y) := ℓ0−1(h,x, y) · ℓ⊥(h, t,x) with ℓ0−1(h,x, y) := 1(h(x) ̸= y), and
ℓ⊥(h, t,x) := 1(g(h,x) ≥ t).

Rademacher Complexity. The Rademacher complexities for the function classes induced by the
H, T, g and the loss functions are defined as Rn

(
HT,g

)
:= Rn

(
H, ℓ0−1

)
+Rn

(
HT,g, ℓ⊥

)
. Let ĥi

and t̂i be the ERM solution and the auto-labeling threshold at epoch i. Let p
0
∈ (0, 1) be a constant

such that P(ĥi, t̂i|X (i)) ≥ p0 for all i. Let X(i)
v denote the validation set, and n

(i)
v and n

(i)
a the number

of validation and auto-labeled points at epoch i. Let Êa(ĥi, t̂i|X(i)
v ) be the empirical conditional risk

of ĥi in the region where g(ĥi,x) ≥ t̂i evaluated on the validation data X
(i)
v .

We provide the following guarantees on the auto-labeling error and the coverage achieved by TBAL.

Theorem 3.2. (Overall Auto-Labeling Error and Coverage) Let k denote the number of rounds
of the TBAL Algorithm 1. Let n(i)

v , n
(i)
a denote the number of validation and auto-labeled points

at epoch i and n(i) = |X(i)|. Let Xpool(Ak) be the set of auto-labeled points at the end of round
k. N

(k)
a =

∑k
i=1 n

(i)
a be the total number of auto-labeled points. Then, for any δ ∈ (0, 1), with

probability at least 1− δ,

Ê
(
Xpool(Ak)

)
≤
∑k

i=1
n(i)
a

N
(k)
a

(
Êa
(
ĥi, t̂i|X(i)

v︸ ︷︷ ︸
(a)

)
+ 4

p0

(
R

n
(i)
v

(
HT,g

)
+ 2

p0

√
1

n
(i)
v

log( 8kδ )︸ ︷︷ ︸
(b)

)

+ 4
p0

(∑k
i=1

n(i)
a

N
(k)
a

R
n
(i)
a

(
HT,g

)
+
√

k

N
(k)
a

log( 8kδ )
)

︸ ︷︷ ︸
(c)

, and

P̂
(
Xpool(Ak)

)
≥
∑k

i=1 P
(
X (i)(ĥi, t̂i)

)
− 2Rn(i)

(
HT,g

)
−
√

2k2

N log
(
8k
δ

)
.

Discussion. We interpret this result, starting with the auto-labeling error term Ê(Xpool(Ak)). The
term (a) Êa(ĥi, t̂i|X(i)

v ) is the empirical conditional error in the auto-labeled region computed on the
validation data in i-th round, which is at most ϵa. Thus, summing term (a) over all the rounds is at
most ϵa. The term (b) provides an upper bound on the excess error over the empirical estimate term
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(a) as a function of the Rademacher complexity of HT,g and the validation data used in each round.
The last term (c) captures the variance in the overall estimate as a function of the total number of
auto-labeled points and the Rademacher complexity of HT,g. If we let n(i)

v ≥ nv i.e. the minimum
validation points ensured in each round, then we can see the second term is O(Rnv

(HT,g)) and the
third term is O(

√
1/nv).

Therefore, validation data of size O
(
1/ϵ2a

)
in each round is sufficient to get a O(ϵa) bound on the

excess auto-labeling error. The terms with Rademacher complexities suggest that it is better to use a
hypothesis class and confidence function such that the induced hypothesis class has low Rademacher
complexity. While such a hypothesis class might not be rich enough to include the target function, it
would still be helpful for efficient and accurate auto-labeling of the dataset which can then be used
for training richer models in the downstream task. The coverage term provides a lower bound on
the empirical coverage P̂(Xpool(Ak)) in terms of the true coverage of the sequence of estimated
hypotheses ĥi and threshold t̂i.

We note that the size of the validation data needed to guarantee the auto-labeling error in each round
by Algorithm 1 is optimal up to log factors. This follows by applying a result on the tail probability
of the sum of independent random variables due to Feller [20]:

Lemma 3.3. Let c1, c2 and σ > 0. Let xi ∈ X be a set of n i.i.d. points from X with corresponding
true labels yi. Given (h, t) ∈ HT,g , let E

[(
ℓ⊥0−1(h, t,xi, yi)−E(h, t|X )

)2]
= σ2

i > σ2 for every xi

for σi > 0 and let
∑n

i σ
2
i ≥ c1 then for every ϵ ∈ [0, (

∑n
i=1 σ

2
i )/

√
c1] with nv < 12σ2 log(4c2)/ϵ

2,
the following holds w.p. at least 1/4, Ea(h, t|X ) > Êa(h, t|X) + ϵ.

Therefore, if a sufficiently large validation set is not used in each round, there is a constant probability
of erroneously deciding on a threshold for auto-labeling. Such a requirement on validation data
also applies to active learning if we seek to validate the output model. Bypassing this requirement
demands the use of approaches that are different from threshold-based auto-labeling and traditional
validation techniques. We note the possibility of using recently proposed active testing techniques
[33], a nascent approach to reducing validation data usage.

3.1 Linear Classifier Setting
Next, we consider a simple setting where active learning is known to be optimal to see if TBAL
can offer similar performance guarantees. To do so, we instantiate results from 3.2 to homogeneous
linear separators under the uniform distribution in the realizable setting. Let Px be supported on
the unit ball in Rd, X = {x ∈ Rd : ||x|| ≤ 1}. Let W = {w ∈ Rd : ||w||2 = 1} = Sd,
H = {x 7→ sign(⟨w,x⟩)∀w ∈ W}, the score function be given by g(h,x) = g(w,x) = |⟨w,x⟩|,
and set T = [0, 1]. For simplicity, we will use W in place of H.

Corollary 3.4. (Overall Auto-Labeling Error and Coverage) Let ŵi, t̂i be the ERM solution and the
auto-labeling threshold respectively at epoch i. Let n(i)

v , n
(i)
a denote the number of validation and

auto-labeled points at epoch i. Let the TBAL algorithm run for k-epochs. Then, for any δ ∈ (0, 1),
w.p. at least 1− δ,

Ê
(
Xpool(Ak)

)
≤
∑k

i=1
n(i)
a

N
(k)
a

(
Êa
(
ŵi, t̂i|X(i)

v

)︸ ︷︷ ︸
(a)

+ 4
p
0

√
2

n
(i)
v

(
2d log

(
en

(i)
v

d

)
+ log

(
8k
δ

)))
︸ ︷︷ ︸

(b)

+ 4
p0

(√
2k

N
(k)
a

(
2d log

(
eN

(k)
a

d

)
+ log

(
8k
δ

)))
︸ ︷︷ ︸

c

, and

P̂
(
Xpool(Ak)

)
≥ 1−mini t̂i

√
4d/π − 2k

√
2
N

(
2d log

(
eN
d

)
+ log

(
8k
δ

))
.

These results imply that by ensuring the sum of the empirical validation error term (a) and the upper
confidence interval to be less than ϵa in each round of the algorithm we can ensure that the overall
auto-labeling error remains below ϵa. Furthermore, by applying standard VC theory to the first round,
we obtain that t̂1 ≤ 1/2. Therefore, right after the first round, we are guaranteed to label at least half
of the unlabeled pool. We empirically observe that TBAL has coverage at par with active learning
while respecting the auto-labeling error constraint (See Figure 4(a)).
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Figure 3: Left: Simplified upper bound from Corollary
3.4 (ignoring constants) on excess auto-labeling error for
the Unit-Ball setting i.e. homogeneous linear classifier
with d = 30. Right: The worst observed auto-labeling
error over 25 trials in the Unit-Ball experiment.

Tightness of the Bounds. We study this in
the setting of the Unit-Ball experiment. The
upper bound on excess risk in this setting is
given in Corollary 3.4 which is an instantiation
of our general results to this specific setting.
We consider a simplified form of the upper
bound by ignoring the constants to get a sense
of the rate in terms of the validation data
size. We compute this simplified upper bound
for different amounts of validation data. We
compare these with the maximum auto-labeling
error observed over 25 runs of auto-labeling in
the Unit-Ball setting with different random seeds
for each validation data size. The results are in Figure 3. As expected, we see that the worst-case
error rate follows a similar rate as our upper bound but the upper bound is conservative. Next, we
explain why this is the case.

Our upper bound is slightly conservative, as it is based on a uniform bound over all hypotheses in a
given hypothesis class. Since the individual hypotheses whose excess auto-labeling error we need
to bound are not known a priori we need to derive a bound on the number of validation samples
using which we can guarantee that the excess auto-labeling error of any hypothesis (model) is small
with high probability. Note that this is a conservative (worst-case) analysis to get an upper bound on
the validation sample complexity. The upper bound has two parts: a) the Rademacher complexity
of the hypothesis class and b) a term with the number of validation samples. We note that on the
validation samples, it matches lower bounds order-wise (see Lemma 3.3). This is the first analysis
to provide these bounds based on uniform convergence without making any assumptions about the
data distributions or hypothesis class. We provide further discussion on the role of Rademacher
complexity in the Appendix C.1.

4 Experiments
We study the effectiveness of TBAL on synthetic and real datasets. We validate our theoretical results
and aim to understand the amount of labeled validation and training data required to achieve a certain
auto-labeling error and coverage. We also seek to understand whether our findings apply to real
data—where labels may be noisy—along with how TBAL performs compared to common baselines.

Baselines. We compare TBAL to the following methods:,

a) Passive Learning (PL) queries a subset of the points randomly to train a model from a given
model class and then uses it to predict the labels for the remaining unlabeled pool.

b) Active Learning (AL) (using margin-random query strategy, described below) trains a model from
a model class and uses it to predict the labels for the remaining unlabeled pool.

c) Passive Labeling + Selective Classification (PL+SC) first performs passive learning to train a
model from a given model class. Then it performs auto-labeling on the unlabeled data using
threshold-based selective classification with the model output by passive learning. Only those
unlabeled points that are deemed as fit to be labeled by the selection function are auto-labeled.

d) Active Learning + Selective Classification (AL+SC) first performs active learning (using
margin-random query strategy) to train a model from a given model class. It then performs
auto-labeling using threshold-based selective classification with the model output by AL.

For selective classification in the above methods, we use Algorithm 2 to estimate the threshold and use
it to perform auto-labeling. In experiments, we modify Algorithm 2 slightly—instead of estimating a
single threshold for all classes, we estimate thresholds for each class separately.

Active Querying Strategy. We use the margin-random query strategy for querying the next batch of
training data. In this strategy, the algorithm first sorts the points based on the margin (uncertainty)
score and then selects the top Cnb (C > 1) points from which nb points are picked at random. This is
a simple and computationally efficient method that balances the exploration and exploitation trade-off.
We note that other active-querying strategies exist; we use margin-random as our standard querying
strategy to keep the focus on comparing auto-labeling—not active learning approaches.
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Nv
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
100 3.10 ±1.80 0.68 ±0.81 71.43 ±8.86 96.95 ±1.01

400 1.97 ±0.76 0.59 ±0.18 93.99 ±2.39 97.89 ±0.50

800 1.64 ±0.50 0.66 ±0.19 96.26 ±1.33 98.06 ±0.53

1200 1.39 ±0.39 0.67 ±0.19 96.67 ±0.84 98.10 ±0.45

1600 1.33 ±0.30 0.70 ±0.19 97.13 ±0.45 98.16 ±0.44

2000 1.28 ±0.34 0.71 ±0.21 97.15 ±0.54 98.20 ±0.34

Nv
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
100 3.10 ±1.80 0.68 ±0.81 71.43 ±8.86 96.95 ±1.01

400 1.65 ±0.65 0.32 ±0.15 93.27 ±2.50 96.91 ±0.99

800 1.08 ±0.47 0.24 ±0.16 96.01 ±1.16 96.31 ±1.36

1200 0.78 ±0.27 0.17 ±0.11 96.82 ±0.84 95.96 ±1.40

1600 0.65 ±0.20 0.13 ±0.08 96.93 ±0.57 95.70 ±1.38

2000 0.54 ±0.16 0.21 ±0.11 97.23 ±0.42 96.36 ±1.13

Table 1: Unit-Ball. Effect of variation of validation data size (Nv) with and without using a UCB on error
estimates. We keep training data size Nq fixed at 500 and use error threshold ϵa = 1%. We report the mean and
std. deviation over 10 runs with different random seeds. Left: with C1 = 0. Right: with C1 = 0.25.

Nv
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
200 4.77 ±0.18 3.35 ±0.80 83.14 ±3.65 78.53 ±7.05

400 4.57 ±0.26 3.53 ±0.73 90.70 ±3.11 86.39 ±5.11

600 4.32 ±0.17 3.70 ±0.63 92.96 ±0.46 88.90 ±4.83

800 4.66 ±0.20 3.84 ±0.70 92.42 ±0.89 88.67 ±3.88

1000 4.67 ±0.16 3.90 ±0.68 92.89 ±0.91 89.79 ±3.09

Nv
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
200 2.28 ±0.21 3.11 ±0.86 68.24 ±6.20 57.77 ±13.09

400 1.29 ±0.10 1.98 ±0.40 63.81 ±4.86 63.06 ±10.70

600 1.41 ±0.20 1.81 ±0.22 69.64 ±3.98 62.92 ±9.20

800 1.62 ±0.30 2.04 ±0.35 67.45 ±3.72 63.22 ±7.89

1000 1.64 ±0.23 1.97 ±0.26 70.28 ±2.82 66.11 ±8.00

Table 2: IMDB. Effect of variation of validation data size (Nv) with and without using a UCB on error estimates.
We keep training data size Nq fixed at 500 and use error threshold ϵa = 5%. We report the mean and std.
deviation over 10 runs with different random seeds. Left: with C1 = 0. Right: with C1 = 0.25.

Datasets. We use the following synthetic and real datasets. We also provide empirical results on
MNIST and another synthetic dataset in the Appendix. For each dataset, we split the data into two
sufficiently large pools. One is used as Xpool on which auto-labeling algorithms are run and the other
is used as Xval from which the algorithms subsample validation data.

a) Unit-Ball is a synthetic dataset of uniformly sampled points from the d-dimensional unit ball.
The true labels are generated using a homogeneous linear separator with w = [1/

√
d, . . . , 1/

√
d].

We use d = 30 and generate N = 20K samples, out of which 16K are in Xpool and 4K are in
Xval. The dataset has just two classes but there is no margin between them.

b) Tiny-ImageNet [1] is a subset of the larger ImageNet [14] dataset, designed for image classification
tasks. It consists of 200 classes, each with 500 training images and 50 validation and test images.
With a total of 100K images, Tiny ImageNet provides a diverse and challenging dataset. We use
pre-computed embeddings of the images using CLIP [50].

c) IMDB Reviews [41] is a comprehensive collection of movie reviews, consisting of 50K individual
reviews. It is a balanced dataset of positive and negative labels. We use the standard train set
of size 25K and split it into Xpool and Xval of sizes 20K and 5K respectively. We compute
embeddings of reviews using a pre-trained model bge-large-en [70] from the Massive Text
Embedding Benchmark (MTEB) [44, 19].

d) CIFAR-10 [36] is an image dataset with 10 classes. We randomly split the standard training set
into Xpool of size 40K and the validation pool of size 10K. We use the raw features for training.

Models and Training. For the linear models, we use SVM with the usual hinge loss and train it
to loss tolerance 10−5. To train a multi-layer perceptron (MLP) on the pre-computed embeddings
of IMDB and Tiny-ImageNet we use SGD with a learning rate of 0.05, 0.1 respectively, and batch
size of 64. To train the medium CNN we use SGD with a learning rate of 10−2, batch size 256, and
momentum of 0.9. More details on model training are in the Appendix.

The score function g. For SVMs we use the standard implementations of [69, 46] in sklearn to get
the prediction probabilities and use them as the score function. Neural networks use softmax output.

4.1 Role of Validation Data
The TBAL algorithm uses validation data to estimate the auto-labeling errors at various thresholds
to determine the threshold for automatically labeling points accurately. Thus, it is crucial to have
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Nv
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
2000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

4000 13.88 ±5.42 13.31 ±10.79 0.72 ±0.55 0.48 ±0.04

6000 14.18 ±0.76 11.52 ±0.82 17.29 ±0.72 8.18 ±1.12

8000 13.97 ±0.14 11.31 ±0.51 36.36 ±1.78 23.40 ±1.15

10000 13.42 ±0.29 11.14 ±0.54 43.79 ±0.93 33.38 ±0.72

Nv
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
2000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

4000 10.50 ±6.01 7.37 ±4.57 0.47 ±0.05 0.48 ±0.06

6000 10.61 ±0.62 7.71 ±1.03 10.16 ±1.10 4.31 ±1.10

8000 9.90 ±0.63 6.80 ±0.77 25.84 ±1.57 14.43 ±2.01

10000 8.97 ±0.36 6.87 ±0.48 32.19 ±1.34 21.96 ±1.35

Table 3: Tiny-ImageNet. Effect of variation of validation data size (Nv) with and without using a UCB on
error estimates. We keep training data size Nq fixed at 10k and use error threshold ϵa = 10%. We report the
mean and std. deviation over 5 runs with different random seeds. Left: with C1 = 0. Right: with C1 = 0.25.
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(a) Unit-Ball: varying training samples size, validation
samples size=4K, ϵa = 1%, C1 = 0.25.
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(b) CIFAR-10: varying training samples size,validation
size=10K, ϵa = 10%, C1 = 0.25.

Figure 4: Results for varying Nq, the maximum number of samples algorithm can use for training
while providing sufficient validation samples.

accurate estimates of the auto-labeling errors. Our analysis shows that to get such good estimates,
large amounts of validation data are needed. In this section, we study the effect of varying the amount
of validation data on auto-labeling performance.

Setup. We fix the maximum training data size Nq and run the algorithm with different amounts
of validation data. We also consider the two cases where the algorithm uses an upper confidence
bound on the error estimate and where it does not. We use the Unit-Ball, IMDB, Tiny-ImageNet,
and datasets for this study with Nq = 500, 500, and 10K respectively, and the auto-labeling error
thresholds ϵa = 1%, 5%, 10%, respectively. Initial seed data of size ns is 20% of Nq and query batch
size nb is 5% of Nq; C = 2 for both AL and TBAL for both datasets. We give the same initial seed
samples of size ns to all the methods to ensure they have the same starting point.

Results. Tables 1,2 and 3 demonstrate the impact of validation data on the performance of TBAL and
other algorithms. The auto-labeling error and coverage of TBAL and other methods are affected by the
amount of validation data provided. When the validation data is insufficient, the auto-labeling error
of TBAL increases. However, as more validation data is used, the auto-labeling error and coverage
of TBAL improves. Providing too little Xval can lead to incorrect estimates of the auto-labeling
error, which in turn results in poor auto-labeling performance. This is further highlighted in our
theoretical analysis as seen in Theorem 3.2. We also take a more nuanced look at the performance
when the algorithm uses an upper confidence bound (with C1 = 0.25) on the estimates and when it
does not. We see the effects of not using any upper confidence bound (i.e. C1 = 0). The left side
tables in Tables 1,2 and 3 show the results when C1 = 0 and the right side tables show the results
when C1 = 0.25. These show that not using UCB leads to high auto-labeling error (i.e. not meeting
the guarantees) even when there is a sufficient amount of validation data. This can happen with high
coverage as well—yielding a dataset with large errors. On the other hand using UCB, i.e. C1 = 0.25,
the algorithm can keep the auto-labeling error below the given threshold but suffers in coverage.

In the above Tables, we omitted AL, PL, and PL+SC for clarity. We provide full results with all
baselines in Appendix D.3.

4.2 Role of Training Data Size

The labels queried for model training also play an important role in the process while incurring costs
to obtain. The next experiment focuses on the impact of training data on auto-labeling.
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Nq
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
200 1.67 ±0.29 2.15 ±0.45 73.30 ±3.49 57.17 ±11.09

400 1.63 ±0.19 1.61 ±0.29 72.59 ±3.16 64.53 ±16.61

600 1.67 ±0.21 1.83 ±0.30 71.38 ±2.15 70.50 ±5.68

800 1.67 ±0.27 1.90 ±0.31 69.10 ±4.51 65.74 ±10.14

1000 1.62 ±0.22 1.97 ±0.35 73.42 ±2.84 68.05 ±5.56

Nq
Error (%) Coverage (%)

TBAL AL+SC TBAL AL+SC
2000 9.22 ±1.04 7.42 ±0.71 17.51 ±1.16 9.33 ±0.66

4000 9.30 ±0.38 6.97 ±0.39 25.01 ±1.20 14.25 ±1.71

6000 9.12 ±0.22 6.85 ±0.26 28.06 ±0.75 17.51 ±0.36

8000 9.21 ±0.14 7.38 ±0.53 30.88 ±0.64 21.18 ±0.90

10000 8.95 ±0.23 7.10 ±0.26 32.31 ±1.21 22.34 ±0.61

Table 4: Results for varying Nq, the maximum number of samples algorithm can use for training.
Left: IMDB with Nv = 1000, C1 = 0.25, ϵa = 5%. Right: Tiny-ImageNet with Nv = 10K,C1 =
0.25, ϵa = 10%. Mean and std. deviations are reported.

Setup. We limit the amount of training data the algorithm can use and record the resulting
auto-labeling error and coverage. We ensure all algorithms have sufficiently large but equal amounts
of validation data. We run on Unit-Ball, IMDB, Tiny-Imagenet, and CIFAR-10 datasets with the
same values of ns, nb, and C as in previous experiments.

Results. Figures 4(a), 4(b), and 2(b) indicate that TBAL and methods utilizing selective
classification (AL+SC, PL+SC) maintain a high level of accuracy, even in scenarios where minimal
training samples are used. This is expected as the threshold estimation method (when used with
sufficient validation data) will find auto-labeling thresholds such that the auto-labeling error does
not exceed ϵa. The impact of training data size can be seen clearly in the coverage achieved by the
algorithms. As expected, with fewer training samples the model has low accuracy leading to low
coverage. However, as more samples are acquired, a more accurate model within the function class is
learned, resulting in increased coverage. The Appendix D has additional discussion and results.

5 Related Work
We briefly review related work, deferring a more detailed discussion to the Appendix A.

There is a rich body of work on active learning (AL) [57, 12, 30, 28, 8] focused on learning the best
model in a function class with less labeled data than passive learning. Various AL algorithms have
been developed and analyzed, e.g., uncertainty sampling [62, 45], disagreement region based [9, 27],
margin based [4] and abstention based methods that minimize the Chow’s excess risk [72].

Selective classification (SC) equips a given classifier with the option to abstain from prediction in
order to guarantee prediction quality. The foundations for SC are laid down in [17, 67, 18, 68] where
results on the error rate in the prediction region and the coverage of the given classifier are provided.
However, these works lack practical algorithms to find the prediction region. A recent work [26]
gives a disagreement-based active learning strategy to learn a selective classifier.

A recent paper [49] studies a TBAL-like algorithm for auto-labeling. It focuses on the cost of training
incurred when these systems use large-scale model classes for auto-labeling. It proposes an algorithm
to predict the training set size that minimizes the overall cost and provides an empirical evaluation.

Weak supervision is another line of work aimed at auto-labeling that does not rely on obtaining
human labels but instead uses potentially noisy but cheaply available sources to infer labels [51, 22].
In contrast, we are focused specifically on analyzing the performance of TBAL algorithms [58].

6 Conclusion and Future Work
In this work, we analyzed threshold-based auto-labeling systems and derived sample complexity
bounds on the amount of human-labeled validation data required to guarantee the quality of
machine-labeled data. Our study shows that these methods can accurately label a reasonable size of
data using seemingly bad models when good confidence functions are available. Our analysis points
to the hidden downside of these systems in terms of a large amount of validation data usage and calls
for more sample-efficient methods including active testing.
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Supplementary Material
The supplementary material is organized as follows. We provide a detailed discussion on related
works in Section A. We give details of the definitions and notation in Section B.1. The notations are
also summarized in the Table 5 in section B. Then we give the proof of the main theorem (Theorem
3.2) followed by proofs of supporting lemmas in section C. We provide details of its instantiation for
finite VC-dimension hypothesis classes and the homogeneous linear separators case in Section C.3.
Then, we provide the technical details of the lower bound (Lemma 3.3). Then we provide details
of additional experiments in Section D. In Section D.4 we provide insights into auto-labeling using
PaCMAP [66] visualizations of auto-labeled regions in each round.

A Extended Related Work
There is a rich body of work on active learning on empirical and theoretical fronts [57, 12, 30, 28,
8, 54]. In active learning, the goal is to learn the best model in the given function class with fewer
labeled data than in classical passive learning. To this end, various active learning algorithms have
been developed and analyzed, e.g., uncertainty sampling [62, 45], disagreement region based [9, 27],
margin based [3, 4], importance sampling based [5] and others [6]. Active learning has been shown
to achieve exponentially smaller label complexity than passive learning in noiseless and low-noise
settings [13, 3, 27, 28, 4, 11, 30, 6, 34, 32]. This suggests, in these settings auto-labeling using active
learning followed by selective classification is expected to work well. However, in practice we do not
have favorable noise conditions and the hypothesis class could be misspecified i.e. it may not contain
the Bayes optimal classifier. In such cases, [31] proved lower bounds on the label complexity of active
learning that are order wise same as passive learning. These findings have motivated more refined
goals for active learning – abstain on hard to classify points and do well on the rest of the points.
This idea is captured by the Chow’s excess risk [7] and some of the recent works [60, 59, 47, 72]
have proved exponential savings in label complexity for active learning when the goal is to minimize
Chow’s excess risk. The classifier learned by these methods is equipped with the abstain option
and hence it can be readily applied for auto-labeling. However, the problem of misspecification of
the hypothesis class still remains. Nevertheless, it would be interesting future work to explore the
connections between auto-labeling and active learning with abstention. We also note that similar
works on learning with abstention are done in the context of passive learning [10].

Another closely related line of work is the selective classification where the goal is to equip a given
classifier with the option to abstain from the prediction in order to guarantee prediction quality. The
foundations for selective classification are laid down in [17, 67, 18, 68] where they give results on the
error rate in the prediction region and the coverage of a given classifier. However, they lack practical
algorithms to find the prediction region. A recent work [26] proposes a new disagreement-based
active learning strategy to learn a selective classifier.

Recent work studies a practical algorithm for threshold-based selective classification on deep neural
networks [25]. The algorithm estimates the prediction threshold using training samples and they
bound the error rate of the selective classifier using [23]. We note that their result is applicable to
a specific setting of a given classifier. In contrast, in the TBAL algorithm analyzed in this paper,
selective classification is done in each round and the classifiers are not given a priori but instead
learned via ERM on training data which is adaptively sampled in each round.

Another related work [49] studies an algorithm similar to TBAL for auto-labeling. Their emphasis is
on the cost of training incurred when these systems use large-scale model classes for auto-labeling.
They propose an algorithm to predict the training set size that minimizes the overall cost and provides
an empirical evaluation.

Well-calibrated uncertainty scores are essential to the success of threshold-based auto-labeling.
However, in practice, such scores are often hard to get. Moreover, neural networks can produce
overconfident ( unreliable) scores [29]. Fortunately, there are plenty of methods in the literature to
deal with this problem [46, 69]. More recently, various approaches have been proposed for uncertainty
calibration for neural networks [24, 42, 65, 35, 40, 56]. A detailed study of calibration methods and
their impact on auto-labeling is beyond the scope of this work and left as future work.

There is another line of work emerging towards auto-labeling that does not rely on getting human
labels but instead uses potentially noisy but cheaply available sources to infer labels [51, 52, 22]. The
focus of this paper, however, is on analyzing the performance of TBAL algorithms [58, 2] that have
emerged recently as auto-labeling solutions in systems.
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B Definitions and Notation
B.1 Basic Definitions
Let X be the instance space and p(x) be a density function supported on X . For any xi ∈ X let yi
be its true label. Let X = {x1, . . . ,xN} be a set of N i.i.d samples drawn from X . Let set S ⊆ X
denote a non-empty sub-region of X and S ⊆ X ∩ S be a set of n > 0 i.i.d. samples.

Definition B.1. (Hypothesis Class with Abstain) We can think of the function g along with set T as
inducing an extended hypothesis class H(T,g). Let HT,g = H× T . For any function (h, t) ∈ H(T,g)

is defined as

(h, t)(x) :=

{
h(x) if g(h,x) ≥ t

⊥ o.w.
(3)

Here (h, t)(x) =⊥ means the hypothesis (h, t) abstains in classifying the point x. Otherwise, it is
equal to h(x).

The subset S(h, t) ⊆ S where (h, t) does not abstain and its complement S̄(h, t) where (h, t)
abstains, are defined as follows,

S(h, t) := {x ∈ S : (h, t)(x) ̸=⊥}, S̄(h, t) := {x ∈ S : (h, t)(x) =⊥}

Probability Definitions. The probability P(S) of subset S ⊆ X and the conditional probability of
any subset S ′ ⊆ S are given as follows,

P(S) := P(S|X ) :=

∫
x∈S

p(x)dx, P(S ′|S) := P(S ′|X )

P(S|X )
, P(h, t|S) := P(S(h, t)|S)

The empirical probabilities of S and S′ ⊆ S are defined as follows,

P̂(S) :=
|S|
|X|

, P̂(S′|S) := |S′|
|S|

, P̂(h, t|S) := |S(h, t)|
|S|

Loss Functions. The loss functions are defined as follows,

ℓ0−1(h,x, y) := 1(h(x) ̸= y),

ℓ⊥(h, t,x) := 1(g(h,x) ≥ t),

ℓ⊥0−1(h, t,x, y) := ℓ0−1(h,x, y) · ℓ⊥(h, t,x).

Error Definitions. Define the conditional error in set S ⊆ X as follows,

E(h, t|S) := Ex|S [ℓ
⊥
0−1(h, t,x, y)] =

∫
x∈S

ℓ⊥0−1(h, t,x, y) ·
p(x)

P(S)
dx

Then, the conditional error in set S(h, t) i.e. the subset of S on which (h, t) does not abstain,

Ea(h, t|S) := E(h, t|S(h, t)) := Ex|S(h,t)[ℓ
⊥
0−1(h, t,x, y)] =

E(h, t|S)
P(h, t|S)

Similarly, define their empirical counterparts as follows,

Ê(h, t|S) := 1

|S|
∑
xi∈S

ℓ⊥0−1(h, t,xi, yi),

Êa(h, t|S) := Ê(h, t|S(h, t)) := 1

|S(h, t)|
∑

xi∈S(h,t)

ℓ⊥0−1(h, t,xi, yi),

Note that, ∑
xi∈S

ℓ⊥0−1(h, t,xi, yi) =
∑

xi∈S(h,t)

ℓ⊥0−1(h, t,xi, yi) =
∑

xi∈S(h,t)

ℓ0−1(h,xi, yi)
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Symbol Definition

X feature space.
Y label space.
H hypothesis space.
h a hypothesis in H.
x, y x is an element in X and y is its true label.
S, S S ⊆ X is a sub-region in X , S = {x1, . . . ,xn} i.i.d. samples in S.
Xpool unlabeled pool of data points.
X

(i)
v , n

(i)
v set of validation points at the beginning of ith round and n

(i)
v = |X(i)

v |.
X

(i)
a , n

(i)
a set of auto-labeled points in ith round and n

(i)
a = |X(i)

a |.
ĥi, t̂i ERM solution and auto-labeling thresholds respectively in ith round.
X (i) unlabeled region left at the beginning of ith round.
X(i) unlabeled pool left at the beginning of ith round.
m

(i)
a number of auto-labeling mistakes in ith round.

k number of rounds of the TBAL algorithm.
Xpool(Ak) set of all auto-labeled points till the end of round k.
g confidence function g : H×X 7→ T . Where T ⊆ R+, usually T = [0, 1]
HT,g Cartesian product of H and T the range of g.
N

(k)
a

∑k
i=1 n

(i)
a .

ℓ0−1(h,x, y) 1(h(x) ̸= y).
ℓ⊥(h, t,x) 1(g(h,x) ≥ t) .
ℓ⊥0−1(h, t,x, y) ℓ0−1(h,x, y) · ℓ⊥((h, t),x).
Rn(H, ℓ0−1) Eσ,S

[
suph∈H

1
n

∑n
i=1 σiℓ0−1(h,xi, yi)

]
.

Rn(HT,g, ℓ⊥) Eσ,S

[
sup(h,t)∈HT,g

1
n

∑n
i=1 σiℓ⊥(h, t,xi)

]
.

Rn(HT,g, ℓ⊥0−1) Eσ,S

[
sup(h,t)∈HT,g

1
n

∑n
i=1 σiℓ

⊥
0−1(h, t,xi, yi)

]
.

Rn(HT,g) Rn(H, ℓ0−1) +Rn(HT,g, ℓ⊥) .
E(h, t|S) Ex|S [ℓ

⊥
0−1(h, t,x, y)].

Ê(h, t|S) 1
|S|
∑|S|

i=1 ℓ
⊥
0−1(h, t,xi, yi).

P(h, t|S) Ex|S [ℓ⊥(h, t,x)].
P̂(h, t|S) 1

|S|
∑|S|

i=1 ℓ⊥(h, t,xi, yi).
Ea(h, t|S) E(h, t|S)/P(h, t|S).
Êa(h, t|S) Ê(h, t|S)/P̂(h, t|S).

Table 5: Glossary of variables and symbols used in this paper.

Rademacher Complexity. The Rademacher complexities for the function classes induced by the
H, T, g and the loss functions are defined as follows,

Rn

(
H, ℓ0−1

)
:= Eσ,S

[
sup
h∈H

1

n

n∑
i=1

σiℓ0−1(h,xi, yi)
]
.

Rn

(
HT,g, ℓ⊥

)
:= Eσ,S

[
sup

(h,t)∈HT,g

1

n

n∑
i=1

σiℓ⊥(h, t,xi)
]
.

Rn

(
HT,g, ℓ⊥0−1

)
:= Eσ,S

[
sup

(h,t)∈HT,g

1

n

n∑
i=1

σiℓ
⊥
0−1(h, t,xi, yi)

]
.

Rn

(
HT,g

)
:= Rn

(
H, ℓ0−1

)
+Rn

(
HT,g, ℓ⊥

)
B.2 Glossary

The notation is summarized in Table 5 below. More detailed notation is in section B.1.
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C Proofs
C.1 Proofs for the General Setup
We begin by restating the theorem here and then give the proof.

Theorem 3.2. (Overall Auto-Labeling Error and Coverage) Let k denote the number of rounds of
the TBAL Algorithm 1. Let n(i)

v , n
(i)
a denote the number of validation and auto-labeled points at

epoch i and n(i) = |X(i)|. Let Xpool(Ak) be the set of auto-labeled points at the end of round k.
N

(k)
a =

∑k
i=1 n

(i)
a denote the total number of auto-labeled points. Then, for any δ ∈ (0, 1), with

probability at least 1− δ,

Ê
(
Xpool(Ak)

)
≤

k∑
i=1

n
(i)
a

N
(k)
a

(
Êa
(
ĥi, t̂i|X(i)

v︸ ︷︷ ︸
(a)

)
+

4

p0

(
R

n
(i)
v

(
HT,g

)
+

2

p0

√
1

n
(i)
v

log(
8k

δ
)︸ ︷︷ ︸

(b)

)

+
4

p
0

(
k∑

i=1

n
(i)
a

N
(k)
a

R
n
(i)
a

(
HT,g

)
+

√
k

N
(k)
a

log(
8k

δ
)︸ ︷︷ ︸

(c)

)
, and

P̂(Xpool(Ak)) ≥
k∑

i=1

P
(
X (i)(ĥi, t̂i)

)
− 2Rn(i)

(
HT,g

)
−
√

2k2

N
log
(8k

δ

)
.

Proof. Recall the definition of auto-labeling error,

Ê
(
Xpool(Ak)

)
=

k∑
i=1

m
(i)
a

N
(k)
a

, m(i)
a = n(i)

a · Êa
(
ĥi, t̂i|X(i)

)
.

Here, m(i)
a is the number of auto-labeling mistakes made by the Algorithm in the ith round and

Êa
(
ĥi, t̂i|X(i)

)
is the auto-labeling error in that round. Note that we cannot observe these quantities

since the true labels for the auto-labeled points are not available. To estimate the auto-labeling error
of each round we make use of validation data. Using the validation data we first get an upper bound
on the true error rate of the auto-labeling region i.e. Ea

(
ĥi, t̂i|X (i)

)
in terms of the auto-labeling

error on the validation data Êa
(
ĥi, t̂i|X(i)

v

)
and then get an upper bound on empirical auto-labeling

error rate Êa
(
ĥi, t̂i|X(i)

)
using the true error rate of the auto-labeling region.

We get these bounds by application of Lemma C.1 with δ3 = δ/4k for each round and then
apply union bound over all k epochs. Note that we have to apply the lemma twice, first to get
the concentration bound w.r.t the validation data and second to get the concentration w.r.t to the
auto-labeled points.

Ea
(
ĥi, t̂i|X (i)

)
≤ Êa

(
ĥi, t̂i|X(i)

v

)
+

4

p
0

R
n
(i)
v

(
HT,g

)
+

2

p
0

√
1

n
(i)
v

log
(8k

δ

)
.

Êa
(
ĥi, t̂i|X(i)

)
≤ Ea

(
ĥi, t̂i|X (i)

)
+

4

p
0

R
n
(i)
a

(
HT,g

)
+

2

p
0

√
1

n
(i)
a

log
(8k

δ

)
.

Substituting Ea
(
ĥi, t̂i|X (i)

)
by its upper confidence bound on the validation data.

Êa
(
ĥi, t̂i|X(i)

)
≤ Êa

(
ĥi, t̂i|X(i)

v

)
+

2

p
0

R
n
(i)
v

(
HT,g

)
+

2

p
0

R
n
(i)
a

(
HT,g

)
+

2

p0

√
1

n
(i)
v

log
(8k

δ

)
+

2

p0

√
1

n
(i)
a

log
(8k

δ

)
.
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Having an upper bound on the empirical auto-labeling error for ith round gives us an upper bound on
the number of auto-labeling mistakes m(i)

a made in that round. It allows us to upper bound the total
auto-labeling mistakes in all k rounds and thus the overall auto-labeling error as detailed below,

Ê
(
Xpool(Ak)

)
=

k∑
i=1

m
(i)
a

N
(k)
a

, m(i)
a = n(i)

a · Êa
(
ĥi, t̂i|X(i)

)
.

Since we have an upper bound on the empirical auto-labeling error in each round, we have an upper
bound for each m

(i)
a , which are used as follows to get the bound on the auto-labeling error,

Ê(Xpool(Ak)) =

k∑
i=1

m
(i)
a

N
(k)
a

=

k∑
i=1

n
(i)
a

N
(k)
a

· m
(i)
a

n
(i)
a

=

k∑
i=1

n
(i)
a

N
(k)
a

· Êa
(
ĥi, t̂i

∣∣X(i)
)

≤
k∑

i=1

n
(i)
a

N
(k)
a

·
(
Ea
(
ĥi, t̂i

∣∣X (i)
)
+

4

p0
R

n
(i)
a

(
HT,g

)
+

2

p0

√
1

n
(i)
a

log
(8k

δ

))

≤
k∑

i=1

n
(i)
a

N
(k)
a

·
(
Êa
(
ĥi, t̂i

∣∣X(i)
v

)
+

4

p
0

R
n
(i)
v

(
HT,g

)
+

2

p
0

√
1

n
(i)
v

log
(8k

δ

)
+

4

p
0

R
n
(i)
a

(
HT,g

)
+

2

p
0

√
1

n
(i)
a

log
(8k

δ

))

≤
k∑

i=1

n
(i)
a

N
(k)
a

·
(
Êa
(
ĥi, t̂i

∣∣X(i)
v

)
+

4

p
0

R
n
(i)
v

(
HT,g

)
+

4

p
0

R
n
(i)
a

(
HT,g

)
+

2

p0

√
1

n
(i)
v

log
(8k

δ

))
+

k∑
i=1

n
(i)
a

N
(k)
a

·
(

2

p0

√
1

n
(i)
a

log
(8k

δ

))

The last term is simplified as follows,
k∑

i=1

n
(i)
a

N
(k)
a

·
(

2

p
0

√
1

n
(i)
a

log
(8k

δ

))
=

2

p
0

·
k∑

i=1

n
(i)
a

N
(k)
a

√
1

n
(i)
a

log
(8k

δ

)
=

2

p0
· 1

N
(k)
a

k∑
i=1

√
n
(i)
a log

(8k
δ

)

=
2

p
0

·
√
log
(8k

δ

)
·

k∑
i=1

√
n
(i)
a

N
(k)
a

≤ 2

p0
·
√
log
(8k

δ

)
·

√
k

N
(k)
a

=
2

p
0

·

√
k

N
(k)
a

log
(8k

δ

)
The last inequality follows from the application of the inequality ||u||1 ≤

√
k||u||2 for any vector

u ∈ Rk. Here we let u = [
√
n
(1)
a , . . . ,

√
n
(k)
a ], and since ∀i

√
n
(i)
a > 0 so,

∑k
i=1

√
na

(i) = ||u||1
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and N
(k)
a = ||u||22. ∑k

i=1

√
n
(i)
a

N
(k)
a

=
||u||1
||u||22

≤
√
k||u||2
||u||22

=

√
k

||u||2
=

√
k

N
(k)
a

To get the bound on coverage we follow the same steps except that we can use all the unlabeled pool
of size n(i) to estimate the coverage in each round which gives us the bound in terms of n(i) and N
as follows,

P̂(Xpool(Ak)) =
1

N

k∑
i=1

n(i)
a

=
1

N

k∑
i=1

n(i) · n
(i)
a

n(i)

=
1

N

k∑
i=1

n(i) · P̂(X(i)
a

∣∣X(i))

=
1

N

k∑
i=1

n(i) · P̂(ĥi, t̂i
∣∣X(i))

≥
k∑

i=1

n(i)

N

(
P
(
ĥi, t̂i

∣∣X (i)
)
− 2Rn(i)

(
HT,g

)
−
√

1

n(i)
log
(8k

δ

))

≥
k∑

i=1

n(i)

N

(
P
(
ĥi, t̂i

∣∣X (i)
)
− 2Rn(i)

(
HT,g

))
−
√

k

N
log
(8k

δ

)

We bound the first term as follows,

k∑
i=1

n(i)

N
P
(
ĥi, t̂i

∣∣X (i)
)
=

k∑
i=1

n(i)

N
·
P
(
X (i)(ĥi, t̂i)

)
P
(
X (i)

)
≥

k∑
i=1

(
P
(
X (i)

)
−
√

1

N
log
(8k

δ

))
·
(P(X (ĥi, t̂i)

)
P
(
X (i)

) )
≥

k∑
i=1

P
(
X (i)(ĥi, t̂i)

)
−
√

1

N
log
(8k

δ

)
Substituting it back we get,

P̂
(
Xpool(Ak)

)
≥

k∑
i=1

P
(
X (i)(ĥi, t̂i)

)
− 2Rn(i)

(
HT,g

)
− k

√
1

N
log
(8k

δ

)
−
√

k

N
log
(8k

δ

)
≥

k∑
i=1

P
(
X (i)(ĥi, t̂i)

)
− 2Rn(i)

(
HT,g

)
−
√

4k2

N
log
(8k

δ

)
For the last step we use the inequality

√
a+

√
b ≤

√
2(a+ b) for any a, b ∈ R+.

Rademacher complexity and validation error trade-off. The bound contains validation errors
at different thresholds. We revisit the definition of validation error appearing in the bound. Let
Xv = {x1, . . . xnv

} be the validation samples and yi be the label corresponding to xi. Given any
h ∈ H and the confidence function g, we have different subsets Xv(h, t) of the validation points for
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which the model’s confidence is higher than t. More precisely, Xv(h, t) = {xi ∈ Xv : g(h, xi) ≥ t}
and the validation error Êa(h, t|Xv) is computed on each of these subsets as follows, Êa(h, t|Xv) =

1
|Xv(h,t)|

∑
xi∈Xv(h,t)

1(h(xi) ̸= yi) this error is different from the overall validation error which is
computed over the entire set of validation points Xv:

Ê(h|Xv) =
1

|Xv|
∑

xi∈Xv

1(h(xi) ̸= yi).

The TBAL method computes Êa(h, t|Xv) at different thresholds (t) and selects the threshold at which
it is at most ϵ. Thus even if the overall validation error Ê(h|Xv) is bad, there could still be regions
in the space where the conditional validation error Êa(h, t|Xv) is small. This can be easily seen in
Figure 2 in the paper. Here we are doing auto-labeling using a linear function class that has low
Rademacher complexity. All the models in this class have high overall validation error Ê(h|Xv) but
there are subsets where the conditional validation error Êa(h, t|Xv) is small and TBAL is able to
find those subsets. Thus we see that working with low Rademacher complexity classes might lead to
high overall validation error. However, it does not affect TBAL as long as there are regions of low
conditional validation error Êa(h, t|Xv). Furthermore, our upper bound on excess auto-labeling error
depends on Êa(h, t|Xv) which due to the TBAL procedure is at most ϵ and hence it is not in conflict
with the Rademacher complexity term.

Next, we state the result for uniform convergence between Ea
(
h, t
∣∣S), Êa(h, t∣∣S) and give its proof.

Lemma C.1. For any δ3, p0 ∈ (0, 1), let S and S be defined as above. Let P(h, t|S) ≥ p0 and
P̂(h, t|S) ≥ p

0
∀(h, t) ∈ HT,g , the following holds w.p. at least 1− δ3/2∣∣Ea(h, t∣∣S)− Êa

(
h, t
∣∣S)∣∣ ≤ 4

p0
Rn

(
HT,g

)
+

2

p0

√
1

n
log(

2

δ3
) ∀(h, t) ∈ HT,g. (4)

Proof. We begin with proving one side of the inequality and the other side is shown by following
the same steps. The proof is based on applying the uniform convergence results for Ê(h, t|S) and
P̂(h, t|S) from Lemma C.2. The main difficulty here is that ES [Êa

(
h, t
∣∣S)] ̸= Ea

(
h, t
∣∣S), so we

cannot directly get the above result from standard uniform convergence bounds.

We prove it, by using the results from the Lemma C.2 and restricting the region S such that it has
probability mass at least p0 .

By definitions of Ea
(
h, t
∣∣S) and Êa

(
h, t
∣∣S) we have,

E(h, t|S) = P(h, t|S) · Ea
(
h, t
∣∣S) and Ê(h, t|S) = P̂(h, t|S) · Êa

(
h, t
∣∣S).

Let ξ1 =
√
(1/n) log(2/δ1), ξ2 =

√
(1/n) log(2/δ2). From lemma C.2 we have,

E(h, t|S) ≤ Ê(h, t|S) + 2Rn

(
HT,g

)
+ ξ1 ∀(h, t) ∈ HT,g w.p. 1− δ1/2. (5)

P̂(h, t|S) ≤ P(h, t|S) + 2Rn

(
HT,g

)
+ ξ2 ∀(h, t) ∈ HT,g w.p. 1− δ2/2. (6)

Plugging in the above definitions of errors in equation (5) we get,

P(h, t|S) · Ea
(
h, t
∣∣S) ≤ P̂(h, t|S) · Êa

(
h, t
∣∣S)+ 2Rn

(
HT,g

)
+ ξ1. (7)

Ea
(
h, t
∣∣S) ≤ P̂(h, t|S)

P(h, t|S)
Êa
(
h, t
∣∣S)+ 2

Rn

(
HT,g

)
P(h, t|S)

+
ξ1

P(h, t|S)
. (8)

Substituting P̂(h, t|S) from equation 6 in the above equation, we get the following w.p. (1−δ1/2)(1−
δ2/2), ∀(h, t) ∈ HT,g ,

Ea
(
h, t
∣∣S) ≤ (P(h, t|S) + 2Rn

(
HT,g

)
+ ξ2

P(h, t|S)

)
Êa
(
h, t
∣∣S)+ 2Rn

(
HT,g

)
P(h, t|S)

+
ξ1

P(h, t|S)
.
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=
(
1 +

2Rn

(
HT,g

)
P(h, t|S)

+
ξ2

P(h, t|S)

)
Êa
(
h, t
∣∣S)+ 2Rn

(
HT,g

)
P(h, t|S)

+
ξ1

P(h, t|S)
.

= Êa
(
h, t
∣∣S)+ 2Rn

(
HT,g

)
P(h, t|S)

· Êa
(
h, t
∣∣S)+ ξ2

P(h, t|S)
Êa
(
h, t
∣∣S)+ 2Rn

(
HT,g

)
P(h, t|S)

+
ξ1

P(h, t|S)
.

Using upper bound Êa
(
h, t
∣∣S) ≤ 1 in the second and third terms,

Ea
(
h, t
∣∣S) ≤ Êa

(
h, t
∣∣S)+ 4

Rn

(
HT,g

)
P(h, t|S)

+
ξ1 + ξ2
P(h, t|S)

∀(h, t) ∈ HT,g w.p. ≥ 1− (δ1 + δ2)/2.

Using P(h, t|S) ≥ p
0

Ea
(
h, t
∣∣S) ≤ Êa

(
h, t
∣∣S)+ 4

p
0

Rn

(
HT,g

)
+

ξ1 + ξ2
p
0

∀(h, t) ∈ HT,g w.p. ≥ 1− (δ1 + δ2)/2.

Letting δ1 = δ2 = δ3 and ξ1 = ξ2 =
ξ·p

0

2 gives ξ =
√

4
p2
0
n log

(
2
δ3

)
and

Ea
(
h, t
∣∣S) ≤ Êa

(
h, t
∣∣S)+ 4

p0
Rn

(
HT,g

)
+ ξ ∀(h, t) ∈ HT,g w.p. ≥ 1− δ3.

This proves one side of the result, and the other side of the result follows similarly.

Lemma C.2. Let S ⊆ X be a sub-region of X and S = {x1, . . . ,xn} be a set of n i.i.d samples in
S drawn from distribution Px. Let {y1, . . . yn} be the corresponding true labels, let Rn

(
HT,g

)
be

the rademacher complexity of class HT,g then for any δ1, δ2 ∈ (0, 1) we have,

|E(h, t|S)− Ê(h, t|S)| ≤ 2Rn

(
HT,g

)
+

√
1

n
log(

2

δ1
) ∀(h, t) ∈ HT,g w.p. 1− δ1/2. (9)

|P(h, t|S)− P̂(h, t|S)| ≤ 2Rn

(
HT,g

)
+

√
1

n
log(

2

δ2
) ∀(h, t) ∈ HT,g w.p. 1− δ2/2. (10)

Proof. The proof is similar to the standard proofs for Rademacher complexity based generalization
error bound. Since we work with the modified loss function and hypothesis class to include the
abstain option, for completeness we give the proof here. The proofs for error and probability bounds
are very much the same except for the change in the loss function. We give the proof for the error
bound here.

The result follows by applying McDiarmid’s inequality on the function ϕ(S) defined as below,

ϕ(S) := sup
(h,t)∈HT,g

E(h, t|S)− ÊS(h, t|S).

To apply McDiarmid’s inequality we first show that ϕ(S) satisfies the bounded difference property
(Lemma C.4). This gives us,

E(h, t|S)− ÊS(h, t|S) ≤ ϕ(S) ≤ ES [ϕ(S)] +

√
1

n
log(

2

δ1
) ∀(h, t) ∈ HT,g w.p. 1− δ1

2
.

Using the bound on ES [ϕ(S)] from Lemma C.3 we get,

E(h, t|S) ≤ Ê(h, t|S) + 2Rn

(
HT,g

)
+

√
1

n
log(

2

δ1
) ∀(h, t) ∈ HT,g w.p. 1− δ1

2
.

Similarly, the bound for the other side is obtained which holds w.p. 1− δ1/2, and combining both
we get eq. (9).
The bound of probabilities is obtained by following the same steps as above but with a different loss
function, ℓ⊥, since P(h, t|S) is the probability mass of the region where (h, t) does not abstain.
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Lemma C.3. Let S ⊆ X be a sub-region of X and S = {x1, . . . ,xn} be a set of n i.i.d samples in S
drawn from distribution Px. Let {y1, . . . yn} be the corresponding true labels and let Rn

(
HT,g

)
be

the Rademacher complexity of the function class HT,g defined over n i.i.d. samples. Then we have,

ES

[
sup

(h,t)∈HT,g

E(h, t|S)− Ê(h, t|S)
]
≤ 2Rn

(
HT,g

)
. (11)

Proof. Let S̃ = {x̃1, x̃2, . . . x̃n} be another set of independent draws from the same distribution as
of S and let the corresponding labels be {ỹ1, . . . ỹn}. These samples are usually termed as ghost
samples and do not need to be counted in the sample complexity.

ES

[
sup

(h,t)∈HT,g

E(h, t|S)− Ê(h, t|S)
]
= ES

[
sup

(h,t)∈HT,g

ES̃

[
Ê(h, t|S̃)

]
− Ê(h, t|S)

]
.

= ES

[
sup

(h,t)∈HT,g

ES̃

[
Ê(h, t|S̃)− Ê(h, t|S)

]]
.

≤ ES

[
ES̃

[
sup

(h,t)∈HT,g

[
Ê(h, t|S̃)− Ê(h, t|S)

]]]
.

= ES,S̃

[
sup

h∈HT,g

[
Ê(h, t|S̃)− Ê(h, t|S)

]]
.

= ES,S̃

[
sup

(h,t)∈HT,g

[ 1
n

n∑
i=1

ℓ⊥0−1(h, t, x̃i, ỹi)−
1

n

n∑
i=1

ℓ⊥0−1(h, t,xi, yi)
]]
.

= Eσ,S,S̃

[
sup

h∈HT,g

[ 1
n

n∑
i=1

σiℓ
⊥
0−1(h, t, x̃i, ỹi)−

1

n

n∑
i=1

σiℓ
⊥
0−1(h, t,xi, yi)

]]
.

≤ Eσ,S̃

[
sup

(h,t)∈HT,g

1

n

n∑
i=1

σiℓ
⊥
0−1(h, t, x̃i, ỹi)

]
+

Eσ,S

[
sup

(h,t)∈HT,g

1

n

n∑
i=1

σiℓ
⊥
0−1(h, t,xi, yi)

]
.

= 2Rn

(
HT,g, ℓ⊥0−1

)
.

≤ 2Rn

(
HT,g

)
.

In the last step, we used the upper bound on the Rademacher complexity from Lemma C.5.

Lemma C.4. (Bounded Difference) Let S be a set of i.i.d samples from Px then for ϕ(S) :=

sup(h,t)∈HT,g E(h, t|S)− Ê(h, t|S), with probability at least 1− δ,

ϕ(S) ≤ ES [ϕ(S)] +

√
1

|S|
log(

1

δ
) (12)

Proof. It is proved by showing that ϕ(S) satisfies the conditions (in particular the bounded
difference assumption) needed for the application of McDiarmid Inequality. To see this, Let
S = {x1,x2, . . .xi, . . . ,xn} and let S′ = {x1,x2, . . .x

′
i, . . . ,xn}, i.e. S and S′ may differ only on

the ith sample.

|ϕ(S)− ϕ(S′)| =
∣∣∣ sup
(h,t)∈HT,g

E(h, t|S)− Ê(h, t|S)− sup
(h,t)∈HT,g

E(h, t|S)− Ê(h, t|S′)
∣∣∣.

≤
∣∣∣ sup
(h,t)∈HT,g

(
E(h, t|S)− Ê(h, t|S)− E(h, t|S) + Ê(h, t|S′)

)∣∣∣.
=
∣∣∣ sup
(h,t)∈HT,g

(
Ê(h, t|S)− Ê(h, t|S′)

)∣∣∣.
=
∣∣∣ sup
(h,t)∈HT,g

( 1

|S|
∑
zj∈S

ℓ⊥0−1(h, t,xj , yj)−
1

|S′|
∑
zj∈S′

ℓ⊥0−1(h, t,xj , yj)
)∣∣∣.
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=
∣∣∣ sup
(h,t)∈HT,g

( 1
n

∑
j ̸=i

(
ℓ⊥0−1(h, t,xj , yj)− ℓ⊥0−1(h, t,xj , yj)

)
+

1

n

(
ℓ⊥0−1(h, t,xi, yi)− ℓ⊥0−1(h, t,x

′
i, y

′
i)
))∣∣∣.

=
∣∣∣ sup
(h,t)∈HT,g

( 1
n

(
ℓ⊥0−1(h, t,xi, yi)− ℓ⊥0−1(h, t,x

′
i, y

′
i)
))∣∣∣.

≤ 1

n

The last step follows since ℓ⊥0−1 is a 0-1 loss function so letting ℓ⊥0−1(h, t,xi, yi) = 1 and
ℓ⊥0−1(h, t,x

′
i, y

′
i) = 0 gives an upper bound on the difference. Thus we can apply McDiarmid

Inequality here and get the bound.

The relationship between the Rademacher complexities is obtained using the following Lemma C.5
due to [16].

Lemma C.5. ([16]) Let ℓ0−1, ℓ⊥, ℓ
⊥
0−1 be the loss functions defined as above and the Rademacher

complexities on n i.i.d. samples S be Rn

(
H, ℓ0−1

)
,Rn

(
HT,g, ℓ⊥

)
,Rn

(
HT,g, ℓ⊥0−1

)
respectively.

Then,
Rn

(
HT,g, ℓ⊥0−1

)
≤ Rn

(
H, ℓ0−1

)
+Rn

(
HT,g, ℓ⊥

)
=: Rn

(
HT,g

)
. (13)

Detailed proof of this lemma can be found in [16]. The result follows by expressing ℓ0−1 · ℓ⊥ as
(ℓ0−1 + ℓ⊥ − 1)+ and then applying Talagrand’s contraction lemma [39].

C.2 Bounds for Finite VC-Dimension Classes
Here we specialize the auto-labeling error and coverage bounds to the setting of finite VC-dimension
classes and then instantiate for a specific setting of homogeneous linear classifiers and uniform
distribution.

Lemma C.6. [43] (Corollary 3.8 and 3.18). Let the VC-dimension of function class induced by F be
any class of functions from X 7→ Y ∪ {⊥}, and ℓ : Y ∪ {⊥} 7→ {0, 1} be a 0-1 function. Then,

Rn(F , ℓ) ≤

√
2V(F , ℓ)

n
log
( en

V(F , ℓ)

)
. (14)

Corollary C.7. (Auto-Labeling Error and Coverage for Finite VC-dimension Classes) Let k denote
the number of rounds of TBAL algorithm 1. Let V(HT,g) = d Let Xpool(Ak) be the set of auto-labeled
points at the end of round k. N (k)

a =
∑k

i=1 n
(i)
a denote the total number of auto-labeled points. With

probability at least 1− δ,

Ê(Xpool(Ak)) ≤
k∑

i=1

n
(i)
a

N
(k)
a

(
Êa(ĥi, t̂i|X(i)

v )︸ ︷︷ ︸
(a)

+
4

p
0

√
2

n
(i)
v

(
2d log

(en(i)
v

d

)
+ log

(8k
δ

)))
︸ ︷︷ ︸

(b)

+
4

p0

(√
2k

N
(k)
a

(
2d log

(eN (k)
a

d

)
+ log

(8k
δ

)))
︸ ︷︷ ︸

c

and

P̂(Xpool(Ak)) ≥
k∑

i=1

P
(
X (i)(ĥi, t̂i)

)
− 2k

√
2

N

(
2d log

(eN
d

)
+ log

(8k
δ

))
.

24



Proof. The proof follows by substituting the Rademacher complexity bounds for finite VC dimension
function classes from Lemma C.6 in the general result from Theorem 3.2.

Ê(Xpool(Ak)) ≤
k∑

i=1

n
(i)
a

N
(k)
a

(
Êa(ĥi, t̂i|X(i)

v )︸ ︷︷ ︸
(a)

+
4

p
0

(
R

n
(i)
v

(
HT,g

)
+R

n
(i)
a

(
HT,g

))︸ ︷︷ ︸
(b)

+
4

p0

√
1

n
(i)
v

log
(8k

δ

)
︸ ︷︷ ︸

(c)

)
+

4

p0

√
k

N
(k)
a

log
(8k

δ

)
︸ ︷︷ ︸

(d)

We first simplify the terms dependent on n
(i)
v as follows. Here we use the inequality

√
a +

√
b ≤√

2(a+ b) for any a, b ∈ R+.

R
n
(i)
v

(
HT,g

)
+

√
1

n
(i)
v

log
(8k

δ

)
≤

√
2d

n
(i)
v

log
(en(i)

v

d

)
+

√
1

n
(i)
v

log
(4k

δ

)
,

≤

√
2

n
(i)
v

(
2d log

(en(i)
v

d

)
+ log

(8k
δ

))
.

Next, we simplify the terms dependent on n
(i)
a as follows. First, we substitute the Rademacher

complexity using the bound in Lemma C.6 and then apply the same steps as in the proof of Theorem

3.2 to bound
∑k

i=1

√
n
(i)
a /N

(k)
a by

√
k/N

(k)
a followed by the application of

√
a+

√
b ≤

√
2(a+ b)

to get the final term.

k∑
i=1

n
(i)
a

N
(k)
a

R
n
(i)
a

(
HT,g

)
+

√
k

N
(k)
a

log(
8k

δ
) ≤

k∑
i=1

n
(i)
a

N
(k)
a

√
2d

n
(i)
a

log
(en(i)

a

d

)
+

√
k

N
(k)
a

log
(8k

δ

)

=

k∑
i=1

√
n
(i)
a

N
(k)
a

√
2d log

(en(i)
a

d

)
+

√
k

N
(k)
a

log
(8k

δ

)

≤
k∑

i=1

√
n
(i)
a

N
(k)
a

√
2d log

(eN (k)
a

d

)
+

√
k

N
(k)
a

log
(8k

δ

)

≤

√
2dk

N
(k)
a

log
(eN (k)

a

d

)
+

√
k

N
(k)
a

log
(8k

δ

)

≤

√
2k

N
(k)
a

(
2d log

(eN (k)
a

d

)
+ log

(8k
δ

))
.

C.3 Homogeneous Linear Classifiers with Uniform Distribution
Here we instantiate Theorem 3.2 for the case of homogeneous linear separators under the uniform
distribution in the realizable setting. Formally, let Px be a uniform distribution supported on the
unit ball in Rd, X = {x ∈ Rd : ||x|| ≤ 1}. Let W = {w ∈ Rd : ||w||2 = 1} = Sd and
H = {x 7→ sign(⟨w,x⟩)∀w ∈ W}, the score function is given by g(h,x) = g(w,x) = |⟨w,x⟩|
and set T = [0, 1]. For simplicity, we will use W in place of H.

Corollary 3.4. (Overall Auto-Labeling Error and Coverage) Let ŵi, t̂i be the ERM solution and the
auto-labeling margin threshold respectively at epoch i. Let n(i)

v , n
(i)
a denote the number of validation

and auto-labeled points at epoch i. Let the auto-labeling algorithm run for k-epochs. Then, for any
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δ ∈ (0, 1), w.p. at least 1− δ/2,

Ê(Xpool(Ak)) ≤
k∑

i=1

n
(i)
a

N
(k)
a

(
Êa(ŵi, t̂i|X(i)

v )︸ ︷︷ ︸
(a)

+
4

p
0

√
2

n
(i)
v

(
2d log

(en(i)
v

d

)
+ log

(8k
δ

)))
︸ ︷︷ ︸
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2d log
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and w.p. at least 1− δ/2
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√
4d/π − 2k

√
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(
2d log

(eN
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)
+ log

(8k
δ

))
.

Proof. The bound on auto-labeling error follows directly from Theorem C.7 as the VC dimension for
this setting is d. For the coverage bound, we utilize the fact that the distribution Px is the uniform
distribution over the unit ball. This enables us to obtain explicit lower bounds on the coverage. The
details are given in Lemma C.8 and Lemma C.9.

Lemma C.8. Let the auto-labeling algorithm run for k-epochs and let ŵi, t̂i be the ERM solution
and the auto-labeling margin threshold respectively at epoch i. Let X (i) be the unlabeled region at
the beginning of epoch i, then we have,

k∑
i=1

P
(
X (i)(ŵi, t̂i)

)
≥ 1−min

i
t̂i
√

4d/π. (15)

Proof. Let X (ŵi, ti) = {x ∈ X : |⟨ŵi,x⟩| ≥ t̂i} denote the region that can be auto-labeled by
ŵi, t̂i. However, since in each round the remaining region is X (i) the actual auto-labeled region
of epoch i is X (i)

a = {x ∈ X (i) : |⟨ŵi,x⟩| ≥ t̂i}. Let X̄ (ŵi, ti) denote the complement of set
X (ŵi, ti).
Now observe that Xa = ∪k

i=1X
(i)
a and X (ŵk, t̂k) ⊆ Xa because any x ∈ X (ŵk, t̂k) is either

auto-labeled in previous rounds i < k or if not then it will be auto-labeled in the kth round. More
specifically, any x ∈ X (ŵk, t̂k) is either in ∪k−1

i=1 X
(i)
a and if not then it must be in X (k)

a . Thus the
sum of probabilities,

k∑
i=1

P
(
X (i)(ŵi, t̂i)

)
=

k∑
i=1

P(X (i)
a )

= P(Xa)

≥ min
i

P
(
X (ŵi, t̂i)

)
= 1−max

i
P
(
X̄ (ŵi, t̂i)

)
≥ 1−min

i
t̂i
√
4d/π

The last step used Lemma 4 from [3]) with γ1 = t̂i and γ2 = 0 to upper bound P(X̄ (ŵi, t̂i)) by
t̂i
√
4d/π. The lemma is stated as follows in Lemma C.9,

Lemma C.9. ([3] (Lemma 4)) Let d ≥ 2 and let x = [x1, . . . xd] be uniformly distributed in the
d-dimensional unit ball. Given γ1 ∈ [0, 1], γ2 ∈ [0, 1], we have:

P
(
(x1, x2) ∈ [0, γ1]× [γ2, 1]

)
≤ γ1

√
d

2
√
π

exp
(
− (d− 2)γ2

2

2

)
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C.4 Lower Bound

Lemma 3.3. Let c1, c2 and σ > 0. Let xi ∈ X be a set of n i.i.d. points from X with corresponding
true labels yi. Given (h, t) ∈ HT,g, let E

[(
ℓ⊥0−1(h, t,xi, yi) − E(h, t|X )

)2]
= σ2

i > σ2 for every

xi for σi > 0 and let
∑n

i σ
2
i ≥ c1 then for every ϵ ∈ [0,

∑n
i=1 σ2

i√
c1

] with nv < 12σ2

ϵ2 log(4c2) the

following holds w.p. at least 1/4, Ea(h, t|X ) > Êa(h, t|X) + ϵ.

Proof. It follows by application of Feller’s result stated in lemma C.10.

Lemma C.10. (Feller, Lower Bound on Tail Probability of Sum of Independent Random Variables)
There exists positive universal constants c1 and c2 such that for any set of independent random
variables X1, . . . , Xm satisfying E[Xi] = 0 and |Xi| ≤ M , for every i ∈ {1, . . . ,m}, if∑m

i=1 E[(X)2i ] ≥ c1, then for every ϵ ∈ [0,
∑m

i=1 E[(Xi)
2]}

M
√
c1

]

P(
m∑
i=1

Xi > ϵ) ≥ c2 exp
( −ϵ2

12
∑m

i=1 E[(Xi)2]

)
. (16)
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D Additional Experiments
In this section, we discuss additional experiments on the role of hypothesis class in auto-labeling
datasets and experiments for studying the role of confidence function in auto-labeling. Finally,
we visualize PaCMAP embeddings of the CIFAR-10 and MNIST data points to get a sense of
auto-labeling regions in various rounds of the algorithm.

D.1 Additional Experiments on Role of the Hypothesis Class
First, we provide details of the datasets,

XOR is a synthetic dataset. Recall that it is created by uniformly drawing points from 4 circles, each
centered at the corners of a square of with side length 4 centered at the origin. Points in the diagonally
opposite balls belong to the same class. We generate a total of N = 10, 000 samples, out of which
we keep 8, 000 in Xpool and 2, 000 in the validation pool Xval.

MNIST [15] is a standard image dataset of hand-written digits. We randomly split the standard
training set into Xpool and the validation pool Xval of sizes 48,000 and 12,000 respectively. While
training a linear classifier on this dataset we flatten the 28× 28 images to vectors of size 784.

TBAL Output AL+SC Output

Queried +ve 
Queried -ve

Auto-Labeled +ve
Auto-Labeled -ve

Unlabeled

(a) Output of TBAL and AL+SC on XOR dataset
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(b) Auto labeling performance of various methods

Figure 5: Comparison of Threshold-Based Auto-Labeling (TBAL) and Active-Learning followed
by Selective Classification (AL+SC) on XOR-dataset. Left figure (a) shows samples that were
auto-labeled, queried, and left unlabeled by these methods. Right figure (b) shows the auto-labeling
error and coverage achieved. The lines show the mean and the shaded region shows 1-standard
deviation estimated over 10 trials with different random seeds.

XOR Experiment. We run the TBAL algorithm 1 with an error tolerance of ϵa = 1%. we use 20% of
Nq as seed training data and keep query size nb as 5% of Nq . We compare it with active learning and
active learning followed by selective classification. The given function class and selective classifier
are both linear for all the algorithms. The results are shown in Figure 5. Clearly, there is no linear
classifier that can correctly classify this data. We note that there are multiple optimal classifiers in
the function class of linear classifiers and they will all incur an error of 25%. So, active learning
algorithms can only output models that make at least 25% error. If we naively use the output model
for auto-labeling, we can obtain near full coverage but incur 25% auto-labeling error. If we use the
model output by active learning with threshold-based selective classification, then it can attain lower
error in labeling. However, it can only label ≈ 25% of the unlabeled data. In contrast, the TBAL
algorithm can label almost all of the data accurately, i.e., attain close to 100% coverage, with an error
close to 1% auto-labeling error.

MNIST Experiment. For training LeNet [37] we use SGD with a learning rate of 0.1, batch size
of 32, and train for 20 epochs. We use auto-labeling error threshold ϵa = 5%. We use 20% of Nq

as seed training data and keep query size nb as 5% of Nq. The results are presented in Figure 6
we observe that TBAL using less powerful models can still yield highly accurate datasets with a
significant fraction of points labeled by the models. This confirms the notion that bad models can
still provide good datasets.

D.2 Role of Confidence Function
The confidence function g is used to obtain uncertainty scores is an important factor in auto-labeling.
In particular, for threshold-based auto-labeling we expect the scores of correctly classified and
incorrectly classified points to be reasonably well separated and if this is not the case then the
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(a) Auto-labeling MNIST data using a linear classifier.
The validation size used here is 12k.
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(b) Auto-labeling MNIST data using LeNet classifier.
The validation size used here is 12k.

Figure 6: Auto-labeling performance on MNIST data using different models (hypothesis classes) as a function
of samples available for training. The left figure (a) shows the results with the linear classifier and the right figure
(b) shows the results with the LeNet classifier. The auto-labeling error threshold ϵa = 5% in both experiments
and the algorithms are given the same amount of validation data. The lines show the mean and the shaded region
shows 1-standard deviation estimated over 5 trials with different random seeds.
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(a) Auto-labeling CIFAR-10 data using a small
network and softmax scores. Validation size = 10k.
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(b) Auto-labeling CIFAR-10 data using a small
network and energy scores. Validation size = 10k.

Figure 7: Auto-labeling performance on CIFAR-10 data using a small network and different scoring functions.
The left figure (a) shows the results with softmax scores and the right figure (b) shows the results with the energy
score. The auto-labeling error threshold ϵa = 10% in both experiments and methods are given the same amount
of validation data. The lines show the mean and the shaded region shows 1-standard deviation estimated over 5
trials with different random seeds.

algorithm will struggle to find a good threshold even if the given classifier has good accuracy in
certain regions.

Setup. We perform auto-labeling on the CIFAR-10 dataset using a small CNN network with 2
convolution layers followed by 3 fully connected layers [48]. We use two different scores for
auto-labeling, a) Usual softmax output b) Energy score with temperature = 1 [38]. We vary the
maximum number of training samples Nq and keep 20% of Nq as seed samples and query points in
the batches of 10% of Nq. The model is trained for 50 epochs, using SGD with a learning rate of
0.05, batch size = 256, weight decay = 5e−4, and momentum=0.9, and use ϵa = 10%.

Results. The results with softmax scores and energy scores used as confidence functions can be
seen in Figures 8(a) and 8(b) respectively. We see that for both of these cases, TBAL does not
obtain a coverage of more than ≈ 6%. We observe that using the energy score as the confidence
function performed marginally better than using the softmax scores. We note that this is the case
even though the test accuracies of the trained models were around 50% for most of the rounds.
Note that CIFAR-10 has 10 classes, so an accuracy of 50% is much better than random guessing
and one would expect to be able to auto-label a significant chunk of the data with such a model.
However, the softmax scores and energy scores are not well calibrated, and therefore, when used as
confidence functions, they result in a poor separation between correct and incorrect predictions by
the model. This can be seen in Figure 8 where neither of the softmax and energy scores provides a
good separation between the correct and incorrect predictions. We can also see that the energy score
is marginally better in terms of the separation, which allows it to achieve slightly better auto-labeling
coverage in comparison to using softmax scores. This suggests that more investigation is needed to
understand the properties of good confidence functions for auto-labeling which is left to future work.
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(a) Histogram of scores in round 2.
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(b) Histogram of scores in round 6.

Figure 8: Histograms of scores computed on the validation data in a few rounds of TBAL run on CIFAR-10
with a small net. We picked two rounds where it auto-labeled the most i.e. around 800 points.

For a more detailed visualization of the rounds of TBAL for this experiment, see Figures 10 and 11
in the Appendix.
D.3 Detailed Results
In the main paper, we omitted AL, PL, and PL+SC for clarity and due to lack of space. We provide
results including these baselines in the following tables for IMDB, Tiny-ImageNet, and Unit-Ball
datasets.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 4.77 ±0.18 3.35 ±0.80 3.68 ±0.38 6.60 ±1.06 6.16 ±0.10 83.14 ±3.65 78.53 ±7.05 81.20 ±1.78 98.75 ±0.00 97.50 ±0.00

400 4.57 ±0.26 3.53 ±0.73 3.96 ±0.33 6.60 ±1.06 6.16 ±0.10 90.70 ±3.11 86.39 ±5.11 87.43 ±2.01 98.75 ±0.00 97.50 ±0.00

600 4.32 ±0.17 3.70 ±0.63 4.17 ±0.27 6.60 ±1.06 6.16 ±0.10 92.96 ±0.46 88.90 ±4.83 90.12 ±1.62 98.75 ±0.00 97.50 ±0.00

800 4.66 ±0.20 3.84 ±0.70 4.15 ±0.35 6.60 ±1.06 6.16 ±0.10 92.42 ±0.89 88.67 ±3.88 89.37 ±1.45 98.75 ±0.00 97.50 ±0.00

1000 4.67 ±0.16 3.90 ±0.68 4.21 ±0.35 6.60 ±1.06 6.16 ±0.10 92.89 ±0.91 89.79 ±3.09 90.18 ±1.39 98.75 ±0.00 97.50 ±0.00

Table 6: IMDB. Effect of variation of validation data size (Nv) without using a UCB (i.e., C1 = 0)
on error estimates. We keep training data size Nq fixed at 500 and use error threshold ϵa = 5%. We
report the mean and std. deviation over 10 runs with different random seeds.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 2.28 ±0.21 3.11 ±0.86 2.86 ±0.35 6.60 ±1.06 6.16 ±0.10 68.24 ±6.20 57.77 ±13.09 60.45 ±1.63 98.75 ±0.00 97.50 ±0.00

400 1.29 ±0.10 1.98 ±0.40 1.54 ±0.11 6.60 ±1.06 6.16 ±0.10 63.81 ±4.86 63.06 ±10.70 68.32 ±6.60 98.75 ±0.00 97.50 ±0.00

600 1.41 ±0.20 1.81 ±0.22 1.87 ±0.07 6.60 ±1.06 6.16 ±0.10 69.64 ±3.98 62.92 ±9.20 69.84 ±3.07 98.75 ±0.00 97.50 ±0.00

800 1.62 ±0.30 2.04 ±0.35 2.33 ±0.35 6.60 ±1.06 6.16 ±0.10 67.45 ±3.72 63.22 ±7.89 72.50 ±2.28 98.75 ±0.00 97.50 ±0.00

1000 1.64 ±0.23 1.97 ±0.26 1.93 ±0.13 6.60 ±1.06 6.16 ±0.10 70.28 ±2.82 66.11 ±8.00 73.04 ±2.06 98.75 ±0.00 97.50 ±0.00

Table 7: IMDB. Effect of variation of validation data size (Nv), using a UCB (i.e., C1 = 0.25) on error
estimates. We keep training data size Nq fixed at 500 and use error threshold ϵa = 5%. We report the mean and
std. deviation over 10 runs with different random seeds.
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Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 4.57 ±0.21 4.30 ±0.20 3.97 ±0.06 6.44 ±0.20 6.20 ±0.09 93.46 ±1.01 90.60 ±2.91 91.97 ±0.28 99.50 ±0.00 99.00 ±0.00

400 4.60 ±0.09 3.75 ±0.83 3.92 ±0.86 11.86 ±13.54 6.81 ±1.26 92.55 ±0.66 84.27 ±19.15 89.95 ±2.92 99.00 ±0.00 98.00 ±0.00

600 4.93 ±0.10 3.99 ±0.91 4.69 ±0.09 6.31 ±1.28 6.33 ±0.10 92.45 ±0.84 91.69 ±3.99 91.20 ±0.42 98.50 ±0.00 97.00 ±0.00

800 4.76 ±0.12 3.55 ±0.69 4.37 ±0.14 6.91 ±1.49 6.12 ±0.10 92.15 ±1.05 89.98 ±3.38 89.97 ±0.69 98.00 ±0.00 96.00 ±0.00

1000 4.49 ±0.06 4.19 ±0.31 4.25 ±0.29 5.65 ±0.25 6.14 ±0.11 92.25 ±0.96 92.28 ±2.13 89.47 ±0.70 97.50 ±0.00 95.00 ±0.00

Table 8: IMDB. Effect of variation of Nq , the maximum number of samples the algorithm can use for training,
without using a UCB (i.e., C1 = 0) on error estimates. We keep validation data size Nv fixed at 1000 and use
error threshold ϵa = 5%. We report the mean and std. deviation over 10 runs with different random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
200 1.67 ±0.29 2.15 ±0.45 1.59 ±0.10 6.44 ±0.20 6.20 ±0.09 73.30 ±3.49 57.17 ±11.09 57.39 ±4.15 99.50 ±0.00 99.00 ±0.00

400 1.63 ±0.19 1.61 ±0.29 1.76 ±0.13 11.86 ±13.54 6.81 ±1.26 72.59 ±3.16 64.53 ±16.61 58.48 ±1.79 99.00 ±0.00 98.00 ±0.00

600 1.67 ±0.21 1.83 ±0.30 1.67 ±0.08 6.31 ±1.28 6.33 ±0.10 71.38 ±2.15 70.50 ±5.68 65.71 ±2.14 98.50 ±0.00 97.00 ±0.00

800 1.67 ±0.27 1.90 ±0.31 1.79 ±0.09 6.91 ±1.49 6.12 ±0.10 69.10 ±4.51 65.74 ±10.14 73.21 ±2.57 98.00 ±0.00 96.00 ±0.00

1000 1.62 ±0.22 1.97 ±0.35 1.70 ±0.12 5.65 ±0.25 6.14 ±0.11 73.42 ±2.84 68.05 ±5.56 64.18 ±2.11 97.50 ±0.00 95.00 ±0.00

Table 9: IMDB. Effect of variation of Nq , the maximum number of samples the algorithm can use for training,
using a UCB (i.e., C1 = 0.25) on error estimates. We keep validation data size Nv fixed at 1000 and use error
threshold ϵa = 5%. We report the mean and std. deviation over 10 runs with different random seeds.

D.4 Auto Labeling Visualization
In this section, we visualize the process of TBAL. We use the dimensionality reduction method,
PaCMAP [66], to visualize the features of the samples. For neural network models, we visualize the
PaCMAP embeddings of the penultimate layer’s output and for linear models, we use PaCMAP on
the raw features. In these figures, each row corresponds to one TBAL round. Each figure shows a
few selected rounds of auto-labeling. Each figure has four columns (left to right), which show: a)
The samples that are labeled by TBAL in the round are shown in that row. b) The embeddings for
training samples in that round. c) The embeddings for validation data points in that round. d) The
score distribution for the validation dataset in that round.

In Figure 9 we see visualizations for auto-labeling on the MNIST data using linear models. In this
setting the data exhibits clustering structure in the PaCMAP embeddings learned on the raw features
and the confidence (probability) scores produced are also reasonably well calibrated which leads to
good auto-labeling performance.

The visualizations for the process of TBAL on CIFAR-10 using the small network (a small CNN
network with 2 convolution layers followed by 3 fully connected layers [48]) with energy scores
and soft-max scores for confidence functions are shown in Figures 10 and 11 respectively. We note
that both the energy scores and soft-max scores do not seem to be calibrated to the correctness of
the predicted labels which makes it difficult to identify subsets of unlabeled data where the current
hypothesis in each round could have potentially auto-labeled. We also note that the test accuracies
of the trained models were around 50% for most of the rounds of TBAL even though the small
network model is not a powerful enough model class for this dataset. Note that CIFAR-10 has 10
classes, so the accuracy of 50% is much better than random guessing and one would expect to be
able to auto-label a reasonably large chunk of the data with such a model if accompanied by a good
confidence function. This highlights the important role that the confidence function plays in a TBAL
system and more investigation is needed which is left to future work.

Note that, in our auto-labeling implementation we find class specific thresholds. In these figures,
we show the histograms of scores for all classes for simplicity. We want to emphasize that the
visualization figures in this section are 2D representations (approximation) of the high-dimensional
features (either of the penultimate layer or the raw features).
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Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 3.10 ±1.80 0.68 ±0.81 1.45 ±0.73 1.23 ±0.99 2.87 ±0.57 71.43 ±8.86 96.95 ±1.01 92.29 ±3.27 98.52 ±0.16 96.88 ±0.00

400 1.97 ±0.76 0.59 ±0.18 1.19 ±0.53 0.81 ±0.26 2.87 ±0.57 93.99 ±2.39 97.89 ±0.50 91.73 ±2.86 98.44 ±0.00 96.88 ±0.00

800 1.64 ±0.50 0.66 ±0.19 1.21 ±0.41 0.81 ±0.26 2.87 ±0.57 96.26 ±1.33 98.06 ±0.53 92.25 ±2.31 98.44 ±0.00 96.88 ±0.00

1200 1.39 ±0.39 0.67 ±0.19 1.11 ±0.30 0.81 ±0.26 2.87 ±0.57 96.67 ±0.84 98.10 ±0.45 91.98 ±2.20 98.44 ±0.00 96.88 ±0.00

1600 1.33 ±0.30 0.70 ±0.19 1.11 ±0.26 0.81 ±0.26 2.87 ±0.57 97.13 ±0.45 98.16 ±0.44 92.01 ±2.09 98.44 ±0.00 96.88 ±0.00

2000 1.28 ±0.34 0.71 ±0.21 1.07 ±0.25 0.81 ±0.26 2.87 ±0.57 97.15 ±0.54 98.20 ±0.34 91.86 ±2.17 98.44 ±0.00 96.88 ±0.00

Table 10: Unit Ball. Effect of variation of validation data size (Nv), without using a UCB (i.e., C1 = 0) on
error estimates. We keep training data size Nq fixed at 500 and use error threshold ϵa = 1%. We report the
mean and std. deviation over 10 runs with different random seeds.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 3.10 ±1.80 0.68 ±0.81 1.45 ±0.73 1.23 ±0.99 2.87 ±0.57 71.43 ±8.86 96.95 ±1.01 92.29 ±3.27 98.52 ±0.16 96.88 ±0.00

400 1.65 ±0.65 0.32 ±0.15 0.52 ±0.32 0.81 ±0.26 2.87 ±0.57 93.27 ±2.50 96.91 ±0.99 87.86 ±3.73 98.44 ±0.00 96.88 ±0.00

800 1.08 ±0.47 0.24 ±0.16 0.31 ±0.17 0.81 ±0.26 2.87 ±0.57 96.01 ±1.16 96.31 ±1.36 86.21 ±3.55 98.44 ±0.00 96.88 ±0.00

1200 0.78 ±0.27 0.17 ±0.11 0.18 ±0.14 0.81 ±0.26 2.87 ±0.57 96.82 ±0.84 95.96 ±1.40 84.65 ±4.14 98.44 ±0.00 96.88 ±0.00

1600 0.65 ±0.20 0.13 ±0.08 0.12 ±0.09 0.81 ±0.26 2.87 ±0.57 96.93 ±0.57 95.70 ±1.38 83.76 ±3.93 98.44 ±0.00 96.88 ±0.00

2000 0.54 ±0.16 0.21 ±0.11 0.21 ±0.10 0.81 ±0.26 2.87 ±0.57 97.23 ±0.42 96.36 ±1.13 85.72 ±3.47 98.44 ±0.00 96.88 ±0.00

Table 11: Unit-Ball. Effect of variation of validation data size (Nv), without using a UCB (i.e., C1 = 0.25)
on error estimates. We keep training data size Nq fixed at 500 and use error threshold ϵa = 1%. We report the
mean and std. deviation over 10 runs with different random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 1.53 ±0.27 1.16 ±0.35 1.14 ±0.29 16.93 ±2.48 12.53 ±2.24 75.31 ±7.06 31.69 ±10.78 51.47 ±10.46 99.69 ±0.00 99.38 ±0.00

200 1.25 ±0.21 1.04 ±0.25 0.98 ±0.17 7.85 ±1.69 7.08 ±1.82 96.24 ±0.88 73.27 ±8.68 76.05 ±8.19 99.38 ±0.00 98.75 ±0.00

400 1.20 ±0.20 0.94 ±0.17 1.03 ±0.15 1.81 ±0.58 3.25 ±0.81 97.70 ±0.19 96.48 ±1.74 91.08 ±2.63 98.75 ±0.00 97.50 ±0.00

600 1.21 ±0.26 0.44 ±0.13 1.09 ±0.18 0.44 ±0.14 2.25 ±0.56 97.56 ±0.20 98.11 ±0.02 93.19 ±1.60 98.12 ±0.00 96.25 ±0.00

800 1.13 ±0.20 0.12 ±0.05 1.02 ±0.18 0.12 ±0.05 1.76 ±0.50 97.25 ±0.19 97.49 ±0.01 93.23 ±1.01 97.50 ±0.00 95.00 ±0.00

1000 1.08 ±0.19 0.04 ±0.02 1.00 ±0.20 0.04 ±0.02 1.37 ±0.34 97.02 ±0.25 96.87 ±0.01 92.90 ±0.79 96.88 ±0.00 93.75 ±0.00

Table 12: Unit-Ball. Effect of variation of Nq , the maximum number of samples the algorithm can use for
training, without using a UCB (i.e., C1 = 0) on error estimates. We keep validation data size Nv fixed at 4000
and use error threshold ϵa = 1%. We report the mean and std. deviation over 10 runs with different random
seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
100 0.78 ±0.19 0.29 ±0.25 0.24 ±0.15 16.93 ±2.48 12.53 ±2.24 71.40 ±5.64 19.31 ±8.77 35.90 ±10.66 99.69 ±0.00 99.38 ±0.00

200 0.49 ±0.13 0.16 ±0.09 0.17 ±0.08 7.85 ±1.69 7.08 ±1.82 95.28 ±1.29 59.41 ±10.32 63.77 ±9.15 99.38 ±0.00 98.75 ±0.00

400 0.40 ±0.12 0.15 ±0.07 0.15 ±0.08 1.81 ±0.58 3.25 ±0.81 97.63 ±0.24 92.06 ±2.63 83.64 ±4.76 98.75 ±0.00 97.50 ±0.00

600 0.34 ±0.13 0.12 ±0.05 0.17 ±0.08 0.44 ±0.14 2.25 ±0.56 97.36 ±0.20 97.07 ±0.57 87.92 ±2.68 98.12 ±0.00 96.25 ±0.00

800 0.28 ±0.10 0.07 ±0.03 0.15 ±0.06 0.12 ±0.05 1.76 ±0.50 97.10 ±0.23 97.36 ±0.11 88.96 ±2.14 97.50 ±0.00 95.00 ±0.00

1000 0.25 ±0.10 0.03 ±0.02 0.19 ±0.08 0.04 ±0.02 1.37 ±0.34 96.90 ±0.21 96.84 ±0.03 89.61 ±1.49 96.88 ±0.00 93.75 ±0.00

Table 13: Unit-Ball. Effect of variation of Nq , the maximum number of samples the algorithm can use for
training, using a UCB (i.e., C1 = 0.25) on error estimates. We keep validation data size Nv fixed at 4000 and
use error threshold ϵa = 1%. We report the mean and std. deviation over 10 runs with different random seeds.
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Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

4000 13.88 ±5.42 13.31 ±10.79 12.55 ±7.23 34.34 ±0.32 31.46 ±0.20 0.72 ±0.55 0.48 ±0.04 0.69 ±0.39 95.00 ±0.00 90.00 ±0.00

6000 14.18 ±0.76 11.52 ±0.82 12.21 ±1.49 34.42 ±0.34 31.46 ±0.20 17.29 ±0.72 8.18 ±1.12 11.81 ±2.70 95.00 ±0.00 90.00 ±0.00

8000 13.97 ±0.14 11.31 ±0.51 12.22 ±0.61 34.42 ±0.34 31.46 ±0.20 36.36 ±1.78 23.40 ±1.15 29.99 ±0.97 95.00 ±0.00 90.00 ±0.00

10000 13.42 ±0.29 11.14 ±0.54 12.12 ±0.40 34.42 ±0.34 31.46 ±0.20 43.79 ±0.93 33.38 ±0.72 39.40 ±0.50 95.00 ±0.00 90.00 ±0.00

Table 14: Tiny-ImageNet. Effect of variation of validation data size (Nv), without using a UCB (i.e., C1 = 0)
on error estimates. We keep training data size Nq fixed at 10K and use error threshold ϵa = 10%. We report
the mean and std. deviation over 10 runs with different random seeds.

Nv
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

4000 10.50 ±6.01 7.37 ±4.57 6.04 ±1.85 34.20 ±0.32 31.52 ±0.27 0.47 ±0.05 0.48 ±0.06 0.43 ±0.01 95.00 ±0.00 90.00 ±0.00

6000 10.61 ±0.62 7.71 ±1.03 8.53 ±1.70 34.42 ±0.34 31.46 ±0.20 10.16 ±1.10 4.31 ±1.10 7.13 ±1.18 95.00 ±0.00 90.00 ±0.00

8000 9.90 ±0.63 6.80 ±0.77 7.81 ±0.85 34.42 ±0.34 31.46 ±0.20 25.84 ±1.57 14.43 ±2.01 19.23 ±1.43 95.00 ±0.00 90.00 ±0.00

10000 8.97 ±0.36 6.87 ±0.48 7.32 ±0.49 34.42 ±0.34 31.46 ±0.20 32.19 ±1.34 21.96 ±1.35 27.01 ±0.98 95.00 ±0.00 90.00 ±0.00

Table 15: Tiny-ImageNet. Effect of variation of validation data size (Nv), using a UCB (i.e., C1 = 0.25) on
error estimates. We keep training data size Nq fixed at 10K and use error threshold ϵa = 10%. We report the
mean and std. deviation over 10 runs with different random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 14.02 ±0.26 11.49 ±0.80 12.17 ±0.35 52.34 ±1.16 42.94 ±0.26 24.34 ±0.86 14.41 ±1.00 25.13 ±0.58 99.00 ±0.00 98.00 ±0.00

4000 14.10 ±0.77 11.58 ±0.26 11.92 ±0.39 43.14 ±0.33 36.07 ±0.41 34.16 ±1.00 21.84 ±1.36 33.41 ±0.65 98.00 ±0.00 96.00 ±0.00

6000 13.55 ±0.17 11.33 ±0.35 12.31 ±0.16 38.73 ±0.59 33.51 ±0.19 37.80 ±1.05 28.59 ±1.53 38.14 ±0.85 97.00 ±0.00 94.00 ±0.00

8000 13.79 ±0.27 11.72 ±0.32 12.36 ±0.30 36.06 ±0.30 32.33 ±0.32 42.00 ±1.71 32.00 ±1.12 39.64 ±1.07 96.00 ±0.00 92.00 ±0.00

10000 13.26 ±0.35 11.42 ±0.28 12.14 ±0.45 34.27 ±0.21 31.47 ±0.17 43.63 ±0.38 33.80 ±0.82 39.23 ±0.37 95.00 ±0.00 90.00 ±0.00

Table 16: Tiny-ImageNet. Effect of variation of Nq , the maximum number of samples the algorithm can use
for training, without using a UCB (i.e., C1 = 0) on error estimates. We keep validation data size Nv fixed
at 10K and use error threshold ϵa = 10%. We report the mean and std. deviation over 5 runs with different
random seeds.

Nq
Error (%) Coverage (%)

TBAL AL+SC PL+SC AL PL TBAL AL+SC PL+SC AL PL
2000 9.22 ±1.04 7.42 ±0.71 7.48 ±0.32 52.34 ±1.16 42.94 ±0.26 17.51 ±1.16 9.33 ±0.66 17.02 ±1.32 99.00 ±0.00 98.00 ±0.00

4000 9.30 ±0.38 6.97 ±0.39 7.37 ±0.21 43.14 ±0.33 36.07 ±0.41 25.01 ±1.20 14.25 ±1.71 22.29 ±0.61 98.00 ±0.00 96.00 ±0.00

6000 9.12 ±0.22 6.85 ±0.26 7.49 ±0.35 38.73 ±0.59 33.51 ±0.19 28.06 ±0.75 17.51 ±0.36 25.60 ±0.34 97.00 ±0.00 94.00 ±0.00

8000 9.21 ±0.14 7.38 ±0.53 7.71 ±0.25 36.06 ±0.30 32.33 ±0.32 30.88 ±0.64 21.18 ±0.90 27.26 ±0.78 96.00 ±0.00 92.00 ±0.00

10000 8.95 ±0.23 7.10 ±0.26 7.42 ±0.36 34.27 ±0.21 31.47 ±0.17 32.31 ±1.21 22.34 ±0.61 27.36 ±0.59 95.00 ±0.00 90.00 ±0.00

Table 17: Tiny-ImageNet. Effect of variation of Nq , the maximum number of samples the algorithm can use
for training, using a UCB (i.e., C1 = 0.25) on error estimates. We keep validation data size Nv fixed at 10K
and use error threshold ϵa = 10%. We report the mean and std. deviation over 5 runs with different random
seeds.
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Figure 9: Auto-labeling MNIST data using linear classifiers. Validation size = 12k. Maximum training samples
= 1600. Each round algorithm queries 160 samples. Coverage of auto-labeling is 62.9% with 98.0% accuracy.
For the rounds we show, the test error rates are 21.4%, 13.9%, 12.5%, 10.2%, and 9.8%, respectively. For four
columns (left to right), we show: a) The samples that are labeled by TBAL in this round. b) The embeddings
for training samples. c) The embeddings for validation data points. d) The score distribution for the validation
dataset.
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Figure 10: Auto-labeling CIFAR-10 data using a small network and energy scores. Validation size = 10k.
Maximum training samples = 25k. Each round algorithm queries 2500 samples. Coverage of auto-labeling is
5.3% with 90.0% accuracy. For the rounds we show, the test error rates are 56.6%, 55.2%, 55.6%, 53.0%, and
49.3% respectively. For four columns (left to right), we show: a) The samples that are labeled by TBAL in this
round. b) The embeddings for training samples. c) The embeddings for validation data points. d) The score
distribution for the validation dataset.
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Figure 11: Auto-labeling CIFAR-10 data using a small network and softmax scores. Validation size = 10k.
Maximum training samples = 25k. Each round algorithm queries 2500 samples. Coverage of auto-labeling is
2.3% with 91.0% accuracy. For the rounds visualized here in each row, the test error rates of the trained classifiers
are 56.6%, 59.1%, 52.8%, 50.5%, and 51.7% respectively. For four columns (left to right), we show: a) The
samples that are labeled by TBAL in this round. b) The embeddings for training samples. c) The embeddings
for validation data points. d) The score distribution for the validation dataset.
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