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Abstract

Designing effective policies for the online 3D bin packing problem (3D-BPP)
has been a long-standing challenge, primarily due to the unpredictable nature of
incoming box sequences and stringent physical constraints. While current deep
reinforcement learning (DRL) methods for online 3D-BPP have shown promising
results in optimizing average performance over an underlying box sequence distri-
bution, they often fail in real-world settings where some worst-case scenarios can
materialize. Standard robust DRL algorithms tend to overly prioritize optimizing
the worst-case performance at the expense of performance under normal problem in-
stance distribution. To address these issues, we first introduce a permutation-based
attacker to investigate the practical robustness of both DRL-based and heuristic
methods proposed for solving online 3D-BPP. Then, we propose an adjustable
robust reinforcement learning (AR2L) framework that allows efficient adjustment
of robustness weights to achieve the desired balance of the policy’s performance
in average and worst-case environments. Specifically, we formulate the objective
function as a weighted sum of expected and worst-case returns, and derive the
lower performance bound by relating to the return under a mixture dynamics. To
realize this lower bound, we adopt an iterative procedure that searches for the asso-
ciated mixture dynamics and improves the corresponding policy. We integrate this
procedure into two popular robust adversarial algorithms to develop the exact and
approximate AR2L algorithms. Experiments demonstrate that AR2L is versatile in
the sense that it improves policy robustness while maintaining an acceptable level
of performance for the nominal case.

1 Introduction

The offline 3D bin packing problem (3D-BPP) is a classic NP-hard combinatorial optimization
problem (COP) (de Castro Silva et al., 2003), which aims to optimally assign cuboid-shaped items with
varying sizes to the minimum number of containers while satisfying physical constraints (Martello
et al., 2000). In such a setting, a range of physical constraints can be imposed to meet diverse
packing requirements and preferences (Gzara et al., 2020). The primary constraint requires items to
be packed stably, without any overlaps, and kept within the bin. The online counterpart of 3D-BPP
is more prevalent and practical in logistics and warehousing (Wang and Hauser, 2020), as it does
not require complete information about all the unpacked items in advance. In this setting, only a
limited number of upcoming items on a conveyor can be observed, and items must be packed after
the preceding items are allocated (Seiden, 2002). Thus, besides physical constraints already present
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in the offline counterpart, the item permutation on the conveyor introduces additional constraints,
while the solution approach must take packing order into consideration.

Solution techniques for online 3D-BPP can be broadly categorized into heuristic and learning-
based methods. As heuristics often heavily rely on manually designed task-specific score func-
tions (Chazelle, 1983; Ha et al., 2017), they have limitations in expressing complex packing pref-
erences and adapting to diverse scenarios. By comparison, learning-based methods usually involve
utilizing deep reinforcement learning (DRL) techniques to develop a more adaptable packing policy
capable of accommodating diverse packing requirements (Zhao et al., 2021, 2022a; Song et al.,
2023). While emerging DRL-based methods for online 3D-BPP are effective at optimizing average
performance, they do not account for worst-case scenarios. This is because these methods often
fail on “hard” box sequences arising from the inherent uncertainty in incoming box sequences. In
addition, few studies have investigated the robustness of these methods, as incoming item sequences
can vary a lot in practice. These limit the practical usage of learning-based approaches.

To study the algorithm robustness under worst-case scenarios, one plausible approach is to design
an attacker that can produce perturbations commonly encountered in real-world settings. Various
proposed attackers for perturbing RL models often add continuous-value noise to either received
observations or performed actions (Tessler et al., 2019; Sun et al., 2021). Yet such methods are
mostly not well-suited for online 3D-BPP, as the state is defined by the bin configuration and the
currently observed items, and adding continuous-value noise may not correspond to real-world
perturbations. As previously discussed, item permutations can significantly impact the performance
of a given packing strategy, and in real-world scenarios, the packing strategy may face challenging
box sequences. By contrast, perturbing the bin configuration may violate practical constraints or
packing preferences. Therefore, we argue that using diverse item permutations to evaluate the model’s
robustness is a more suitable approach. Some of general robust reinforcement learning frameworks
against perturbations can be applied to online 3D-BPP (Pinto et al., 2017; Ying et al., 2022; Ho et al.,
2022; Panaganti et al., 2022), yet these methods may develop overly conservative policies, as they
usually prioritize improving worst-case performance at the expense of average performance. This
motivates us to design a robust algorithm that can effectively handle worst-case problem instances
while attaining satisfactory average performance.

In this paper, we develop a novel permutation-based attacker to practically evaluate robustness of
both DRL-based and heuristic bin packing policies. We propose an Adjustable Robust Reinforcement
Learning (AR2L) framework, which preserves high performance in both nominal and worst-case
environments. Our learnable attacker selects an item and place it to the most preceding position in the
observed incoming item sequence, as only the first item in this sequence has the priority to be packed
first. Essentially, this attacker attempts to identify a problem instance distribution that is challenging
for a given packing policy by simply reordering item sequences. The developed AR2L incorporates
such novel attacker along with an adjustable robustness weight parameter. Specifically, to consider
both the average and worst-case performance, we formulate the packing objective as a weighted
sum of expected and worst-case returns defined over space utilization rate. We derive a lower bound
for the objective function by relating it to the return under a mixture dynamics, which guarantees
AR2L’s performance. To realize this lower bound, we turn to identifying a policy with the highest
lower bound as the surrogate task. In this task, we use an iterative procedure that searches for the
associated mixture dynamics for the policy evaluation, and improves the policy under the resulting
mixture dynamics. To further put AR2L into practice, we find the connecting link between AR2L
with the Robust Adversarial Reinforcement Learning (RARL) algorithm (Pinto et al., 2017) and the
Robust f -Divergence Markov Decision Process (RfMDP) algorithm (Ho et al., 2022; Panaganti et al.,
2022), resulting in the exact AR2L and the approximate AR2L algorithms respectively. Empirical
evidence shows our method is able to achieve competitive worst-case performance in terms of space
utilization under the worst-case attack, while still maintaining good average performance compared
to all previously proposed robust counterparts.

2 Related Work

Numerous heuristic Ha et al. (2017); Karabulut and İnceoğlu (2005); Wang and Hauser (2019); Li and
Zhang (2015); Hu et al. (2017, 2020) and learning-based methods (Hu et al., 2017; Verma et al., 2020;
Zhao et al., 2021, 2022b; Yang et al., 2021; Zhao et al., 2022a; Song et al., 2023) have been proposed
to solve online 3D-BPP. However, these methods typically only consider average performance and
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may not be robust against perturbations. For more detailed reviews of related algorithms on 3D-BPP,
please refer to the Appendix.

Adversarial Attacks in Deep RL. More recently, several studies have demonstrated that deep RL
algorithms are vulnerable to adversarial perturbations from attackers, and robust policies can be
trained accordingly (Huang et al., 2017; Zhang et al., 2020, 2021; Sun et al., 2021; Ding et al., 2023).
Yet standard DRL attack schemes cannot generate realistic attacks for 3D-BPP due to the setting of
added perturbations. In the field of COP, Lu et al. (2023) used a RL-based attacker to modify the
underlying graph. Yet this method is limited to offline COPs that can be formulated as graph. Kong
et al. (2019) employed a generative adversarial network (GAN) (Goodfellow et al., 2020) to generate
some worst-case problem instances from Gaussian noise under restricted problem setting.

Robust RL. In order to find policies that are robust against various types of perturbations, a great
number of studies have investigated different strategies, such as regularized-based methods (Zhang
et al., 2020; Shen et al., 2020; Oikarinen et al., 2021; Kumar et al., 2021; Kuang et al., 2022),
attack-driven methods (Kos and Song, 2017; Pattanaik et al., 2017; Behzadan and Munir, 2017),
novel bellman operators (Liang et al., 2022; Wang and Zou, 2021, 2022), and conditional value
at risk (CVaR) based methods (Chow et al., 2017; Tang et al., 2019; Hiraoka et al., 2019; Ying
et al., 2022). However, these methods are generally intended to deal with lp-norm perturbations on
vectorized observations, which could limit their applicability to online 3D-BPP. Built upon robust
MDP framework (Iyengar, 2005), Pinto et al. (2017) modeled the competition between the agent
and the adversary as a zero-sum two-player game, but such game formulation has an excessive
prioritization of the worst-case performance. Jiang et al. (2021) introduced Monotonic Robust Policy
Optimization (MRPO) to enhance domain generalization by connecting worst-case and average
performance. Yet such approach imposes Lipschitz continuity assumptions, which are unaligned with
3D-BPP. The recently developed robust f -divergence MDP can approximate the worst-case value
of a policy by utilizing nominal samples instead of relying on samples from an adversary (Ho et al.,
2022; Panaganti et al., 2022). However, this method still cannot account for expected cases, as its
focus is solely on learning values in worst-case scenarios.

3 Preliminaries

MDP Formulation of Online 3D-BPP. To learn a highly effective policy via RL, the online 3D-
BPP is formulated as an MDP. Inspired by PCT (Zhao et al., 2022a), in this formulation, the state
spackt ∈ Spack observed by the packing agent consists of the already packed NC items Ct in the bin,
the observed incoming NB items Bt, and a set of potential positions Lt. The packed items in Ct

have spatial properties like sizes and coordinates, while each item bt,i ∈ Bt, i ∈ {1, .., NB} only
provides size information. The potential positions are typically generated for the most preceding
item in Bt using heuristic methods (Martello et al., 2000; Crainic et al., 2008; Ha et al., 2017). Then,
the action apackt ∈ Apack is to choose one position lt,j ∈ Lt, j ∈ {1, .., NL} for the first item in Bt.
In the termination state sT (T is the episode length), the agent cannot pack any more items. As a
result, the agent receives a delayed reward rT that represents the space utilization at sT , instead of
immediate rewards (rt = 0, t < T ). The discount factor γ here is set to 1. The aim is to maximize
the space utilization by learning a stochastic packing policy πpack(lt,j |Ct,Bt,Lt).

Robust MDP. The goal of robust MDP is to find the optimal robust policy that maximizes the
value against the worst-case dynamics from an uncertainty set Pw. The uncertainty set is de-
fined in the neighborhood of the nominal dynamics P o = (P o

s,a, (s, a) ∈ S × A) and sat-
isfies rectangularity condition (Iyengar, 2005), defined as Pw = ⊗(s,a)∈S×APw

s,a, Pw
s,a =

{Ps,a ∈ ∆(S) : DTV (Ps,a||P o
s,a) ≤ ρ}, where DTV (·) denotes the total variation (TV) dis-

tance, ⊗ is the Cartesian product, ∆(S) is a set of probability measures defined on S, and
ρ ∈ [0, 1] is the radius of the uncertainty set. Consequently, the robust value function un-
der a policy π is V π

r = infPw∈Pw V π,Pw

r . And the robust Bellman operator Tr is defined as
TrV π

r (s) = Ea∼π[r(s, a) + γ infPw
s,a∈Pw

s,a
Es′∼Pw

s,a
[V π

r (s′)]], where s′ denotes the next state. To
empirically solve the robust MDP, Pinto et al. (2017) proposed RARL that learns the robust policy
under the environment perturbed by a learned optimal adversary.

Robust f -divergence MDP. To avoid the need for a costly trained adversary, RfMDP (Ho et al.,
2022; Panaganti et al., 2022) formulates the problem as a tractable constrained optimization task to
approximate the robust value using samples from P o. The objective is to find a transition distribution
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that minimizes the robust value function, subject to the constraint in Pw described by the f -divergence.
As a result, a new robust Bellman operator is introduced by solving the dual form of this constrained
optimization problem through the Lagrangian multiplier method.

4 Adjustable Robust Reinforcement Learning

In this section, we begin by introducing a novel yet practical adversary capable of generating worst-
case problem instances for the online 3D-BPP. Next, we present the adjustable robust reinforcement
learning (AR2L) framework to address the robustness-performance tradeoff. Finally, we integrate
AR2L into both the RARL algorithm and the RfMDP algorithm to derive the exact and approximate
AR2L algorithms in a tractable manner.

4.1 Permutation-based Attacker
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Figure 1: Overview of our attack framework.

In online 3D-BPP, a problem instance
is comprised of a sequence of items,
and these items are randomly per-
muted and placed on a conveyor. Such
randomness can result in certain in-
stances where trained policy may fail.
Therefore, this observation motivates
us to design a simple yet realistic
adversary called permutation-based
attacker. By reordering the item
sequence for a given packing pol-
icy, our approach can explore worst-
case instances without compromising
realism (See Figure 1 for attacker
overview). In contrast to the approach
of directly permuting the entire item sequence as described in (Kong et al., 2019), our method
involves permuting the observable item sequence, thereby progressively transforming the entire item
sequence. Through the behavior analysis of our permutation-based attacker in the Appendix, we
observe the attacker appears to prefer smaller items when constructing harder instances as the number
of observable items increases. This aligns with the findings mentioned in (Zhao et al., 2022a), where
larger items simplify the scenario while smaller items introduce additional challenges. As a result,
the act of permuting the entire sequence might enable the attacker to trickily select certain types
of items, and thus carries potential risks associated with shifts in the underlying item distribution.
However, we aim to ensure that the attacker genuinely learns how to permute the item sequence to
identify and create challenging scenarios. To mitigate these risks, we limit the attacker’s capacity by
restricting the number NB of observable items to proactively address concerns related to changes in
the item distribution.

To target any type of solver intended for solving the online 3D-BPP for robustness evaluation, we train
a RL-based policy which acts as the permutation-based attacker. The permuted state spermt ∈ Sperm

of the attacker is comprised of the current bin configuration Ct and the item sequence Bt. The
action apermt ∈ Aperm involves moving one item from Bt to a position ahead of the other observed
items, resulting in the reordered item sequence B′

t = {b′t,i}. Then, the packing policy will pack the
most preceding one into the bin based on the perturbed observation. The reward for the attacker
is defined as rpermt = −rpackt , since the objective is to minimize the space utilization by training
an optimal stochastic policy πperm(bt,i|Ct,Bt). The online packing process allows only the first
item in the observable item sequence to be packed at each step. To address the issue of exponential
growth in the action space as the number of observable items increases, the permutation-based
attacker strategically selects one item and positions it ahead of the other items. We can consider
a simplified value function represented as V πpack(Ct,B

′
t) = rpackt + V πpack(Ct+1,B

′
t+1). This

function indicates that the value of πpack depends on rpackt , Ct+1, and B′
t+1. Furthermore, rpackt

and Ct+1 are influenced by the first item in B′
t, while the remaining items in B′

t combine with a
new item to form a new sequence, which undergoes further permutations as B′

t+1. As a result, the
permutation of the remaining items at time step t is disregarded in the attack process. To model such
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an attacker, we use the Transformer (Vaswani et al., 2017) that is capable of capturing long-range
dependencies in spatial data and sequential data involved in the attacker’s observation. Please refer to
the Appendix for more details on the implementations.

4.2 Adjustable Robust Reinforcement Learning

For online 3D-BPP, item observed at each timestep is independently generated from a station-
ary distribution pb(bt,i) that does not change over time. Once an item is placed into the con-
tainer, the bin configuration Ct becomes deterministic, and a new item bt+1,NB

is appended
to the observable item sequence to construct Bt+1. Thus, the nominal environment is defined
as P o(Ct+1,Bt+1|Ct,Bt, a

pack
t ) = pb(bt+1,NB

). We omit Lt for brevity. Since we use the
permutation-based attacker to reorder the observable item sequence, the worst-case environment
transition is Pw(Ct+1,B

′
t+1|Ct,B

′
t, a

pack
t ) = pb(bt+1,NB

)πperm(b
′
t+1,1|Ct+1,Bt+1), with Pw as

the worst-case dynamics.

Existing DRL-based methods are developed to learn a packing policy that maximizes space utilization
(cumulative reward) under the nominal distribution P o. However, in real-world scenarios where the
order of items can be adversarially permuted, it is not sufficient to only consider the expected return
under P o. In contrast, the existing general robust methods that can be deployed to online 3D-BPP
overly prioritize robustness at the cost of average performance by solely focusing on the return under
the worst-case dynamics Pw. To address these issues, we should be aware of the returns under both
the average and worst-case scenarios. Given that nominal cases are more common than worst-case
scenarios in the online 3D-BPP setting, the objective function is defined as

π∗ = argmax
π∈Π

η(π, P o) + αη(π, Pw) (1)

where α ∈ (0, 1] is the weight of robustness, η(·) is the return, and Pw is built on the optimal
permutation-based attacker. Here symbols without superscripts represent those used by the packing
agent (e.g., πpack = π).

However, how can we learn such a policy with the presence of both P o and Pw? To address this
matter, we derive a lower bound for the objective function defined in Equation 1 by relating it to the
return under an unknown mixture dynamics defined as Pm, as shown in the following theorem.

Theorem 1. The model discrepancy between two models can be described as d(P 1||P 2) ≜
maxs,a DTV (P

1(·|s, a)||P 2(·|s, a)). The lower bound for objective 1 is derived as follows:

η(π, P o) + αη(π, Pw) ≥ (1 + α)η(π, Pm)− 2γ|r|max

(1− γ)2
(d(Pm||P o) + αd(Pm||Pw)) (2)

The RHS of Inequality 2 provides the lower bound for the objective function defined in Equation 1,
where the first term represents the expected return of policy π under the mixture dynamics Pm, while
the second term denotes the weighted sum of deviations of Pm from both P o and Pw. Motivated
by Theorem 1, we turn to maximizing the RHS of Inequality 2 to concurrently improve both the
average and worst-case performance. Therefore, the primal problem in Equation 1 is equivalently
reformulated to a surrogate problem where we expect to identify an optimal policy with the maximal
lower bound, represented as

π∗ = argmax
π∈Π

max
Pm∈P

η(π, Pm)− (d(Pm||P o) + αd(Pm||Pw)); (3)

The objective of this optimization problem is to maximize the return by updating both the policy
and the mixture dynamics controlled by robustness weight α, given the nominal and worst-case
dynamics. Furthermore, the second term in Equation 3 can be viewed as a constraint that penalizes
the deviations between environments, resulting in a constrained optimization problem written as
π∗ = argmaxπ∈Π{maxPm∈P η(π, Pm) : d(Pm||P o)+αd(Pm||Pw) ≤ ρ′}, where ρ′ ∈ [0, 1+α].
However, this constraint renders the constrained form of Equation 3 impractical to solve. Instead,
a heuristic approximation is used for this constraint, which considers the TV distance at each
state-action pair, leading to an uncertainty set for the mixture dynamics:

Pm = ⊗(s,a)∈S×APm
s,a; Pm

s,a = {Ps,a ∈ ∆(S) : DTV (Ps,a||P o
s,a) + αDTV (Ps,a||Pw

s,a) ≤ ρ′}. (4)

The uncertainty set Pm satisfies the rectangularity condition Iyengar (2005). To solve the constrained
optimization problem, we carry out an iterative procedure which searches for the associated mixture

5



Permutation-based 
Attacker

DRL Loss

Distance Loss

Item Distribution 𝑝!
Nominal Dynamics Mixture-Dynamics

Model

Packing Policy

𝐁!, 𝐂!

𝐁!""

𝑎!
#$%& 𝐂!

𝐁!, 𝐂!

𝐁!"

𝐁!""

𝑟!'()

𝐁!

(a) Exact AR2L Algorithm

Gradient Flow Data FlowPermutation-based 
Attacker

DRL Loss

Item Distribution 𝑝!
Nominal Dynamics

Packing Policy

𝐁!, 𝐂!

𝑎!
"#$%

𝑉&(𝐁!, 𝐂!)

Adjustable Robust
Value Function

𝐁!'

𝐁!, 𝐂!, 𝑟!
"#$%

𝐁!, 𝐂!

(b) Approximate AR2L Algorithm

Figure 2: Implementations of the AR2L algorithm. Left: The exact AR2L algorithm requires to
learn a mixture-dynamics model to generate problem instances for the training of the packing policy.
Right: The approximate AR2L algorithm relies on the samples from both the nominal dynamics and
the permutation-based attacker to estimate adjustable robust values of the packing policy.

dynamics for the policy evaluation, and improves the policy under the resulting mixture dynamics.
Therefore, we define the adjustable robust value function as V π

a = supPm∈Pm V π,Pm

a for the policy
evaluation. And the adjustable robust Bellman operator Ta can be defined as

TaV π
a (s) = Ea∼π[r(s, a) + γ sup

Pm
s,a∈Pm

s,a

Es′∼Pm
s,a

[V π
a (s′)]]. (5)

The adjustable robust Bellman operator assumes both the nominal and worst-case dynamics corre-
sponding to π are available for constructing the uncertainty set Pm. Unlike the traditional robust
Bellman operator (Iyengar, 2005) designed for the minimal value, our proposed operator focus on
maximizing the value of a given policy by updating the mixture dynamics. Meanwhile, to avoid the
optimistic evaluation, the uncertainty set for the mixture dynamics used in Equation 13 is constrained
with regard to both nominal and worst-case environment. Following policy evaluation, the policy
is improved using samples drawn from the mixture dynamics. In addition, the following theorem
guarantees that Ta can facilitate the convergence of the value function to a fixed point.

Theorem 2. For any given policy π and its corresponding worst-case dynamics Pw, the adjustable
robust Bellman operator Ta is a contraction whose fixed point is V π

a . The operator equation
TaV π

a = V π
a has a unique solution.

Exact AR2L Algorithm. The AR2L algorithm evaluates and improves policies based on the mixture
dynamics that exists in the neighborhoods of both the nominal and worst-case scenarios. However,
this algorithm remains impractical since the adjustable robust Bellman operator defined in Equation 13
involves computing the expectations w.r.t. all models in the uncertainty set Pm. This potentially
results in high computational complexity. Inspired by the classic RARL algorithm (Pinto et al.,
2017) which trains a robust policy utilizing perturbations injected by a learned optimal adversary,
we propose an iterative training approach that involves training a mixture-dynamics model πmix

alongside the packing policy πpack and the permutation-based attacker πperm to obtain the exact
AR2L algorithm. The mixture-dynamics model is corresponding to the mixture dynamics, and it
permutes the observable item sequences Bt to B′′

t based on observed packed items Ct. As illustrated
in Figure 2(a), such a model receives the same reward as the packing policy (rmix

t = rpackt ). Based
on Equation 3, the mixture-dynamics model strives to maximize the return under a given policy,
while also penalizing deviations between dynamics. As Pm and Pw have the same form with the
same underlying item distribution pb, we can only measure the discrepancy between Pm and Pw by
evaluating the deviation between πmix and πperm. In practice, the Kullback-Leibler (KL) divergence
is adopted to constrain the deviation between distributions. Thus, the training loss is

Lmix = −η(πpack, πmix) + (DKL(πmix||1{x=bt+1,1}) + αDKL(πmix||πperm)), (6)

where DKL is the KL divergence, and 1{x=bt+1,1} denotes the indicator function. Thus, the mixture-
dynamics model is optimized by minimizing both the DRL loss (the first term) and the distance
loss (the second term). Based on this, the exact AR2L algorithm iterates through three stages to
progressively improve the packing policy. First, the permutation-based attacker is optimized for a
given packing policy, as is done in RARL. Next, the mixture-dynamics model πmix is learned using
the loss function defined in Equation 6. Finally, the packing policy is evaluated and improved using
problem instances that are permuted by πmix.
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Approximate AR2L Algorithm. Training the mixture-dynamics model in exact AR2L introduces
additional computation to the entire framework. We thus propose the approximate AR2L algorithm,
which uses samples from both the nominal and worst-case dynamics to estimate adjustable robust
values for the policy iteration as shown in Figure 2(b). Inspired by RfMDP (Ho et al., 2022; Panaganti
et al., 2022), we use the dual reformulation of the adjustable robust Bellman operator, as given below.
Proposition 1. The policy evaluation of AR2L can be formulated as a constrained optimization
problem. The objective is to maximize the value function over the uncertainty set Pm, subject to the
constraint defined in Equation 4. By representing the TV distance using the f -divergence (Shapiro,
2017), the adjustable robust Bellman operator Ta given in Equation 13 can be equivalently written as

TaV π
a (s) = Ea∼π[r(s, a) +

γ

1 + α
inf

λ,µ1,µ2,µ
(Es′∼P o

s,a
[V π

a (s′)− µ1(s
′)]++

αEs′∼Pw
s,a

[V π
a (s′)− µ2(s

′)]+ + µ+ λρ(1 + α))],
(7)

where [x]+ denotes max{x, 0}, µ1(s) and µ2(s) are Lagrangian multipliers for each s ∈ S; µ =
µ1(s) + αµ2(s) holds for each s ∈ S, and λ = maxs{V π

a (s)− µ1(s), V
π
a (s)− µ2(s), 0}.

The approximate AR2L algorithm eliminates the requirement of using samples from the mixture
dynamics for policy evaluation, yet it introduces estimation errors into the process. In practice, this
results in mild performance degradation and sometimes unstable learning. Nevertheless, it remains
valuable as the approximate AR2L still demonstrates superior performance compared to RfMDP.

In order to implement the AR2L algorithm, we opt to use the PPO algorithm (Schulman et al., 2017)
to train packing policy πpack, permutation-based attacker πperm and mixture-dynamics model πmix.
The packing policy is implemented using the PCT method (Zhao et al., 2022a) to accommodate the
continuous solution space. All of the relevant implementation details, pseudocode for the algorithms,
and both derivations and proofs are included in the Appendix.

5 Experiments

Training and Evaluation Settings In the online 3D-BPP setting, the container sizes Sd, d ∈ {x, y, z}
are equal for each dimension (Sx = Sy = Sz), and the item sizes sd, d ∈ {x, y, z} are limited to no
greater than Sd/2 to create more complex scenarios. The stability of each item is checked based on
constraints used in (Zhao et al., 2022a,b). Moreover, we adopt two different popular settings used
in (Zhao et al., 2022a,b) for training DRL-based policies. In the discrete setting, where item sizes are
uniformly generated from a discrete set, i.e., sd ∈ {1, 2, 3, 4, 5}, resulting in a total of 125 types of
items, and the container size Sd is fixed at 10. In the continuous setting, the container size Sd is set
to 1, and item sizes sd, d ∈ {x, y} follow a continuous uniform distribution U(0.1, 0.5); and sz is
uniformly sampled from a finite set {0.1, 0.2, 0.3, 0.4, 0.5}. Then, discrete and continuous datasets
are created following instructions from the two aforementioned training settings to evaluate both
heuristic and DRL-based methods. Each dataset consists of 3,000 problem instances, where each
problem instance contains 150 items. We use three metrics to evaluate the performance of various
packing strategies: Uti. represents the average space utilization rate of the bin’s volume; Std. is the
standard deviation of space utilization which evaluates the algorithm’s reliability across all instances;
Num. evaluates the average number of packed items.

5.1 Algorithm Robustness under Permutation-based Attacks

In our experiment, we evaluate the robustness of six heuristic methods, including deep-bottom-left
(DBL) method (Karabulut and İnceoğlu, 2005), best-match-first (BMF) method (Li and Zhang, 2015),
least-surface-area heuristics (LSAH) (Hu et al., 2017), online bin packing heuristics (OnlineBPH) (Ha
et al., 2017), heightmap-minimization (HMM) method (Wang and Hauser, 2019) and maximize-
accessible-convex-space (MACS) method (Hu et al., 2020). For the DRL-based methods, we evaluate
the constrained deep reinforcement learning (CDRL) (Zhao et al., 2021) algorithm, and the packing
configuration tree (PCT) method (Zhao et al., 2022a). We train specific permutation-based attackers
for each of them. Since the capacity of the permutation-based attacker is highly related to the number
of observable items of the attacker, we choose NB = 5, 10, 15, 20 to obtain different attackers. Given
that the number of observable items for the packing policy is typically limited to the first item in most
methods, except for PCT, we can establish a consistent approach by setting the number of observable
items for the packing policy to 1 in this case.
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Table 1: The performance of existing methods under the perturbation in the discrete setting.

Methods NB = 5 NB = 10 NB = 15 NB = 20 w/o attack

Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num.

DBL 40.4 14.3 18.4 28.5 16.1 13.9 26.0 14.9 14.9 21.3 12.6 8.5 63.6 11.9 25.8
BMF 46.9 11.5 21.0 40.9 12.2 22.2 38.6 12.9 21.1 33.7 11.9 22.1 62.0 9.2 24.8
LSAH 46.0 10.1 20.3 42.2 11.3 20.9 38.6 11.0 19.4 35.6 11.8 21.3 60.9 10.9 24.6

OnlineBPH 47.1 21.0 19.8 44.0 18.9 22.8 29.8 18.5 14.6 22.4 12.7 14.1 64.1 8.9 25.8
HMM 49.1 11.1 22.5 46.5 13.8 22.5 43.4 13.0 21.4 40.4 10.0 24.1 56.1 10.4 22.6
MACS 43.0 9.7 21.9 40.8 9.0 24.8 39.0 9.8 23.7 38.3 9.0 27.0 53.0 10.8 21.5
CDRL 61.5 7.8 27.9 56.1 6.9 28.7 54.6 7.6 31.3 51.0 7.1 29.9 74.1 7.3 29.1
PCT 63.6 9.9 27.3 58.7 11.3 25.8 50.9 13.1 25.6 40.5 15.3 21.8 76.6 6.0 30.0

Table 1 presents the performance of various methods under perturbations from corresponding
permutation-based attackers in the discrete setting. We can observe that though the HMM al-
gorithm does not perform the best in the nominal scenario compared to other heuristic methods, it
exhibits superior performance under attackers with different attack capacities. By comparison, the
DBL method is the most vulnerable heuristic method. As attack capabilities increase, the CDRL
algorithm demonstrates greater robustness compared to the PCT method, consistently achieving a
higher average number of packed items with smaller variance of volume ratio. It is worth noting that
the larger the value of NB is, the more the performance can be degraded for all methods, indicating
that harder problem instances can be explored by increasing the value of NB . In addition, the
number of packed items does not necessarily decrease as attack capacity increases. This is because
permutation-based attackers aim to minimize space utilization, which means they may select smaller
items to make the packing problem more challenging for the packing policy.

5.2 Performance of AR2L Algorithm

We then benchmark four other RL algorithms compatible with online 3D-BPP tasks, which in-
clude packing configuration tree (PCT) (Zhao et al., 2022a) method, the CVaR-Proximal-Policy-
Optimization (CPPO) (Ying et al., 2022) algorithm, the robust adversarial reinforcement learning
(RARL) algorithm (Pinto et al., 2017), and the robust f -divergence MDP (RfMDP) (Ho et al., 2022;
Panaganti et al., 2022). The PCT algorithm serves as the baseline method and is used as the packing
policy for all other methods in our implementations. The CPPO algorithm trains the packing policy
with worst-case returns as a constraint, which can potentially improve both average and worst-case
performance. The RARL algorithm is the baseline model for the exact AR2L algorithm due to its
reliance on worst-case samples from the attacker. Likewise, the RfMDP framework serves as the
baseline model for the approximate AR2L algorithm because it involves approximating values of the
unknown dynamics. As both the exact AR2L (ExactAR2L) algorithm and the approximate AR2L
algorithm (ApproxAR2L) can develop policies with different levels of robustness by adjusting the
value of α, we choose α = 0.3, 0.5, 0.7, 1.0 to explore the relationship between α and policy robust-
ness. Furthermore, we use different attackers with varying attack capabilities (NB = 5, 10, 15, 20) to
investigate the robustness of packing policies. It is important to note that in this scenario, the packing
policy is permitted to observe the same number of items as its corresponding attacker. During testing,
we construct mixture datasets by randomly selecting β% nominal box sequences and reordering
them using the learned permutation-based attacker for each packing policy. The empirical results
in the continuous setting are included in the Appendix. Since we implement PCT with different
training configurations, we conducted a comparison between our implementation and the official
implementation in the Appendix.

Uti. Table 2 presents the results of evaluating multiple robust methods on various datasets that
differ in the number of problem instances perturbed by different attackers. We denote the different
values of α used by the ExactAR2L algorithm as ExactAR2L(α), and similarly for ApproxAR2L(α).
The results unequivocally indicate that the ExactAR2L algorithm, when employed with a higher
value of α, exhibits superior performance on nominal cases and competitive robustness in terms
of space utilization when compared to other robust methods. When the value of α is increased, it
allows the packing policy to encounter and learn from more worst-case samples during training. By
experiencing a wider range of adversarial situations, the packing policy can better adapt to mitigate
the impact of attackers, enhancing its overall robustness. However, ExactAR2L cannot consistently
improve its average performance across all the settings with different values of NB . For the scenario
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Table 2: The performance of robust methods under the perturbation in the discrete setting.

Methods β = 0 β = 25 β = 50 β = 75 β = 100

Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num.
N

B
=

5
PCT 76.2 6.8 29.9 73.6 7.9 29.9 70.6 9.2 28.5 67.5 9.1 27.8 64.9 8.2 27.1

CPPO 75.5 6.9 29.6 73.1 8.0 29.0 70.7 8.4 28.5 67.9 8.2 27.9 65.2 7.3 27.4
RARL 74.6 6.2 29.2 73.1 7.3 29.2 70.8 8.4 29.0 67.8 8.4 28.4 66.7 8.1 28.5

ExactAR2L(0.3) 76.3 6.6 29.8 73.8 8.5 29.6 71.0 9.1 29.2 67.5 9.6 28.4 64.5 9.4 27.7
ExactAR2L(0.5) 76.5 7.1 30.1 73.5 8.8 29.4 70.5 10.4 28.8 68.2 10.3 28.1 65.3 10.0 27.6
ExactAR2L(0.7) 76.8 6.1 30.1 74.4 7.7 29.7 71.1 8.9 29.1 68.8 9.7 28.7 66.3 8.6 28.5
ExactAR2L(1.0) 77.4 6.5 30.2 74.3 9.3 29.5 72.0 9.5 29.0 69.5 10.0 28.4 66.5 8.7 27.9

RfMDP 75.5 6.7 29.6 71.8 9.8 28.8 69.6 9.4 28.5 67.1 9.0 28.0 63.9 8.1 27.3
ApproxAR2L(0.3) 75.3 6.3 29.6 72.6 7.7 28.9 70.0 8.6 28.4 66.4 9.7 27.6 63.2 9.5 26.9
ApproxAR2L(0.5) 76.1 5.8 29.8 72.6 8.4 29.0 69.8 9.9 28.4 67.3 9.6 27.7 64.7 8.8 27.4
ApproxAR2L(0.7) 76.9 5.7 30.0 73.7 8.0 29.1 71.6 8.5 28.7 68.2 8.4 27.8 65.2 7.9 27.0
ApproxAR2L(1.0) 76.5 6.5 30.1 73.4 8.9 29.2 70.8 9.3 28.6 68.4 9.3 28.0 65.7 8.5 27.5

N
B

=
1
0

PCT 76.4 6.6 29.9 70.6 12.4 28.5 65.1 14.5 27.3 61.4 14.8 26.4 55.7 12.9 25.2
CPPO 75.6 7.2 29.8 70.7 11.6 28.6 66.2 12.7 27.7 62.3 12.9 26.9 57.4 11.4 25.8
RARL 74.3 7.2 29.4 71.1 8.7 29.0 69.2 8.5 28.7 65.6 8.6 28.0 63.3 8.2 27.7

ExactAR2L(0.3) 76.5 5.9 29.9 71.5 12.1 28.9 66.8 14.0 27.8 62.9 14.1 27.0 59.2 12.7 26.4
ExactAR2L(0.5) 77.6 5.8 30.3 73.1 10.2 29.5 68.0 13.1 28.8 64.0 12.7 28.0 59.7 10.2 27.4
ExactAR2L(0.7) 77.4 5.6 30.2 73.1 9.7 29.5 69.5 11.2 28.9 65.6 11.1 28.1 62.3 9.7 27.4
ExactAR2L(1.0) 76.0 7.0 29.8 72.4 9.7 30.0 70.3 9.4 30.3 66.7 9.3 30.3 63.8 8.0 30.6

RfMDP 74.4 7.2 29.7 70.5 11.4 28.7 65.7 14.3 28.0 60.8 14.4 26.8 55.9 12.5 25.9
ApproxAR2L(0.3) 76.1 5.9 29.7 70.5 12.5 28.8 66.1 14.6 28.2 61.3 14.5 27.2 55.7 11.8 26.2
ApproxAR2L(0.5) 76.2 5.9 29.9 72.1 11.7 29.2 66.9 14.7 28.1 62.1 15.0 26.9 56.1 13.6 25.5
ApproxAR2L(0.7) 73.0 7.0 28.8 70.1 9.5 29.2 65.4 11.1 28.4 61.0 10.7 27.9 56.2 8.4 27.1
ApproxAR2L(1.0) 73.6 6.8 28.9 69.3 10.7 29.2 66.1 11.8 29.3 61.9 11.6 29.4 57.1 9.1 29.8

N
B

=
1
5

PCT 76.8 6.9 29.9 69.4 15.4 28.1 62.0 18.3 26.3 55.2 18.2 24.3 48.6 14.7 22.5
CPPO 75.2 7.7 29.3 69.9 13.1 28.2 63.8 15.2 26.8 58.0 15.7 25.2 52.3 13.3 23.9
RARL 73.2 7.2 28.7 70.3 9.1 28.7 67.2 10.9 28.4 63.1 12.4 28.0 58.7 11.0 27.5

ExactAR2L(0.3) 76.8 6.4 30.1 71.4 11.4 29.3 65.3 13.8 28.4 59.7 14.0 27.3 53.4 11.6 26.5
ExactAR2L(0.5) 77.7 5.8 30.3 72.0 11.9 29.3 68.0 13.8 28.8 61.2 15.4 27.2 55.0 13.3 26.0
ExactAR2L(0.7) 76.5 7.5 30.0 71.5 13.4 29.0 66.4 14.8 28.0 62.0 14.5 26.7 56.3 12.3 25.6
ExactAR2L(1.0) 76.6 5.4 30.0 71.7 10.8 29.4 67.7 12.3 29.0 63.3 11.9 28.2 58.5 11.1 27.6

RfMDP 73.6 8.0 29.0 68.4 12.8 29.1 62.2 15.0 28.9 58.2 14.7 29.2 54.1 12.5 29.6
ApproxAR2L(0.3) 75.4 7.3 29.5 69.9 12.3 29.4 65.5 13.5 29.2 59.3 13.2 28.0 54.5 10.6 27.5
ApproxAR2L(0.5) 75.2 6.4 29.6 69.9 10.6 29.5 65.2 11.9 29.5 60.1 10.9 29.2 55.1 6.8 29.4
ApproxAR2L(0.7) 74.6 7.5 29.2 70.2 10.3 29.1 65.0 11.9 28.8 60.6 11.5 28.6 55.8 8.0 28.6
ApproxAR2L(1.0) 73.5 7.5 29.1 69.1 10.2 29.0 65.0 12.4 29.3 60.4 11.6 29.0 55.8 8.8 29.2

N
B

=
2
0

PCT 77.0 5.5 30.1 68.4 17.0 28.6 59.7 19.3 27.0 50.9 18.2 25.5 41.9 12.2 24.2
CPPO 74.1 7.5 29.2 66.7 16.2 27.9 59.1 18.5 26.5 53.2 17.3 25.3 45.8 13.6 24.0
RARL 72.0 6.4 28.4 68.6 9.4 29.1 64.6 10.6 29.3 61.7 10.0 30.0 58.7 8.4 30.4

ExactAR2L(0.3) 76.7 6.7 30.0 70.8 13.3 29.4 65.6 15.8 28.9 59.4 16.3 28.0 52.7 14.3 27.4
ExactAR2L(0.5) 76.8 6.2 30.1 70.0 14.3 30.2 64.7 15.8 30.5 60.0 15.3 30.6 54.4 13.3 30.8
ExactAR2L(0.7) 76.3 6.1 30.0 71.1 11.4 29.6 66.2 14.1 29.3 61.9 14.2 29.2 57.0 12.3 28.8
ExactAR2L(1.0) 76.1 7.3 30.0 70.9 11.8 29.4 66.7 12.7 29.0 62.8 12.6 28.6 58.5 10.3 28.2

RfMDP 73.8 7.0 29.0 69.4 11.0 26.6 64.7 13.3 24.2 59.4 15.1 21.5 54.4 13.0 19.2
ApproxAR2L(0.3) 76.1 6.1 29.8 70.3 12.1 30.4 64.1 14.1 30.8 57.7 12.3 31.0 51.7 6.7 31.5
ApproxAR2L(0.5) 75.0 7.6 29.5 70.1 12.2 30.1 63.9 15.4 30.5 58.8 14.4 30.7 53.1 11.7 31.1
ApproxAR2L(0.7) 74.1 6.9 29.0 68.9 10.8 29.3 64.0 11.9 30.0 59.4 11.3 30.4 54.1 7.1 30.5
ApproxAR2L(1.0) 73.4 8.2 28.9 68.2 13.2 28.7 65.6 13.9 29.0 61.9 14.6 28.9 57.6 12.9 28.8

where NB = 5, the distribution deviation between the perturbed data and the nominal data (β = 0)
is comparatively minimal. This indicates that increasing the value of α and incorporating more
challenging instances into the training settings of the nominal dynamics is an acceptable approach.
By doing so, the generalization of the model can be enhanced, allowing it to handle a wider range
of scenarios. However, the distribution deviation between the perturbed data and the nominal data
(β = 0) increases as the number of observable items increases. In such cases, it becomes less desirable
to significantly increase the value of α. As a result, in the cases of NB = 10 and NB = 15 under
β = 0, ExactAR2L tends to favor α = 0.5. Furthermore, in the scenario of NB = 20, ExactAR2L
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Figure 3: 3(a) 3(b) depict the learning curves of robust RL algorithms for nominal problem instances.
3(c) 3(d) show the influence of ρ on the performance of the ApproxAR2L algorithm.
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cannot outperform PCT due to the larger distribution deviation caused by the increased number of
observable items of the attacker. In a word, by including perturbed data with a small deviation from
the nominal data during training, the enhanced generalization leads to the performance improvement
in nominal cases (β = 0). Conversely, the large distribution deviation between the perturbed data
and the nominal data can degenerate the performance in nominal cases, as indicated by the RARL
algorithm. We also observe that as the value of β increases, the ExactAR2L algorithm tends to favor a
larger value of α. Furthermore, the ApproxAR2L algorithm exhibits a similar performance tendency
in both nominal and worst-case scenarios as the ExactAR2L algorithm. Due to the introduced value
estimation error, the ApproxAR2L algorithm cannot perform as well as the ExactAR2L algorithm.
Despite this, the ApproxAR2L algorithm still performs better than its baseline model, the RfMDP
algorithm. Additionally, as demonstrated in Figures 3(a) 3(b), the ExactAR2L algorithm can learn
faster than other robust RL algorithms.

Std. As shown in Table 2, ExactAR2L demonstrates its superiority over PCT with smaller Std. in
17 tasks, while producing a slightly larger Std. in 3 tasks. Thus, ExactAR2L can indeed improve
the robustness. Furthermore, we observe when NB = 5, 10, ExactAR2L tends to choose α =
0.7 for smaller Std.. On the other hand, for NB = 15, 20, ExactAR2L favors α = 1.0. Since
ExactAR2L is trained on both nominal and worst-case dynamics, while RARL is trained only on the
worst-case dynamics, the ExactAR2L policy is less conservative than the RARL policy. While the
conservativeness may result in smaller Std. in most tasks, it produces worse results in terms of Uti.
under the nominal dynamics. It is worth noting that the value of Std. from ExactAR2L is the closest
to that of RARL. This observation shows ExactAR2L can trade off between conservative and risky
behavior, as the Std. from ExactAR2L is between that of RARL and PCT. Similarly, ApproxAR2L is
less conservative than RfMDP, which causes ApproxAR2L cannot achieve a smaller Std. in all tasks.

Num. The ExactAR2L(1.0) algorithm can pack more items in 17 tasks compared to PCT, and shows
a slight drop in 3 tasks, where the average drop is 0.2. We found that to pack more items, ExactAR2L
consistently favors α = 1.0 across various tasks. Compared to RARL, ExactAR2L(1.0) can pack
at least the same number of items in 16 tasks. Thus ExactAR2L(1.0) can produce competitive
results compared to RARL and PCT in terms of Num.. Compared to the baseline method RfMDP,
ApproxAR2L(0.5) can pack more items in 16 tasks, and shows a slight drop in only 4 tasks, where
the average drop is 0.25.

Hyperparameter Configurations. Based on observations from Table 2, α = 1.0 is the best choice
for ExactAR2L across different test settings. When β = 50, 75, ExactAR2L(1.0) performs the
best compared to baselines and ExactAR2L with other values of α (with a slight drop compared
to ExactAR2L(0.7) when β = 50, NB = 15). If β = 100, ExactAR2L(1.0) can still produce
competitive results compared to RARL and significantly outperforms PCT. When β = 25, although
α = 1.0 is not the optimal choice, ExactAR2L(1.0) can still outperform other baselines. When β = 0,
ExactAR2L(1.0) significantly outperforms RARL, and the slight drop compared to PCT is acceptable,
as our goal is to improve the robustness while maintaining average performance at an acceptable level.
ρ is only used in ApproxAR2L algorithm. As shown in Figures 3(c) 3(d), we choose different values
of ρ in different settings. We found that ρ = 0.1 is a trustworthy choice for ApproxAR2L. Based on
the observations from Table 2 and Figures 3(c) 3(d), we conclude that ρ = 0.1 and α = 0.5 are the
best choice for ApproxAR2L, as it outperforms its corresponding baseline in almost all the tasks.

6 Conclusions and Limitations

In this work, we propose a novel reinforcement learning approach, Adjustable Robust Reinforcement
Learning (AR2L), for solving the online 3D Bin Packing Problem (BPP). AR2L achieves a balance
between policy performance in nominal and worst-case scenarios by optimizing a weighted sum of
returns. We use a surrogate task of identifying a policy with the largest lower bound of the return
to optimize the objective function. We can seamlessly bridge AR2L into the RARL and RfMDP
algorithms to obtain exact and approximate AR2L algorithms. Extensive experiments show that the
exact AR2L algorithm improves the robustness of the packing policy while maintaining acceptable
performance, but may introduce additional computational complexity due to the mixture-dynamics
model. The approximate AR2L algorithm estimates values without samples from the mixture
dynamics, yet performance is not up to our exact AR2L agent due to the existence of estimation
error. Though our AR2L framework is designed for online 3D-BPP, it can be also adapted to other
decision-making tasks. We will investigate more efficient and generalizable AR2L framework.
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A Appendix

A.1 Experiment

In addition to results in the discrete setting presented earlier in the main texts, this section focuses
on introducing additional results in the continuous setting. For the continuous setting, the container
size Sd, d ∈ {x, y, z} is fixed at 1, and the sizes of items sd, d ∈ {x, y} follow a continuous
uniform distribution U(0.1, 0.5). To prevent impractical scenarios where packed items cannot form
a supportive plane for incoming items, the sz dimension of each item is uniformly sampled from a
finite set of values {0.1, 0.2, 0.3, 0.4, 0.5} (Zhao et al., 2022a). Likewise, Each dataset consists of
3,000 problem instances, where each problem instance contains 150 items. We use three metrics to
evaluate the performance of various packing strategies: Uti. represents the average space utilization
rate of the bin’s volume; Std. is the standard deviation of space utilization across all instances; Num.
evaluates the average number of packed items. In the field of online 3D-BPP (Zhao et al., 2021,
2022a; Song et al., 2023), the standard deviation of space utilization across a large number of
problem instances (>1,000) is commonly used to assess the reliability and stability of a solver,
rather than the error bar generated from multiple experiment runs (Kim et al., 2022; Choo
et al., 2022; Qiu et al., 2022). In addition, all the models are developed using PyTorch (Paszke
et al., 2017) and trained on a Nvidia RTX 3090 GPU and an Intel(R) Xeon(R) Gold 5218R CPU @
2.10GHz.

A.1.1 Algorithm Robustness under Permutation-based Attacker

In the continuous setting, we conduct empirical evaluations to assess the robustness of four heuristic
methods: deep-bottom-left (DBL) method (Karabulut and İnceoğlu, 2005), best-match-first (BMF)
method (Li and Zhang, 2015), least-surface-area heuristic (LSAH) (Hu et al., 2017), and online bin
packing heuristics (OnlineBPH) (Ha et al., 2017). In addition, we evaluated the packing configuration
tree (PCT) algorithm (Zhao et al., 2022a) for the DRL-based methods, as other DRL-based methods
are limited to spatially discretized grid world. We also evaluate the robustness of each algorithm
under varying attack capabilities by selecting different values for NB , including 5, 10, 15, and 20.
Since except PCT, other methods can observe only the first item in the item sequence at each time
step, the observable number of items of each packing strategy is fixed at 1 to ensure a fair comparison
between these packing strategies.

Table 1 displays the performance of different packing strategies against permutations generated
by their corresponding permutation-based attackers. We can see that the LSAH algorithm exhibits
superior space utilization performance across various experimental settings with different values of
NB , even though it does not perform as well as the OnlineBPH and DBL algorithms in the nominal
dynamics. In contrast, the BMF method is the most susceptible to attacks across all settings with
varying numbers of observable items used by permutation-based attackers. With the increase of the
attack capability, the PCT algorithm consistently outperforms the heuristic methods in terms of space
utilization and the number of packed items, which can be attributed to its generalizability across a
large number of problem instances. Similar to the results in the discrete setting, increasing the value
of NB results in more performance degradation for all methods, which suggests an opportunity to
explore more challenging problem instances, and to design proper robust algorithms accordingly.

Table 1: The performance of existing methods under the perturbation in the continuous setting.

Methods NB = 5 NB = 10 NB = 15 NB = 20 w/o attack

Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num.

DBL 37.8 8.7 17.3 30.7 8.3 16.1 27.1 6.5 16.1 23.0 7.0 15.9 48.3 10.5 18.6
BMF 27.5 8.6 13.3 21.6 7.3 12.5 17.4 6.5 12.0 14.1 4.7 11.0 42.1 8.2 16.4
LSAH 38.7 10.9 16.7 36.9 9.1 17.2 33.2 10.0 16.3 27.1 8.4 17.6 47.5 8.6 18.4

OnlineBPH 33.8 11.6 15.3 30.2 7.4 16.5 26.4 7.2 16.2 23.3 6.8 15.6 49.1 9.7 19.0
PCT 47.7 8.4 20.4 39.0 8.7 18.5 36.4 9.5 18.8 30.4 8.8 17.9 65.6 8.7 25.0

Figure 1 depicts item distributions under perturbations from different attackers using PCT packing
policies in the discrete setting. Since the sizes sd of items follow a uniform discrete distribution, the
frequency of the sampled sizes are approximately equal, as illustrated in the leftmost bar chart in
Figure 1. It is apparent that as the number of observable items of the attacker increases, the attacker
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Figure 1: Item distributions in discrete settings with varying values of NB for different attackers.

tends to select smaller items. Furthermore, as the attack capability increases, the underlying item
distribution undergoes more significant changes. Therefore, in our setting, restricting the number of
observable items is a practical approach to create permuted new problem instances that are closer to
challenging real-world scenarios, as opposed to allowing an unlimited number of observable items.

In Figure 2, the item distributions from time step 1 to time step 20 are illustrated over different
problem instances under perturbations from different attackers, using PCT packing policies in the
discrete setting with NB = 15, 20. These item distributions not only partially reflect the problem
instance distribution, but also reveal the preference of the attacker at each time step. At the beginning,
the attacker favors items with smaller sizes, but as the time steps increase, it tends to sample items
uniformly. This variation tendency illustrates the behavior of the attacker. However, it does not
necessarily imply that rearranging the item sequence in ascending order based on item volumes
would be an optimal or even effective attack. As selecting smaller items intuitively reduces the
likelihood of forming supportive planes for future incoming items, attackers tend to choose smaller
items to minimize the space utilization of the packing policy. Therefore, essentially, the attacker
aims to select items that cannot be used to construct a supportive plane, rather than blindly choosing
smaller items. This also explains why the probability of larger items in the beginning phase does
not decrease to zero in Figure 2. As shown in Figure 3, we use a toy example to demonstrate that
rearranging the item sequence in ascending order based on item sizes would not be an optimal or
even effective attack. In this example, the container sizes Sd, d ∈ {x, y, z} are set to 2, and the
item sequence consists of four items, denoted as B = {b1, b2, b3, b4}. The sizes of the items are as
follows: b1 = (1× 2× 2), b2 = b3 = (1× 1× 1), and b4 = (1× 1× 2). We generate a new item
sequence B′ = {b2, b3, b4, b1} by rearranging B in ascending order based on item sizes. However,
this rearrangement is not an effective attack since the optimal solution can still be obtained using a
packing strategy. By comparison, moving both b1 and b4 from B to the middle between b2 and b3

results in B′′, which is an effective attack for achieving minimal space utilization. In such a case, the
packing agent cannot pack b1 into the container at the third time step.

A.1.2 Performance of AR2L Algorithm

In the continuous setting, we benchmark four other RL algorithms that are adaptable to online 3D-BPP,
including the packing configuration tree (PCT) (Zhao et al., 2022a) method, the CVaR-Proximal-
Policy-Optimization (CPPO) (Ying et al., 2022) algorithm, the robust adversarial reinforcement
learning (RARL) (Pinto et al., 2017) algorithm, and the robust f -divergence MDP (RfMDP) (Ho
et al., 2022; Panaganti et al., 2022) algorithm. Since both the exact AR2L (ExactAR2L) and
approximate AR2L (ApproxAR2L) algorithms can adjust the value of α to develop policies that
vary in their level of robustness, we use different values of α = 0.3, 0.5, 0.7, 1.0 to explore the
robustness trends with varying values of α in this setting. Likewise, we construct mixture datasets by
randomly selecting β% nominal box sequences and rearranging them using the learned corresponding
permutation-based attacker for each packing policy.

Uti. Table 2 displays the performance of different robust methods that are compatible with online
3D-BPP on datasets with varying number of challenging problem instances in the continuous setting.
ExactAR2L(α) represents the ExactAR2L algorithm taking different values for α, and similarly
for ApproxAR2L(α). In the continuous setting, increasing the value of α can lead to ExactAR2L
producing more robust policies against their corresponding permutation-based attackers, as the
larger value of α provides more worst-case problem instances during the training of the packing
policy. However, they cannot consistently improve their performance on the nominal dynamics. As
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(a) NB = 15
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(b) NB = 20

Figure 2: Item distribution at each time step in the discrete setting. From the top left chart to the
bottom right chart, it represents the item distribution from time step 1 to time step 20 in sequence.

17



Figure 3: The toy example of packing processes with different item sequences.

the number of observable items of the attacker increases, there is a corresponding increase in the
distribution deviation between the perturbed data and the nominal data (β = 0). For the scenario when
NB = 5, 10, the distribution deviation is comparatively small. Thus, it is acceptable to incorporate
more challenging instances by increasing the value of α to 0.7. This adjustment will further enhance
the generalization of the model and lead to improved performance in terms of space utilization
compared to PCT. By comparison, in the cases of NB = 15 and NB = 20, ExactAR2L tends to favor
α = 0.3 to produce satisfactory performance for β = 0. Thus, by incorporating the perturbed data
with small deviation from the nominal data during training, the generalization of the packing policy
can be enhanced, leading to the performance improvement. But the larger deviation can degenerate
the performance of the packing policy on the nominal datasets, as demonstrated in RARL. Likewise
to the tendency in discrete setting, the ExactAR2L algorithm prefers the larger value of α as the value
of β increases. Furthermore, due to the value estimation error, ApproxAR2L cannot perform as well
as its exact counterpart in most of tasks under the continuous setting. However, to our surprise, we
observed that in the case of NB = 5, ApproxAR2L surpasses its corresponding exact counterpart
in terms of performance. This could be attributed to the relatively small estimation error resulting
from the small deviation in dynamics in this setting, where removing the mixture-dynamics model
results in a more stable learning process compared to the exact algorithm. In the remaining tasks,
the estimation error in ApproxAR2L can result in more unstable learning, which makes the trend in
performance across different values of α less clear compared to the ExactAR2L algorithm.

Std. As shown in Table 2, in almost all tasks, ExactAR2L with a larger value of α (α = 1.0) exhibits
superiority over PCT in terms of Std.. Thus, ExactAR2L can indeed improve the robustness in
the continuous setting. However, it should be noted that ExactAR2L does not consistently yield
smaller values of Std. compared to RARL. This is because the ExactAR2L policy tends to be less
conservative than the RARL policy in the majority of tasks. Likewise, ApproxAR2L algorithm
prefers larger value of α to consistently achieve smaller Std. in different tasks.

Num. In comparison to PCT, the ExactAR2L(1.0) algorithm demonstrates the ability to pack more
items in 19 tasks, with a minor decrease observed in 1 task. However, when compared to RARL, the
ExactAR2L(1.0) policy only outperforms in 9 tasks. This discrepancy can primarily be attributed
to the performance drop observed in the worst-case dynamics of the ExactAR2L algorithm. The
ApproxAR2L policy tends to prefer α = 0.7 over the RfMDP policy when it comes to packing more
items across all the tasks.
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Table 2: Performance of robust methods under the perturbation in the continuous setting.

Methods β = 0 β = 25 β = 50 β = 75 β = 100

Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num. Uti.(%) Std. Num.
N

B
=

5
PCT 65.4 9.8 24.8 60.6 12.0 23.6 56.4 11.7 22.6 52.4 11.5 21.7 48.6 7.4 21.0

CPPO 65.0 10.7 24.7 60.3 13.2 23.5 56.6 12.3 22.6 52.7 12.6 21.8 47.8 8.8 20.5
RARL 65.7 10.9 25.1 62.1 12.0 24.4 57.4 11.7 23.5 53.7 11.3 22.7 50.8 8.8 22.2

ExactAR2L(0.3) 65.9 8.8 25.3 61.6 10.7 24.2 57.7 10.5 23.3 53.5 11.5 22.4 48.9 7.7 21.3
ExactAR2L(0.5) 66.0 9.0 25.0 61.6 11.3 24.0 56.9 10.7 23.0 53.8 10.5 22.5 49.9 7.2 21.6
ExactAR2L(0.7) 67.0 9.8 25.5 62.4 12.6 24.2 57.8 11.5 23.1 54.7 10.7 22.2 50.1 7.3 21.1
ExactAR2L(1.0) 66.7 9.6 25.4 62.6 11.3 24.6 57.9 10.3 23.6 55.1 10.0 23.1 50.3 6.0 22.1

RfMDP 62.9 10.4 24.0 57.2 13.3 22.7 52.4 12.5 21.6 48.7 12.4 20.9 43.3 8.6 19.7
ApproxAR2L(0.3) 66.3 9.1 25.1 62.5 11.8 24.3 57.3 11.9 23.0 52.5 11.7 22.0 48.2 7.6 21.1
ApproxAR2L(0.5) 67.1 8.5 25.5 62.4 11.6 24.1 58.0 11.4 23.0 53.8 11.4 22.1 49.1 7.6 20.9
ApproxAR2L(0.7) 67.4 8.8 25.6 63.3 10.9 24.6 58.4 11.0 23.5 54.1 11.6 22.5 49.5 8.1 21.2
ApproxAR2L(1.0) 64.3 9.4 24.6 60.7 11.0 23.6 57.2 11.0 22.9 53.4 11.1 22.1 49.7 8.1 21.4

N
B

=
1
0

PCT 65.3 9.6 24.8 58.9 15.0 23.4 53.1 15.4 22.2 48.0 15.4 21.2 41.4 9.4 19.7
CPPO 65.5 10.5 24.9 59.0 15.1 23.9 52.3 15.0 22.7 46.1 14.0 21.7 39.9 6.8 20.7
RARL 63.4 9.1 24.1 58.6 12.1 23.6 54.7 12.2 23.3 50.5 11.3 22.9 45.9 7.0 22.5

ExactAR2L(0.3) 65.5 9.5 24.8 58.5 14.1 23.4 52.2 14.3 22.1 46.5 13.3 21.1 40.2 6.7 19.9
ExactAR2L(0.5) 66.5 8.8 25.3 59.5 14.8 23.8 54.1 14.8 22.6 47.9 14.4 21.3 41.1 8.2 19.9
ExactAR2L(0.7) 67.8 9.0 25.8 61.8 13.9 24.7 55.2 15.6 23.2 49.4 14.8 22.0 43.0 9.6 20.7
ExactAR2L(1.0) 65.9 9.5 25.0 60.6 13.1 24.3 54.4 13.3 23.2 50.6 12.6 22.7 45.3 7.9 22.1

RfMDP 62.5 8.7 23.8 55.6 13.5 22.3 50.0 13.4 21.3 45.2 12.9 20.5 39.2 7.9 19.2
ApproxAR2L(0.3) 65.5 10.0 24.9 58.3 15.0 23.5 51.4 14.1 22.0 46.1 12.7 21.1 40.7 7.5 20.2
ApproxAR2L(0.5) 65.8 9.2 24.9 59.9 14.3 23.7 54.1 15.2 22.4 48.2 14.6 21.1 40.8 8.4 19.4
ApproxAR2L(0.7) 66.8 8.1 25.5 59.7 14.2 23.6 53.8 14.9 22.2 48.3 15.3 20.9 42.0 9.9 19.4
ApproxAR2L(1.0) 64.7 7.2 24.6 58.5 12.5 23.7 53.2 13.0 23.1 47.3 12.6 22.3 42.6 7.9 21.9

N
B

=
1
5

PCT 65.8 10.1 25.0 57.6 17.4 23.3 50.7 17.5 21.8 42.7 16.4 20.1 35.9 10.8 18.5
CPPO 64.6 10.2 24.6 57.4 17.1 23.1 50.0 17.9 21.2 42.2 17.7 19.5 33.5 10.4 17.6
RARL 62.7 8.7 23.9 57.0 12.7 23.9 51.6 12.7 24.1 46.5 11.6 24.1 41.0 6.2 24.2

ExactAR2L(0.3) 66.3 8.3 25.2 59.1 15.0 23.7 51.6 16.4 22.2 45.1 15.5 20.8 37.2 8.4 19.2
ExactAR2L(0.5) 65.2 8.9 24.8 58.3 15.6 23.6 52.0 16.2 22.5 44.8 16.3 21.0 37.7 11.1 19.7
ExactAR2L(0.7) 65.5 9.4 24.9 58.6 15.1 23.8 52.4 15.3 22.4 45.7 15.6 20.9 39.0 10.7 19.5
ExactAR2L(1.0) 65.7 10.7 25.1 59.5 15.4 24.3 52.4 16.2 23.4 47.2 15.2 22.6 40.7 10.2 21.5

RfMDP 62.8 10.2 23.9 55.3 17.0 22.5 47.9 17.8 20.9 41.4 17.0 19.5 34.5 11.9 17.9
ApproxAR2L(0.3) 65.8 9.3 25.2 58.4 16.5 23.6 50.4 17.1 21.6 44.0 16.2 20.3 36.5 10.2 18.4
ApproxAR2L(0.5) 65.8 8.8 25.0 57.4 16.6 23.6 50.0 17.2 22.4 43.7 15.7 21.5 36.8 9.2 20.2
ApproxAR2L(0.7) 65.8 8.5 24.9 58.6 15.2 23.9 51.6 15.7 22.9 45.1 14.9 22.2 37.7 8.0 21.2
ApproxAR2L(1.0) 65.5 9.3 24.8 58.2 15.2 23.4 51.6 14.9 22.5 45.4 14.8 21.3 38.2 9.8 20.2

N
B

=
2
0

PCT 65.8 10.1 25.0 57.6 17.4 23.3 50.7 17.5 21.9 42.8 16.5 20.1 35.9 10.8 18.5
CPPO 64.6 10.3 24.6 57.4 17.1 23.1 50.0 17.9 21.2 42.2 17.7 19.5 33.5 10.4 17.6
RARL 62.7 8.7 23.9 57.0 12.7 23.9 51.6 12.7 24.1 46.5 11.6 24.1 41.0 6.2 24.2

ExactAR2L(0.3) 66.9 7.7 25.3 57.2 17.3 23.2 48.7 18.7 21.6 40.1 16.5 20.0 31.9 8.5 18.5
ExactAR2L(0.5) 65.9 9.3 24.9 57.4 16.6 23.2 50.9 17.1 22.2 43.5 17.0 20.9 35.0 10.4 19.1
ExactAR2L(0.7) 65.0 9.1 24.8 57.7 16.1 23.4 49.9 17.5 21.8 42.9 16.9 20.5 35.3 11.3 18.7
ExactAR2L(1.0) 64.9 9.2 24.5 58.1 15.6 23.6 51.3 17.2 22.4 44.6 16.9 21.3 37.4 12.0 19.9

RfMDP 62.8 10.2 23.9 55.3 17.0 22.5 47.9 17.8 20.9 41.4 17.1 19.5 34.5 11.9 17.9
ApproxAR2L(0.3) 64.9 9.9 24.7 55.6 18.6 22.6 47.2 19.2 20.9 39.8 18.3 19.4 30.9 9.1 17.3
ApproxAR2L(0.5) 65.8 10.8 25.0 57.5 17.9 23.7 49.4 19.0 22.4 41.7 17.8 21.1 32.9 8.9 19.3
ApproxAR2L(0.7) 66.7 7.7 25.3 58.4 16.7 24.2 50.3 18.0 23.0 42.3 17.2 21.9 33.6 7.4 20.3
ApproxAR2L(1.0) 64.8 9.5 24.8 58.3 15.4 24.2 50.1 17.6 23.1 42.5 16.8 21.8 34.5 8.7 20.7

Hyperparameter Configurations. Based on the observations presented in Table 2, it can be
concluded that α = 1.0 is the optimal choice for achieving a desired balance between policy
performance in both nominal and worst-case scenarios. The ExactAR2L(1.0) algorithm demonstrates
competitive robustness and average performance when compared to both PCT and RARL. Compared
to the baseline method RfMDP, ApproxAR2L chooses α = 0.7 for the best performance.

In addition, although the convergence rate is not our primary concern in evaluating the RL algorithm,
we still intend to observe the trend in the learning curves across varying attack capabilities. Our
ExactAR2L algorithm shows greater improvement in terms of convergence rate in both the discrete
and continuous settings as the number of observable items of the attacker increases, as demonstrated
clearly in Figure 4 5.

A.1.3 Visualization Results

Figure 8 shows a qualitative comparison of the visualized bin packing results obtained by the
ExactAR2L, RARL, and PCT policies under the nominal and worst-case dynamics with varying
numbers of observable items NB = 15, 20 in the discrete setting. As shown in Figure 8(a) 8(b), the
ExactAR2L algorithm allows more smaller margin spaces in the container to minimize sizes of those
unoccupied spaces. By comparison, the RARL algorithm attempts to create larger spaces, which may
pose a risk of future items not fitting into those spaces. The visualization results of the ExactAR2L
and PCT algorithms under their respective worst-case dynamics are depicted in Figure 8(c) and 8(d).
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(d) NB = 20

Figure 4: The learning curves of robust RL algorithms for nominal problem instances with different
values of NB in the discrete setting.
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(c) NB = 15
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Figure 5: The learning curves of robust RL algorithms for nominal problem instances with different
values of NB in the continuous setting.

One observation is that attackers designed for packing policies tend to prioritize smaller items at the
beginning, as a majority of smaller items are likely to occur at the bottom of the container. In such a
scenario, the ExactAR2L policy prioritizes the creation of supportive planes for future items, even at
the cost of producing smaller margin spaces.

A.1.4 Baselines Comparisons

Since we implement PCT with different training configurations, we conducted a comparison between
our implementation and the official implementation in this section. We conducted the comparison
of the algorithms in terms of convergence rate across various values of NB , specifically NB =
1, 5, 10, 15, 20. To ensure a fair and consistent comparison, we employed the same number of
problem instances during training. Each iteration utilized a fixed rollout length of 30, and we
maintained a constant number of 64 parallel processes throughout the experiments. As shown in
Figure 6 and Figure 7, our results clearly demonstrate that our implementation exhibits a faster
convergence rate across different settings, considering various numbers of observable items.

A.1.5 Practicability of AR2L Algorithm

To validate the practicality of exact AR2L algorithm in real-world scenarios, we directly evaluated
our model without retraining on the Mixed-item Dataset (MI Dataset) (Yuan et al., 2023; Elhedhli
et al., 2019) which follows the generation scheme proposed by Elhedhli et al. (2019) for the realistic
3D-BPP instance generator. MI dataset has 10 thousand items, with 4668 species, and occurrences
vary from 1 to 15. The pallet dimensions is set to the size often used in practice: Sx = 120, Sy = 100,
and Sz = 100. The results are presented in the Table 3. It is evident that in both settings of NB = 15
and NB = 20, our exact AR2L algorithm demonstrates superior performance compared to PCT and
RARL across various metrics in the real-world dataset.

Table 3: The performance of PCT, RARL and exact AR2L evaluated on the Mixed-Item Dataset

Methods NB = 15 NB = 20

Uti.(%) Std. Num. Uti.(%) Std. Num.

PCT 48.3 8.5 16.8 48.7 10.1 16.9
RARL 48.8 8.8 16.9 48.8 8.3 16.9
AR2L 50.2 8.5 17.4 52.9 6.5 18.3
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(c) NB = 10
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(d) NB = 15
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Figure 6: The training curves of our implementation and the official implementation for PCT in the
discrete setting.
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Figure 7: The training curves of our implementation and the official implementation for PCT in the
continuous setting.
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(d) ExactAR2L and PCT algorithms in the worst-case dynamics with NB = 20.

Figure 8: Visualization results of various methods. The space utilization values for each sub-figure
are displayed alongside the respective visualization.
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A.2 Proofs

Lemma 1. [Achiam et al. (2017), Appendix.10.1.1] Given a policy π(·|s), a transition model
P (·|s, a), and an initial state distribution µ(s), the discounted state visitation distribution dπ,P (s)
under policy π can be described as:

dπ,P (s) = (1− γ)µ(s) + γ
∑
s′,a

dπ,P (s
′)π(a|s′)P (s|s′, a) (1)

Theorem 1. The model discrepancy between two models can be described as d(P 1||P 2) ≜
maxs,a DTV (P

1(·|s, a)||P 2(·|s, a)). The lower bound for the newly defined objective is derived as
follows:

η(π, P o) + αη(π, Pw) ≥ (1 + α)η(π, Pm)− 2γ|r|max

(1− γ)2
(d(Pm||P o) + αd(Pm||Pw)) (2)

Proof. Given two dynamics models P 1(·|s, a) and P 2(·|s, a), the absolute value of the difference of
returns of a policy π can be represented as

|η(π, P 1)− η(π, P 2)| = |Es∼µ(s)[V
P 1

(s)− V P 2

(s)]| ≤ Es∼µ(s)|V P 1

(s)− V P 2

(s)|, (3)

Here, we set ∆V (s) = V P 1

(s)− V P 2

(s), and it can be transformed as:

∆V (s) = Ea∼π[r(s, a) + γEs′∼P 1(V P 1

(s′))]− Ea∼π[r(s, a) + γEs′∼P 2(V P 2

(s′))]

= γ Ea∼πEs′∼P 1(V P 1

(s′))− γEa∼πEs′∼P 2(V P 2

(s′))︸ ︷︷ ︸
1⃝

(4)

The term 1⃝ can be firstly written as:

Ea∼πEs′∼P1(V P1

(s′))− Ea∼πEs′∼P2(V P2

(s′))

=Ea∼πEs′∼P1(V P1

(s′))− Ea∼πEs′∼P1(V P2

(s′)) + Ea∼πEs′∼P1(V P2

(s′))− Ea∼πEs′∼P2(V P2

(s′))

=Ea∼πEs′∼P1∆V (s′) + Ea∼π

∑
s′

(P 1(s′|s, a)− P 2(s′|s, a))V P2

(s′)

(5)

We then derive an upper bound of the second term in Equation 5 as:

Ea∼π

∑
s′

(P 1(s′|s, a)− P 2(s′|s, a))V P 2

(s′)

≤max
s′

V P 2

(s′)Ea∼π

∑
s′

(P 1(s′|s, a)− P 2(s′|s, a))

≤2|r|max

1− γ

1

2
Ea∼π

∑
s′

(P 1(s′|s, a)− P 2(s′|s, a))

=
2|r|max

1− γ
Ea∼πDTV (P

1(·|s, a)||P 2(·|s, a)).

(6)

Next, Equation 5 and 6 can be plugged into Equation 4, written as:

∆(s) ≤ γEa∼πEs′∼P 1∆V (s′) +
2γ|r|max

1− γ
Ea∼πDTV (P

1(·|s, a)||P 2(·|s, a)) (7)

Thus, the expectation of ∆(s) can be further upper bounded by:
Es∼dπ,P1∆(s)

≤Es∼dπ,P1 [γEa∼πEs′∼P 1∆V (s′) +
2γ|r|max

1− γ
Ea∼πDTV (P

1(·|s, a)||P 2(·|s, a))]

=γEs∼dπ,P1 [Ea∼πEs′∼P 1∆V (s′)] +
2γ|r|max

1− γ
Es∼dπ,P1 [Ea∼πDTV (P

1(·|s, a)||P 2(·|s, a))]

≤γEs∼dπ,P1 [Ea∼πEs′∼P 1∆V (s′)] +
2γ|r|max

1− γ
max
s,a

DTV (P
1(·|s, a)||P 2(·|s, a))

(8)
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According to Lemma 1, Inequality 8 can be simplified as:

Es∼d
π,P1∆(s) ≤ 2γ|r|max

1− γ
max
s,a

DTV (P 1(·|s, a)||P 2(·|s, a)) +
∑
s′

[dπ,P1(s′)− (1− γ)µ(s′)]∆V (s′)

(9)

Consequently, Es∼dπ,P1∆(s) can be eliminated, and we can obtain:

|η(π, P 1)− η(π, P 2)| ≤ Es∼µ(s)|V P1

(s)− V P2

(s)| ≤ 2γ|r|max

(1− γ)2
max
s,a

DTV (P 1(·|s, a)||P 2(·|s, a))

(10)

For the newly defined objective function, we can introduce any unknown dynamics Pm to obtain:

η(π, P o)− η(π, Pm) ≥ −max
s,a

DTV (P
o(·|s, a)||Pm(·|s, a))

η(π, Pw)− η(π, Pm) ≥ −max
s,a

DTV (P
w(·|s, a)||Pm(·|s, a))

(11)

Thus, the lower bound of the objective function can be derived as:

η(π, P o) + αη(π, Pw) ≥ (1 + α)η(π, Pm)− 2γ|r|max

(1− γ)2
(d(Pm||P o) + αd(Pm||Pw)), (12)

where d(P 1||P 2) ≜ maxs,a DTV (P
1(·|s, a)||P 2(·|s, a)).

Theorem 2. For any given policy π and its corresponding worst-case dynamics Pw, the adjust
Bellman operator Ta is a contraction whose fixed point is V π

a . The operator equation TaV π
a = V π

a
has a unique solution.

Proof. For any given policy π and its corresponding worst-case dynamics Pw, the adjustable robust
Bellman operator Ta is defined as:

TaV π
a (s) = Ea∼π[r(s, a) + γ sup

Pm
s,a∈Pm

s,a

Es′∼Pm
s,a

[V π
a (s′)]], (13)

where the uncertainty set is defined as Pm = ⊗(s,a)∈S×APm
s,a; Pm

s,a = {Ps,a ∈ ∆(S) :
DTV (Ps,a||P o

s,a) + αDTV (Ps,a||Pw
s,a) ≤ ρ′}.

For any two adjustable robust value functions V1 and V2, we have:

||TaV1 − TaV2||∞
= max

s
|Ea∼π[r(s, a) + γ sup

Pm
s,a∈Pm

s,a

Es′∼Pm
s,a

[V1(s
′)]− r(s, a)− γ sup

Pm
s,a∈Pm

s,a

Es′∼Pm
s,a

[V2(s
′)]]|

= γmax
s

|Ea∼π[ sup
Pm

s,a∈Pm
s,a

Es′∼Pm
s,a

[V1(s
′)]− sup

Pm
s,a∈Pm

s,a

Es′∼Pm
s,a

[V2(s
′)]]|

≤ γmax
s

Ea∼π| sup
Pm

s,a∈Pm
s,a

Es′∼Pm
s,a

[V1(s
′)]− sup

Pm
s,a∈Pm

s,a

Es′∼Pm
s,a

[V2(s
′)]|

= γmax
s

Ea∼π|Es′∼Pm,1
s,a

[V1(s
′)]− Es′∼Pm,2

s,a
[V2(s

′)]|

≤ γmax
s

Ea∼π|Es′∼Pm,1
s,a

[V1(s
′)− V2(s

′)]|

≤ γmax
s

Ea∼πEs′∼Pm,1
s,a

|V1(s
′)− V2(s

′)|

≤ γmax
s

Ea∼π max
s

|V1(s
′)− V2(s

′)|

= γmax
s

Ea∼π||V1 − V2||∞

= γ||V1 − V2||∞,
(14)

where Pm,1
s,a = arg supPm

s,a
Es∼Pm

s,a
V1(s) and Pm,2

s,a = arg supPm
s,a

Es∼Pm
s,a

V2(s).
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Let us assume the existence of two different fixed points V ∗
1 and V ∗

2 for the adjustable Bellman
operator. As both of these are fixed points, the following equality holds:

||V ∗
1 − V ∗

2 ||∞ = ||TaV ∗
1 − TaV ∗

2 ||∞ (15)

According to the proof in 14, the following inequality holds:

||TaV ∗
1 − TaV ∗

2 ||∞ ≤ γ||V ∗
1 − V ∗

2 ||∞ (16)

Thus, for both Equation 15 and Equation 16 to strictly hold true simultaneously, it must be the case
that V ∗

1 is equal to V ∗
2 .

Definition 1. Let f : (0,∞) → R be a convex function with f(1) = 1. Let P and Q be two
probability distributions on a measurable space. Then, the f -divergence is defined as

Df (P ||Q) = EQ[f(
dQ

dP
)], (17)

where dP
dQ is a Radon-Nikodym derivative.

Proposition 1. The policy evaluation of AR2L can be formulated as a constrained optimization
problem. The objective is to maximize the value function over the uncertainty set Pm, subject to the
constraint defined in Pm. By representing the TV distance using the f -divergence (Shapiro, 2017),
the adjustable robust Bellman operator Ta can be equivalently written as

TaV π
a (s) = Ea∼π[r(s, a) +

γ

1 + α
inf

λ,µ1,µ2,µ
(Es′∼P o

s,a
[V π

a (s′)− µ1(s
′)]++

αEs′∼Pw
s,a

[V π
a (s′)− µ2(s

′)]+ + µ+ λρ(1 + α))],
(18)

where [x]+ denotes max{x, 0}, µ1(s) and µ2(s) are Lagrangian multipliers for each s ∈ S; µ =
µ1(s) + αµ2(s) holds for each s ∈ S, and λ = maxs{V π

a (s)− µ1(s), V
π
a (s)− µ2(s), 0}.

Proof. The f -divergence can be utilized to express the constraint defined in the uncertainty set Pm

as follows:

DTV (Ps,a(s
′)||P o

s,a(s
′)) + αDTV (Ps,a(s

′)||Pw
s,a(s

′))

=
1

2

∫
S
|dPs,a(s

′)− dP o
s,a(s

′)|+ α

2

∫
S
|dPs,a(s

′)− dPw
s,a(s

′)|

=
1

2

∫
S
|dPs,a(s

′)

dP o
s,a(s

′)
− 1|dP o

s,a +
α

2

∫
S
|dPs,a(s

′)

dPw
s,a(s

′)
− 1|dPw

s,a

=
1

2

∫
S
|ζo(s′)− 1|dP o

s,a +
α

2

∫
S
|ζw(s′)− 1|dPw

s,a ≤ ρ′,

(19)

where ζ : S → R+ is the measurable function. ζo(s) = dP (s)
dP o(s) measures the difference between two

dynamics at each sample s ∈ S, similarly for ζw.

In the policy evaluation step of the adjustable robust Bellman operator, the goal is to obtain a mixture
dynamics Pm

s,a that maximizes the adjustable value function while satisfying the constraint defined in
Equation 19. We hereby formulate this procedure as a constrained optimization problem, written as:

max
ζo,ζw

∫
S
V (s)ζo(s)dP o(s) + α

∫
S
V (s)ζw(s)dPw(s)

s.t.

∫
S
ϕ(ζo(s))dP o +

∫
S
ϕ(ζw(s))dPw ≤ (1 + α)ρ∫

S
ζo(s)dP o(s) = 1; α

∫
S
ζw(s)dPw(s) = α

ζo(s)dP o(s)− α
1

α
ζw(s)dPw(s) = 0,∀s ∈ S,

(20)

where the value function V : S → R is also a measurable function. We use P o and Pw to denote
P o
s,a and Pw

s,a for brevity, ρ = ρ′

1+α is the normalized radius constant, and ϕ(x(s)) = 1
2 |x(s)− 1| is
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a convex and lower semicontinuous function. We thus can use the Lagrangian multiplier method to
solve the optimization problme in 20. The Lagrangian function is written as:

L(ζo, ζw, λ,µ1, µ2, µ3(s)) =

∫
S
[(V (s)− µ1 − µ3(s))ζ

o − λϕ(ζo)]dP o

+α

∫
S
[(V (s)− µ2 +

1

2
µ3(s))ζ

w − λϕ(ζw)]dPw + λρ(1 + α) + µ1 + µ2α

(21)

The Lagrangian dual of problem 20 is
inf

λ≥0,µ1,µ2,µ3(s)
sup
ζo,ζw

L(ζo, ζw, λ, µ1, µ2, µ3(s)) (22)

Since the measurable function space L(S,Σ(S), P ) is decomposable, the supremum in 22 can be
taken inside the integral (Shapiro, 2017), that is

sup
ζo,ζw

L(ζo, ζw,λ, µ1, µ2, µ3(s)) =

∫
S
sup
ζo

[(V (s)− µ1 − µ3(s))ζ
o − λϕ(ζo)]dP o

+α

∫
S
sup
ζw

[(V (s)− µ2 +
1

2
µ3(s))ζ

w − λϕ(ζw)]dPw + λρ(1 + α) + µ1 + µ2α

(23)
We can observe that the two terms inside the integral are identical to the definition of the conjugate
function ϕ∗(y) = supx∈R+

{xy−ϕ(x)}. And ϕ(x), as a convex, semicontinuous function, is defined
as 1

2 |x(s)− 1|, resulting in ϕ∗(y) = max{y,− 1
2}. The dual problem can be transformed as:

inf
λ≥0,µ1,µ2,µ3(s)

L(λ, µ1, µ2, µ3(s)) = inf
λ≥0,µ1,µ2,µ3(s)

∫
S
max{V (s)− µ1 − µ3(s),−

1

2
λ}dP o

+α

∫
S
max{V (s)− µ2 +

1

α
µ3(s),−

1

2
λ}dPw + λρ(1 + α) + µ1 + µ2α

(24)

We use [x]+ to represent max{x, 0} for brevity. It is then transformed as

inf
λ≥0,µ1,µ2,µ3(s)

L(λ, µ1, µ2, µ3(s)) = inf
λ≥0,µ1,µ2,µ3(s)

∫
S
[V (s)− µ1 − µ3(s) +

1

2
λ]+dP

o

+α

∫
S
[V (s)− µ2 +

1

α
µ3(s) +

1

2
λ]+dP

w + λρ(1 + α) + µ1 −
λ

2
+ (µ2 −

λ

2
)α

(25)

Next, we set µ′
1(s) = µ1 + µ3(s) − 1

2λ and µ′
2(s) = µ2 − 1

αµ3(s) − 1
2λ. And we observe that

∀s ∈ S, µ′
1(s) + αµ′

2(s) = µ1 − λ
2 + (µ2 − λ

2 )α. We thus set µ = µ′
1(s) + αµ′

2(s).

inf
λ≥0,µ1,µ2,µ3(s)

L(λ, µ1, µ2, µ3(s))

= inf
λ≥0,µ1,µ2,µ3(s)

∫
S
[V (s)− µ′

1(s)]+dP
o + α

∫
S
[V (s)− µ′

2(s)]+dP
w + λρ(1 + α) + µ

(26)

In addition, based on the analysis of the conjugate function ϕ∗(y) in (Panaganti et al., 2022), we can
derive the following two inequalities:

V (s)− µ1 − µ3(s)

λ
≤ 1

2
;

V (s)− µ2 +
1
2µ3(s)

λ
≤ 1

2
(27)

We thus can obtain λ = maxs{V π
a (s) − µ1(s), V

π
a (s) − µ2(s), 0}. Building on the proofs above,

we can define the adjustable robust Bellman operator as shown in Equation 18.

A.3 Pseudocode of Algorithms

The pseudocodes for both the exact AR2L algorithm and the approximate AR2L algorithm are
presented in Algorithm 1 and Algorithm 2, respectively. Note that in practice, the Kullback-Leibler
(KL) divergence is adopted to constrain the deviation between distributions in the exact AR2L
algorithm.
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Algorithm 1 Exact AR2L Algorithm
Initialize: packing policy πpack, permutation-based attacker πperm, mixture-dynamics model πmix,
and their corresponding value functions V πpack , V πperm , V πmix ;
Input: stationary item distribution pb;
Parameter: robustness weight α, number of observable items NB ;
Output: packing policy πpack;

1: for i = 0 to max_iteration do
2: # train the permutation-based attacker
3: Reset the environment and observe C0,B0 ∼ pb;
4: for t = 0 to max_step do
5: Get permuted item sequence: B′

t = πperm(Ct,Bt);
6: Get location for b′t,1: lt = πpack(Ct,B

′
t);

7: Pack b′t,1 into the bin, and observe Ct+1,Bt+1 ∼ pb, reward rpackt , termination dt;
8: if dt == True then
9: Update πperm on episode samples to maximize −

∑
rpackt ;

10: end if
11: end for
12: # train the mixture-dynamics model and the packing policy
13: Reset the environment and observe C0,B0 ∼ pb;
14: for t = 0 to max_step do
15: Get permuted item sequence: B′′

t = πmix(Ct,Bt);
16: Get location for b′′t,1: lt = πpack(Ct,B

′′
t );

17: Pack b′′t,1 into the bin, and observe Ct+1,Bt+1 ∼ pb, reward rpackt , termination dt;
18: if dt == True then
19: Update πmix, V

πmix on episode samples to maximize∑
rpackt − (DKL(πmix||1{x=bt+1,1

) + αDKL(πmix||πperm));
20: Update πpack, V

πpack on episode samples to maximize
∑

rpackt ;
21: end if
22: end for
23: end for

A.4 Implementation Details

𝑂

𝑦

𝑥

Figure 9: In the xoy plane,
circles represent the potential
positions generated by the IPs
heuristics.

To implement a packing policy that can work in both the discretized
grid world and the continuous solution space, we use the packing
configuration tree (PCT)(Zhao et al., 2022a) to represent the state,
and employ a transformer(Vaswani et al., 2017) network as the
packing policy. PCT is utilized to represent the bin configuration
and available empty spaces for the most recently packed item, while
the versatile transformer network is capable of handling the variable
number of nodes in PCT. We adopt the same network configuration
as reported in PCT for the packing policy, with the addition of
positional encoding to encode the position information of each item
in the observed item sequence.

In addition, those available spaces are generated using a heuristic
method that takes into account the packing constraints and prefer-
ences for the item to be packed. Specifically, in the discrete setting,
we utilize the empty maximal spaces (EMSs) (Ha et al., 2017) heuris-
tics to generate potential positions, and subsequently apply the same
constraints used in PCT to check the stability of these positions, thereby identifying the feasible
positions L. In the continuous setting, we propose a new heuristic methods called Intersection Points
(IPs) to generate potential positions. Given the 2D packed items in the xoy plane, the intersection
points are generated from the intersection of the sides of cuboid-shaped items and the bin, as shown
in Figure 9. To extend this method from 2D to 3D cases, we allow candidate positions to be obtained
from the intersection points of the sides in the top view.

27



Algorithm 2 Approximate AR2L Algorithm
Initialize: packing policy πpack, permutation-based attacker πperm, and their corresponding value
functions V πpack

a , V πperm ;
Input: stationary item distribution pb;
Parameter: robustness weight α, number of observable items NB ;
Output: packing policy πpack;

1: for i = 0 to max_iteration do
2: # train the permutation-based attacker
3: Reset the environment and observe C0,B0 ∼ pb;
4: for t = 0 to max_step do
5: Get permuted item sequence: B′

t = πperm(Ct,Bt);
6: Get location for b′t,1: lt = πpack(Ct,B

′
t);

7: Pack b′t,1 into the bin, and observe Ct+1,Bt+1 ∼ pb, reward rpackt , termination dt;
8: if dt == True then
9: Update πperm on episode samples to maximize −

∑
rpackt ;

10: end if
11: end for
12: # train the packing policy
13: Reset the environment and observe C0,B0 ∼ pb;
14: for t = 0 to max_step do
15: Get location for bt,1: lt = πpack(Ct,Bt);
16: Pack bt,1 into the bin, and observe Ct+1,Bt+1 ∼ pb, reward rpackt , termination dt;
17: if dt == True then
18: Permute Bt, t ∈ [0, T ] to B′

t, t ∈ [0, T ] using πperm;
19: Use 18 to compute target values for adjustable Bellman values on

{Ct,Bt,B
′
t, lt, r

pack
t , dt}, t ∈ [0, T ];

20: Update πpack, V
πpack on episode samples to maximize

∑
rpackt ;

21: end if
22: end for
23: end for

In our implementations of both the permutation-based attacker and the mixture-dynamics model,
we utilize the transformer (Vaswani et al., 2017) network to model these policies. This choice is
motivated by the variable number of observed boxes in different real packing systems, as well as the
dynamic changes in the number of packed items during each episode. The transformer is capable
of capturing long-range dependencies in spatial data and sequential data. Specifically, we first use
two independent element-wise fully-connected (FC) layers to project heterogenous elements of the
state into homogenous features. Then, the scaled dot-product attention is relied to calculate the
weighted sum of features based on the relevance between given input features. Next, we use the
skip-connection operation and the element-wise feed-forward FC layer to obtain the final features
x = {xC ,xB} ∈ Rdx×N , where xC ∈ Rdx×NC and xB ∈ Rdx×NB denote features of Ct and Bt

respectively, dx is the feature size, and N = NC +NB denotes the variable feature number. Finally,
the probability distribution over Bt is described as

πperm(Bt|Ct,Bt) = softmax(ctemp · tanh(y)), y =
x̄TxB√

dx
∈ RNB , (28)

where x̄ = 1
N

∑N
i=1 xi and ctemp is the temperature constant.

As the number of packed items C and the number of available feasible positions L both vary at
different time steps and have irregular shapes, we combine this data into one batch by filling C and
L to fixed lengths of 80 and 120 in the discrete setting, and 100 and 120 in the continuous setting,
respectively, using dummy elements. Each valid element in C is a vector that specifies the size
and position of an item that has already been packed. Each vector in B represents the sizes of an
item that has yet to be packed. Each vector in L contains the position of a feasible empty space
that can accommodate a new item. To permute the observed item sequence, we feed both C and B
to a transformer network that serves as the attacker. In this transformer network, the sizes of the
two element-wise fully connected (FC) layers are fixed at 64. Additionally, there is one attention
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layer with one head attention, and the sizes of the query, key, and value vectors are set to 64. The
size of the element-wise feed-forward FC layer is also set to 64. In our experiment, we utilize the
PPO (Schulman et al., 2017) algorithm to effectively train the packing policy, permutation-based
attacker, and mixture-dynamics model. PPO employs multiple parallel processes (64 in this case)
to interact with their respective environments and collect data. The rollout length for each iteration
is set to 30, and the learning rate is set to 0.0003. To ensure a fair comparison, we keep the same
hyperparameter settings mentioned above for each of the methods that we have reproduced.

A.5 Related Work

Heuristic Methods. In heuristic methods proposed for solving 3D-BPP, the score function is
often designed to rank item placements based on expert knowledge, which can represent the pack-
ing requirements and preferences to some extent. Ha et al. (2017) relied on the deep-bottom-left
(DBL) (Karabulut and İnceoğlu, 2005) rule to sort empty maximal spaces (EMSs) (Parreño et al.,
2008) for the current item. The best-match-first strategy (Li and Zhang, 2015) gives priority to
feasible placements that have the smallest margin for the observed item. Hu et al. (2017) introduced
the least surface area heuristic, which selects the maximal empty space and orientation that result in
the smallest surface area. The Heightmap-Minimization method (Wang and Hauser, 2019) favors
items placement that result in the smallest occupied volume as observed from the loading direction.
The maximize-accessible-convex-space method, as described by Hu et al. (2020), aims to optimize
the empty space available for future, potentially large items. Despite their simplicity and effectiveness,
these methods find difficulties in handling complex packing preferences and adapting to diverse
scenarios for solving online 3D-BPP. This is because their packing strategies rely heavily on expert
experience and may not be flexible enough to accommodate different situations.

DRL-based Methods. To further develop highly effective policies, DRL-based methods are broadly
proposed by formulating the online 3D-BPP as a sequential decision-making problem. In this
formulation, the state usually includes the bin configuration, which contains information about
both the container and the packed items, as well as the observed item on the conveyor. To learn a
DRL-based policy, the container is discretized to represent the bin configuration, and a convolutional
neural network (CNN) is served as a policy (Hu et al., 2017; Verma et al., 2020; Zhao et al., 2021,
2022b; Yang et al., 2021; Song et al., 2023). However, these learning-based methods only work in a
grid world with limited spatial discretization accuracy, which reduces their practical applicability.
To deploy DRL-based methods on solving online 3D-BPP with continuous solution space, Zhao
et al. (2022a) utilized the Packing Configuration Tree (PCT) to represent the bin configuration and
potential available spaces. They then employed a graph attention network (Veličković et al., 2017) to
encode the PCT and observed boxes, to encode the PCT and observed boxes, and to select a location
from available spaces generated for the most preceding item. However, these methods often focus on
optimizing average performance and do not account for worst-case scenarios.
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